
Abstract. Topological electron states were theoretically pre-
dicted by B A Volkov and O A Pankratov in 1985 as interface
states in an inverted contact between IV±VI semiconductors
with their bands mutually inverted. As became clear later, the
`inverted' SnTe semiconductor is a topological insulator, and
the inverted contact is an example of a topologically nontrivial
interface. This paper discusses the key results of Volkov and
Pankratov's 1985 work and examines the usefulness of the
inverted contact model for explaining the close link between
the topologically nontrivial bulk band structure and topologi-
cal surface states. An advantage of the model for getting a
deeper insight into this link is that it allows an analytical
solution. An inhomogeneous semiconductor structure is de-
scribed by an effective Dirac Hamiltonian, which was obtained
analytically from a tight binding model for the band structure of
IV±VI materials. This allows one to trace the relation between
topological surface states and bands in the bulk. As a result, the
spin texture of a topological state can be expressed explicitly in
terms of the bulk characteristics. It turns out that the spin
texture can be controlled by varying the surface band bending.
Given the nontrivial spin polarization on the surface, it is inter-
esting to take a look at the Ruderman±Kittel±Kasuya±Yosida.
(RKKY) interaction between magnetic adatoms, which can
serve to probe the spin distribution locally. This interaction
shows a much more complex structure than the common
RKKY coupling in a nonpolarized Fermi gas. The analytical
theory provides an explicit relation between the RKKY interac-
tion on the surface of a topological insulator and the parameters
of the bulk spectrum.

Keywords: topological insulators, topological surface states,
inverted contact, spin texture

1. Introduction: the inverted contact

Topological insulators are making headlines in modern solid-
state research. It is probably not an exaggeration to say that
their discovery is the most important advance in solid-state
physics of the last decade. There are many reviews, books,
and overview talks on this subject [1±3], and I do not intend to
extend this list by one more item.What I am going to do is tell
a story that connects some old developments with the present.
To the best of my knowledge, Yu V Kopaev, in his last years,
was very interested in this topic and gave lectures about
topological insulators. It is exactly the kind of physics he liked
so much, `Kopaev's physics' indeed.

My story begins here, at the Lebedev institute, in the
1980s, when B A Volkov and myself published paper [4] in
JETP Letters, which I briefly summarize below. Consider a
Dirac electron with the relativistic energy spectrum

E � �
���������������������������
m 2c 4 � c 2p 2

p
: �1�

Apparently, the sign of the rest massm is irrelevant here since
it enters as a square in Eqn (1). However, if we imagine that
the mass is a function of a position, and this function changes
sign, we encounter a new phenomenon. Namely, if the mass is
a function of z coordinate m�z� and changes its sign at z � 0.
then, regardless of the particular shape of the function m�z�,
electron states which are bound to the plane z � 0 always
exist. Of course, these states are plane waves along the z � 0
plane. They have a linear in-plane dispersion e�p?� � �cp?,
where p? � �px; py� stands for the in-plane momentum
(Fig. 1). Interestingly, these states are not spin-degenerate,
that is, the spin structure of the wave function is `frozen'.
What we have here are two-dimensional chiral massless
particlesÐWeyl neutrinos.

An inverted semiconductor structure was a rather spec-
ulative suggestion in 1985. However, later on, the linear
electron spectrum was discovered, first in graphene and then
in topological insulators. In graphene, the analogy is not
complete, since the spin remains `free', i.e., decoupled from
the orbital motion due to the extreme weakness of the spin-
orbit interaction. On the contrary, the 2D states on the
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surface of a 3D topological insulator are indeed Weyl
fermions.

Of course, we had in mind a particular realization of the
variable Dirac mass. In a family of IV±VI semiconductors,
there are materials with mutually inverted fundamental gap
edges, i.e., with positive and negative Dirac mass. In these
materials, a direct fundamental band gap is located in the
L point of the Brillouin zone. The low energy electron
spectrum is, to a very good approximation, described by the
Dirac Hamiltonian. The gap edges are labeled by the parity,
which is opposite for a conduction and a valence band. For
example, in PbTe, the conduction band edge is `odd', whereas
the valence edge is `even' (the parity is commonly defined
choosing the origin of the coordinate system on a Pb lattice
site). In contrast, in SnTe, the parities of the two bands are
opposite. Therefore, in a solid solution Pb1ÿxSnxTe, a
gradual increase in Sn content should cause the gap to close
and finally to invert (Fig. 2). By a spatial variation of the Sn
content, one can achieve the band inversion in real space
(Fig. 3), a situation that we call an inverted contact
(this system is also referred to as a `topological heterojunc-
tion' [5, 6]). As mentioned above, the universal property of
such a structure is 2DWeyl fermionic states at the interface.

The inhomogeneous structure depicted in Fig. 3 is
described by the Dirac equation with the variable mass,
where mc 2 is replaced by some function D�z� � D0 f �z�,
which changes sign when crossing the plane z � 0. Of
course, some material-dependent in-plane velocities vk
(parallel to z) and v? (perpendicular to z, i.e. in the junction
plane) must replace the speed of light. As we found in [4], the
Dirac equation

bH�z; p?�C � e�p?�C �2�

always has at least one bound state, which is localized along z
regardless of the particular shape of f �z�. The only condition
imposed on f �z� is the sign change. This solution possesses a
linear in-plane dispersion

e�p?� � � v?p? : �3�
Whereas the bulk bands are spin-degenerate, the interface
state occurs only in a specific spin configuration, i.e., it has a

fixed spin structure:

C� � 1

2

exp

�
ÿ i

�
y
2
� p

4

��
� exp

�
i

�
y
2
� p

4

��
exp

�
ÿ i

�
y
2
ÿ p

4

��
� exp

�
ÿ i

�
y
2
ÿ p

4

��

0BBBBBBBBBBB@

1CCCCCCCCCCCA
� exp

�
ÿ 1

�hvk

�z
0

D�z� dz� ip?r
�
: �4�

In Eqn (4), the plus/minus sign refers to the positive/negative
energy branches and the phase factors are defined by the polar
angle y which controls the direction of the in-plane momen-
tum p?. It is evident that wave function (4) is exponentially
localized along z if D�z� changes sign. Otherwise, it becomes
nonnormalizable and the bound state vanishes. In the plane
z � 0, interface states are described by the effective Weyl
Hamiltonian

bHW � v?s?p? �5�

with the linear in-plane energy spectrum (3). The matrix-
valued vector s? � �tx; ty� is the vector of the pseudospin

e � �cp?

e

z

m4 0
m5 0

Figure 1. Inverted contact betweenDirac spaces with negative and positive

rest mass. Regardless of the particular shape of the transition region, the

interface hosts spin-nondegenerate Weyl states with linear dispersion.
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Figure 2. Inversion of the fundamental gap edges in Pb1ÿxSnxTe with an

increase in Sn content.
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Figure 3. Real space energy diagram of an inverted contact. Here, we

ignore the shift of the middle point of the band gap, the band bending. In

addition, the band gaps on different sides of the junction are not

necessarily equal. Whereas the bulk bands are spin-degenerate, the Weyl

state, which is trapped at the interface, has a fixed spin structure.
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Pauli matrices. The projection of s? on p? determines the
chirality eigenvalues �1, which correspond to positive or
negative energy branches in Eqn (3), Fig. 4. The most
surprising thing about solution (4) is its robustness with
respect to the shape of f �z�, alongside the absence of spin
degeneracy. At the time we published paper [4], the origin of
these unusual features was unclear. Now, more than 20 years
later, we know the answer, and it is the topology of the
underlying band structure.

2. Topological insulators

The band structure of an insulating material can be classified
[1±3] according to the topology of the Hilbert space, which is
characterized by the corresponding topological index. The
index does not change upon any smooth deformation of the
Hamiltonian, unless the energy levels cross. A change in the
topological index is only possible via a level crossing that is
via the emergent metallic state. This happens at the interface
separating two topologically distinct materials or on the
surface of a topologically nontrivial material, which is an
interface with a vacuum. The metallic interface state must be
spin-nondegenerate, possessing linear dispersion [1±3], i.e.,
with exactly the same properties as theWeyl state (4). It is not
the purpose of this paper to review the topological band
theory; I illustrate in Fig. 5 the change in the band structure
topology by analogy with the topological classification of
surfaces. For closed surfaces, the topological index charac-
terizes their connectivity. By the astonishing theorem of
Gauss±Bonnet, the integral (divided by 2p) of the curvature
over a closed surface is an integer 2�1ÿ g�, where g is the
number of holes in the surface (Fig. 6).

The integral of the curvature does not change upon an
arbitrary deformation of the surface, unless the topology
(characterized by the number of holes) changes. In the case of
the band structure, the topology describes the `connectivity'
of the Hilbert space.

The change in the topological index signals the existence
of interface/surface states, which are universal, i.e., which do
not depend critically on the details of the interface. This is
illustrated in Fig. 7. The left panel (a) shows `ordinary' surface
states, which come as Kramers pairs. Generally, if there is no
inversion symmetry, the spin degeneracy is lifted, but the

surface bands must cross at high symmetry points of the
surface Brillouin zone as required by the Kramers theorem.
Such states can be, in principle, removed from the band gap
by the action of some surface potential. On the contrary, the
states in panel (b) cannot be removed, since they form a
continuous chain through the gap switching Kramers
partners at high symmetry points. The intersection of these
surface bands at a symmetry point forms aWeyl±Dirac cone.
Figure 7 suggests a way to distinguish between the `ordinary'
and the `topologically protected' states. To do this, it is
enough to count the number of intersections of the surface
bands with the line of constant energy. In the ordinary case,
the number of intersections is even, whereas in the topological
case it is odd.

As the spin structure of a surface state is `frozen', every
surface state at a particular in-planemomentum p? � �px; py�
has a certain expectation value of spin. The spin distribution
in the (px; py) plane forms a spin texture, which is the most
important hallmark of a topological surface state. Spin
textures were measured by spin-resolved ARPES (Angle-
Resolved Photoemission Spectroscopy) for a number of
topological insulators. An example of the Bi2Se3 topological
insulator is shown in Fig. 8. Here, we have a single Dirac±
Weyl cone in the center of a surface Brillouin zone. The spin is
locked perpendicularly to momentum, as one would expect
from the symmetry arguments. However, in general, topolo-
gical theory cannot predict the spin texture. This may seem
paradoxical: on the one hand, the very existence of the

py

px

e

Figure 4.Dirac±Weyl cone: the in-plane energy dispersion of the interface

states. The positive and the negative energy branches correspond to the

pseudospin orientation parallel or antiparallel to the in-plane momentum,

i.e., to positive or negative chirality.

Figure 5.Dirac±Weyl interface state emerges as a metallic state connecting

insulating materials (one of which may be a vacuum) with a different band

topology.

Topological invariants

GaussëBonnet theorem

�
M

� dA � 2pw � 2p�2ÿ 2g�

g � 1 g � 0

Figure 6. Topological classification of surfaces and the Gauss±Bonnet

theorem. Here, � is the surface curvature � � 1=r1r2 and g is the number of

holes.
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topological surface state is due to the nontrivial topology of
the bulk. On the other hand, we cannot predict what happens
to that state if we change the bulk, and we generally do not
know what the spin texture looks like. To address this issue
one needs an explicit connection between the bulk and the
surface electronic states. Unfortunately, most topological
insulators possess complicated crystal structures, which
makes it impossible to make this connection explicit.

Ab initio calculations provide both the bulk and the
surface states, but the link between the two remains hidden.
Now, we turn to the inverted contact model, which offers a
unique opportunity to study this link analytically.

3. Is inverted contact PbTe/SnTe
a topological interface?

According to the criterion formulated in Fig. 7, it seems that
the answer to this question should be `no'. Indeed, the band
extrema in IV±VI materials are located at L-points and there
are four inequivalent L points in the Brillouin zone. They
project in different ways on different surfaces, but their
number is always even and, hence, the number of surface
bands is even. It follows that these states are not protected by
time-reversal symmetry, which commonly underlies topolo-
gical classification [1±3]. Nonetheless, numerical calculations
for SnTe (Fig. 9) show that the surface bands stemming from
different L points do not form self-closedKramers pairs, as in
Fig. 7a, but extend through the whole band gap, as in Fig. 7b.

Two surface states in Fig. 9, which are derived from the
bulk states L2 and L0 (Fig. 10), do not interact at the crossing
point, because they possess different symmetry with respect to
reflection in the mirror plane (110) (Fig. 10, 11). This crystal
symmetry protection replaces the time-reversal symmetry
protection originally introduced for topological insulators.
Hence, SnTe-typematerials belong to the so-called crystalline
topological insulators, where topological protection of the
surface state is conditioned by a particular point group
symmetry element, which is common to the bulk crystal and
to the surface [9]. The mirror plane (110) is such a symmetry
element.

The corresponding topological index, a mirror Chern
number [10], is defined as the difference between the Chern
numbers for energy bands with opposite mirror eigenvalues
[11±14]:

nM � n�i ÿ nÿi
2

: �6�

E E

ÿM G M k ÿM G M k

a b

Figure 7. Adapted from [2]. Ordinary surface states shown in panel (a)

come in pairs ofKramers-conjugated bands. The number of crossings with

the line of constant energy is even, and any surface state can be pushed out

of the energy gap by applying a proper surface potential. Panel (b):

topological surface state. The number of crossings is odd. Such a state

cannot be eliminated from the band gap.
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Figure 8. ARPES images of the topological surface states in Bi2Se3 [7].

There is a single Dirac±Weyl cone in the center on the surface Brillouin

zone and the helical spin texture is circularly symmetric.
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Figure 9.Numerically calculated surface states on the (111) Te-terminated

surface of SnTe [8]. The two states that are derived from the different

L points of the bulk spectrum belong to different symmetry classes.
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Figure 10. Brillouin zone for SnTe (after [15]). The band extrema are

located at L points, four of which are inequivalent. On the (111) surface,

the L points project onto the central G point and three inequivalent M

points in the surface Brillouin zone. The (110) symmetry plane is common

to the bulk and to the surface. The anisotropy of the energy spectrum at the

L points is schematically shown.
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For SnTe, nM � ÿ2 [12]. In contrast, for PbTe, which has the
`normal' band ordering, nM � 0 [12]. The inverted contact is
thus a topological interface where the topology change is
reflected by the change of a mirror Chern number. Hence, the
Dirac±Weyl interface state that we found in 1985 indeed has a
topological origin. Therefore, it possesses all the hallmarks of
the topological surface state: it spans the whole band gap and
it is not spin-degenerate.

The spin texture for the SnTe (111) surface was calculated
from first principles [15]; see Figs 12, 13. The surface states in
G andM, which originate from `direct' and `oblique' L points,
have profoundly distinct textures. At theG point, a cylindrical
symmetry dictates `standard' spin locking with the spin
oriented perpendicularly to momentum.

In contrast, for M state, the symmetry constrains are
released and the spin is no more locked normally to
momentum. Moreover, there is a spin component normal to
the surface, which is strictly zero at the G point. These results
indicate that the surface spin texture contains information
about the parent bulk states. However, without analytical
theory, the link between the two remains concealed. At this
point, we can benefit from the inverted contact model that
allows, for IV±VI materials, this connection to be unraveled
and thus making the bulk-boundary correspondence expli-
cit.

To calculate the spin texture, we need to identify the way
the real spin enters the effectiveDiracHamiltonian in Eqn (2).
The Hamiltonian matrix is defined in the space of Kramers-
conjugated states, which are not pure spin states. Calculation
of the spin expectation values requires knowledge of the basis
states that underlie the Dirac matrix. To elucidate that, we
have to step back in time to the early 1980s, when BAVolkov
andmyself developed the analytical band structure theory for
IV±VI materials [16, 17]. This work eventually led us to the
concept of the band-inverted contact.

4. Where does the Dirac Hamiltonian
come from? Analytical band structure theory

Our derivation of the effectiveDiracHamiltonian for electron
states at the L point is based on understanding the IV±VI
band structure as a whole. This understanding can be
achieved by constructing tight binding Bloch states from
atomic p-orbitals [16, 17]. The cubic symmetry of the crystal
allows choosing the p-orbitals as functions of the x, y, z
symmetry, transforming as Cartesian coordinates (Fig. 14).

From these orbitals, we construct the tight binding Bloch
functions jxi, jyi, jzi.

In this approach, it is immediately visible why L points
(Fig. 15) are so special in IV±VI materials. Indeed, at the
L point, the tight binding wave function is a sum that runs
either over the group IV (Pb, Sn,Ge) sites or over the groupVI
(Te, Se) sites. Due to the symmetry of the [111] axis, the jxi,
jyi, jzi states enter on equal footing, and corresponding
energy levels are degenerate if we disregard the crystal field
and the spin-orbit interaction. This degeneracy is lifted by the
mixing of the jxi, jyi, jzi states, induced by the cubic crystal
field and by the spin-orbit coupling. The splitting drastically
reduces the gap that separates the Sn- and Te-type triplets,
which results in a minimal gap in the electron spectrum
(Fig. 16). Since there are 6 valence p-electrons in the unit
cell, the three lower levels are occupied, thus forming valence
bands, whereas the three upper levels form conduction bands.
Thus, group IV-derived levels normally form the conduction
bands with odd parity and group VI states the valence bands
with even parity. However, in some cases, for example in
SnTe, the gap reduction is so strong that the edge states
interchange their positions and an inverted band gap (as
shown in Fig. 16) emerges.

The inverted band order is in contrast to the `normal' one
that occurs, for example, in PbTe, which may be considered
topologically equivalent to a vacuum, since the `normal'

Sn Te

Figure 11. Rock salt crystal structure of SnTe (from [12]). The (110)

symmetry plane is shown.
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Figure 13. Surface Brillouin zone for the (111) surface of SnTe (from [15]).
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ordering with the higher cation (negative parity) state and
lower anion (positive parity) level should be restored with the
increase in the lattice constant, i.e., for a vanishing crystal
field. The construction of the edge states according
to the diagram in Fig. 16 provides the wave functions at
the L-point

jFÿ2 i � ÿ sin
yÿ

2

��Fÿ#� �� cos
yÿ

2

��Fÿ"0

�
;

bK jFÿ2 i � ÿ sin
yÿ

2

��Fÿ"ÿ �� cos
yÿ

2

��Fÿ#0

�
;

jF�1 i � ÿ cos
y�

2

��F�#� �� sin
y�

2

��F�"0

�
;

�7�

bK jF�1 i � cos
y�

2

��F�"ÿ �� sin
y�

2

��F�#0

�
;

where the Bloch functions jF�0 i, jF�� i, which transform
according to irreducible representations of the L-point small
group D3d, are combinations of the Bloch states jx 0 i, jy 0 i,
jz 0 i, which we denote as jF�x 0 i, jF�y 0 i, jF�z 0 i:
jF�0 i � jF�z 0 i ;
jF�� i �

1���
2
p ÿjF�x 0 i � i jF�y 0 i

�
:

�8�

The last functions are obtained from the jxi, jyi, jzi basis
functions by rotation of the cubic coordinate system to the L
point coordinate system with the z 0 axis parallel to [111]
(Fig. 15). The � superscript in (7) and (8) refers to even and
odd functions. The spin superscript in Eqn (7) bears on the z 0

component of the spin quantized along the [111] axis. As
shown in Fig. 16, there are four states belonging to the gap
edges: the functions jFÿ2 i and jF�1 i and their Kramers
partners bKjFÿ2 i and bKjF�1 i; see Eqn (7). The spin ad-mixture
due to the spin-orbit coupling is controlled by the material-
dependent spin mixing angles y� that depend on the ratio of
the crystal field matrix elements hxj bHjyi and the spin-orbit
coupling strength. In Ref. [17], the values of y� are tabulated
for all materials of the IV±VI family. The effective Dirac
Hamiltonian at the L point in the basis of functions (7) reads

H � eg=2 vkszpz � v?r?p?
vkszpz � v?r?p? ÿeg=2

� �
; �9�

with eg being the band gap p? � �px; py� and r? � �sx; sy�. It
is instructive to note the physical meaning of cos y�. A simple
calculation gives for the real spin s � �sx; sy; sz� the average
values

hFÿ2 jszjFÿ2 i � cos yÿ; h bKFÿ2 jszj bKFÿ2 i � ÿ cos yÿ ;

hFÿ2 jsx; yjFÿ2 i � 0 ;

hF�1 jszjF�1 i � ÿ cos y�; h bKF�1 jszj bKF�1 i � cos y� ;
�10�

hF�1 jsx; yjF�1 i � 0 :

Hence, cos y� gives the spin polarization of the bulk L-state
along the [111] axis.

Sn Te

jzi

jyi

jxi

Figure 14. Symmetry of the atomic p-orbitals for tight binding Bloch

functions [16, 17] (adapted from [12]).
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p-Bloch functions in the rotated coordinate system with the z 0 axis along
the [111] symmetry axis.
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This energy gap shrinks after crystal field splitting and spin-orbit splitting

are turned on. Band inversion occurs if the splitting exceeds the initial

separation of odd and even states [17].
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5. Topological surface states and spin texture

To introduce topological surface states, we, in analogy with
the inverted contact, make use of a topological boundary
condition [18, 19]. This condition requires band inversion on
the surface while sending the band gap to infinity on the
vacuum side (Fig. 17). In other words, the surface is described
as inverted contact with the vacuum. We implement this by
replacing eg with the function D�z� that changes sign on the
surface. With this approach, we are in a position to calculate
the surface spin texture analytically. We focus on the case of
the (111) surface, which is themost transparent. There are two
additional factors that one must take into account in
considering a realistic surface [20].

First, one has to include band bending, i.e., the change
in the work function close to the surface. This is done by
introducing a scalar function j�z� on the diagonal of the
Hamiltonian matrix (9). Second, we have to take into
account that the surface normal is not necessarily aligned
with the symmetry axis [111] of the parent L point. For the
(111) surface, the alignment is present for a `direct' point L0

which generates the surface state at G, but not for other
three L points L1;2;3 that are responsible for topological
states at M points (see Fig. 10). To implement this in
Eqn (9), we replace the nondiagonal part in matrix (9) as
follows:

vkszpz � v?r?p? ) rRVR y�p? ÿ i�hezqz� � L : �11�

Here, r� �sx; sy; sz�, V is the velocity matrix V �
Diag �v?; v?; vk� with velocities perpendicular or parallel to
the [111] direction, ez is the unit vector normal to the surface,
and the rotation matrix R describes a coordinate transforma-
tion of the [111] aligned coordinate system into the new
orientation, such that the z-axis coincides with the surface
normal. This rotation must also be performed on the basis
functions (7). For example, for the case of the M state, R is
simply a rotation by the angle b between the two [111] cubic

diagonals, where cos b � 1=3. The Dirac equation takes the
form

D�z� � j�z� L
L y D�z� � j�z�

� �
C � eC : �12�

Equation (12) can be solved by a similar strategy that has been
deployed in Refs [21, 22]. Under the assumption that the
coordinate dependence for D�z��D0 f �z� and for j�z� �
j0 f �z� is given by the same sign-changing function f �z�, it
can be shown [21, 22] that the consequence of the band
bending is that the Weyl interface state becomes constrained
in a certain energy window (in fact, this is always observed in
numerical calculations for topological insulators).

Let us first consider a simpler case of a `direct' L valley,
which projects onto the surface G point, and disregard for a
moment the band bending. In this case, there is no need to
rotate the coordinate system, and the L operator in Eqn (12)
is given by the left-hand side of Eqn (11). The 4-component
wave function is given by Eqn (4):

C� � 1

2

exp

�
ÿ i

�
y
2
� p

4

��
� exp

�
i

�
y
2
� p

4

��
exp

�
ÿ i

�
y
2
ÿ p

4

��
� exp

�
i

�
y
2
ÿ p

4

��

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; �13�

where we omitted the z-dependent part, as well as the plane
wave part. This expression provides the expansion coeffi-
cients of the full wave function C� with the basis functions
jF i i of the L point states (7)

C� �
X
i

C i
�jF i i : �14�

Now, we can calculate the mean values of the spin compo-
nents:

hC�jsxjC�i � �s sin y ;
hC�jsyjC�i � �s cos y ; �15�
hC�jszjC�i � 0 :

The angle y determines the direction of the in-plane
momentum tan y � px=py. The amplitude of the spin is

s � 1

4
�cos y� � cos yÿ� : �16�

We see that s is controlled by the bulk band structure
parameters, the spin mixing angles y� that are directly
related to the spin polarizations of the bulk states at the
L-point; see Eqn (10). Depending on the spin mixing angles,
the amplitude of the spin texture (16) can change sign and,
for some parameter values, can vanish. From Eqn (15), it
follows that the spin vector is locked perpendicular to the
momentum; hence, we have a common helical spin texture
(Fig. 18). However, this is true only for the G valley. In the
more general case of the M valley, we find that the in-plane
spin is tangent to some conical section contour in the �px; py�
plane [20].

For a general orientation of the surface with respect to the
L point symmetry axis and for nonzero band bending, a direct

SnTe

j�z�

z

Vacuum

Figure 17. Topological boundary condition on an SnTe surface: the band

inversion and the displacement of the fundamental gap center (band

bending). On the vacuum side, the gap goes to infinity. The origin of the

Dirac±Weyl cone is aligned with the zero energy point D�z� � j�z� � 0.

Shown is the case of downward band bending, when the topological state

is constrained from below.
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calculation gives

hC�jsjC�i � �
ÿa sin y
b cos y
mz sin y

 !
; �17�

where the values of a, b, and mz depend on the orientation of
the symmetry axis of the parent L point. For M states on the
(111) surface, the symmetry axis of the parent L point is at an
angle b with the surface normal [111], where cos b � 1=3. For
an arbitrary surface orientation, we have

a � c
vx
vk

sin2 b� b
vx
v?

cos2 b ;

b � sÿ j0

2D0

�
cos2

yÿ

2
ÿ sin2

y�

2

�
;

c � 2b� j0

D0
; �18�

mz � sin �2b� 1
2

�
c
vx
vk
ÿ b

vx
v?

�
:

The Weyl cone is anisotropic,

e�p?� � g
��������������������������
v 2
x p

2
x � v 2?p 2

y

q
; �19�

with

vx �
vkv?�����������������������������������������

v 2? sin
2 b� v 2k cos2 b

q �20�

and

g �
��������������
1ÿ j 2

0

D 2
0

s
: �21�

From Eqn (19), it is obvious that the anisotropy of the Weyl
cone is due to the anisotropy of velocities at the parent L
point. In contrast, the spin texture anisotropy has its origin
mainly in different spin polarizations at different L points.
Indeed, for a symmetric G point, the spin texture is perfectly
helical. The [111] symmetry axis, along which the spin
polarization of the parent L states is aligned, coincides with

the surface normal. For M points, the parent symmetry axes
are tilted with respect to the surface normal. This leads to
anisotropy and to the finite polarization component mz,
which is normal to the surface. An interesting feature of
Eqns (17), (18) is a strong dependence of the spin texture on
the band bending j0. It is obvious from Eqn (21) that, if jj0j
exceeds jD0j, the topological state vanishes. This is because
the potential in the effective Schr�odinger equation (which
coincides with the equation of Witten's supersymmetric
quantum mechanics [21, 22]) that follows from Dirac
equation (12) loses the property of changing sign. For
jj0j < jD0j, the Dirac±Weyl state exists, but it is constrained
in energy; namely, it terminates at the points where the Weyl
branches touch the bulk spectrum (the bulk bands should be
taken at the zero momentum component, which is normal to
the interface). For inverted contact between two semiconduc-
tors, where we have finite energy gaps on both sides of the
junction, the Dirac±Weyl cone is constrained in energy in
both the positive and negative energy ranges. The limiting
energies are [21, 22]

Z� � ÿ
�
D 2
0

j 2
0

ÿ 1

�
j��1� : �22�

In the case of a surface, the effective gap is infinite on the
vacuum side and the topological state has a cutoff at negative
energies for downward band bending (j0 > 0; see Fig. 19) or
at positive energies for upward band bending (j0 < 0) [6]. We
define the sign of the band bending assuming f �ÿ1� � 1 on
the material side and f ��1� ! ÿ1 on the vacuum side.

In Fig. 20, we show the evolution of the spin texture as a
function of j0 [20]. The spin polarization was evaluated
analytically for SnTe using the band structure parameters
from [17] for four different values of j0=D0. For a downward
band bending, j0 > 0, which is seen in experiment [24], the
spin textures atG andMare similar (panel (a)), except that for
the G valley we have a perfect circular helix, but for the M
valley it is slightly distorted. The winding numbers for

ky

k?

kx

e�k�

y

ÿk?hsi

Figure 18. Spin-momentum locking for the surface G state. Energy

branches with positive or negative energy/chirality have opposite spin

directions.

2D0

Zÿ

eÿ2

e�1

E
n
er
gy

K0  G,M! K

Figure 19. Dispersion of the G and M Dirac±Weyl topological surface

states [23] for downward band bending. e�1 and eÿ2 are projections of the

bulk L bands onto the (111) surface. The topological surface band is cut off

at the negative limiting energy Zÿ.
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conduction (valence) branches areÿ1 (�1). The spin absolute
value is s � 0:8mB, in agreement with ab initio calculations.
This represents a rather rigorous test for our model, as the
magnitude of spin polarization is highly sensitive to surface
band bending. With the change in j0, the spin texture in G
does not alter its helical character, but the spin amplitude
decreases, and for

j0

D0
� ÿ sin2�y�=2� ÿ cos2�yÿ=2�

sin2�y�=2� � cos2�yÿ=2�
�23�

it vanishes altogether (with SnTe parameters from [17] we get
an estimate j0=D0 � ÿ0:24 for this critical value). With a
further reduction in j0, the polarization changes its winding
number to the opposite one. For theM point, the variation of
j0=D0 has much more dramatic consequences. As seen in
Fig. 20, the spin texture evolves from helical with winding
number ÿ1 (panel (a)) through linear (b) and hyperbolic (c)
textures, to finally a helical texture of winding number �1.
The M spin polarization has a nontrivial out-of-plane
component, which is in agreement with ab initio results for
the M point [15]. While the magnitude of this component is
approximately constant (� 0:1mB), the in-plane moment is
significantly larger for downward (j0 > 0), as opposed to
upward (j0 < 0), band bending. The importance of these
results is that, first, they show an explicit relation between the
topological surface state and the parent bulk band structure,
and, second, they open the way to control the surface spin
polarization via changing the bulk parameters (e.g., in solid
solutions) or via tuning the band bending with the top gate
voltage.

6. Surface Ruderman±Kittel±Kasuya±Yosida
interaction

As we have seen, the surface of a topological insulator hosts a
chiral spin-polarized 2D electron gas. A natural test probe for
a surface spin texture is a magnetic adatom. The magnetic
moments, which are immersed in a Fermi gas, experience
indirect interaction via virtual spin excitations, a mechanism
known as the Ruderman±Kittel±Kasuya±Yosida (RKKY)
interaction. In a `normal' spin-unpolarized 3D electron gas,
the interaction behaves as sin �2kFr�=r 3, decaying and
oscillating between ferromagnetic and antiferromagnetic,
where r is the separation of external spins and kF is the
Fermi wave number. It is clear that the spin locking in a
topological state should have a pronounced effect on the
RKKY interaction.

Using our analytical approach, we calculated this inter-
action for the (111) SnTe surface [23]. For simplicity, we
considered the G valley contribution only. It is known
experimentally [13] that in SnTe the Weyl±Dirac conical
points for M and G are displaced in energy by as much as
170 meV. Hence, it should be possible to separate their
contributions by choosing a proper Fermi energy.

To further simplify the derivation, we consider the case
with no band bending, j0 � 0. Using Green's functions for
the Weyl Hamiltonian (5), we find [23] that the interaction
energy of two spins S1 and S2 contains various combinations
of the spin-product terms Si

1S
j
2. Let us choose the coordinate

system such that the x-axis is aligned with the magnetic
impurity separation vector, and the z-axis is normal to the
surface. We find the Ising-type terms Sx

1 S
x
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y
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y
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Figure 20. Conduction-band spin textures for topological surface states on an SnTe (111) surface [20]. The axes kx, ky are defined in the local M-point

coordinate system (Fig. 13). The textures for G and M are similar for the downward band bending (a), except that for the G state the pattern is perfectly

circular and for M it is slightly distorted (in the picture, the M-texture is shown). The difference becomes dramatic for the upward bending. Whereas the

circular symmetry persists for theG state (yet at some point it flips thewinding), theM texture goes through linear (b) and hyperbolic (c) distribution to the

distorted circular (d) pattern with the opposite winding.
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which favor collinear ferromagnetic or antiferromagnetic
spin alignments, as well as the Dzyaloshinskii±Moriya term
Sx
1 S

z
2 ÿ Sx

2 S
z
1 , which favors the two spins aligning in the xz

plane perpendicularly to each other. Our microscopic model
allows the calculation of the coefficients in front of all these
terms, and hence we can determine which spin configuration
is most favorable. When the Fermi energy runs through the
Dirac±Weyl conical point (i.e., there are no free particles in
the surface state), the RKKY interaction energy takes the
form

EeF�0 �
A

r 3
�
a�2Sx

1 S
x
2 ÿ S

y
1S

y
2 � � 2bSz

1S
z
2

�
; �24�

i.e., the interaction decays as 1=r 3. Of course, coefficients a
and b depend on the particular sublattice (Sn or Te) which
hosts the spins. The Dzyaloshinskii±Moriya term appears
when there are free carriers in the surface band:

EeF 6�0 �
pA
r 2
�
sin �2kFr��aSx

1 S
x
2 � bSz

1S
z
2 �

ÿ c cos �2kFr��Sx
1 S

z
2 ÿ Sx

2 S
z
1 �
�
: �25�

As we see in Eqns (24), (25), the RKKY interaction in a
topological surface band is far more complex than in a spin-
unpolarized Fermi gas. In Fig. 21, we show the mutual
orientation of the two magnetic moments separated by the
distance x due to the RKKY coupling on the Sn terminated
(111) surface. The left panel (a) shows the case of SnTe and the
right panel (b) is for Pb1ÿxSnxTe with x � 0:25. For the Fermi
energy, we take eF � 0:1 eV. Figure 21c shows schematically
typical configurations. Configurations 1 and 2 shown in
Fig. 21c are referred to as `spin state 1' in Fig. 21a, b and
configurations 3 and 4Ðas `spin states 2 and 3' respectively.
It is remarkable that a relatively small change in the parameter
values between SnTe and Pb0:25Sn0:75Te results in the
appearance of a new spin state 3, where the two spins are
aligned parallel to the y-axis (configuration 4 in Fig. 21c).

7. Conclusions

The analytical model of the inverted contact, which we
introduced in 1985, is the first example of a 3D topological

insulator. As understood later, SnTe-type semiconductors
with an inverted band gap, which we proposed for that
structure, are crystalline topological insulators.

The inverted contact model offers useful insight into the
connection between a topologically nontrivial bulk band
structure and topological surface states. SnTe-type materials
provide a unique opportunity to trace this link analytically
and to uncover how the surface state changes upon changing
the bulk parameters. This is possible because the effective
Dirac Hamiltonian allows an analytical derivation from the
tight binding model of the bulk bands. Phenomenologically,
the idea of inverted contact was recently exploited in the form
of a `topological boundary condition' [18] for derivation of
the topological surface states.

However, the informative bulk-surface connection can be
achieved only on the basis of a full description of the bulk
bands. Our microscopic understanding of the bulk-boundary
correspondence reveals the possibility of tailoring the surface
spin texture by varying the bulk parameters or by adjusting
the band bending. Using the microscopically derived picture,
we calculated the RKKY interaction of magnetic impurities
on the surface of an SnTe-type topological insulator. We
found that this interaction is far more complex than in a
`normal' Fermi gas, and we proposed a direct connection
between this interaction and the parameters of the bulk
bands. This opens the way for a concerted design of complex
surface magnetic structures using topologically protected
spin polarized states.
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