
Abstract. We discuss how pressure affects the matter±matter
gravitational interaction. We show the frequently used claim
that gravitation is produced in General Relativity not only by
the mass density q but also by the pressure p in the combination
q� 3p=c 2 to be incorrect. The way pressure actually influences
gravitation is discussed together with some related problems.
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1. Introduction

Two concepts prevail in modern physical cosmology: the
theory of inflation at the beginning of the expansion of the
Universe [1] and the observed accelerating expansion of the
Universe at the present time [2]. Both phenomena are
interpreted in the framework of General Relativity (GR) as
gravitational repulsion caused by matter with a special
equation of state.

The very existence of gravitational repulsion in the
Universe arouses great interest in the problem of antigravita-
tion in general. The theoretical possibility of antigravitation
in GR has been known for a long time. Unlike the Newtonian
theory, where gravitation is a particular field, in GR
gravitation is described by the curvature of space±time.
However, the appearance of antigravitation relates not to
this feature of GR but to the parameters of the ordinary
matter that creates gravitation. This feature is usually
described as follows. We quote the specialists.

``According to GR, the gravitational field is created not
only by the mass of matter but also by all kinds of energy,
pressure and stresses that are present in the matter'' [1].

In a similar way, the authors of [3] write ``... the pressure
participates on equal footing with the density r in producing
the gravitational field...,'' or, more quantitatively [2],
``According to GR, gravitation is produced not only by the
density of a medium but also by the pressure in the
combination

r� 3p

c 2
;''

where r is the density of matter, p is the pressure, and c is the
speed of light. Finally, as stated in [3], ``taking pressure into
account, as was shown by Tolman (1930), gravitational
acceleration in GR for a body at rest is

g � ÿG 4p
3

R 3

R 2

�
r� 3

p

c 2

�
:'' (1)

Here, g is the free-fall acceleration on the surface of a ball with
radius R, G is Newton's gravity constant, 4pR 3=3 is the
volume of the ball, and the density r and pressure p are
assumed to be constant inside the ball.

According to the quotations given above, it is very easy to
take the GR effects into account: to calculate the gravita-
tional mass, the density r of Newtonian theory should be
substituted by r� 3p=c 2.1

It is now clear that to obtain antigravitation for a positive
r, it is necessary to assume that the pressure is negative and
has a sufficiently high absolute value:

p < ÿ 1

3
rc 2 : �2�

Inequality (2) is satisfied, in particular, for the vacuum
equation of state, a vacuum-like `quintessence' [4], and some
other possible forms of matter [5±7].

Most frequently, questions about gravitational repulsion
are considered in models of a homogeneous Universe. Here,
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1 We stress that so far we ignore the GR space±time curvature effects, i.e.,

we consider sufficiently small noncompact masses (see below for more

details).
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the usual way of taking the pressure effect on the evolution of
the Universe into account is as follows. In a homogeneous
universe, a small spherical volume is considered, and
gravitational forces created by matter inside the volume are
analyzed. The size of the sphere is small, the expansion
velocity is low compared to the speed of light, and matter
can be considered to be at rest. According to both the
Newtonian theory and GR, for a spherical distribution of
matter, matter outside a spherical volume does not produce
any gravitational field in the interior of that volume. There-
fore, knowing the gravitation of matter inside an isolated
sphere is sufficient for determining the acceleration and
dynamics of matter. One usually considers a sufficiently
small volume in order to ignore the space±time curvature
inside it. Then the entire difference between GR and the
Newtonian theory reduces to different laws of gravity
produced by matter.

As noted above, it has been recognized that to calculate
gravitational acceleration at the boundary of an isolated ball
in GR, it is sufficient to replace r in the Newtonian theory
with the quantity r� 3p=c 2. We turn again to the specialists.

``The active gravitational mass density in an almost
homogeneous distribution is [8]

rgrav � r� 3p ;'' (3)

here, c � 1.
In the case of a vacuum, the equation of state is

pv � ÿc 2rv : �4�

Substituting (4) in (3) yields

rgrav � ÿ2rv : �5�

The quantity rgrav is negative for a positive density rv. Hence,
we find

g � ÿG 4pR 3

3R 2
�ÿ2rv� � G

8

3
pRrv : �6�

The acceleration is positive, which means gravitational
repulsion, and is proportional to R. Hence, one usually
deduces that if we select a sphere of radiusRwith the vacuum
matter of the Universe, and place it into empty space, we
obtain an object creating antigravitation in the ambient
empty space. The same must hold for a ball made of any
matter with the equation of state satisfying (2). The goal of the
present methodological notes is (1) to show that the above
statements are incorrect and (2) to consider some related
issues.

2. Einstein equations for spherically symmetric
distribution and motion of matter

We write the Einstein equations for a spherically symmetric
distribution of matter. The interval is given by2

ds 2 � exp n c 2 dt 2 ÿ exp l dr 2 ÿ r 2�dy 2 � sin2 y df 2� : �7�

Here and below, we let r denote the current radial coordinate
andR denote the radius of the sphere. For a body instantly at
rest, i.e., when the radial velocity is vr � 0, _l � 0 at a given
time, the GR equations for the nonzero components take the
form [9]

8pGp � exp �ÿl�
�
n 0

r
� 1

r 2

�
ÿ 1

r 2
; �8�

8pGp � 1

2
exp �ÿl�

�
n 00 � n 0 2

2
� n 0 ÿ l 0

r
ÿ n 0l 0

2

�
ÿ 1

2
exp �ÿn��l ;

�9�

8pGr � ÿ exp �ÿl�
�
1

r 2
ÿ l 0

r

�
� 1

r 2
: �10�

Here and below, c � 1, G is Newton's constant, r is the
density of the matter, p is its pressure, the prime denotes
differentiation with respect to r, and the dot denotes
differentiation with respect to time.

The equilibrium equation is [9]

n 0 � ÿ 2p 0

p� r
: �11�

The covariant vector of gravitational±inertial acceleration at
a given point in static reference frame (7) is expressed as [11] 3

Fr � ÿ 1

2
n 0 : �12�

Equation (10) can easily be integrated to give

exp l �
�
1ÿ 2GM

r

�ÿ1
; �13�

where

M � 4p
� r

0

rr 2 dr : �14�

Combining Eqns (8), (13), and (14), we obtain

ÿFr � n 0

2
� G

M� 4pr 3p
r 2�1ÿ 2GM=r� : �15�

If the reference frame is static, Fr is the gravitational
acceleration (see Section 5 for clarification). The sign of n 0

defines the direction of action of gravitation (see expres-
sion (12)). The plus sign means attraction and the minus sign
means antigravitation.

3. Comparison of matter density and pressure
contributions to gravitational acceleration

If at some moment of time reference frame (7) has no
deformation accelerations (i.e., �l � 0 in formula (9)), the
vector Fr describes gravitational acceleration only. To
separate gravitational accelerations, equilibrium distribu-

2 Equation (7) is written in the curvature coordinates r. For the simplest

topology of three-dimensional space applicable, for example, to stars or

planets, 04 r <1. For a more complex case of wormholes, more

complicated coordinates should be used (see, e.g., [10]).

3 To avoid misunderstanding, we recall that Fr is a coordinate vector. The

physical acceleration is expressed by the scalar F � ����������
FrF r
p

. In the cases

considered below, where the gravitational radius of all objects is much

smaller than their sizes, Fr almost coincides with the physical accelera-

tion.
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tions can be considered, with Eqn (9) satisfied. We consider
such a case and ignore distribution edges, which cannot be
static.

Gravitational acceleration in reference frame (7), in which
the body is at rest at a given time, is defined by covariant
vector (15) (see [12]). We note that the matter density r and
pressure p enter the definition of n 0 in significantly different
ways. The quantity n 0 depends on two parameters: the mass
M and the pressure p. The mass M depends on r only and is
determined by formula (14), similar to theNewtonian one but
differing from the Newtonian value (as the sum of the masses
of the volume elements) by the gravitational mass defect
(see [12]). For small R with fixed r, this difference is
insignificant. The pressure p does not enter expression (14)
at all. Under the same conditions, the quantity in parentheses
in the denominator of (15) is little different from unity.
Ignoring the second term in the numerator of (15), we then
recover the Newtonian expression F N

r for the free-fall
acceleration gN:

F N
r � gN � ÿGM

r 2
: �16�

The second term in the numerator of (15) that takes p into
account has quite a different meaning. Here, p is taken not as
an integral over the entire gravitating mass distribution (as
was the case for r) but at the point of measurement of n 0.
Therefore, the effect of the pressure p on the value of the
gravitational acceleration n 0 is essentially different from the
effect of density r!

The fundamentally important consequences of this fact
are considered in Sections 4 and 5.

4. Mass of an object
and the gravitational acceleration it produces

What acceleration is produced by a spherical matter distribu-
tion? It is expressed by formula (15) both inside matter and
outside it, in empty space. In empty space, exp l is given by the
Schwarzschild solution [11]

ÿg11 � exp l �
�
1ÿ 2GMS

r

�ÿ1
; �17�

whereMS is the Schwarzschild mass.
Solution (17) coincides with formulas (13) and (14)

outside the sphere r > R if M�R� �MS, where M�R� is the
value of M on the sphere at r � R. Hence, the acceleration
produced by a spherical mass in empty space outside the
sphere is

ÿ Fr � n 0

2
� G

M�R�
r 2�1ÿ 2GM�R�=r� ; �18�

M�R� � 4p
�R
0

rr 2 dr : �19�

These expressions do not contain the pressure p at all (cf.
the argument in Section 3). This, in particular, implies that if
we take a ball made of vacuum matter (say, `quintessence')
with the vacuum equation of state (4) and r > 0, then outside
the ball, for r > R, we have not repulsion but attraction! The
hasty conclusion that a ball made of vacuum matter creates
antigravitation in empty space follows from a careless
application of the statements quoted in the Introduction
that, to calculate gravitational forces in GR, it is sufficient

(with the space±time curvature ignored) to make the substitu-
tion r! r� 3p. The example given above shows that this is
not the case. What is then the reason for the appearance and
broad use of such statements?

The point is as follows. When considering the cosmologi-
cal problem with a homogeneous matter distribution r �
const and p � const at a time t and selecting a sufficiently
small sphere such that (a) the body can be considered at rest
and (b) the space±time curvature can be disregarded, we have

ÿ Fr � n 0�R�
2
� G

M�R� � 4pR 3p

R 2
; �20�

M�R� � 4

3
pR 3r ; �21�

whereR is the radius of the sphere. These expressions coincide
with (1). In addition, we note that, as mentioned in the
Introduction, Tolman showed in [13] (see also [9, 14]) that in
the case of a stationary equilibrium matter distribution in an
asymptotically flat space±time, the total mass is

M �
�
�r� 3p� �������ÿgp

dV ; �22�

where dV is the element of the physical three-dimensional
space, g is the determinant of the fundamental metric tensor,
and the integral is taken over the entire physical static three-
dimensional space. For g � ÿ1, Eqn (22) coincides with
Eqn (1) and (20), (21).

However, Eqn (22) is valid only for matter in equilibrium
and when the integration is performed over the entire space in
order to determine the total massM and not the current mass
depending on the radial coordinate. The calculation of the
total mass, of course, is not suitable for the cosmological
problem. Here is the root of misunderstandings arising from
recipes like `use r� 3p instead of r' for nonuniform
distributions, whereas for uniform cosmological models
these statements are correct. (See also the discussion of the
total mass in [14, p. 295].)

5. Variations in the gravitational acceleration
for different spherical distributions of matter

We consider an isolated ball with radius R made of vacuum-
like matter in empty space. The equation of state of matter
inside the ball is given by Eqn (4). The density of matter inside
the ball is constant, rv � const > 0. The value of n 0 determin-
ing the acceleration can be calculated from (15). Figure 1
shows the qualitative dependence of Fr � ÿn 0=2 on t. In this
figure, as well as in Figs 2 and 3, we disregard the boundary
effects of the distributions. As discussed in Section 4, the
gravitational field in the vacuum describes the attraction by
the mass M in (21), whereas inside the ball at r < R, there is
antigravitation, and for a ball with a small radius R,

ÿFr � n 0

2
� G

4pr 3

3r 2
�rv � 3pv� � ÿG 8p

3
rvr : �23�

We now assume that around the radius-R ball under
consideration, at some distance from its surface, there is a
spherical shell made of vacuum matter with a density rv, the
inner boundary at r1 > R, and the thickness Dr � r2 ÿ r1.
Variations in gravitational acceleration Fr � ÿn 0=2 are
shown in Fig. 2.
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Inside the spherical layer with the thickness Dr, there is
antigravitation, and in the empty space both inside and

outside the sphere, there is gravitation. Of course, if we
enclose a ball made of ordinary matter with r > 0 (say, a
planet) by a spherical envelope of vacuum matter, then inside
the envelope antigravitation is summed with the attraction
force from the central ball.

Finally, we consider an empty sphere with radius R
surrounded by vacuum matter with a constant density rv �
const > 0, pv � const. The change in Fr � ÿn 0=2 with radius
is determined by Eqns (14) and (15) (see Fig. 3).

Wemake the following remark. If we consider an instantly
static but nonequilibrium distribution of matter, Eqn (9)
contains the term with �l 6� 0 in general. This means that the
vector Fr that we determine also depends in part on the initial
accelerations in the deformation of this system.4 For example,
when calculating antigravitation in empty space, we are
interested in the acceleration Fr with respect to a static
frame asymptotically flat at infinity. In the examples that we
discuss, we do exactly this, bearing Birkhoff's theorem in
mind.

The form of exp l forM defined by (14) and the expression
for n 0 in (15) determine the solution uniquely. We note that in
the expressions from Section 5, homogeneous distributions of
rv are equilibrium except at their edges.

6. Conclusion

We draw attention to Fig. 2. At the inner edge of the shell, the
repulsion starts immediately, jump-wise. This could result in
unusual physical processes. However, it should be remem-
bered that the construction shown in Fig. 2 is nonequilibrium
at the edges.

So far, we have considered only the case of isotropic,
`Pascal' pressure.We nowmake important remarks about the
case of anisotropic pressure where the radial pressure p1 does
not coincide with the transverse pressure p2. Everywhere
above, we have considered the value of n 0 and derived the
corresponding equations using the value of p1 only. It is the
radial pressure p1 that determines the amplitude of gravita-
tion or antigravitation. The transverse pressure p2 is used
when we consider the problem of equilibrium.

We note that if we find l and n from (8) and (10), then in
the case p1 6� p2 we can set �l � 0 in (9) and determine p2 that
makes the system equilibrium. We do not consider the
possible properties of p2 or how physically realistic they
could be, but the very possibility of such a mathematical
procedure suggests that formally the system defined by (8)
and (10) can always be made static without changing its other
properties.

In these notes, we have also ignored the possibility of the
existence (at least in principle) of objects made of matter with
r < 0. This possibility and related issues will be considered in
detail elsewhere. Here, we only note that such a possibility
actually exists (see, e.g., [6, 10]). In this article, besides the
principal issues, we focus on the methodological aspect of the
problem, stressing that a superficial interpretation of for-
mulas can sometimes lead to erroneous statements in quite
serious papers andmonographs, including in those written by
the author.

We emphasize that the first ideas on possible antigravita-
tion in the Universe were put forward by E B Gliner (see
reviews [15, 16]).

r

R r2r1

Fr

0

Figure 2. Change in Fr � ÿn 0=2 in the case of a homogeneous ball with

radius R and rv � ÿpv, rv > 0 surrounded by a spherical shell with

r � rv � ÿpv located between r1 and r2.

rR

Fr

0

Figure 3. Change in Fr � ÿn 0=2 in the case of a hollow sphere with radius

R surrounded by homogeneous vacuum matter with rv � ÿpv, rv > 0.

4 In the general case, Fr does not reduce to (12) (see [3]), but we are

interested in the cases where Eqn (12) holds.

R r0

Fr

Figure 1. Change in Fr � ÿn 0=2 in the case of a homogeneous ball with

radius R and rv � ÿpv, rv > 0.
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