
Abstract. The model quantum problem of a harmonically
trapped cloud of identical nonrelativistic particles interacting
via a harmonic oscillator potential has an exact solution that
can be used to assess the efficiency of approximate methods
standardly used in more realistic many-particle calculations.
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1. Introduction

Physical models are basically a tool to describe and calculate
practical situations. In fact, however, real practical situations
are generally too complex to allow rigorous calculations,
which brings approximate problem-solving methods to the
forefront. An efficient way to assess approximations for
usefulness and to evaluate the accuracy of the methods is to
test them on an exactly solvable model which, even if exotic,
allows directly verifying approaches developed for more
realistic problems. In other words, exact solutions, which
physical problems generally yield only in special degenerate
cases, can serve as an excellent test of approximate analysis
methods applied to generic cases.

In this paper, we propose a quantum mechanical test
model that clarifies and offers visualizations of a large

number of approximate methods for systems of many
nonrelativistic fermions or bosons, widely exemplified by
many-electron atoms (see, e.g., Refs [1±3]) and trapped
atomic gas clouds used for the observation of Bose condensa-
tion [4, 5]. The advantages of the analytic approaches used
(perturbation theory, variational calculus, Thomas±Fermi
model, density matrix, collective hydrodynamic description,
etc.) are vividly illustrated by a harmonic analogue of such
systems, in which interparticle interaction is provided by a
linear oscillator potential. This model has a number of
remarkable mathematical properties that allow obtaining
exact solutions, as if expressly intended for testing standard
atomic physics methods, including those for arbitrarily many
particles.

The corresponding procedure for obtaining these exact
solutions (although apparently not all solutions) is far from
new: referred to as `transformation to normal coordinates', it
can be found in nearly any textbook on classical mechanics
(see, e.g., Refs [6, 7]), and its quantum extensions are the
subject of an extended series of studies by Man'ko and
colleagues (Refs [8, 9], to cite just two examples). However,
the proposed ideology has not appeared in the available
literature, and therefore seems to be of methodological
value, as a supplement to an advanced course of quantum
mechanics. It should be recognized that despite the many
comparisons and parallels drawn below with well-known
many-electron systems, this value lies not in furthering the
investigation of such systems but only in helping one to
master techniques needed in this regard.

2. Problem formulation

We assume that a parabolic potential well representing the
field of an atomic nucleus or that of a trap is at rest and
contains N identical particles of mass m each, the interaction
between them also being parabolic but with a different
strength. In one dimension, the steady state of the system is
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described by the Schr�odinger equation for the multiparticle
wave function
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This, of course, is a pure model situation, with no claim to
being real. To repeat, this systems is mainly regarded here as a
tool, an instrument intended for instruction purposes rather
than an object of investigation (see Section 9, however).

The principal and most remarkable property of the
harmonic oscillator is that, as is known, the kinetic and
potential energy matrices can always be diagonalized simul-
taneously in the coordinates xi�x� (which are precisely the
ones called `normal'), with the result that the original Eqn (1)
becomes
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where we note that because the kinetic energy (or in the
quantum domain, the Laplacian) is originally the identity
matrix in this case, the new coordinates are orthonormal, i.e.,
we simply have a rotation, possibly accompanied by some
reflections and permutations, of the axes of the multidimen-
sional coordinate system CS-x. The coefficients of the new
quadratic form
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are easily obtained by an eigenvalue analysis of the N�N
symmetric matrix
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because

det �Aÿ lE� � �1ÿ l��1�Naÿ l�Nÿ1

(for example, starting from the bottom row and going up, we
can subtract from each row its preceding one and then expand
the determinant in the unchanged first row). Hence, there are
only two eigenvalues: 1 for the vector f1; 1; . . . ; 1g (as is easy
to verify) and 1�Na for all remaining ones.

Therefore, the transition to CS-x is easy to perform:
once the `cloud' center-of-mass (CM) coordinates x1 �
�PN

i�1 xi�=
����
N
p

are segregated (the coefficients here and
below are chosen such that the gradient vector normal to a
given hyperplane have a unit norm; in fact, a CM coordinate
is 1=

����
N
p

times x1 and its square is 1=N times x 2
1 ), the

remaining axes are constructed in a fully arbitrary way
((Nÿ 1)-fold degeneracy) by a successive orthonormaliza-
tion procedure. It is possibly worth choosing some of these
axes from among nonoverlapping pairs �xi ÿ xj�=

���
2
p

, i 6� j, in
which case they are automatically orthogonal to one another

and to the first axis, and the corresponding c functions are
symmetric (antisymmetric) in these pairs at least (see below).
For small N, the construction is straightforward: for two
particles, we have the exact result
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and, for example, for three particles (because it is exactly
starting from this case that the axes xi5 2 allow an arbitrary
rotation about the x1 axis and an arbitrary number of
permutations; the difference between the left and right CS
orientations does not manifest itself in this case).
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(the inverse transition is also trivial, but we do not discuss it
because we do not need it in what follows). Also, for i � 4,
adding the only `new' axis x4 after the suggested identification
of x1, x2 � �x1 ÿ x2�=

���
2
p

, and x3 � �x3 ÿ x4�=
���
2
p

is straight-
forward. The coefficients of the matrices relating the old and
new coordinates are chosen, as shown above, so as to preserve
the Laplacian, and therefore the transition Jacobians every-
where have an absolute value of unity.

Solution (2) for a system of noninteracting oscillators
factors in an obvious way:
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We see that the model parameter a can take arbitrary

positive values, but for particles interacting repulsively its
magnitude is limited by the inequality a > ÿ1=N (clearly,
only for N5 2) 1; otherwise, the external potential cannot
hold the cloud of harmonic particles together. It is this
solution that we use for comparison with results of approx-
imate methods.

Clearly, the post-factorization diagonalization also
applies to the case where particles trapped in an external
potential have different a and even different m, but we here
discuss only version (1). For nonidentical components, the

1 It is instructive (for example, for N � 2), to trace the appearance of

ÿ1=N, rather than the apparent ÿ1=�Nÿ 1�, in the right-hand side of the

inequality.
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transition to (2) is muchmore cumbersome and less universal,
and is then the end of the story, whereas in the given case it is
just the beginning. According to the indistinguishability of
quantum objects, a procedure should further be carried out,
depending on whether the components obey Bose or Fermi
statistics, to symmetrize or antisymmetrize the wave function
with respect to all possible permutations i$ j [1, 2, 10],
which should be done, first, in the real x-space (not in the
formal x-space) and, second, for the total wave function,
including its spin component, which, due to the spin
independence of Hamiltonian (1), arises as a factor in c in
Eqn (4).

It is well known that for N4 1, this program, of extreme
importance for real atoms and boson traps, can be no less
(and in this particular model, even more) challenging to
implement than finding c. In what follows, we assume for
simplicity and in order to be specific that fermions and bosons
are spin-1/2 and spin-0 particles, and we let "i (#i) denote the
wave function of the ith fermionwith spin up (down). It is also
assumed that the fermions interact by repelling (a < 0), and
the bosons by attracting (a > 0) each other. Only problems in
one dimension are considered, because another convenient
point about the model is the fact that in passing to two or
three dimensions, the system is simply diagonalized sepa-
rately with respect to the xi and yi and, if need be, zi.

3. Mean-field approximation

Available in a variety of versions, the mean-field approxima-
tion is apparently the most popular tool for treating N4 1
many-particle problems, for both statistics of the cloud
particles. In atomic physics, it is known as the Thomas±
Fermi approximation. We constantly use it in what follows
for comparison purposes, and it is worth discussing it in the
framework of a model with an interaction potential that does
not tend to zero as the interparticle distance tends to infinity.

We stress at the outset that the point is to describe our
object (cloud) in a different language by characterizing it by
the particle concentration n�x� (thus returning to one
dimension) instead of a multiparticle wave function
c�x1; x2; . . . ; xN�. Therefore, for a proper comparison, we
must establish a `dictionary' from one language to the other.
Clearly, the indistinguishability of particles allows such a
transition to be made by expressing the concentration n�x� as
the sum of contributions from each of the particles,

n�x� �
XN
i�1

�
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� ��c�x1; . . . ; xiÿ1; x; xi�1; . . . ; xN�

��2
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Because jcj2 is symmetric with respect to all xi, the
computations below are quite compact. It is surprising that
even very good textbooks either do not present this evident
formula at all [1, 2] or give it only in the case of one-electron
wave functions [3] (see Section 6), despite clearly losing in
terms of connectivity.

Now that we have established the comparison reference
for results of the approximate method, it is time to start
deriving the formulas of the method. There are two stages to
the derivation: the first establishes how the mean or effective
field is related to the particle concentration, and the second
calculates the `response' of the cloud to the collective
potential profile. The first stage is universal and is indepen-
dent of whether the potentialf�x� is produced by a fermion or

boson cloud. It is worthwhile to note here how effective and
transparent the harmonic model is as regards writing exact
formulas. Because the sum of any number of any quadratic
trinomials is a quadratic trinomial, the sought relation is
simply
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Here, the concentration distribution moments are assumed to
satisfy the relations�

n dx � N ;

�
xndx � 0 ;

�
x 2n dx � Nhx 2i ;

of which the first is obvious, the third is a tautology, and the
second is provable (see below).

On the other hand, bosons and fermions respond
differently to the potential because their pressure in the
force balance equation
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n
ÿ Hf � 0 �8�

depends essentially on the statistics. It is commonly assumed
that a `macroscopic' system in its lowest possible energy state
has the temperature T � 0, and that for a doubly spin
degenerate Fermi±Dirac cloud in one dimension,
P � PF��p�h�2n 3=�12m�, where
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It follows that n inherits the symmetry of f (the same occurs
for the Bose±Einstein statistics), and therefore, if the first
moment of n were nonzero, shifting the origin to the point
such that

�
nx dx � 0 would lead to a contradiction due to the

presence of an external field in Eqn (7), which loses symmetry
as a result of this shift. Finally, using Eqn (7), we obtain
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Thus, the concentration distribution is symmetric with
respect to x � 0 just because of the external potential that is
responsible for the CM of the system. The constants x0 are
determined from the normalization condition� �x0

ÿx0
n dx � N � mo

�h
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1�Na
p

x 2
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We see that Eqn (9) is simpler and more transparent than the
Thomas±Fermi equation for Coulomb-interacting electrons
in an atom. In the general case of dimension s, 2

n / �r 20 ÿ r 2�s=2 because PF / n �s�2�=s.
Clearly, the main conceptual disadvantage of the aver-

aging approach (which is indeed recognized in the literature)
is that the system is described classically, without any signs of

2 The dimensionality of concentration depends, of course, on s : n [cmÿs].
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quantum discreteness [cf. Eqn (5)].3 Still, some quantum
effects can be incorporated quite simply into this approach.
For example, to introduce particle tunneling through bar-
riers, an approach widely used currently is to add the gradient
of the so-called Bohm potential

� �h 2
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�
D
���
n
p���
n
p

�

to balance equation (8) (albeit for a degenerate plasma rather
than bound electrons in an atom [11, 12]). The Bohm
potential arises from two factors, the kinetic energy Lapla-
cian in the Schr�odinger equation and the n$ c 2 relation (see
Refs [13, 14] for more details). Analytic solution (8) is
immediately ruled out in that case, but the corrections
introduced are easy to understand. First, because f / x 2 in
the system, it follows that in the limit jxj ! 1, the cloud
regions with n � 0 are replaced by smooth `wings':
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which is by no means surprising, and, second, the Bohm
contribution to the `bulk' of the system is parametrically
small:
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:

For Bose±Einstein particles, ignoring temperature effects
(excitations) implies that P � 0 (see Ref. [15] for more on
this). Therefore, a different language is often used here, that
employing the Gross±Pitaevskii equation for a certain
collective wave function [4, 5], to analyze the situation.
Unfortunately, because of the nondecreasing nature of the
harmonic interaction potential (for bosons, for which a > 0,
this potential indeed has the property of confinement), such a
language does not appear to apply at all to the model under
discussion. On the other hand, it seems totally unnecessary to
use deeper andmore general descriptions of our purely formal
and methodology-oriented model. Still, we can remain in the
framework of Eqn (8) by bringing to the fore an effect that
appeared above only as a small correction. The harmonic
bosons, in striking contrast to fermions, all accumulate on a
single level, the lowest one, with all ki zero, and produce the
density profile due exclusively to the Bohm effect:
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which is precisely what corresponds to the zeroth, lowest
collective level, then
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It is curious that the potential referred to as the Bohm
potential in the fermion community is also known to the
boson community, where it is widely used in similar
calculations [4, 5], but is not named in any special way.

Having dealt with the preliminaries, we now proceed, as
planned, to comparing exact and approximate results in
various but always harmonic settings.

4. Two harmonic fermions

Anobject composed of two harmonic fermions is similar to the
helium atom, whose relative simplicity has made it a popular
testbed for a wide variety of approximate methods [1].
However, whereas real helium allows only a comparison of
approximate results with one another, the abstract harmonic
system we propose offers an exact result.

Here [see Eqn (5)], the lowest-energy state with k1 � k2 � 0
can be occupied only by fermions with antiparallel spins (i.e.,
with an antisymmetric spin function �"1#2 ÿ "2#1�=
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2
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which
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We now compare the last relations with the results of some
standard atomic physics approximations.

1. The first-order perturbation theory in a uses the
function of a purely external oscillator
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i.e., E � �ho�1� a=2�.
2. In the variational approach, we start by introducing an

arbitrary core `charge' in the form of a factor b in front ofo in
the `unperturbed' c function mentioned above (the field of an
external oscillator is in a way screened in part by the cloud of
particles) and write the expression

E � min
b
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where Ĥ is the total Hamiltonian in Eqn (1). The method
provides the best approximation to the true energy of the
system, even though its discrepancy is also of the order
O�a 2�.

3 Other approaches exist for incorporating energy discreteness into the

description of fermion and boson systems, but their discussion seems out

of place here.
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3. The mean-field description, an analog of the Thomas±
Fermi picture, turns out to be not that bad after all (even
though 2 can hardly be considered a large number):
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[cf. Eqn (9)], which has a remarkable qualitative similarity
(compare the width and the value at zero) to the exact result
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especially considering the Bohm wings. In addition, the
energy of the cloud turns out to be well approximated:
adding the kinetic and potential energies of the degenerate
one-dimensional harmonic `gas' gives
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(we have divided effective potential (7) into two parts: an
external part and an `internal' self-consistent part, the one
which is proportional to a). The discrepancy is only of the
order O�a�, however.

The measure of the quantitative nature of the approxima-
tion can be assessed by noting that the lowest level,
k1 � k2 � 0, can also be populated by two bosons, for which
the mean-field cloud concentration is described by Eqn (10).
Again, there is some similarity, but only for moderately large
a (although allowing a > 0 for fermions, we encounter the
same problem). In Section 7, we discuss why the averaging
approach is dramatically at odds with the exact solutions for
Na4 1, a4N.

As another advantage of the harmonic pair, we can
clearly observe the exchange-induced level splitting, a
possibility that occurs because the symmetrization/antisym-
metrization procedure is trivial for a pair. (All the effects
can be found in textbooks [1, 2], but in perturbation theory
terms). All we need is to take a look at the excited states of
the system. For antiparallel-spin fermions (and for bosons),
the excited states necessarily include those with even k2 (for
any k1): the exponentials in Eqn (5) are always symmetric
under permutations x1 $ x2 (as are the Hermite polyno-
mials in f ) while being antisymmetric for g for odd k2. In
contrast, in a system with aligned spins (i.e., with the spin
function
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to choose from), only odd k2 are possible. Hence, at the first
excited level (compared with the zeroth level, if the spin
function is fixed, then this is not an excited but rather the
ground level for the system with parallel spins), the energy of
the system can take the following values (in units of �ho=2 and
at a sufficient distance a from the critical value ÿ1=2):
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zero states), and the concentration distribution in the fermion
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However, for a < ÿ3=8, the first excited state in the
antiparallel case is the level with k1 � 0 and k2 � 2:
E � �ho�1� 5

��������������
1� 2a
p �=2, and the difference in n much

more pronounced.

5. Three harmonic fermions

As the classics say ([1], see also [10]), passing to N5 2
dramatically complicates the symmetrization of the total
wave function. The formulas become increasingly cumber-
some, and therefore, here and hereafter, the coefficients in
front of c and n in exact relations are not given in general,
because they can be easily obtained by normalizing to unity or
N, respectively.

In the new system, we can no longer set ki � 0 in the
lowest state because the resulting wave function is symmetric
with respect to the three xi, a circumstance no spin component
can compensate for. Hence, we should allow a shift by unity in
one of the quantum numbers, and necessarily in one of k2;3
because any fk1 is symmetric anyway (see above) (in the case
of repulsion, this is also more favorable). Indeed, we note that
if the k � f0; 1; 0g and f0; 0; 1g states (where ki are repre-
sented by the components of a certain vector) are made to
interfere, a totally antisymmetric function can be constructed.
For example, for spins ""#, i.e., with the total spin 1=2,
omitting the symmetric exponential factor, this function has
the form

�x1 ÿ x2� "1"2#3 ��x2 ÿ x3� #1"2"3 ��x3 ÿ x1� "1#2"3 :

Therefore, in the ground state of the cloud triple,
E � �ho�1� 4

��������������
1� 3a
p �=2 and

n�x� /
��
�x 2 � y 2 � z 2 ÿ xyÿ xzÿ yz�

� exp

�
ÿmo

3�h

��x 2 � y 2 � z 2��1� 2
��������������
1� 3a
p �

� 2�xy� xz� yz��1ÿ ��������������
1� 3a
p ��� dy dz

[when c is squared, the cross terms disappear due to the
orthogonality of the spin functions (cf. Section 6)]; here, y and
z are just convenient integration variables, not a real ordinate
and a real applicate. It is more efficient to integrate with
respect to Z1;2��y�z�=

���
2
p

, which gives

n /
�
1� ��������������

1� 3a
p � 6

��������������
1� 3a
p

2� ��������������
1� 3a
p z 2

�
� exp

�
ÿ 3

��������������
1� 3a
p

2� ��������������
1� 3a
p z 2

�
:

It is easy to see that unlike the concentration in the
preceding example, now, for a < 0, n also has a minimum at
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zero, which appears natural considering the mutual repulsion
of the particles.

Increasing N further leads to even lengthier calculations,
and we therefore terminate our discussion of fermions in
Section 6.

6. Noninteracting fermions

The case a � 0 demonstrates a surprising correspondence
between the exact andmean-field descriptions (cf. Section 4).
According to the exact description, in the ground state the
harmonic particles are in antiparallel-spin ("#) pairs at
each level of the external oscillator (the c are expressed in
terms of `one-particle' functions), and therefore the
concentration of the cloud is found as the sum of squares
of the standard oscillator wave functions, and a compact
result is obtained for an arbitrary number of particles.
Taking N � 2K for simplicity obviously gives (with all the
coefficients preserved [1])

n � 2

��������
mo
p�h

r
exp �ÿz 2�

XKÿ1
i�0

H 2
i �z�
2 ii!

�
��������
mo
p�h

r
2K

exp�ÿz2�
2KK!

�
H 2

K�z� ÿHKÿ1�z�HK�1�z�
�

(the interference terms arising in the c function that is
antisymmetric in the xi vanish due to the orthogonality of
the eigenfunctions, including the spin ones). The above
formula for the sum, which can be found in Ref. [16], is
easily verified by induction by using the recurrence relation
for Hermite polynomials. For example, for N � 10,

�16z 8 ÿ 64z 6 � 120z 4 � 45� exp �ÿz
2�

12
���
p
p

��������
mo
�h

r
:

According to the Thomas±Fermi approximation (disregard-
ing the Bohm potential),

n � 2

p

���������������
Nÿ z 2

q ��������
mo
�h

r
:

If K is also zero, i.e., N � 4M, the respective exact and
mean-field values of the dimensionless concentration ~n �
n
����������������
�h=�mo�p

at zero can be written as

4M

22M
���
p
p �2M �!

�M!�2 ;
4
�����
M
p

p
;

and are very close because using Stirling's factorial formula
Q! � ���������

2pQ
p

exp �ÿQ�QQ shows that they are identical, and
this formula is a good approximation even for small Q. For
odd K and even for odd N, the two quantities also tend to be
identical, although the formulas are somewhat more cumber-
some. The system energies calculated from the exact and
Thomas±Fermi models are also in agreement: they are given
by the respective formulas

E �
� �

PF

2
� nf

�
dx � N 2�ho

4
;

E � �ho
XKÿ1
i�0
�1� 2i� � K 2�ho

(again, for even N for simplicity) (see Section 4).

How close the two descriptions are is illustrated graphi-
cally by the profiles ~n�z� forN�10 andN � 4 (see the figure).
Of course, the Thomas±Fermi approximation fails to grasp
the (very small) oscillations (the so-called shell structure), but
it describes the wings of the exact Bohm solution very well.
The reason for choosing the smaller variant is that for a � 0,
it is the quartet, not the triplet, which shows aminimum in the
cloud concentration at zero. As N increases, this minimum
alternatingly turns into a maximum and reoccurs as a
minimum.

7. Harmonic bosons

When harmonic bosons have all dropped to the lowest level
8 ki � 0, i.e., when the system energy is E �
�ho �1� �Nÿ 1� ���������������

1�Na
p �=2, the total (fortunately, spinless)

wave function is purely Gaussian,

c / exp

�
ÿmo

2�h

�
x 2
1 �

���������������
1�Na
p XN

i�2
x 2
i

��
;

where, importantly for the further discussion, x1 �PN
i�1 xi=

����
N
p

.
To determine n�x�, we should first represent the square

of this expression as a function of xi using the equivalence
stated in Eqn (3) between the quadratic forms in x and x
spaces (namely, using it to calculate

PN
i�2 in terms of xi and

x1). We should next make the replacement xN ! x in such
c 2 using the xi $ xj symmetry and then, finally, integrate
the resulting exponential with the index

0
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Figure. Comparison of the predictions of the exact and averaging

descriptions for the concentration profile of a cloud of noninteracting

fermions for (a) N � 10 and (b) N � 4.
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ÿmo
�hN

��
1� �Nÿ 1� ���������������

1�Na
p �

x 2

� 2�1ÿ ���������������
1�Na
p � x

XNÿ1
i�1

xi

��1� �Nÿ 1� ���������������1�Na
p �XNÿ1

i�1
x2i

� 2�1ÿ ���������������
1�Na
p �

X
i>j

xixj

�
�11�

with respect to the remaining Nÿ 1 xi.
The last operation is conveniently carried out in the CS-Z,

which diagonalizes the form expressed by the underlined
terms in Eqn (11). The calculation only requires taking into
account that Z1 �

PNÿ1
i�1 xi=

������������
Nÿ 1
p

, and the eigenvalue of
this vector is easily found from the form of the original
�Nÿ 1� � �Nÿ 1�matrix B of that form:

1� �Nÿ 1� ���������������
1�Na
p

1ÿ ���������������
1�Na
p �

1ÿ ���������������
1�Na
p

1� �Nÿ 1� ���������������
1�Na
p �

� � �

0@ 1A
�

1
1
�

 !
� �Nÿ 1� ���������������

1�Na
p �

1
1
�

 !
:

The coefficients of the other Z 2
i are unimportant because the

integration over these variables yields only an insignificant
pre-exponential factor (see Section 5), but it is clear that
similarly to the eigenvalues of the matrix A, they are all equal
to N

���������������
1�Na
p

. Finally,

n�x� / exp

�
ÿmo

�h

N
���������������
1�Na
p

Nÿ 1� ���������������
1�Na
p x 2

�
: �12�

We see that for a cloud of N4 1 harmonic bosons, the
coefficient of z 2 in the exponent is the harmonic mean of N
and

���������������
1�Na
p

. Is this accidental?
Comparing Eqns (12) and (10) again raises the question

that was addressed in Section 4 but postponed until now:Why
does the mean-field approximation perfectly correspond to
the exact formulas for N4 a while dramatically failing for
a4N4 1? The answer amounts to the following quantita-
tive explanation of the observation of the `harmonic mean'
scaling.

If N is increased for a fixed a > 0, at the point where the
leading contribution to the confining field comes from the
harmonic particles,Na4 1, the kinetic and potential energies
of each particle are comparable, �h 2=�mx 2

0 � � mo 2Nax 2
0 ,

according to the virial theorem and based on a simple
estimate of terms in Eqn (1) (here, x0 is the characteristic
width of n�x�, with x 2

0 � �h=�mo
�������
Na
p �). If we fix N4 1 and

infinitely increase a, the cloud structure remains the same as
described above until particle collectivization reaches its
logical limit by turning the particle ensemble into a `super-
particle' of mass Nm and charge N. From this point on, the
observed width n is determined exclusively by the dynamics of
this superparticle in the external field, irrespective of the
interaction of its internal components, 4 and hence, accord-
ing to the new virial theorem �h 2=�Nmx 2

0 � � Nmo 2x 2
0 , we

have x 2
0 � �h=�moN�. This regime becomes dominant if the

Heisenberg `blurring' of the superparticle exceeds its internal
size, i.e., precisely when a > N [the `blurring' of x1 is � 1
according to Eqns (2) and (5)].

The first excited state of a boson system exhibits the same
features. For a > 0, this state is �ho (k1 � 1, ki5 2 � 0) apart
from the ground state, and its wave function, unlike that
indicated, has the factor x1, which in n�x� generates the factor

N�1�Na�
Nÿ 1� ���������������

1�Na
p z 2 �Nÿ 1

2

in front of the already calculated exponential. ForN4 a4 1,
the contribution from the z 2 term is small as

���������
a=N

p
; however,

for a4N4 1, the concentration profile undergoes a strong
modification (in terms of the same parameter, which is large
in that case) and is determined by the first excited level of the
superparticle in the external field. In other words, forNa4 1,
the averaging approach misses the external potential on the
background of the collective one and therefore fails to
describe the formation of a united harmonic `fist' at N4 a.

The situation can also be analyzed by using a different
parameter variation scheme, namely, by fixing the number of
cloud particles and their interaction strength ao 2 �
~o 2 � const and varying the cloud-confining field o. Then, if
we increase the `rigidity' of the oscillator, i.e., if we try to
`squeeze' the cloud into an increasingly narrow well, the
scaling relation x 2

0 � �h=�mNo� suggests that an instant
(No 2 > ~o 2) is inevitably reached when the width n�x� ceases
to decrease and starts to be determined by the internal size of
the superparticle, x 2

0 � �h=�m
����������
N~o 2
p

�. After that, the united
fist ensemble resists compression successfully for quite a long
time, but increasing o further for o 2 > N~o 2 leads to its
destruction by the external field and, starting from that
moment, the cloud is again compressed according to the
x 2
0 � �h=mo law.
The above discussion suggests that the mean-field model

is easily corrected `by hand'. According to Eqn (2), we only
need to separate the external oscillator from all the others:
first, for Na4 1, to consider the formation of the collective
cloud and then to investigate the motion of its CM in the
external potential.

8. Coherent states

One further and still unexploited property of the harmonic
oscillator is that the isochronous nature of its dynamics
allows the nontrivial evolution of the system to be repre-
sented in terms of so-called coherent states [1]; this very simple
representation is `semiclassical' in form and is in fact exact
and very efficient. Much of the literature on Bose condensa-
tion inmagnetically trapped atomic gases [4, 5] has focused on
various vibration modes of the clouds of these gases. Most
analyses use the hydrodynamics approximation in the
collective Gross±Pitaevskii equation; this approximation, as
indicated above, is totally inapplicable to the harmonic
scenario we advocate here (because of the nonlocal inter-
particle interaction, such a cloud gas is fully nonideal). The
positive side, however, is that this approach allows the exact
and sufficiently compact study of the oscillations.

The coherent states of the oscillator are described by the
nonstationary wave function

/ exp

�
i�pq

�h
ÿmO�qÿ �q�2

2�h
ÿ iOt

2
ÿ i�p�q

2�h

�
;

4 Analogously, the behavior of an electrostatically trapped proton is

unrelated to the dynamics of its component quarks.
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where O is the oscillator frequency and the `average'
coordinate and momentum are functions of time satisfying
the classical equations

m _�q � �p ; _�p � ÿmO 2�q ! �p 2

2m
�mO 2�q 2

2
� �k�hO ;

and hence, if �q �
���������������������
2�k�h=�mO�

q
sin �Ot�, then �p ����������������

2�km�hO
p

cos �Ot�. The quantity �k is called the `mean number
of quanta.'5 Unfortunately, using the above exact solution of
the Schr�odinger equation for a single oscillator in factorizable
system (2) of many oscillators involves an unwieldy symme-
trization (antisymmetrization) procedure. We therefore use
the simplest, two-particle model to demonstrate the method.

If the coherence property is assumed for the first
oscillator, q � x1; O � o (where we use the old notation for
the `means'), and the second, with the coordinate x2, is in the
stationary state k2 � 0 (we multiply g by exp �ÿiE2t=�h� for
completeness) [see Eqn (5)], then the total coordinate function
is symmetric and hence describes oscillations of a harmonic
cloud of either two bosons or two antiparallel-spin fermions.
In this case,

n�x; t� / exp

�
ÿ 2

��������������
1� 2a
p

1� ��������������
1� 2a
p mo

�h

�
xÿ �q���

2
p
�2�

:

Clearly, this is the antisymmetric oscillationmode involving a
CM shift (by �q=

���
2
p

, as is easy to see), and this result applies
straightforwardly to systems with N > 2.

If, conversely, q � x2, O �
��������������
1� 2a
p

o, and k1 � 0, then
the above version of the system requires that the coherent
wave function be preliminarily symmetrized with respect to
x1;2, giving
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�
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��������������
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1� 2a
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exp
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ÿ 2
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1� ��������������
1� 2a
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��������������
1� 2a
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�h

�q 2

�
: �13�

This oscillation mode is already symmetric (the expression in
curly brackets in the right-hand side) and has a different
frequency. As �k increases, the cosine interference term rapidly
decreases to zero.

For a system of parallel-spin fermions, the first mode
written above is absent, whereas in the second mode, the
antisymetrization of the coherent wave function does nothing
more than change the sign of the cosine. We note, however,
that scenarios with ki 6� 0 in the stationary part of the total
wave function and with coherence with respect to both x1;2
bring more diversity to life.

9. Conclusion

The analysis performed shows that the harmonic world is a
perfect test ground for approximate methods describing
many-particle quantum systems. The approach can play an
especially useful role in teaching these methods, because it
allowsmanipulating the necessary calculations in a visual and
technically unsophisticated way. At the same time, as ameans
of acquiring experience in solving potential practical pro-
blems, this approach appears to be somewhat inconsistent
with the discussion in Section 2 or its implications, and can
itself become a subject of physical interest due to its
demonstrating very interesting and nontrivial internal phy-
sics, as exemplified by the formation of superparticles.
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