
Abstract. This review is devoted to free electron lasers (FELs)
and their development research at the Budker Institute of
Nuclear Physics (INP), SB RAS. Basic principles of FEL
physics are considered. Selected studies from forty years of
research are presented. The unique Novosibirsk FEL research
facility is briefly described.
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1. Introduction

This review describes free electron lasers (FELs). This field of
applications of electron beams is important and interesting by
itself. For us, however, it is also an incentive to consider a
number of interesting physical phenomena demonstrating the
operation of the general laws of electrodynamics and the
special relativity.

Free-electron lasers convert the energy of ultrarelativistic
electrons (i.e., electrons with an energy exceeding many times

their rest energy) into electromagnetic radiation energy.
These lasers can emit monochromatic radiation at any
wavelength in the range from 0.1 nm to 1 mm (seven orders
of magnitude!), and this wavelength can relatively rapidly be
tuned by several tens of a percent.

To provide a strong (resonance) interaction of relativistic
electrons with an electromagnetic wave, their trajectory,
which is a straight line in a vacuum, is made slightly
periodically curved in the form of a spiral or a wavy line. A
device with a magnetic field required to create such a
trajectory is called an undulator or a wiggler (see, for
example, review [1]). If an electron lags behind an electro-
magnetic wave by one wavelength after propagating over one
period of the trajectory (the so-called synchronism condi-
tion), such a wave can efficiently decelerate the electron along
the entire wavy trajectory. In this case, the electron radiation
field will be added to the field of the initial wave, enhancing
the latter (because the electron is decelerated, it loses own
energy, which is transferred to the wave).

The operation principle of FELs consists in the following.
Consider an electron beam and an electromagnetic wave
entering an undulator (Fig. 1). If the electron energy and
wavelength satisfy the synchronism condition, half the
electrons begin to lose their energy, while the other half
entering the undulator later by the wave half-period acquire
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Figure 1. Schematic of an FEL amplifier: (1) input electron beam,

(2) undulator, (3) waste electrons, (4) input electromagnetic wave, and

(5) amplified wave.

https://doi.org/10.3367/UFNe.2018.02.038311


energy. Thus, at first, the electron energy in average does not
change but is modulated, i.e., the beam is decomposed into
half-wavelength-thick slices with alternating energy devia-
tions from the initial energy. Particles with a smaller energy
move more slowly, while particles with a greater energy move
faster. Because of this, `fast' slices will catch up with `slow'
slices, thereby producing the electron density modulation
with a spatial period equal to the wavelength. Then, the
situation observed in the first half of the undulator is
repeated: some of the half-wavelength beam slices are
decelerated by the electromagnetic wave, whereas the other
slices are accelerated, but now slices with the higher density of
particles lose energy, while slices with the lower density
acquire energy. As a result, the average electron energy
decreases, whereas the electromagnetic wave power increases.

In this way, FELs amplify electromagnetic radiation. If,
as in many other lasers, two mirrors are mounted on the
system's axis to the left and right of the undulator, the wave
will circulate between them and, passing many times through
the undulator with electrons, will be amplified each time. Of
course, an increase in the radiation intensity is limited. One of
the reasons for the intensity limitation (saturation) might be
the almost complete bunching of electrons in the second half
of the undulator. In this case, a further increase in the
radiation power at the FEL input leads to a decrease of
bunching (debunching), thereby reducing power transferred
from the beam to radiation.

To explain the content of the three previous paragraphs,
we should recall the fundamentals of electrodynamics and
discuss processes proceeding in FELs in more detail.

2. Spontaneous, stimulated,
and coherent radiation

Electromagnetic waves are emitted by electrons moving with
acceleration. The radiation power of one electron is very low
on the macroscopic scale. This means that for practical
applications it is necessary to involve many electrons. For
example, in a candle flame and a gas-discharge lamp a huge
number of atoms of incandescent gas (and an electron in each
atom moving around a nucleus) emit electromagnetic radia-
tion. To simplify the picture, each atom can be mentally
replaced by a charge fixed at the end of a spring. At some
instant of time tn, a charge with the number n is displaced
from the equilibrium position and then begins to oscillate.
The charge moving with acceleration emits radiation and
loses its energy. As a result, the charge oscillations and
radiation terminate after some time.

Another example of an elementary emitter is an electron
entering a finite-length undulator at the instant tn. For
simplicity, we assume that all the `splashes' of the electric
field E1�tÿ tn� are the same and differ only in their `switching
on' time tn. The radiation field of many charges will be equal
to the sum of splashes from each emitter: 1 E�t� �P

n E1�tÿ tn�. Let us transmit this signal through a mono-
chromator or a frequency filter (Fig. 2). It is well known (see,
for example, textbook [2]) that a monochromator stretches
each radiation splash. We will assume that it transforms the
flashE1�tÿ tn� to the wave packet a cos �o�tÿ tn��#�tÿ tn��
#�Tÿ t� tn�, extending from 0 to T �#�t� � 1 for t5 0, and

#�t� � 0 for t < 0�. Then, the output signal of the mono-
chromator has the form

EM�t� � a
X
n

cos
�
o�tÿ tn�

�
#�tÿ tn�#�Tÿ t� tn�

� Re

�
exp �ÿiot� a

X
n

exp �iotn�#�tÿ tn�#�Tÿ t� tn�
�
:

�1�

It follows from formula (1) that the complex amplitude of the
signal

P
n a exp �iotn� is the sum of complex amplitudes of

individual emitters, taking into account only emitters with
tÿ T < tn < t. If we are dealing with a stationary process, the
mean operation frequency n of the emitters is known. Then,
the mean number of summable amplitudes is N � nT. As a
rule, this is a huge number. Moreover, by improving the
spectral resolution of a monochromator, we increase its
response duration T. Therefore, N infinitely increases in the
limit of the ideal monochromator. To increase the signal
spectral density proportional to the modulus squared of the
field complex amplitude����X

n

a exp �iotn�
����2 �X

m

X
n

a 2 exp
�
io�tn ÿ tm�

�
; �2�

it is necessary to choose all the emission moments of emitters
so that the phases of harmonics otn are the same (accurate to
2p), as shown in Fig. 3a. It is possible, for example, to inject
electrons into an undulator with a time delay with respect to
each other equal to the integer number q of periods, i.e.,
2pq=o. This is difficult to do, but is realized, in principle, in
FELs (see below).When all elementary emitters are optimally
synchronized (phased), coherent emission is said to take
place. 2 In this case, the signal amplitude at the monochro-
mator output is Na on average.

In the `typical' case, contributions from individual
emitters have different phases (Fig. 3b). Let us find the mean

1We assume here for simplicity that all the emitters are located at the same

distance from a detector, and therefore the emitter coordinate is absent in

the field argument.

T

Monochromator

Figure 2. Radiation `splashes' from three emitters pass through a

monochromator. Wave packets with a long duration T and the carrier

frequency to which the monochromator is tuned escape from the

monochromator.

2 Unfortunately, the term `coherence' is applied to many physical

phenomena in different senses.
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Figure 3. Summation of spectral harmonics from five emitters: (a) coherent

radiation, and (b) `typical' case. The sum is shown by the dashed arrow.
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square of the modulus of signal complex amplitude (2), but
first refine the term `mean value'.

Remark about averaging. Consider a system characterized
by N numbers, for example, t1; t2; . . . ; tN. In the space of
system's parameters, a nonnegative function f �t1; t2; . . . ; tN�
normalized to unity is specified:

�
f dt1 . . . dtN � 1, where

the integral is taken over the entire region of admissible
values of system's parameters. This function is called the
probability density or the distribution function. Its
meaning is usually explained as follows. Assume that
system's parameters are a priori unknown. We find them
with the aid of some measurements. In addition, we
assume that there are a very great number of equivalent
copies of the system under study, and we measured
the parameters of each of them. Then, the portion of
copies entering a small N-dimensional parallelepiped
described by inequalities s1 ÿ Dt1=2 < t1 < s1 � Dt1=2; . . . ;
sN ÿ DtN=2 < tN < sN � DtN=2 (more exactly, its limit with
an unlimited increase in the number of copies and an
unlimited decrease in the parallelepiped size) is given by
f �s1; . . . ; sN�Dt1 . . .DtN.

The probability density resembles Plato's reasoning
about ideal subjects, which are more real than their
imperfect embodiments that we observe. The `embodiment'
of the distribution function is histograms. The space of
parameters is divided into finite regions, measurements are
performed for a finite number of the system copies, and the
number of copies entering the given region of the parameter
space is counted.

The mathematical probability density is well defined,
because it specifies the measure of sets in the parameter
space. The mean value or mathematical expectation of a
function G�t1; t2; . . . ; tN� is the number

hGi �
�
G f dt1 . . . dtN : �3�

We have now found out what is the mean. However, to
calculate the average spectral density (2), the probability
density should be known. First, let us assume that emitters
are statistically independent. This means (by definition) that
the probability density is a product of N functions, each of
them depending only on one time tn. In addition, because
emitters are identical, these functions should also be identical.
How does this occur? Consider, for example, electrons in an
undulator which appeared from a cathode surface heated to a
high temperature. As a rule, electrons adjacent in time escape
from the parts of the surface separated by a rather large
distance (a few millimeters). Therefore, the escape of one
electron does not affect themotion of another electron. This is
the case of the independentmotion of different electrons. This
independence can later be violated. For example, electrons
emitted from the cathode are mutually pushed apart (the
electric field of each electron changes the momenta of other
electrons) and are `aligned' approximately at the same
distances from each other. 3 Then, the multiparticle distribu-
tion function will no longer decompose into single-particle
factors.

Returning to the discussion of spontaneous, stimulated,
and coherent emission, we make a further simplification by
considering a stationary process in which all the probability
densities are constant (i.e., are time-independent). Therefore,

hexp �iotn�i � 0 and*����X
n

a exp �iotn�
����2
+
�
X
n

a 2 � Na 2 :

The latter equation implies that the average spectral radiation
intensity of independent emitters is a sum of the spectral
intensities of individual emitters. Notice that, in this case, we
lose a lot in the spectral intensity (by the factor N) compared
with that for coherent emission (when all the emitters are
ideally synchronized).4 The emission of an ensemble of
statistically independent (unsynchronized) emitters is called
spontaneous emission.

We will now somewhat change the experiment (Fig. 4).
Along with the emitter, we also consider an `external' plane
monochromatic wave with the frequency to which the
monochromator is tuned and the complex amplitude A. The
output signal of the monochromator can also be shown in the
vector diagram (Fig. 5).

The output signal power is proportional to��A� a exp �iot1�
��2 � jAj2 � 2Re

�
Aa exp �ÿiot1�

�� a 2 ;

i.e., is equal to the sum of the powers of the monochromatic
signal, interference term, and spontaneous emission contribu-
tion a 2. By narrowing the frequency band of the monochro-
mator, we reduce the emitter field amplitude a at the
monochromator output. Because the transmitted signal
energy a 2T is proportional to the transmission band 1=T of
the monochromator, the amplitude a decreases as 1=T upon
narrowing the monochromator transmission band. There-
fore, the complex amplitude of the emitter signal for a good
enough monochromator is much smaller than the monochro-

4 In the case of the infinite duration of the process, the spectral density (the

power limit at the monochromator output upon narrowing the mono-

chromator band, i.e., for N!1) of the undulator radiation from

particles separated exactly by the time interval 2p=o0 has the form of an

infinitely narrow peak, i.e., it is proportional to the delta function

d�oÿ o0�. It is said in this case that the radiation spectrum is discrete.

3 This phenomenon was used to suppress current fluctuations in the

electron beams of low-noise traveling-wave tubes.

Monochromator

T

Figure 4. `Splash' from an emitter and a monochromatic signal passing

through a monochromator.

a exp �iot1�

A

Figure 5. Summation of a spectral harmonic of an emitter with a

monochromatic signal. The sum is shown by the dashed arrow.
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matic signal amplitude. In this case, the contribution of
spontaneous emission to the energy transferred through the
monochromator,��A� a exp �iot1�

��2T � jAj2T� 2Re
�
Aa exp �ÿiot1�

�
T� a 2T;

tends to zero, while the contribution from the interference
term remains finite. If there are many emitters that are not
synchronized with a monochromatic signal, then
hexp �iot1�i � 0. In this case, the averaging represents a
summation over a large number of emitters followed by
division of the result by the number of emitters. Thus, the
interference term is zero on average, and the output power is
the sum of themonochromatic signal power and spontaneous
emission power rapidly decreasing upon narrowing the
monochromator transmission band.

In fact, this is not always the case: amonochromatic wave,
before entering a monochromator, could be in the same
spatial region as an emitter and act on it. In this case, the
motion of electrons in the emitter has changed, and this
change depended on the external wave phase, so that the
phases of the emitters somewhat shifted and the average
interference term became, generally speaking, nonzero. If
the total power decreased in this case, it is said that emitters
absorb the external wave. Otherwise, they amplify it. This is
the case of emerging the stimulated emission, which means
that emitters release their energy to the radiation field faster
than in the case of spontaneous emission in the absence of an
external wave.

To move forward further, it is necessary to describe the
particular mechanisms of synchronization of emitters by an
external wave. Consider first the above-mentioned model of
an atomÐa charge on a spring. For such amodel to be valid,
the oscillator frequency should depend on the oscillation
amplitude. This oscillator property, called nonisochronism,
is quite common. For example, the oscillation frequency of a
pendulum decreases with increasing oscillation amplitude.
Another practically important example is electron rotation5

in a uniform magnetic field with the frequency decreasing
with increasing electron energy.

Thus, consider an ensemble of identical emitters oscillat-
ing first with the same amplitudes, with the oscillation
frequency coinciding with the external wave frequency.
Assume that emitters are first distributed over oscillation
phases otn uniformly, i.e., hexp �iotn�i � 0. The initial
distribution of oscillators in the phase±energy plane is
plotted in Fig. 6a.

Because the energy transferred from an oscillator to the
external wave is proportional to 2Re �Aa exp �ÿiotn��T, half
the oscillators lose their energy, while the other half acquires
energy (Fig. 6b), and on average the energy exchange between
oscillators and the wave is absent. However, the energy of
each oscillator depends on its initial phase. The energy
deviation changes in the oscillation frequency of the oscilla-
tor. Assume for definiteness that the frequency decreases with
increasing energy. Then, the frequency of oscillators with
phases close to zero increases, while the frequency of
oscillators with phases close to p decreases. The phases of
emitters losing energy will increase, whereas the phases of
emitters acquiring energy will decrease. As a result, the phase
distribution will become nonuniform after some timeÐwe
will get crowding near the phase p=2, and sparseness near the

phase ÿp=2 (Fig. 6a). Because no energy exchange between
the emitter and the wave takes place at these phases, neither
amplification nor absorption occur. On the other hand, the
phasing of emitters can be of interest in itself. For example,
their emission will be coherent to some extent in the sense that
the sum of their spectral harmonics will look like something
intermediate between those presented in Figs 3a and b.

To transfer part of the oscillator energy to an external
wave, i.e., to amplify the latter, it is necessary to shift the
relative phase of oscillators (already with the nonuniform
phase distribution) and the wave. This can be most simply
performed by introducing the initial detuning (difference) of
the wave frequency o and oscillator frequencies O�e0�. Then,
the oscillator distributions shown in Fig. 6 will `flow' in phase
with the velocity O�e0� ÿ o. If the initial energy e0 slightly
exceeds the synchronous energy es at which the wave and
oscillator frequencies coincide, then the above-mentioned
velocity is negative and distributions `flow' to the left. This
means that crowding at the p=2 phase will shift for the time
p=�2�oÿ O�e0��� to the zero phase where the energy extrac-
tion is maximal, while the rarefaction atÿp=2 will shift to the
p phase with a maximum rate of the energy gain. As in the
zero-detuning case, some oscillators transfer their energy to
the wave, while others extract energy from the wave, but now
the amount of the former is larger. As a result, when the initial
energy of oscillators exceeds the synchronous energy, the
wave is amplified. On the contrary, for initial energies lower
than the synchronous energy, the energy is absorbed (on the
average) by emitting oscillators, and the external wave is
attenuated. It should be noted that in both cases the average
energy of emitters approaches the synchronous energy.

The simple model described above was proposed in the
mid-20th century (see, for example, book [3] and references
cited therein) and used by A V Gaponov-Grekhov and co-
workers in the invention and development of a new class of
electromagnetic radiation amplifiersÐcyclotron resonance
masers or gyrotrons. In these devices, electrons move in a
uniform magnetic field along spiral trajectories. The rotating
electrons emit at the cyclotron frequency. Gyrotrons take
advantage of the stimulated emission of these electrons.
Modern gyrotrons emit radiation with an average power of
about 1 MW in the millimeter wavelength range.

Emitters in real systems have different initial energies.
Then, to amplify an external signal, the number of emitters
with an energy exceeding the synchronous energy must be
greater than emitters with the lower energy. Such an initial
state is called the `inversion population'. This name is related
to the fact that the distribution function in the thermody-

p j0

e Â

p j0

e c

p j0

e b

Figure 6. Phase grouping of oscillators in the wave field. (a) The initial

state. All the oscillators have the same energies and are uniformly

distributed in phase. (b) Some oscillators lost their energy, while others

acquired it. The phase distribution is still almost uniform, but due to the

energy dependence of the frequency, phases began to shift, as shown by

arrows. (c) The phase shift gives rise to crowding near j � p=2, and a

rarefaction near j � ÿp=2.

5 Rotation is equivalent to oscillations over two coordinates.
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namic equilibrium decreases with energy (the so-called Gibbs
distribution). Therefore, in nature, where the local thermo-
dynamic equilibrium commonly takes place, the wave
absorption processes dominate. The absorption of a wave
by resonance particles was first described theoretically by
L D Landau [4], who studied the damping of a longitudinal
plasma wave. We can say that the Landau damping is caused
by the absorption (i.e., by a stimulated process) of long-
itudinal plasma waves by plasma electrons.6 For some
nonequilibrium energy distributions of electrons in plasma,
plasma waves can be amplified, i.e., such plasma states are
unstable.

3. Stimulated undulator radiation

Consider stimulated undulator radiation in more detail. To
clarify the mechanism of synchronization of electrons in the
undulator, it is necessary to find out how an external
electromagnetic wave affects the electron motion. Let us
take a look at the simplest case of a planar undulator [1]
with period lw � 2p=kw, whose magnetic field has only one
component By � ÿB cos �kwz� in the xz plane, and an
electron moving in this field along the trajectory:

x � K

gkw
cos �kwz� ; y � 0 ; �4�

where g is the relativistic factor (the ratio of the electron
energy to its rest energy), K � eB=�kwmc 2� is the so-called
undulator parameter, e and m are the electron charge and
mass, respectively, and c is the speed of light. Hereinafter, we
assume that g4 1 and K=g5 1. Consider a plane monochro-
matic wave Ex � E cos �kzÿ ot�, with k � o=c, propagating
in the direction of the z-axis (Fig. 7).We will treat this wave as
a weak perturbation which barely changes the electron
trajectory. To find the applicability criterion for this approx-
imation, it is convenient to move to the attached frame of
reference moving along the z-axis with the average electron
velocity

�vz � c

�
1ÿ 1� K 2=2

2g 2

�
� c

�
1ÿ 1

2g 2k

�
:

In the attached frame of reference, an electron oscillates in the
field of two counterpropagating waves: 7

Ecx � E

2gk
cos

�
k

2gk
�zÿ ct�

�
� gkB cos

�
gkkw

ÿ
z� �vzt

��
: �5�

Therefore, the weakness criterion for an electromagnetic
wave has the form E5 2g 2kB, which is fulfilled in most
practically interesting cases.

The work done by the wave field over the electron during
its small displacement along the trajectory is ÿeEx dx. Then,
the change in the electron energy e � gmc 2 can be written out
in the form

de
dz
� ÿeEx

dx

dz
� eEK

g
cos �kzÿ ot� sin �kwz� : �6�

Expression (6) was derived assuming that the wave field
weakly affects the electron trajectory. We can choose the
time of an electron arrival at a point with coordinate z as the
second variable describing the electron motion. Then, one
obtains

dt

dz
� 1

vz
� 1

bc

�����������������������
1�

�
dx

dz

�2
s

� 1

c

�
1� 1� K 2=2

2g 2
ÿ K 2

4g 2
cos �2kwz�

�
: �7�

The system of differential equations (6) and (7) completely
describes the longitudinal motion of an electron in the
undulator under the action of an electromagnetic wave.
These equations look rather complex, but their physical
sense will be clear after their simplification, and the character
of solution will become obvious. The right-hand side of
equation (6), which can be called the effective longitudinal
force, is proportional to

cos �kzÿ ot� sin �kwz� � 1

2
sin
��k� kw�zÿ ot

�
ÿ 1

2
sin
��kÿ kw�zÿ ot

�
; �8�

i.e., is the sum of two traveling waves. The first term on the
right-hand side of formula (8) has the phase velocity
o=�k� kw� � c=�1� kw=k�, which is smaller than the speed
of light, while the phase velocity of the second term is
o=�kÿ kw� � c=�1ÿ kw=k�, i.e., is greater than the speed of
light.8 If an electron moves along the z-axis with the slow
wave velocity, the contribution of the first term on the right-
hand side of expression (8) to the longitudinal force (6) will be
constant and can significantly change the electron energy at a
long enough undulator length. We will call the energy of such
an electron synchronous and write out the velocity-equality
condition, called the phase-matching condition, by replacing
the electron velocity with its value averaged over the
undulator period (7):

c

�
1ÿ 1� K 2=2

2g 2

�
� c

k

k� kw
; �9�

or

l � lw
1� K 2=2

2g 2
: �10�

lw

lx

0 z

k

E v

Figure 7. Electron moves along a cosine curve trajectory. A plane

electromagnetic wave propagates along the z-axis.

6 Longitudinal plasma waves can have the phase velocity smaller than the

electron velocity. It is such waves that are emitted by an electron moving

uniformly and linearly.
7 The motion of an electron in the field of counterpropagating waves and

its relation to stimulated Compton scattering were investigated by

P L Kapitza and P AM Dirac [5].

8 We can say that periodic modulation of the electron interaction with a

wave [see formula (6)] produces the fast and slow spatial harmonics in the

effective longitudinal force, as in the periodic accelerating structures of

linear accelerators of charged particles and periodic decelerating systems

of traveling wave tubes [3, 6].
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A simple explanation of the phase-matching condition
is as follows. Because the electric field is directed along the
x-axis, the electron energy changes in the inclined sections of
the trajectory. Assume that the electron flies through some
place, for example, z � lw=4 at the instant when the wave
field in this place is maximal, for example, at t � lw=�4c�.
Then, the power transferred to the electron is eEvK=g. The
electron will get to a point lw=2 apart after a lapse of time
lw=�2�vz�. Simultaneously, the phase of a force acting on the
electron from the wave side will change by

k
lw
2
ÿ o

lw
2�vz
� k

lw
2

�
1ÿ c

�vz

�
� p ; �11�

i.e., when phase-matching condition (10) is fulfilled, the force
changes its sign. But the transverse component of the velocity
also has another sign at this point. As a result, the transferred
power remain the same. Thus, the electron will be accelerated
along the entire undulator (until the break of the phase-
matching condition caused by the energy increase). On the
contrary, another electron with the same (synchronous)
energy, but lagging behind the first one in time by p=o, will
be decelerated all the time.

Formula (10) coincides with the expression for the
wavelength of spontaneous undulator radiation (see, for
example, Ref. [1]) emitted at the zero angle (forward
radiation). This coincidence, is, of course, not accidental. If
we represent a free (without charges) electromagnetic field as
a sum of many plane waves with different wave vectors and
polarizations, then radiation appears from the action of a
charge on these plane waves (field oscillators), the energy
being transferred from a charged particle to each wave.
Expression (6) describes the action of the wave on a charge.
In both cases, the phase-matching condition provides a
considerable energy transfer for a relatively long time. If the
phase-matching condition is not fulfilled, the rate of energy
transfer from a particle to the wave (and back) changes its
sign all the time and the total energy transfer is small. Notice
that the model of the radiation field as a set of independent
plane waves greatly differs from the concept of the radiation
field as a `broken away' part of an electrostatic field. In
classical electrodynamics, these two models agree with each
other, and their alternating application allows one to under-
stand better the physics of various phenomena. Quantum
electrodynamics is based on the model of independent waves
and this probably leads to some contradictions.

Returning to the phase-matching condition, we assume
that it is fulfilled approximately for the energy e, i.e.,
e � es�1� d�, where

es
mc 2

� gs �
����������������������������
�1� K 2=2�lw

2l

r
; d5 1 :

We express the arrival time t in terms of the slow (because of
the approximate fulfillment of the phase-matching condition)
phase of the synchronous wave (the phase of the slow spatial
harmonic):

j � �k� kw�zÿ otÿ kK 2 sin �2kwz�
8kwg 2s

� p :

We can say thatjÿ p is the phase of the effective longitudinal
force averaged over the undulator period and acting on an
electron. Finally, we will measure the undulator length in
periods divided by 2p, i.e., introduce the dimensionless
independent variable z� kwz. After these replacements and
omission of rapidly oscillating (with the undulator period)

terms on the right-hand side of expression (6), equations (6)
and (7) of the longitudinal motion of electrons will take a
simple form

dd
dz
� ÿA sinj ; �12�

where

A � eElK
2pmc 2�1� K 2=2�

�
J0

�
K 2

4� 2K 2

�
ÿ J1

�
K 2

4� 2K 2

��
(J0 and J1 are Bessel functions), and

dj
dz
� 2d : �13�

The system of differential equations (12) and (13) can be
written out in the form of one second-order differential
equation

d2j

dz 2
� 2A sinj � 0 : �14�

The behavior of solutions of these equations can be easily
analyzed by the standard methods of mechanics, but we will
also apply the mechanical analogyÐ the so-called mathema-
tical pendulumÐa small weight of massM rotating around a
hinge on a rod of length l (Fig. 8).

The equations of motion of such a pendulum,
dv=dt � ÿg sinj (Newton's second law) and dj=dt � v=l,
coincide accurate to within the notation with longitudinal
motion equations (12) and (13). The total energy
M�v 2=2� gl �1ÿ cosj�� of the mathematical pendulum is
preserved. Therefore, if we draw constant-energy lines in the
plane of dynamic variablesÐ the velocity v and angle j
(Fig. 9)Ð then the pendulum motion will be depicted by the
motion of a point in this phase plane along one of the
constant-energy lines.

The phase trajectory of the oval shape corresponds to the
oscillatory motion. The wavy lines correspond to rotation:
the upper onesÐcounterclockwise (because v > 0), and the
lower onesÐclockwise. Two cosine curves separate closed
phase trajectories (oscillations) from unclosed trajectories
(rotations), i.e., form a separatrix. They depict the motion of
the pendulum with the total energy 2Mgl, stopping at the top
position (i.e., at j � �p). Notice that these equations (12)±
(14) describe the longitudinal motion in linear accelerators of
charged particles [6].

Despite the qualitatively simple behavior of the solutions
of system (12), (13), its exact solutions is expressed in terms of

j

Mg

v

l

Figure 8.Mathematical pendulum.
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Jacobi elliptic functions (see, for example, book [7]). A simple
analytical solution can be obtained for a small electromag-
netic wave amplitudeA. The solution can then be represented
as a series over the parameter A:

d�z� � d �0��z� � Ad �1��z� � A2d �2��z� � . . . ; �15�
j�z� � j �0��z� � Aj �1��z� � A2j �2��z� � . . . :

The superscripts in parentheses show that these are different
functions (these functions could be denoted by different
letters). By substituting this expansion into the system being
solved and equating the factors at the same powers ofA on the
left-hand and right-hand sides, we can find successively the
zeroth-, first-, and higher-order solutions.

Let us now refine the physical formulation of the problem.
It is very similar to that we discussed for an ensemble of
emitting oscillators. Assume that electrons with the uniform
phase distribution are flying into an undulator. For example,
they can fly in with equal time intervals not multiple of the
wave period 2p=o. We assume that the energy of these
electrons is the same: e0 � es�1� d0�. The mean change in
the electron energy at the output of the undulator of length
L � qlw, i.e., at z � kwL � 2pq, should be found. To do this,
the solution of system (12), (13) with the initial conditions d0,
j0 must be found and then dmust be averaged over j0.

The subsequent calculations could be omitted, but we will
see that they help to elucidate the process of producing the
stimulated undulator radiation. After substituting expan-
sions (15) into equations (12) and (13), they take the form

dd �0�

dz
� A

dd �1�

dz
� A2 dd �2�

dz
� . . .

� ÿA sin �j �0� � Aj �1� � A2j �2� � . . .�
� ÿA sinj �0� ÿ A2j �1� cosj �0� � . . . ; �16�

dj �0�

dz
� A

dj �1�

dz
� A2 dj �2�

dz
� . . .

� 2d �0��z� � 2Ad �1��z� � 2A2d �2��z� � . . . �17�
In the zeroth order over the dimensionless wave amplitude

A, i.e., at A � 0, energy is constant , i.e., d �0��z� � d0. Then,
the integration of equation (17) gives j �0��z� � j0 � 2d0z.

This equality shows that particles with the greater energy
move faster than a synchronous particle; therefore, the phase
j of the force acting on them increases. By substituting j �0�

into Eqn (16), we find

d �1� � ÿ
� z

0

sin
�
j �0��z 0�� dz 0 � ÿ sin �d0z� sin �j0 � d0z�

d0
:

�18�
The electron dynamics is clearly presented in Fig. 10, similar
to Fig. 6.

It can be seen from formula (18) that in the first order one
half of the particles �04j0 � d0z < p� lose their energy,
while the other half acquires it (Fig. 10b), and on average
the energy exchange between electrons and the wave is absent.
This is quite understandableÐour first approximation does
not take into account the grouping of particles yet, which
appears (Fig. 10c) in the same first approximation because of
the first-order correction to the energy of particles:

j �1� � 2

� z

0

d �1��z 0� dz 0 � sin �j0� 2d0z� ÿ sinj0

2d 2
0

ÿ z cosj0

d0
:

�19�

The dependence of grouping on the initial phase can be found
from the expression

dj
dj0

� dj �0�

dj0

� A
dj �1�

dj0

� 1� A

�
cos �j0 � 2d0z� ÿ cosj0

2d 2
0

� z sinj0

d0

�
: �20�

This quantity shows howmany times the initial-phase interval
dj0 is stretched. Because the number of particles within this
interval is preserved, the initial density of particles (propor-
tional to the instant electron-beam current) decreases by the
same number of times. Taking the grouping into account, the
number of decelerated and accelerated particles will be
different, and the mean energy will change along the
undulator. This is seen from the second-order correction

d �2� � ÿ
� z

0

j �1��z 0� cos �j �0��z 0�� dz 0
� 1

4d 3
0

�
cos �2d0z� ÿ 1� 2d0z cos2 j0 sin �2d0z�

� 2d0z sinj0 cosj0 cos �2d0z�
�ÿ sin �2d0z� sin �2j0� 2d0z�

8d 3
0

;

�21�

d

j0ÿp

cd

j0ÿp

Â d

j0ÿp

b

Figure 10.Change in the energy of particles moving in an undulator under

the action of an accompanying electromagnetic wave. (a) The initial state.

All the electrons have the same energies and are uniformly distributed over

phase (i.e., over the time of entering the undulator). (b) Some particles lose

their energy, while others acquire it. The phase distribution is still almost

uniform, but due to the energy dependence of the frequency, phases begin

to shift, as shown by arrows. (c) The phase shift gives rise to a crowding

near the phase ÿp=2, and a rarefaction near the phase p=2.

v

pÿp j

Figure 9. Phase trajectories of a mathematical pendulum. The arrows

indicate the direction of motion along phase trajectories.
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from which follows the energy change averaged over the
initial phases:

hdÿ d0i � 1

2p

� 2p

0

ÿ
d�j0; d0� ÿ d0

�
dj0 � A2hd �2�i

� A2z 3
cos �2d0z� ÿ 1� d0z sin �2d0z�

4�d0z�3
: �22�

Using expression (18), we can calculate the root-mean-square
deviation of energy from its initial value:


�dÿ d0�2
� � A2


�d �1��2� � A2

2

�
sin �d0z�

d0

�2

: �23�

Expressions (22) and (23) give a simple relationship

hdÿ d0i � 1

2

d

�dÿ d0�2

�
dd0

; �24�

which is called theMadey theorem [8, 9]. Equality (24) has an
interesting physical meaning, which we will discuss briefly in
Section 4.

4. Classical analog of Einstein relations

The system of equations of motion (12), (13) can be
represented by Hamiltonian equations

dd
dz
� ÿ qH�d;j�

qj
;

�25�
dj
dz
� qH�d;j�

qd
:

For the system of equations (12) and (13), we have
H � d 2 ÿ A cosj, with d � I being the action for the
`unperturbed' (at A � 0) system. Relationship (24) is
fulfilled for a broad class of Hamiltonian systems
described in action±angle variables [10, 11]. Its geome-
trical sense is that the area

� 2p
0 I�j� dj � 2pI0 under the

curve in the phase space, on which the points depicting
individual particles lie (see Fig. 10) remains constant
(Liouville's theorem). Indeed, the condition of the con-
servation of the phase density during a small change in
momenta and coordinates can be written out in terms of
the transformation Jacobian:

1 �
qI
qI0

qI
qj0

qj
qI0

qj
qj0

��������
�������� � 1� q�Iÿ I0�

qI0
� q�jÿ j0�

qj0

: �26�

Then, one obtains

hIÿ I0i � 1

2p

� 2p

0

�Iÿ I0� dj0 �
1

2p

� 2p

0

I

�
1ÿ qj

qj0

�
dj0

� 1

2p

� 2p

0

�Iÿ I0� q�Iÿ I0�
qI0

dj0 �
1

2

d

�Iÿ I0�2

�
dI0

; �27�

which generalizes relation (24) for the case of an arbitrary
one-dimensional autonomousHamiltonian system.Using the
dependence of the emitter energy W�I� on the action I

(O � dW=dI is the eigenfrequency), we arrive at

hDWi � OhDIi � O
1

2

d

�DI�2�
dI

� 1

2
O2 d

ÿ
Oÿ2


�DW�2��
dW

� 1

2

d

�DW�2�
dW

ÿ 
�DW�2� d lnO
dW

: �28�

The change in the energy of an elementary emitter with the
known current distribution j�r; tÿ t1� under the action of a
plane monochromatic wave Ex � E cos �kzÿ ot� can be
expressed in the form

DW � ERe

�1
ÿ1

�
jx exp

�ÿi�kzÿ otÿ ot1�
�
dV dt

� ERe
�
exp �iot1�� jx�o; k

�
: �29�

Averaging over the emitter `switching on' moments gives
�DW�2� � E 2

2

��� jx�o; k��2 : �30�

Because, in the absence of an external wave, the spectral
energy density emitted parallel to the z-axis and polarized
along the x-axis (in the electric field direction) has the form

dWn;o

do do=�2p� �
k 2

2pc

��� jx�o; k��2 ; �31�

where do is the solid angle element, the mean square of the
change in the emitter energy under the action of the external
wave can be expressed in terms of the spectral density of
spontaneous emission energy:
�DW�2� � pcE 2

k 2

dWn;o

do do=�2p� : �32�

By substituting Eqn (32) into (28), we obtain

hDWi � pcE 2

2k 2

d

dW

dWn;o

do do=�2p� ÿ
pcE 2

k 2

dWn;o

do do=�2p�
d lnO
dW

:

�33�
Let us assume that the emitter operates at the average
frequency n. Then, the spectral intensity of spontaneous
emission is given by

dIn;o
do do=�2p� � n

dWn;o

do do=�2p� ; �34�

and the radiation absorption cross section is

s � 8pnhDWi
cE 2

� l2
d

dW

dIn;o
do do=�2p� ÿ 2l2

dIn;o
do do=�2p�

d lnO
dW

:

�35�
Formula (35) relating spontaneous emission to stimulated
processesÐabsorption and amplification (for s < 0)Ð is the
classical analog of relations between Einstein coefficients
describing the probabilities of spontaneous and stimulated
transitions. For narrowband emitters, in particular, for FELs
considered in Refs [8, 9], the second term on the right-hand
side of formula (35) can be disregarded.

5. Small-signal gain

Returning to explicit expression (22) for the energy change,
we see that this quantity highly depends on the initial energy
deviation d0 from the synchronous energy (Fig. 11). For
positive deviations, particles lose their energy on average,
whereas for negative deviations they acquire it. In other
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words, the `whirl' of a phase liquid shown in Fig. 9 slightly
`pulls in' particles located above and below the separatrix.9

To provide the maximum energy extraction from particles, it
is necessary to choose the initial energy deviation d0 � 1:3=z
corresponding to the minimum of function (22). In this case,
F�d0z� � ÿ0:135 and
hdÿ d0imin � ÿ0:135A2z 3 : �36�

Such a dependence on the wave amplitude and the undulator
length is almost obvious. Indeed, first the modulation of the
particle energy takes place, which is proportional to the wave
amplitude and the undulator length (we can suppose that this
occurs in the first half of the undulator). Then, particles with
the higher energy catch up with the lower energy particles, the
resulting modulation of the longitudinal density being
proportional to the energy modulation and length, i.e., to
Az 2. In the second half of the undulator, crowdings are
decelerated, while rarefactions are accelerated proportion-
ally to Az, as during the energy modulation in the first half.
The mean decrease in the electron energy is proportional to
the density modulation and the energy modulation in the
second half of the undulator.

Expression (36) also gives the electron efficiency Z �
ÿhdÿ d0imin of a device, i.e., the fraction of the electron
beam power eI=e transformed into radiation. To estimate the
maximum efficiency, we will estimate the maximum dimen-
sionless wave amplitude A. To do this, note that the previous
consideration was obtained by the successive approximation
method with expansion (15), which is valid when jAj �1�j < p.
By using formula (19), we obtain Az 2 < p and Zmax �
1=z � 1=�2pq�. Because usually q4 1, the FEL efficiency is
low.

If the current of an electron beam flying through an
undulator is I, i.e., I=e electrons pass through the undulator
per second, then the beam gives away the power

P � ÿ I

e
gmc 2hdÿ d0i � ÿF�2pqd0��4p�2l2

�
K

1� K 2=2

�2

�
�
J0

�
K 2

4� 2K 2

�
ÿ J1

�
K 2

4� 2K 2

��2
I

IA
gq 3c

E 2

8p
�37�

to the wave, which is proportional to the intensity cE 2=�8p� of
the external wave. The constant IA � mc 3=e � 17 kA is called

the AlfveÂ n current. If the wave appears to us as a light beam
with the cross section S, its power is described by the
expression Pin � cE 2S=�8p�. We assume that the electron
beam is inside the light beam near the axis of the latter. The
amplification of the light wave power in the undulator can
then be described by the so-called small-signal gain:

G � Pout ÿ Pin

Pin
� 8pP

cE 2S
� ÿF�2pqd0��4p�2

�
K

1� K 2=2

�2

�
�
J0

�
K 2

4� 2K 2

�
ÿ J1

�
K 2

4� 2K 2

��2 l2
S

I

IA
gq 3 : �38�

It should be noted that this expression is valid only for the
weak gain G5 1, because we derived it assuming that the
wave amplitude A is invariable. Small-signal gain (38) is
related to absorption cross section (35) by the relation
G � ÿs=S. Formula (38) also describes the amplification of
a plane electromagnetic wave in a very broad electron beam
with the current density j � I=S.

Small-signal gain (38) depends on the relative deviation of
the electron energy from the energy es at which phase-
matching condition (10) is exactly fulfilled. On the other
hand, we can assume that the electromagnetic-wave fre-
quency o deviates from the o0 value following from
condition (10) for the energy e0 � es�1� d0� by the value of
�oÿ o0�=o0 � ÿ2d0. Then, the first factor in formula (38)
takes the form ÿF�pq�o0 ÿ o�=o0� and we obtain the
frequency dependence of the gain with the maximum at the
frequency om � o0�1ÿ 2:6=z� and the relative width of
about 1=q.

The amplifier of electromagnetic radiation described
above is called a free electron laser. Such a name can be
explained by the fact that lasers of other types use the
radiation of bound electrons, i.e., electrons bound in their
atoms or crystals (in semiconductor lasers). Of course,
electrons in FELs are also not completely free. To interact
efficiently with an electromagnetic wave (to emit), they move
in a magnetic field along a nonrectilinear trajectory (there-
fore, with acceleration). The common feature of all lasers is
the exploitation of stimulated emission, i.e., the `correct'
phase-matching of individual emitters by the amplified
wave. This phase-matching in FELs occurs due to the
longitudinal bunching of electrons.

The `relatives' of FELs in the longer-wavelength (cen-
timeter) range are traveling wave tubes (TWTs) [3], where
electrons are indeed `free'. Moving along a straight line,
electrons interact with a slow longitudinal electromagnetic
wave, which can be formed, for example, in a hollow metal
cylinder partially filled with a dielectric (Fig. 12).

The electric field of such a wave is longitudinal and
changes the electron energy even without an undulator. The
dielectric reduces the phase velocity of the wave to the
electron velocity (i.e., the phase-matching condition is also

0.2

0

0ÿ6 6
ÿ0.2

x

F�x�

Figure 11. Function F�x� � �cos �2x� ÿ 1� x sin �2x��=�4x 3� of x � d0z,
describing the dependence of the average change in electron energy on the

electron initial energy.

Electron beam

Dielectric

Metal tube

E

Figure 12. Schematic of a traveling wave tube with a waveguide filled with

a dielectric.

9 Because we assume that the dimensionless amplitude A of the electro-

magnetic wave is small, the separatrix height dmax �
���
2
p

A is also small

compared to d0.
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fulfilled in TWTs). As in FELs, the longitudinal bunching
occurs in TWTs. We can say that the TWT differs from the
FEL only by the type of radiation used: undulator radiation
in the FEL, and Cherenkov radiation in the TWT. The TWT
gain is usually high, and the low-gain case is of no interest in
practice. Nevertheless, expressions for the average energy
change (22) are presented in old textbook [12] and are
reproduced in Ref. [3].

6. Simplest FEL oscillator

To obtain the maximum gain, it is necessary to minimize the
light-beam area S, as follows from formula (38). Obviously,
by decreasing the area for a specified light wave power, we
increase the radiation intensity and, therefore, the amplitude
of the wave interacting with an electron. In this case, it is
possible to extract the greater energy from the electron. At
low frequencies, a metal waveguide can be used, for example,
a rectangular waveguide with lateral sizes a� b possesses
S � pab=2 for the H01 wave. In this case, it is necessary to
change phase-matching condition (9) by adding the term
cp2=�2k 2a 2� to its right-hand side, which takes into account
the increase in the phase velocity in the waveguide for ka4 1,
and to estimate energy losses on waveguide walls. In the
empty space, there is a limit for reducing the light-beam area
over the undulator length, L � qlw, determined by light
diffraction. To estimate it, we consider the approximate
solution of the wave equation called aGaussian beam [13, 14]:

Ex � ERe

�
iz0

zÿ iz0
exp

�
i�kzÿ ot� � i

k

2

x 2 � y 2

zÿ iz0

��
; �39�

which is applied for kz0 4 1. The parameter z0 is called the
Rayleigh length. Solution (39) describes a monochromatic
light beam concentrated near the z-axis with the Gaussian
intensity distribution (the root-mean-square sizes are
sx � sy � ��z0 � z 2=z0�=�2k��1=2) and the effective area

S � 4pP

cE 2
x �0; 0; z�

� 2ps 2
x �

l�z0 � z 2=z0�
2

:

Because it is necessary to minimize the beam cross section in
the interval ÿL=2 < z < L=2, we can choose z0 � L=2, then
the effective area is S � lL=2. Taking this into account, we
obtain from formula (38) a simple result

Gmax� 25
K 2

1� K 2=2

�
J0

�
K 2

4� 2K 2

�
ÿ J1

�
K 2

4� 2K 2

��2
I

IA

q 2

g
;

�40�

which significantly depends only on the beam current I, the
electron energy g, and the number q of undulator periods (this
complex factor depending on K is usually about unity).

If light passes many times through this FEL amplifier, the
light power can increase by a few orders of magnitude after
many transits. The simplest way to achieve this is to mount
two mirrors in front and behind the FEL amplifier, with the
radii of curvature equal to those of the wave front ofGaussian
beam (39): z� z 20 =z and lateral sizes exceeding a few times the
Gaussian beam width sx, as illustrated in Fig. 13.

Such a pair of mirrors is often called an optical resonator,
because the decay time ÿ2Lm=�c ln �r1r2�� (Lm is the distance
between mirrors, r1 and r2 are the reflection coefficients of
the mirrors) of the electromagnetic wave in the space between

the mirrors greatly exceeds the wave period 2p=o. This
property resembles a high-Q oscillatory circuit or any other
weakly decaying oscillator. The condition for increasing
power has a simple form:

�1� G�r1r2 > 1 ; �41�

i.e., the FEL gain should exceed mirror losses. If condition
(41) is fulfilled, the power increases with time after `switching
on' an electron beam, the time of its increase by a factor of
e � 2:72 being

t � 2Lm

c ln ��1� G�r1r2�
� 2Lm

c�G� r1 � r2 ÿ 2�

(the approximate equality is written out taking into account
that 1ÿ r5 1, which follows from condition (41), and
G5 1). Condition (41), called the lasing or self-excitation
condition, is well known in radio engineering, describing an
amplifier in which a part of the output signal (in our case
r1r2) is fed to the amplifier input. This is called the positive-
feedback amplification. For a strong enough feedback, when
inequality (41) is wittingly fulfilled, the amplifier is `self-
excited', i.e., its noise (in our case, spontaneous radiation, as
described below) is amplified by many orders of magnitude,
even for the zeroth input signal. In other words, an amplifier
with a strong enough positive feedback represents a self-
excited oscillator. We can say that an FEL oscillator (see
Fig. 13) consists of an FEL amplifier (see Fig. 1) and a pair of
mirrors providing the positive feedback.

Asmentioned above, a signal ceases to increase (due to so-
called saturation) when the phase shifts of particles at the
undulator end become close to unity. In this case, the beam at
the undulator end is substantially periodically grouped, in the
sense that the amplitude of the Fourier harmonic of the
electron current with the electromagnetic-weave frequency o
becomes comparable to the average beam current I. This
allows one to estimate the signal rise time from the instant of
time the beam current is switched on until saturation, i.e.,
until themaximum power is reached. If the instants of time, at
which electrons enter the undulator, are uncorrelated, the
current is a pulsed stationary random process I�t� �
e
P

i d�tÿ ti� with the autocorrelation function eId�t1 ÿ t2�
[15]. According to the Wiener±Khinchin theorem, its spectral
power is the Fourier transform of the autocorrelation
function, i.e., eI (at the nonzero frequency). After switching
on the FEL, the spectral power near the gain maximum
frequency omax increases proportionally to

exp

�
t

t�o�
�
� exp

�
ct

G�o� � r1 � r2 ÿ 2

2Lm

�

� exp

�
t

t�om�
�
exp

�
ct

4Lm

d2G

do2

����
om

�oÿ om�2
�
: �42�

4 52

1 3

Figure 13. Schematic of an FEL oscillator. (1) input electron beam,

(2) undulator, (3) waste electrons, (4, 5) mirrors.
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As a result, the mean square of the alternate current
component at the undulator output is given by

I 2�t� � 2eI exp

�
t

t�om�
�

�
�1
0

exp

�
ct

4Lm

d2G

do2

����
om

�oÿ om�2
�
do
2p

� 2eI���
p
p

��������
Lm

ct

r �
d2G

do2

����
om

�ÿ1=2
exp

�
t

t�om�
�
: �43�

Upon saturation, this quantity is on the order of I 2, and,
therefore, the time during which saturation is reached can be
estimated as

tsat � t�om� ln
"
I

e

�������������������������������������������������������������
1
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�
I

e

2pq
om

�
: �44�

The logarithm in formula (44) is usually approximately equal
to 20, i.e., the saturation time is about 20 small-signal rise
times by a factor of 2.72.

7. Restrictions on the electron beam parameters

We assumed in Sections 3±6 that all the electrons entering the
FEL have the same initial velocities and coordinates but enter
there at different instants of time. Real electron beams
contain electrons with different velocities and coordinates.
Let us estimate the limits of applicability of ignoring the
coordinate and velocity dispersions. To do this, we consider
the motion of an electron with deviations of initial conditions
from some reference values. Because the action of the
amplified wave is a small perturbation, we disregard it. As in
formula (7), we will write the longitudinal velocity of the
electron in the form

bz �
vz
c
� b��������������������������������������������������

1� �dx=dz�2 � �dy=dz�2
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8g 20

q2K 2

qx 2
�x 2 ÿ 1

8g 20

q2K 2

qy 2
�y 2 ;

�45�
where the over-bars mean averaging over the undulator
period. The latter two terms take into account the transverse
nonuniformity of the undulator field. For example, in a
planar undulator with not too large a period, K/ cosh �kwy�
[1] and q2K 2=qy 2�2K 2�0; 0�k 2

w, and q2K 2=qx 2�0. Because
the deviation Dbz of the longitudinal velocity leads to the
departure of a particle ahead of the reference particle, the
admissible dispersion of longitudinal velocities, according to
qualitative considerations presented after expression (36), can
be estimated from the inequality jDbzjL=2 < l=�2p�, or

jDbzj <
l
pL
� 1

2pqg 2k
: �46�

Notice that [see formula (10)] inequality (46) specifies the
condition that the relative shift in the spontaneous emission
wavelength jDl=lj � lwjDbzj=l � 2g 2k jDbzj < 1=�pq�, i.e., is
smaller than the relative width of the spontaneous undulator
radiation spectrum. By substituting contributions of different
terms from Eqn (45) into (46), we obtain restrictions on the
root-mean-square energy and angle dispersions and on the
rms sizes of the electron beam:�����������������������
�gÿ g0�2

�q
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<
1

2pq
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Inequality (48) requires that the angular dispersions of
electrons should not exceed the diffraction divergence

��������
l=L

p
of spontaneous undulator radiation (see review [1]). Inequal-
ities (49) should be supplemented by the condition that all the
electrons be located inside the light beam, for example, the
Gaussian mode of an optical resonator of size

�����������������
lL=�4p�p

:���������
h�x 2i

p
;
����������
h �y 2i

p
<

�������
lL
4p

r
: �50�

By using a focusing device, for example, magnetic quadrupole
lenses, we can reduce the lateral sizes of the electron beam to
satisfy conditions (49) and (50). However, due to the
conservation of transverse emittances (i.e., the projections of
the phase volume occupied by electrons)

ex �
���������
h�x 2i

p �������������������������
dx

dz

�2�s
; ey �

����������
h �y 2i

p ������������������������
dy

dz

�2�s
;

the angular dispersions will increase in this case. By multi-
plying inequalities (48) and (50), we see that the necessary
condition for their fulfillment is the smallness of the
emittances of the electron beam compared to the radiation
wavelength:

ex; y <
l
2p

: �51�

8. High-gain free electron lasers

We considered above the FEL operation in the low-gain
regime: G5 1. This condition is violated for a large enough
length of the undulator. In particular, modern X-ray FELs
use very long undulators (about 100 m long). As in any linear
system, a monochromatic signal (radiation and the alternate
component of the electron current) grows exponentially. In
the simplest cases, the high-gain FEL regime is described by
the same expressions as the high-gain TWT regime [3, 12, 20].
The length Lg at which the signal power increases by a factor
of 2.72 (the so-called gain length) can be roughly estimated by
equating gain (38) to unity. In such a rough model, a long
FEL is replaced by a sequence of FELs of lengthLg, for which
the low-gain approximation is still applicable. Because the
diffraction expansion of the X-ray beam is relatively small, we
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replace the light beam area S by the electron beam area. Then,
I=S � j is the beam current density. As a result, we obtain

Lg � lw
2

��������������������
2IA

�4p�2 jgl2
3

s �
K

1� K 2=2

�ÿ2=3
� g

2

����������������
IAlw

2p2 jK 2

3

s
: �52�

Estimate (52) is valid for a small dispersion of the long-
itudinal electron velocities. Therefore, the fulfillment of
conditions (47)±(49), (51), where L � 2Lg, is desirable for
X-ray FELs. In particular, condition (51) restricts the
electron energy from below, g > 2pgex; y=l, where gex; y are
normalized emittances, i.e., invariant (conserved during the
acceleration of electrons) phase areas occupied by electrons
(see, for example, Refs [6, 16]). In particular, at l � 0:1 nm
and gex; y � 0:2 mm, we have E > 6 GeV. The estimate of the
electron efficiency mentioned after expression (36) gives
Z � lw=�4pLg� for high-gain FELs.

9. Work on free electron lasers
at the Budker Institute of Nuclear Physics

The history of work on the development of FELs is quite
completely described in book [3]. Here, wemention only some
important events: the invention of an undulator by
V L Ginzburg [17] in 1947, experiments of G Motz with
undulator radiation [18, 19], and the creation of the first
FELÐubitron by R Phyllips in 1960 [20]. In 1976, the group
of J Madey demonstrated the amplification of emission at a
wavelength of 10:6 mm in an FEL with a helical super-
conducting undulator [21], and then the same group created
an FEL oscillator emitting at 3:4 mm [22].

The FEL operation requires the use of a high-quality
electron beam (i.e., with small lateral sizes and a small velocity
dispersion) and high mean and peak currents. Moreover, the
source of such a beamÐan electron acceleratorÐ is themost
complex and expensive part of the FEL. Therefore, interest in
FELs at the INP, SB USSR AS, where the development of
charged particle accelerators was one of the main topics, was
quite natural.

Theoretical FEL studies were performed at the Budker
INP by several groups.

V N Baier and A I Milstein developed the FEL theory.
They studied the low-gain [23] and high-gain [24, 25] regimes
and the spectrum evolution after switching on amplification
in an FEL with an optical resonator [26].

A M Kondratenko and E L Saldin obtained the equation
for a high-gain FEL in free space taking diffraction effects
into account [27±29] and investigated FELs with plane
mirrors [30].

AN Skrinsky andNAVinokurov proposed a higher-gain
FEL modificationÐan optical klystron (OK) [31], studied
the power restriction mechanism in an OK mounted on an
electron storage ring [32], and proposed using a waveguide
metal resonator with a small vertical aperture in a submilli-
meter FEL [33].

V N Litvinenko and N A Vinokurov calculated the
radiation parameters of an FEL mounted on an electron
storage ring [34], while V M Popik and N A Vinokurov
calculated the radiation parameters of an FEL with a plane±
parallel glass plate (a Fabry±Perot etalon) inside an optical
resonator [35].

GNKulipanov and colleagues pointed out the possibility
of retaining themicrobunching of an electron beam during an
achromatic turning [36].

N A Vinokurov substantiated the possibility of using
sectioned undulators in high-gain FELs [37], while O A Shev-
chenko and N AVinokurov developed the correlation theory
for high-gain FELs [38, 39] (similar to the Bogolyubov chain
of equations) and compared its results with those of the
quasilinear theory [40, 41].

Experimental work was initiated in 1979 when the first
experiments with an OK were performed on a VEPP-3
electron±positron collider [42]. The device differs from a
standard FEL by its undulator, divided into two parts of
lengthsL1 andL2 (Fig. 14) with amagnetic bunching device (a
three-pole compensated wiggler with a large period Lb) to
improve bunching.

The first OK, about 1 m in length, shown in Fig. 15,
utilized the best permanent samarium±cobalt magnets man-
ufactured at the Pyshminskii Giredmet pilot plant in
Sverdlovsk region. The field was controlled by varying the
working gap.

All the FELs with electron storage rings in the world were
made by the OK scheme, providing much greater amplifica-
tion compared to that in usual FELs.

Then, a series of experimental studies was performed
resulting in the creation of the world's first UV FEL in 1988.
During these studies, original technological solutions for
undulators were proposed and realized, which are now used
in all X-ray sources based on electron storage rings (a
variable-gap undulator, a so-called hybrid undulator [43],
etc. (see details in review [1]).

In 1988, a new OK-4 FEL mounted on a bypass (a
specially made additional straight-line section) of the
VEPP-3 storage ring was put into operation [44]. The use of
a bypass made possible mounting a very long (7.5 m) FEL on
the storage ring. The original design of this electromagnetic

L1 Lb L2

Figure 14. Electron trajectory in an optical klystron.

Figure 15. First magnetic system of an optical klystron operating on a

VEPP-3 storage ring beginning in 1979. In the middle: a three-pole

bunching wiggler with two undulators on the left and right, which were

the world's first undulators with permanent magnets and a variable gap.
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undulator [45] proved to be successful and was later used in
several undulators in Russia and abroad. Such a long
undulator provided amplification sufficient for obtaining
the record short UV wavelength of 0:24 mm and the record
narrow spectrum �3� 10ÿ6� [46] and also provided transverse
mode locking in a confocal resonator [47]. The `short-
wavelength' persisted for more than 10 years. The same
OK-4 setupwas used for testing the coherence of spontaneous
radiation from two undulators in tandem separated by an
achromatic turn [48]. These experiments are important for
producing the so-called electron outcoupling of radiation
[49], solving the problem of radiation outcoupling from the
optical resonator of a high-power FEL.

Along with FEL studies at the Budker INP, SB RAS, the
Institute was involved in the development of the OK in the
electron storage ring at Duke University (USA) [50, 51] and
the development of a compact FEL at KAERI (Korea
Atomic Energy Research Institute (South Korea) [52, 53].

10. High-power FEL at the Siberian Center
of Photochemical Research

As mentioned in Section 5, the FEL electron efficiency is
rather low (as a rule, no more than 1%). This is due to
violation of the synchronism condition for decelerated
electrons. The output power of FELs with storage rings is
even more restricted due to the repeated interactions of
electrons with the wave [32]. Because of this, A N Skrinsky
and N A Vinokurov proposed creating high-power FELs
using a special class of electron acceleratorsÐhigh-fre-
quency energy recovery linacs (ERLs). Electrons in ERLs
are first accelerated in high-frequency resonators, then are
used in the FEL (or for other aims), and decelerated in the
same high-frequency resonators by returning the power spent
for acceleration [55]. The employment of ERLs provides high
average electron currents and considerably reduces the
radiative danger of the setup.

The Laboratory of Laser Photochemistry headed by
A K Petrov has long worked at the Institute of Chemical
Kinetics and Combustion (ICKC), SB RAS. In the early
1990s, after a discussion of the potential of the high-power
FEL at the INP and the ICKC (headed byYuNMolin at that
time), it was decided to create such a facility at the ICKC
building No. 11, and to organize the Center of Photochemical
Studies based on it. The first phase of this FEL was
commissioned in 2003 [56].

At present, the unique Novosibirsk FEL facility includes
three FELs (Fig. 16) emitting narrowband coherent radiation
with a mean power of up to 500 W, a peak power exceeding
1 MW, and a wavelength continuously tunable in the range
from 8 to 240 mm [57±61]. The mean power of 500 W is the
world record for radiation sources in the terahertz frequency
range. The parameters of three FELs are presented in the
Table.

FEL radiation is outcoupled through a dry nitrogen-filled
channel to a room for users, where it is distributed among
experimental stations, where researchers from RAS, higher
institutes of learning, and other institutions perform scientific
studies in physics, biology, chemistry, and medicine. The use
of high-power submillimeter tunable radiation opened
fundamentally new possibilities for experimentalists. Thus,
Russian scientists have received a unique tool for investiga-
tionsÐa facility of high-power FELs continuously tunable in
the submillimeter and IR ranges.

11. Conclusion

We have described the FEL operation principle. These
electromagnetic radiation oscillators are simultaneously
vacuum electronic devices and lasers. The use of ultrarelati-
vistic electron beams with the gigawatt mean power density
per mm2 allows FELs emitting kilowatt mean powers in the
wavelength range from 0.1 nm to 1 mm to be created. The
discussion of the FEL operation principles and studies
performed at the Budker INP, SB RAS in this field was brief
because of the limited volume of the article. Some details can
be found in reviews [62, 63]. The application of FELs for
solving basic scientific and practical problems is beyond the
scope of this paper.

Acknowledgments. This study was supported by the Russian
Science Foundation (project No. 14-50-00080).

References

1. Vinokurov N A, Levichev E B Phys. Usp. 58 850 (2015); Usp. Fiz.

Nauk 185 917 (2015)

1

2

3

4

5

Figure 16. Schematic of the Novosibirsk FEL: (1) injector, (2) main

accelerating resonators, (3) undulator of the first FEL, (4) undulator of

the second FEL, and (5) undulator of the third FEL.

Table. Parameters of FELs commissioned in 2003, 2009, and 2015.

Range,
start year

Parameters

Terahertz
range,
2003

Far IR,
2009

IR,
2015

Wavelength, mm 90 ë 240 37 ë 80 8 ë 11

Spectrum width
(FWHM), %

0.2 ë 2.0 0.2 ë 1 0.1 ë 1

Maximum mean power,
kW

0.5 0.5 0.1

Maximum peak power,
MW

0.5 2.0 5

Pulse duration, ps 30 ë 120 20 ë 40 10 ë 20

Pulse repetition rate, MHz 5.6 7.5 3.8

May 2018 Free electron lasers and their development at the Budker Institute of Nuclear Physics, SB RAS 447



2. Gorelik G SKolebaniya i Volny (Oscillations andWaves) (Moscow:

Fizmatlit, 1959)

3. Trubetskov D I, Khramov A E Lektsii po Sverkhvysokochastotnoi

Elektronike dlya Fizikov (Lectures on Microwave Electronics for

Physicists) (Moscow: Fizmatlit, 2004)

4. Landau LDZh. Eksp. Teor. Fiz. 16 574 (1946); Landau LD J. Phys.

USSR 10 25 (1946)

5. Kapitza P L, Dirac P AM Proc. Cambr. Phil. Soc. 29 297 (1933)

6. Lebedev A N, Shal'nov A V Osnovy Fiziki i Tekhniki Uskoritelei

(Fundamentals of the Physics and Technique of Accelerators

(Moscow: Energoatomizdat, 1991)

7. Kauderer H Nichtlineare Mechanik (Berlin: Springer-Verlag, 1958);

Translated into Russian: Nelineinaya Mekhanika (Moscow: IL,

1961)

8. Kolomenskii A A, Lebedev A N Sov. J. Quantum Electron. 8 879

(1978); Kvantovaya Elektron. 5 1543 (1978)

9. Madey J M J Nuovo Cimento B 50 64 (1979)

10. Vinokurov N A Preprint No. 81-02 (Novosibirsk: Institute of

Nuclear Physics of the Siberian Branch of the USSR Acad. of Sci.,

1981); http://www.inp.nsk.su/activity/preprints/files/1981_002.pdf

11. Litvinenko V N, Vinokurov N A Nucl. Instrum. Meth. Phys. Res. A

331 440 (1993)

12. Shevchik V N, Trubetskov D I Analiticheskie Metody Rascheta v

Elektronike SVCh (Analytical Calculation Methods in Microwave

Electronics) (Moscow: Sovetskoe Radio, 1970)

13. Yariv A Quantum Electronics (John Wiley and Sons, Inc., 1975);

Translated into Russian: Kvantovaya Elektronika (Moscow: Sovet-

skoe Radio, 1980)

14. Vainshtein L A Elektromagnitnye Volny (Electromagnetic Waves)

(Moscow: Radio i Svyaz', 1988)

15. Rytov S M, Kravtsov Yu A, Tatarskii V I Principles of Statistical

Radiophysics Vols 1, 2 (Berlin: Springer-Verlag, 1987); Translated

from Russian: Vvedenie v Statisticheskuyu Radiofiziku (Introduc-

tion to Statistical Radiophysics) Pt. 1 Sluchainye Protsessy (Ran-

dom Processes) (Moscow: Nauka, 1976)

16. Vinokurov N A et al. Phys. Usp. 60 1034 (2017);Usp. Fiz. Nauk 187

1116 (2017)

17. Ginzburg V L Izv. Akad. Nauk SSSR Ser. Fiz. 11 165 (1947)

18. Motz H J. Appl. Phys. 22 527 (1951)

19. Motz H, Thon W, Whitehurst R N J. Appl. Phys. 24 826 (1953)

20. Phyllips R N IRE Tran. Electron Dev. 7 231 (1960)

21. Elias L R et al. Phys. Rev. Lett. 36 717 (1976)

22. Deacon D A G et al. Phys. Rev. Lett. 38 892 (1977)

23. Baier V N, Milstein A I Phys. Lett. A 65 319 (1978)

24. Baier V N, Milstein A I Sov. Phys. Dokl. 25 112 (1980);Dokl. Akad.

Nauk SSSR 250 1364 (1980)

25. Baier V N, Milstein A I Phys. Lett. A 79 77 (1980)

26. Baier V, Milstein A IEEE J. Quantum Electron. 21 1023 (1985)

27. Kondratenko A M, Saldin E L Dokl. Akad. Nauk SSSR 249 843

(1979); Kondratenko A M, Saldin E L Sov. Phys. Dokl. 24 986

(1979)

28. Kondratenko AM, Saldin E L Particle Accelerators 10 207 (1980)

29. Kondratenko AM, Saldin E L Zh. Tekh. Fiz. 51 1633 (1981)

30. Kondratenko AM, Saldin E L Zh. Tekh. Fiz. 52 309 (1982)

31. Vinokurov N A, Skrinsky A N, Preprint No. 77-59 (Novosibirsk:

Institute of Nuclear Physics of the Siberian Branch of the USSR

Acad. of Sci., 1977); http://wwwold.inp.nsk.su/activity/preprints/

files/1977_059.pdf

32. Vinokurov N A, Skrinsky A N, Preprint No. 77-67 (Novosibirsk:

Institute of Nuclear Physics of the Siberian Branch of the USSR

Acad. of Sci., 1977); http://wwwold.inp.nsk.su/activity/preprints/

files/1977_067.pdf

33. Vinokurov N A, Skrinsky A N, in Relyativistskaya Vysokochastot-

naya Elektronika: Problemy Povysheniya Moshchnosti i Chastoty

Izlucheniya (Relativistic High-Frequency Electronics: Problems of

Increasing Radiation Power and Frequency) (Gorky: Institute of

Applied Physics of the USSR Acad. of Sci., 1981) p. 204

34. Litvinenko V N, Vinokurov N A Nucl. Instrum. Meth. Phys. Res.A

304 66 (1991)

35. Popik V M, Vinokurov N A Nucl. Instrum. Meth. Phys. Res. A 341

abs134 (1994)

36. Kulipanov G N et al. Nucl. Instrum. Meth. Phys. Res. A 308 106

(1991)

37. Vinokurov N A Nucl. Instrum. Meth. Phys. Res. A 375 264 (1996)

38. ShevchenkoOA, VinokurovNANucl. Instrum.Meth. Phys. Res. A

507 84 (2003)

39. ShevchenkoOA, VinokurovNANucl. Instrum.Meth. Phys. Res. A

603 46 (2009)

40. Vinokurov N A et al. Nucl. Instrum. Meth. Phys. Res. A 475 74

(2001)

41. Shevchenko O A, Vinokurov NARadiophys. Quantum Electron. 60

37 (2017); Izv. Vyssh. Uchebn. Zaved. Radiofiz. 60 41 (2017)

42. ArtamonovA S et al.Nucl. Instrum.Meth. Phys. Res. 177 247 (1980)

43. Kornyukhin G A et al. Nucl. Instrum. Meth. Phys. Res. 208 189

(1983)

44. Drobyazko I B A et al. Nucl. Instrum. Meth. Phys. Res. A 282 424

(1989)

45. Gavrilov N G et al. Nucl. Instrum. Meth. Phys. Res. A 282 422

(1989)

46. Couprie M E et al.Nucl. Instrum. Meth. Phys. Res. A 304 47 (1991)

47. Kulipanov G N et al. Nucl. Instrum. Meth. Phys. Res. A 331 98

(1993)

48. GavrilovNG et al.Nucl. Instrum.Meth. Phys. Res. A 308 109 (1991)

49. Gavrilov N G et al. IEEE J. Quantum Electron. 27 2569 (1991)

50. Litvinenko V N et al. Phys. Rev. Lett. 78 4569 (1997)

51. Litvinenko V N et al. Nucl. Instrum. Meth. Phys. Res. A 475 247

(2001)

52. Akberdin R R et al. Nucl. Instrum. Meth. Phys. Res. A 405 195

(1998)

53. Jeong Y U et al. Nucl. Instrum. Meth. Phys. Res. A 475 47 (2001)

54. Vinokurov N A, Skrinskii A N, Preprint No. 78-88 (Novosibirsk:

Institute of Nuclear Physics, SB USSR AS, 1978); http://

wwwold.inp.nsk.su/activity/preprints/files/1978_088.pdf

55. GavrilovNG et al.Nucl. Instrum.Meth. Phys. Res. A 304 228 (1991)

56. Antokhin EA et al.Nucl. Instrum.Meth. Phys. Res. A 528 15 (2004)

57. Kulipanov G N et al. IEEE Trans. THz Sci. Technol. 5 798 (2015)

58. Shevchenko O A et al. Phys. Part. Nucl. Lett. 13 1002 (2016)

59. Shevchenko O A et al. Phys. Procedia 84 13 (2016)

60. Knyazev B A et al. Phys. Procedia 84 27 (2016)

61. Shevchenko O A et al. Radiophys. Quantum Electron. 59 605 (2017);

Izv. Vyssh. Uchebn. Zaved. Radiofiz. 59 671 (2016)

62. Vinokurov N A Rev. Accel. Sci. Technol. 3 77 (2010)

63. Vinokurov N A J. Infrared Millimeter Terahertz Waves 32 1123

(2011)

448 N A Vinokurov, O A Shevchenko Physics ±Uspekhi 61 (5)


	1. Introduction
	2. Spontaneous, stimulated, and coherent radiation
	3. Stimulated undulator radiation
	4. Classical analog of Einstein relations
	5. Small-signal gain
	6. Simplest FEL oscillator
	7. Restrictions on the electron beam parameters
	8. High-gain free electron lasers
	9. Work on free electron lasers at the Budker Institute of Nuclear Physics
	10. High-power FEL at the Siberian Center of Photochemical Research
	11. Conclusion
	 References

