
Abstract. We discuss the strategies to construct logic gates
based on solid-state and molecular structures in which informa-
tion transformation processes are governed by quantum me-
chanical principles and which, similarly to the classical
complementary metal±oxide±semiconductor (CMOS) struc-
tures, do not consume power in the stationary state. In the
first-generation quantum analogs of CMOS gates, logical
state switching occurs by fast quantum mechanical tunneling
processes, but the transfer characteristics are determined by
classical diffusion±drift carrier transport. The second-genera-
tion quantum analogs of CMOS systems are open quantum
systems in which charge carrier transport occurs coherently.
The development of atomic-precision lithography will allow
wide use of quantum molecular logic gates in traditional com-
puter architectures.

Keywords: quantum transport, resonant tunneling, quantum inter-
ference, non-Hermitian Hamiltonian, PT symmetry, exceptional
point, coalescence of resonances, logic gate, complementary metal±
oxide±semiconductor (CMOS) transistor, quantum inverter,
switching voltage, transfer characteristics, nanoelectronics, mole-
cular electronics

1. Introduction

Modern electronics are based on CMOS circuits, whose
architecture is based on a pair of complementary metal±
oxide±semiconductor (MOS) transistors with a common
input [1]. In a stationary state at a given input voltage
(Fig. 1), one transistor is open and the other is closed. This
can be implemented naturally if the complementary pair
consists of a p-type and an n-type transistor. An electric
circuit implementing a logic function is conventionally called
a gate. Figure 1 shows the NOT gate (an inverter), which is
obtained if in addition to the common input, the transistors in
the CMOS pair have a common output. A logic gate is
typically loaded by another logic gate, where the input
voltage is applied to the gates of the transistors in the
CMOS pair, which are electrically isolated from their
channels. Hence, the output resistance of a logic gate is
extremely high, and the current flowing through the circuit
is determined by leakage across the gates of MOS transistors,
which is very low. Therefore, the voltage at the output of a
logic gate is determined by the reference voltage of the open
transistor in the CMOS pair.

The reference voltages in the inverter circuit are chosen
such that for an input voltage Vin � Vref2, the transistor with
the reference voltageVref1 is open (and therefore the transistor
with the reference voltage is Vref2 is closed). Then the output
voltage of the inverter equals Vref1. Likewise, for the input
voltage Vin � Vref1, the output voltage equals Vref2. By
assigning the logic levels 0 and 1 to the values of the reference
voltages Vref1 and Vref2, we find that the circuit performs the
logic NOT operation. Most frequently, the reference voltages
Vref1 and Vref2 are the zero (ground) and the power supply
voltages.

By combining the inputs and outputs of CMOS transis-
tors in certain ways, it is possible to implement any logic
function [2]. It is highly important that the current flowing
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through a CMOS element in a stationary state is extremely
low and therefore the power consumption of CMOS circuits
is also very low. This explains their dominance in modern
electronics, which are progressing towards the development
of more and more complex integrated circuits with an ever
increasing scale of integration and currently featuring up to
several billion transistors.

The switching of a transistor in a CMOS pair from the
open to the closed state (and vice versa) is carried out by
changing the concentration of charge carriers in the transistor
channel, which, in turn, is achieved via classical drift and
diffusion processes resulting in a redistribution of charge
carriers between the channel and the drain/source of the
transistor, as well as the bulk.

A novel class of semiconductor devices representing
quantum analogues of CMOS circuits where switching takes
place via the controlled relocation of the maximum of the
absolute value of the electron wave function between
tunneling-coupled quantum wells was proposed and investi-
gated in a series of publications by Kopaev and coauthors [3±
6]. In this approach, information is carried by the amplitude
of the electron wave function in a certain region of a quantum
system: the maximum and minimum of this amplitude
respectively correspond to the logic 1 and 0. The application
of an external voltage to the structure results in controlled
relocation of the electron density in the system, corresponding
to some transformation of the data according to the desired
law.

Physically, the implementation of the suggested devices
that use the principle of controlled electron density relocation
is based on semiconductor heterostructures with coupled
quantum wells. The design of a quantum analogue of the
CMOS gate is basically similar to that of a classical device (see

Fig. 1) dissected along the plane dividing the complementary
transistors, with the resulting halves joined such that the
channels of the two transistors are tunnel coupled. The
quantum analogues of CMOS circuits discussed in [3±6]
constituted one of the first proposals to meet the demand for
increasing the density of elements on a chip by the use of a
vertical three-dimensional (3D) arrangement. Currently, the
3D arrangement is already widely used in memory devices [7]
and is considered one of the most promising areas for the
advancement of the basic components. The most important
example of the successful use of the 3D arrangement is the fin
field-effect transistor (FinFET) [1].1

The channel length of a quantum analogue of the CMOS
gate is determined by the capabilities of lithography. It was
assumed in [3±6] that transport along the channel, which
determines the transfer characteristic of the device, has a
classical character, i.e., is described by the classical transport
equations (drift±diffusion and kinetic equations), where
quantum effects are taken into account in choosing the
coefficients and parameters of classical models. The devices
proposed in [3±6], where the switching between the logical
levels occurs as a result of quantum mechanical tunneling
relocation and transport has a classical character, can be
classified as the first generation of the quantum analogues of
CMOS gates.

Recent advances in nanoelectronics technology (and, first
of all, in nanolithography) establish a realistic perspective for
the appearance of semiconductor devices with characteristic
feature dimensions (channel length) on the order of the
electron wavelength [8]. Elements that small must be
regarded as purely quantum objects (actually, molecules)
whose distinction is the discreteness of the charge-carrier
energy spectra. However, this statement is true only when
the quantum object is isolated from the environment, while
real devices always interact with the environment and there-
fore behave like open quantum systems, whose discrete
energy levels transform into finite-width resonances. The
transport of charge carriers in a quantum device is coherent
and should be described in terms of the quantum mechanical
transparency (electron-wave transmission coefficient), whose
maxima correspond to resonances. The description of
quantum mechanical transport is a complicated mathemati-
cal problem, but recent approaches [9±11] can offer a strategy
to develop design principles for purely quantum devices. Such
quantum devices implementing conventional Boolean func-
tions may be called the second generation of the quantum
analogues of CMOS gates.

This paper is organized as follows. In Section 2, we
consider the mechanism of controlled relocation in the first-
generation quantum analogues of CMOS gates and demon-
strate that rapid dissipation-free relocation persists even in
the presence of dissipative relaxation. In Section 3, we review
the methods used for modeling coherent transport in open
quantum systems on the basis of recent results on the
behavior of interacting resonances in open quantum systems
with exceptional points. In Section 4, we describe models of
second-generation quantum analogues of CMOS gates,
where charge-carrier transport is coherent. In the concluding
part, Section 5, we discuss future prospects for the develop-
ment of the quantum analogues of conventional logic gates
implementing Boolean functions and place them in the
context of the general development of quantum technologies.
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Figure 1. (a) Circuit diagram of a CMOS inverter. (b) Layout of a double-

well quantum inverter. GaAs quantum wells are shown in gray. Reference

voltages Vref1 and Vref2 are set by the ground bus potential �Vref1 � 0� and
the supply voltage potential �Vref2 � V0�.

1 Field-effect transistor with a vertical channel resembling the fin of a fish.
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2. First-generation quantum analogues
of CMOS circuits: classical transport
and quantum switching mechanism

2.1 Dissipationless relocation of the wave function
in a quantum structure
The maximum of the electron density in a stationary state
of a quantum structure with one occupied level in the
absence of a periodic perturbation occurs at the lowest-
energy level. In an asymmetric structure, the wave function
corresponding to this level occupies one of the quantum
wells. Under a slow adiabatic variation of an externally
applied voltage, the system remains in the ground state at
each moment of time [12], and the wave function undergoes
slow relocation in space. In the opposite limit case of
stepwise voltage switching, quantum mechanical calcula-
tions yield an oscillatory behavior for the probabilities of
finding electrons in the two wells (quantum beats). In this
case, relocation occurs via interwell intersubband relaxa-
tion assisted by the emission of phonons.

It was shown in [6] that in addition to the conventional
dissipative mechanism of this switching, there is a dissipation-
free mechanism of relocation under a two-step variation of
voltage. In this case, relocation proceeds via a resonant state
in which the wave function undergoes tunneling Rabi
oscillations. Formally, this switching regime corresponds to
a zero-reflection potential in a dynamic analogue of the
stationary scattering problem for the Schr�odinger equation;
this potential can be specified explicitly for the two-level
model [6]. Numerical simulations have demonstrated that
dissipation-free relocation also occurs under a linear varia-
tion of the applied voltage with time, the characteristic
duration of the switching process being of the order of the
period of the tunnelingRabi oscillations. The time required to
perform a logic operation is determined by the tunneling time
and can be shorter than 1 ps [4].

This principle allows implementing quantum analogues of
CMOS circuits that do not consume energy in the stationary
state. Energy consumption in the transient regime can also be
reduced considerably, which offers unique prospects for the
fabrication of ultrahigh-speed circuits at the ultra-large-scale
integration level. However, the approach used in [5, 6] to
describe the dynamics of quantum CMOS circuits was based
on solving the time-dependent Schr�odinger equation, and
therefore dissipation effects, which are inevitably present in
real devices, were disregarded. In the next section, we use the
density-matrix formalism to analyze the impact of dissipation
effects on the controlled relocation of the electron density
maximum in tunnel-coupled quantum wells.

2.2 Relocation of the wave function
in a quantum structure with dissipation
The process of wave-function relocation can be illustrated in
the simplest way with the example of a double-well hetero-
structure in an external electric field applied along the
structure growth direction. Following [6], we consider a two-
level system described by the Hamiltonian

Ĥ � eÿ d�t� t
t ÿe� d�t�

� �
: �1�

where 2e is the detuning between the quantum confinement
energy levels in the two wells, t is the tunneling matrix

element, and d�t� are the level shifts in the well owing to the
applied external field. The time dependence of d�t� determines
the switching process in the device. At t � 0, the applied
voltage is still zero and d�0� � 0. In this situation, the energy
level in the left well is higher than the level in the right well,
and the wave function is predominantly localized at the lower
level (Fig. 2). After switching is complete, the voltage that sets
in should correspond to the opposite picture, i.e., d�t0� � 2e,
where t0 is the duration of the switching process. Then,
according to (1), the energy levels in the two wells are
swapped and the lowest level appears in the left well, and
hence the wave function predominantly relocates into that
well.

Dissipative relaxation processes (which in this case are
transitions from the upper to the lower level) can be properly
taken into account by introducing the density matrix r of the
system and describing its evolution using the Lindblad
equation [13], which ensures that the positive definiteness of
the density matrix is preserved and its trace equals unity [14]:
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Here, Ŝk are the Lindblad operators describing the relaxation
processes whose rates are characterized by the Gk. For the
double-well system under consideration, which has two states
with the energies eL � eÿ d�t� and eR � ÿe� d�t�, localized
in the left and right wells, relaxation transitions can occur
both from the left to the right state and vice versa, depending
on which of the two energies is higher. The Lindblad
operators describing relaxation from the left to the right well
and vice versa can be respectively chosen as

Ŝ1 � 0 0
1 0

� �
;

and

Ŝ2 � 0 1
0 0

� �
:

The rate of relaxation, accompanied, for example, by the
emission of optical phonons with an energy eph, can be
described by the quantities G1 � Gd�eL ÿ eR ÿ eph� and
G2 � Gd�eR ÿ eL ÿ eph� for transitions from the left to the
right well and vice versa (here, d is the Dirac delta
function).

As mentioned above, the rate of the relocation process
depends on the shape of the control signal, i.e., the shape
of the function d�t�. Because relaxation processes are
slower than quantum mechanical oscillations, the opti-
mum switching regime is obtained in the case of a two-

2e

Figure 2. (Color online.) Relocation of the wave function in a double-well

heterostructure. Red lines show the amplitudes of wave functions in the

left and right wells of the structure.
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step function d�t� [6],

d�t� �
0 ; t < 0 ;
e ; 04 t < t0 ;
2e ; t > t0 :

(
�3�

We can relate this function of time to a dynamic analog of the
zero-reflection potential [6]. Figure 3 shows the occupancies
of the left and right wells calculated numerically in accor-
dance with Eqn (2) for different switching regimes, including
the one specified by (3). It was assumed that the electron
density is initially entirely localized in the right well:

r�0� � 0 0
0 1

� �
:

It can clearly be seen that under an abrupt single-step
variation of the potential (Figs 3a, g), switching occurs only
via the slower mechanisms of intersubband relaxation.
Meanwhile, calculations of the time dynamics describing the
relocation of themaximum of the wave-function amplitude in
the occupied state demonstrate that the regime of rapid
tunneling relocation under a two-step or linear variation of

the voltage persists even when dissipation is taken into
account. There are two time scales in these dynamics: one
corresponds to rapid relocation and the other characterizes
damping of the oscillations in the relocated wave function
amplitude due to dissipation processes.

2.3 Implementation of the simplest logic circuits
The operation principle of the discussed quantum logic
elements is based on the variation of the ohmic resistance of
each quantum well with changes in the position of the peak of
the squared absolute value of the wave function of the system.
Figure 1b shows the basic layout of a double-well quantum
inverter. The power supply voltage V0 is applied between the
terminals that are individually connected to wells 1 and 2, and
the input voltage Vin is applied to the top gate (control
electrode), separated from the upper well by a wide tunnel-
ing-opaque barrier. The output voltage Vout is read off from
the common terminal contacting both wells. When the
maximum of the electron density is in the first quantum
well, its lateral resistance is much lower than that of the
second well. When the control voltage is applied to the top
gate of the structure, the supply current flows along the other

tt=�htt=�h

2

d=e

1

0

0 tt=�h

2

d=e

1

0

0 3p=2 tt=�h

2

d=e

1

0

0 p=2 tt=�h

1.00

r 1
1
;r

2
2

0.75

0.50

0.25

0

1.00

r 1
1
;r

2
2

0.75

0.50

0.25

0

1.00

r 1
1
;r

2
2

0.75

0.50

0.25

0 2 4 6 8 10 0 20 40 60 80 100

a

b

d

e

c f

Figure 3. (Color online.) Evolution of the occupancies of the respective left and right quantum wells r11 and r22 (shown by respective thin blue and thick

red lines), numerically calculated for the three switching regimes d�t� depicted in the insets in panels (d)±(f). Panels (d)±(f) show the same occupancies as

respective panels (a)±(c), but on a longer time scale. The parameters of the system are e � 2:5t and G � 0:1t.
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well, and the output signal of the inverter changes from the
logic 0 to the logic 1 voltage.

In contrast to its classical prototype, this quantum
analogue of the CMOS circuit has a functionally integrated
structure, in which the control electrode (input) is placed on
the top surface of the heterostructure with two potential wells
separated by a tunneling-transparent barrier. A feature of the
functionally integrated structure is the requirement of
individual ohmic contacts with each potential well (the
power supply bus and the output contacts). Apart from the
main benefit of classical CMOS circuits (the absence of the
current in the stationary state), this design solution offers a
number of additional advantages. One of them is the
possibility of a considerable reduction in the through
currents in the transient regimes in multiple-well quantum
elements (three or more wells) [3±5]. This is an essential
advantage that allows eliminating one of the main contribu-
tions to power consumption, whose importance increases
with increasing the switching rate. Similarly to the classical
CMOS elements, current in the power supply bus of their
quantum analogues flows only during a switching transient,
i.e., during the relocation of the wave function maximum
between the wells. Another important advantage of the
suggested design is its high-density structural and topologi-
cal implementation at the level of multiple-input NAND and
NOR logic gates with no metallized interconnects between
circuits (Fig. 4).

Changing the configuration of wave functions in the
quantum wells by a transverse electric field requires that the
potential drop in the region of the wells be of the order of the
energy difference between the quantum confinement levels.
When the control voltage is applied between the source and
the gate, the electric field is screened by charge carriers in the
quantum well that is closer to the gate. Therefore, in order to
create a transverse electric field, the quantum wells are placed
between two gates (the top and bottom ones). The fabrication
of a bottom gate with low leakage currents and of separate
contacts with the two gate electrodes is a challenging
technological problem. For example, in [15] this problem
was solved by introducing a high-resistivity region beneath
the ohmic contacts with the quantum wells, which was
attained by irradiation with gallium ions. This technology is
too complicated, costly, and insufficiently reliable. Further-
more, the presence of two control electrodes is inconvenient
from the practical standpoint.

A transistor structure with tunnel-coupled quantum wells
that can be efficiently controlled by only one (the top) gate
electrode was proposed in [16]. In this transistor, the
conducting channel is formed by two undoped GaAs
quantum wells of significantly different thicknesses sepa-
rated by a tunneling-transparent Al0:3Ga0:7As barrier with a
thickness of about 100 �A. The growth conditions for the
quantum well located closer to the gate were chosen such that
the charge-carrier mobility in this well decreased to
� 100 cm2 (V s)ÿ1. Because the conductivity of such a
quantum well is nearly absent, it does not screen the electric
field of the gate electrode in the region of the second well, and
the structure is efficiently controlled by just the top gate. The
mobilities in the two quantum wells differ by about two
orders of magnitude. A change in the voltage applied to the
gate electrode leads to the relocation of the electron wave
function between the wells, and the channel conductivity
changes owing to the large difference between the carrier
mobilities.

Consistently implementing the principle of local readout
of data from the quantum wells of the structure under
applying a control voltage to the gate allows synthesizing a
functionally complete set of logic elements of a new type [4, 5].
The devices can feature parallel (along the potential well from
the power supply bus contact to the output terminal) or
perpendicular input electrodes. Each of these electrodes
induces the wave function relocation only over some part of
the quantum-well layer, i.e., locally. As a result, multiple-
input NAND (Fig. 4a) or NOR (Fig. 4b) elements are
produced. The proposed design is based on the fact that the
maximum of the wave function amplitude squared relocates
locally. This means that relocation occurs only within the part
of the quantum structure beneath the control electrode of the
device, formed on the top of the tunneling-opaque barrier.

Despite a number of advantages, the quantum analogues
of CMOS gates have not been put into practice because of
technological difficulties in making local contacts to the
quantum wells. Currently, this technology is receiving fresh
impetus for development in view of the fabrication of 3D
memory devices. This may also offer new prospects for the
implementation of the quantum analogues of CMOS circuits
considered in this section.

3. Quantum transport and resonances: a unified
theory of resonances and antiresonances

3.1 Open quantum systems and resonances
In the quantum analogues of CMOS gates described in the
preceding section, switching from one state to another (i.e.,
switching between the logic levels of the device) occurs as a

A

V0

:�A ^ B�

B b

A

V0

:�A _ B�

B
a

Figure 4. (Color online.) Layouts of (a) NOR and (b) NAND quantum

logic elements. Contact pads and GaAs quantum wells are respectively

shown in orange and gray.
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result of coherent quantum mechanical evolution in tunnel-
coupled quantum wells. Meanwhile, the formation of the
logic levels themselves, which correspond to certain voltages
at the output of the device, occurs via the process of classical
charge-carrier transport along the quantum wells. With a
decrease in lateral dimensions (i.e., actually, upon the
transition to molecular structures with a discrete energy
spectrum), charge transport through the device occurs
quantum mechanically. However, information is still input
to the device and output from the device by setting and
reading certain values of voltage, i.e., in the classical form.
The need for an interface providing a link to the classical
environment is an inherent feature of any quantum device,
including quantum computers [17, 18]. In fact, any quantum
system is an open system, because it interacts with a
measuring device and the environment.

The properties of open quantum systems and the
techniques used to describe them differ essentially from
those of closed quantum systems. The main difference is
that in contrast to closed quantum systems, an open
quantum system has no stationary states, because any state
acquires a finite lifetime. Formally, the absence of stationary
states in open quantum systems can be represented by
introducing complex energies whose real and imaginary
parts respectively correspond to the energy proper of a
particle at a given level and to the width DE of that level
(which, according to Heisenberg's uncertainty principle
DEDt5 �h=2 is related to the uncertainty in the particle
lifetime in this state, Dt), determined by the average outgoing
momentum flux [19].

We note that all observables (including energy) character-
izing the full system consisting of both the quantum system
under consideration and its environment remain real. Com-
plex energy values and non-Hermitian operators appear in
passing to a reduced description dealing only with the
quantum system itself, albeit taking its openness into
account. This is realized most clearly in Feshbach's papers
[20±22], where the concept of the non-Hermitian Hamilto-
nian of an open quantum system was introduced. In contrast
to closed quantum systems, the behavior of open quantum
systems is described by non-Hermitian operators, which
brings about fundamentally new properties.

The eigenstates of an open quantum system can also be
defined as solutions of the Schr�odinger equation with
boundary conditions requiring the existence of only out-
going waves [23]. These states, called resonance states, can
be classified according to the signs of the imaginary part of
the energy and the wave vector of the outgoing wave (see,
e.g., [19, 24]). The interaction of an open quantum system
with its environment was described in detail by Fano [25].

If the widths of resonance states (determined from their
lifetimes) are much smaller than the difference between the
energies of neighboring states, particle escape from these
states is exponential and occurs independently for each
state, and hence the probability of finding the particle in
such a state isP / exp �ÿGt�, whereG � �h=t is the level width
and t is its lifetime. However, when the energy spacing
between resonance levels becomes comparable to their
widths, the influence of the resonance levels on each other
has to be taken into account and can lead to various
nontrivial effects. Thus, it was shown in [26] that as the
interaction of an open quantum system with its environment
becomes stronger, only part of its levels broaden correspond-
ingly, and the number of levels whose width increases is equal

to the number of channels for particle escape from the system.
The Fano approach was extended to the case of overlapping
resonances in [27]. Especially noteworthy is the `level
repulsion' effect [28, 29]: the complex energies of resonance
states do not coincide in the complex plane as the system
parameters are varied. In particular, under an increase in
the strength of the interaction of an open quantum system
with its environment, some levels can have the same real
part of the energy but different imaginary parts. This leads
to a nontrivial behavior manifesting itself in the occurrence
of long-lived levels, in addition to short-lived ones, as the
interaction of an open quantum system with its environ-
ment becomes stronger (see, e.g., [30]), which was con-
firmed experimentally, in particular, for an open micro-
wave cavity [31].

Resonance scattering plays an important role in the
physics of open quantum systems and optical waveguides
[32±34]. For this reason, the capability to create nanoelec-
tronic and nanophotonic structures with the desired reso-
nance properties is of primary importance. Recently, there
has been steady progress in understanding open quantum
systems, as well as open microwave and optical systems [32±
35].

Traditionally, the scattering problem for nanoscale
systems is described in terms of the scattering matrix (the
S-matrix) [12]. The scattering matrix relates the amplitudes of
waves incident on the system (the scattering center) with the
amplitudes of scattered waves. States where outgoing waves
exist in the absence of incoming waves are special in this
theory; these states correspond to the scattering matrix poles
and represent nothing more than resonance states in Siegert's
formulation [23]. Therefore, the poles of the scattering matrix
correspond to eigenvalues of the effective Hamiltonian of the
scattering system. However, the energies corresponding to the
scattering matrix poles are complex, while actual processes
occur only for real energies of the scattered particles. It is
therefore important to properly relate the properties of the
system with real energies to the analytic properties of its
scattering matrix.

In the traditional approach to the physical interpretation
of the complex energies of resonance states in the scattering
problem [36], the scattering cross section (or the transmission
amplitude in the one-dimensional case) has a symmetric
maximum positioned at the energy equal to the real part of
the complex resonance energy and having a half-width equal
to its imaginary part (Breit±Wigner resonance). In the one-
dimensional case, the corresponding transmission probability
is

TBW�E� � 4G1G2

�G1 � G2�2 � �Eÿ E0�2
; �4�

where E0 is the resonance position (real part) and G1 � G2 is
the resonance half-width (imaginary part), which is deter-
mined by the strength of coupling to the continuum of states
to the left and to the right of the scattering system (G1 and G2,
respectively). However, this interpretation is correct only in
the case of narrow, well-separated maxima, when the
imaginary parts of the corresponding poles are small in
comparison to the difference between their real parts.
Resonance maxima can coalesce as they approach each
other and broaden, although the scattering matrix poles
may still have different real parts. Therefore, the correspon-
dence between the poles and the resonance maxima is not one
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to one in general. It was shown in [37] that in the case of broad
but still isolated resonances, the position of the maximum is
estimated better as the absolute value of the pole rather than
its real part.

The coalescence of resonances that cannot be described in
terms of scattering-matrix poles seems to have been consid-
ered for the first time in [38] in the example of a one-
dimensional symmetric triple-barrier structure. Later, the
coalescence of three unit resonances in a system of quantum
dots was discussed in [29]. The results of numerical simula-
tions that give evidence of the coalescence of two resonances
were presented in book [39]. The coalescence (collapse) of two
unit resonances accompanied by the formation of one
resonance with a transparency smaller than unity in the
cases of a triple barrier, an inverted double barrier, and
some other symmetric structures was analyzed in [40], where
it was regarded as a quantum phase transition. Importantly,
the transparency of the system in the regime of resonance
coalescence differs considerably from the Breit±Wigner
shape:

Tcoalescence�E� � 4G 2N

4G 2N � �Eÿ E0�2N
; �5�

where G � G1 � G2 is the tunneling coupling with the leads in
a symmetric structure and N is the number of coalescing
resonances (in [40], N � 2). It was also shown in [40] that the
coalescence of resonances in a symmetric structure is
accompanied by a symmetry breaking of the electron density
distribution. This breaking occurs abruptly, and the asym-
metry parameter behaves like an order parameter in a
quantum phase transition.

The scattering matrix poles (eigenvalues of the effective
Hamiltonian) can also coalesce with the formation of second-
and higher-order poles [41±43]. However, generally, this has
no direct relation to the coalescence of resonances and hence
to the properties of observables. Nevertheless, the physical
properties of the system change as the eigenvalues of the
S-matrix merge (they cease to be unimodular), which is
possible, e.g., in systems with balanced losses and amplifica-
tion [44, 45].

In a quantum system where a charge carrier can travel
along different trajectories (tunneling paths), interference
between them is possible. One typical example of this
interference is the Aharonov±Bohm effect [46]. Fano showed
in 1961 that in the case of the scattering of a particle on a
system with a bound state, the profile of the scattering cross
section (transmission coefficient in the one-dimensional case)
can be asymmetric [25]. This is due to the possible destructive
interference of waves passing via the bound state of the system
and `bypassing' this state. Subsequently, it was established
that the Fano resonance is a universal phenomenon that can
occur in a variety of physical systems [33].

3.2 Exceptional points in open quantum systems
and PT symmetry
Traditionally, observables are represented in quantum
mechanics by Hermitian operators, which ensures that their
eigenvalues are real [12]. Energy and the corresponding
operator (the Hamiltonian) stand out among other observa-
bles. The fact that energy is real and the Hamiltonian is
Hermitian ensures the unitary evolution of the wave function,
i.e., the conservation of its norm (the number of particles).
However, it turns out that certain classes of non-Hermitian

operators can also have real eigenvalues. In 1998, Bender and
Boettcher analyzed the spectrum of non-Hermitian Hamilto-
nians that have symmetry under the simultaneous inversion
of coordinates �P� and time �T �, but have no symmetry under
each inversion separately. It was shown by numerical
methods that entirely real energy spectra can appear in
systems with PT-symmetric non-Hermitian Hamiltonians.
Later, Bender, Boettcher, and Meisinger demonstrated that
traditional quantummechanics can be extended to the case of
PT-symmetric non-Hermitian systems [48]. The problem of
the possible nonunitary evolution of a system described by a
PT-symmetric non-Hermitian Hamiltonian was also solved
in [49]. We note that soon after the discovery that PT-
symmetric Hamiltonians have a real spectrum, it was
established that the necessary condition for the real-valued-
ness of the spectrum of a Hamiltonian is its pseudo-
Hermiticity, of which PT symmetry is only a particular case
[50±52]. However, PT-symmetric systems still deserve to be
singled out because they play a special role in optics [53].

A key feature of PT-symmetric operators is the phenom-
enon of spontaneous PT symmetry breaking accompanied by
the violation of the realness of the eigenvalues. This occurs
under varying some tuning parameter characterizing the
system. Under this transformation, real eigenvalues coalesce
and then become complex. This occurs pairwise [54, 55]: a
pair of real eigenvalues coalesce and, with a further variation
of the tuning parameter, transform into a pair of complex-
conjugate eigenvalues. At the value of the tuning parameter
where two real eigenvalues of the operator coincide, the
spectrum is degenerate. However, this degeneracy is funda-
mentally different from that in the case of Hermitian
operators. A Hermitian operator can always be diagonalized
and has orthogonal eigenvectors at the degeneracy point. For
example, the Hamiltonian of a two-level system describing
degenerate states has the form

ĤDP � E0 0
0 E0

� �
: �6�

Apoint in the parameter space where such a degeneracy of the
system occurs is called a diabolic point. PT-symmetric
operators turn out to be nondiagonalizable at the degeneracy
point because, in addition to eigenvalues, eigenvectors also
coalesce. In the case of a two-level system, the Hamiltonian
then assumes the form

ĤEP � E0 A
0 E0

� �
; �7�

where A 6� 0. A point in the parameter space correspond-
ing to this degeneracy mechanism is called an exceptional
point [56]. Exceptional points attractmuch interest in relation
to the nonanalytic behavior of the operator eigenvalues in
their vicinity.

Because the Hamiltonian of any closed system is a
Hermitian operator, only an open quantum system can have
a non-Hermitian, in particular, PT-symmetric, Hamiltonian.
Owing to the possibility of nonunitary evolution (i.e.,
evolution where particle number conservation is violated) in
a PT-symmetric system, it is unclear whether such a system
can be implemented for fermions (although it should be
mentioned that bound states related to an exceptional point
can appear for exotic Majorana fermions [57, 58]). For
bosons, the implementation of a PT-symmetric system is a
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more tractable problem because PT symmetry can be realized
as a mirror-symmetric distribution of regions where bosons
are created and annihilated. A PT-symmetric Bose±Einstein
condensate has been considered, e.g., in [59]. Another
example of bosonic systems is given by superconductors,
where PT symmetry breaking was observed experimentally
in the spectrum of fluctuations [60].

Because the wave equation describing the propagation
of electromagnetic waves is mathematically equivalent to
the quantum mechanical Schr�odinger equation, PT-sym-
metric systems can also be implemented in optical struc-
tures [61]. In this case, the imaginary terms in the dielectric
function describe well-defined processes of signal absorp-
tion and amplification. Currently, effects related to PT
symmetry and its breaking are primarily investigated for
various optical structures. The PT-symmetric systems under
consideration are quite diverse: photonic crystals [62],
microwave cavities [63], PT-symmetric plasmonic meta-
materials [64, 65], lasers [66], etc. The occurrence of an
exceptional point in PT-symmetric systems changes many of
their properties qualitatively. For example, the transparency
of the system can increase with increasing absorption [61] or
the intensity of laser radiation can decrease with increasing
the pump power [67]. We note, however, that optical systems
are subject to a fundamental limitation, which is absent in
quantum mechanics and which implies that the dielectric
function of a medium cannot be arbitrary. Indeed, any
response function (in particular, the dielectric function)
must satisfy the causality principle and therefore the
Kramers±Kronig relations [68]. For this reason, the dielec-
tric function has to have dispersion if its imaginary part is
nonzero, and then thePT symmetry condition can be satisfied
only for a discrete set of frequencies [69].

The relation between the perfect transparency of a
quantum system and the asymptotic PT symmetry of the
effective Hamiltonian was discussed in [70]. However, the
idea of a correspondence between a resonance state (i.e., a
state with unit transparency) in a Hermitian problem and a
certain auxiliary PT-symmetric scattering problem was put
forward in [71, 72]. The same authors subsequently extended
their result and demonstrated that the scattering problem in
an arbitrary open Hermitian system with two contacts can be
reformulated as a scattering problem for a certain non-
Hermitian Hamiltonian [72].

The idea about the relation between the resonance states
of a Hermitian problem and an auxiliary PT-symmetric
Hamiltonian was recently used in [9, 10] to describe the
coalescence of an arbitrary (even) number of resonances in
a symmetric multiple-barrier structure with an arbitrary
(odd) number of barriers as a transition with PT symmetry
breaking in the auxiliary Hamiltonian. A similar idea was
put forward in [73], where the coalescence of two unit
resonances was described as the PT symmetry breaking in
a certain auxiliary Schr�odinger equation for the envelope
wave function with the Robin boundary condition. It was
shown in [9, 10] that the exact positions of the unit
transmission maxima is determined by the real eigenvalues
of the additional PT-symmetric Hamiltonian, and hence the
coalescence of resonances represents the breaking of PT
symmetry of the auxiliary Hamiltonian and the transition
from real to complex eigenvalues. At the coalescence point
itself, the energy dependence of transparency is described
by a non-Breit±Wigner expression in Eqn (5); with an
increase in the number of coalescing resonances, its shape

approaches that of the transmission coefficient of a band-
pass filter.

In the general case of an arbitrary quantum system
confined between two contacts, the tunneling transparency
is determined by the usual expression [74]

T � Tr �GLG
rGRG

a� ; �8�

where GL and GR are the imaginary parts of the self-energy
corrections caused by the interaction with contacts, and G r

and G a are the retarded and advanced Green's functions of
the system (taking contacts into account). After the calcula-
tion of the Green's functions, Eqn (8) yields an expression for
transparency in terms of the Feshbach effective Hamiltonian
Ĥeff [20±22]:

T � 4
PN

i; j;m; k�1�ÿ1�i�j�m�kM �
i jMmkG

R
jkG

L
mi��det �EÎÿ Ĥeff�

��2 : �9�

Here, Mi j are the corresponding minors of the matrix
EÎÿ Ĥeff. According to [11], Eqn (8) and hence Eqn (9)
can be rewritten such that they depend only on the
characteristic determinants of the Feshbach effective Hamil-
tonian and another non-Hermitian Hamiltonian Ĥaux,
which can be obtained directly from the effective Hamilto-
nian:

T � jEÎÿ Ĥeffj2 ÿ jEÎÿ Ĥauxj2
jEÎÿ Ĥeffj2

; �10�

or, in a more compact form,

T � jPj2
jPj2 � jQj2 ; �11�

where P and Q are functions of energy in general; Q is the
characteristic determinant of the auxiliary non-Hermitian
Hamiltonian:

Q � det �EÎÿ Ĥaux� : �12�

For a simply connected system, P is a constant, and
Eqn (11) for a single site (a system with a single energy level)
becomes the Breit±Wigner formula. For a multiply connected
system, P becomes a function of energy. According to
Eqn (11), the exact positions of zeros and of unity transmis-
sion maxima are determined as real zeros (roots) of the
respective functions P and Q. For a spatially symmetric
system, the auxiliary Hamiltonian becomes PT symmetric
and can have exceptional points where two real roots
characterizing unit resonances coalesce and transform into a
pair of complex-conjugate ones, which determines a single
non-unit resonance. Using this approach, in particular,
allows describing a structure consisting of two identical
symmetric linear chains of sites where transmission zeros
coalesce with the formation of a broad reflection window. In
this case, the transmission coefficient has the form

T�E� � �Eÿ E0�2N
�Eÿ E0�2N � G 2N

: �13�

It has been demonstrated that a structure with either a
broad transparency or broad opacity window can be obtained
on the basis of the same symmetric linear chain. In fact, the
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results in [9±11] offer a unified theory of resonances and
antiresonances (Fano±Feshbach resonances), which can be
described by the general formula (11). We note that the case
whereP andQ vanish simultaneously corresponds to a bound
state in the continuum; such states have been actively
investigated in recent years in condensed matter physics and
optics [35].

4. Second-generation quantum analogues
of CMOS circuits: molecular structures
with controllable resonances

4.1 General operation principles of a quantum inverter
We consider a model structure of a quantum inverter (Fig. 5),
similar to the structure of a classical CMOS inverter
(Fig. 1a), with the complementary MOS transistors replaced
with two quantum systems that do not interact with each
other and have the Hamiltonians Ĥ1 and Ĥ2. These quantum
systems (for example, molecules) play the role of switches
controlled by the electric field of a control electrode (gate)
(`quantum transistors'). Both systems are tunnel-coupled to
the output contact and to contacts to which reference
voltages Vref1 and Vref2 are applied (these are typically
determined by the common-bus (`ground') potential and
the power supply voltage). The input voltage is applied to
the contact that is only electrostatically coupled to the
quantum systems and affects them only via the electric field
(potential), i.e., with no charge-carrier transfer. Each
quantum system in this structure is a quantum conductor,
whose transport properties cannot be described by the
classical drift±diffusion model, as was the case with the
first-generation quantum analogues of CMOS gates consid-
ered in Section 2.

The current flowing through a quantum conductor under
the conditions of ballistic transport can be calculated using
the well-known expression [74]

I � e

h

�1
ÿ1

T�E�ÿ fL�E� ÿ fR�E�
�
dE ; �14�

where T�E� is the transmission coefficient of the quantum
system, determined by Eqn (11). The difference between the
Fermi±Dirac distribution functions fL and fR in the left and
right contacts determines the effective range of integration in
the above expression.

If the transmission coefficients of the quantum systems
are known, we can use Eqn (14) to calculate currents flowing
through all output contacts in the inverter structure shown

in Fig. 5:

Iref1 � e

h

�h
T1out�E�

ÿ
f �Eÿ eVref1� ÿ f �Eÿ eVout�

�
� T12�E�

ÿ
f �Eÿ eVref1� ÿ f �Eÿ eVref2�

�i
dE ;

Iref2 � e

h

�h
T2out�E�

ÿ
f �Eÿ eVref2� ÿ f �Eÿ eVout�

�
� T12�E�

ÿ
f �Eÿ eVref2� ÿ f �Eÿ eVref1�

�i
dE ; �15�

Iout � e

h

�h
T1out�E�

ÿ
f �Eÿ eVout� ÿ f �Eÿ eVref1�

�
� T2out�E�

ÿ
f �Eÿ eVout� ÿ f �Eÿ eVref2�

�i
dE :

These expressions are in fact an example of B�uttiker's
multiterminal formalism [75] for finite voltages. Here, T1out,
T2out, and T12 are the probabilities of tunneling between the
corresponding contacts. Assuming that the systems do not
interact with each other, we can set T12 � T1outT2out. The
reference voltagesVref1 andVref2 (assuming thatVref1 < Vref2)
are determined by ideal external sources and are assumed to
be constant hereafter. The input contact is galvanically
isolated from the rest of the system and affects only the
transmission coefficients owing to the shift of the energy
levels in the two quantum systems in an electric field.

The principle of operation of a quantum inverter (see
Fig. 5) is similar to that of a classical CMOS inverter (Fig. 1a)
described in the Introduction. If a high-resistance load (e.g.,
the input of the next inverter or another logic gate) is
connected to the output contact of a quantum inverter, the
current running through this contact is zero (Iout � 0). We
assume that for a given applied voltage, the transparency of
the first quantum system is very low (T1out � 0), for example,
because resonances are shifted away from the effective
integration region. Then the first term in the integrand in
expression (15) for the output current vanishes, and the
condition Iout � 0 implies that the second term must also
vanish. Under the assumption that the transparency T2out is
nonzero, the output current can vanish only when
Vout � Vref2. It can easily be seen from Eqn (15) that under
the conditions T1out � 0 and Vout � Vref2, the currents Iref1
and Iref2 must also vanish. The same situation occurs for the
other input voltage, which ensures that T2out � 0. Then the
condition Iout � 0 implies thatVout � Vref1, while the currents
Iref1 and Iref2 again vanish. For self-consistency, the para-
meters of the system should be chosen such that the
transparencies are low: T1out � 0 for Vin � Vref1 and
T2out � 0 for Vin � Vref2. The absence of currents and hence
of power consumption in the stationary state is the main
advantage of CMOS circuits, which consume power only in
the process of switching. The consumed power is propor-
tional to the square of the supply voltage V0 � Vref1 ÿ Vref2

and inversely proportional to the switching time [76].
Thus, in order to attain an increase in speed, it is

necessary, in addition to decreasing characteristic dimensions,
to reduce power consumption. However, in spite of consider-
able advances in scaling down nanoelectronic elements, the
supply voltage of modern CMOS gates still cannot be made
much lower than 1 V [76]. This stimulates the search for new
device solutions. One of them is tunnel transistors with band-
to-band tunneling, operating under a supply voltage V0 below
0.5 V [77]. We can accordingly estimate the upper limit for the
practically interesting range of supply voltages for future
molecular quantum gates at 0.1±0.2 V.

Ĥ2Ĥ1

Vref1 Vref2

Vin

Vout

In

1 2

Out

Figure 5. Schematic of a quantum analogue of the CMOS inverter.
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4.2 Manipulating resonances in a quantum inverter
Switching in molecular quantum gates relies on controlling
resonances in the quantum structures forming the gate. We
first consider a quantum gate where switching between the
logic levels is physically implemented by a controlled shift of
the resonances. Let the transmission coefficients T1out and
T2out have narrow peaks at the respective energiesE � E1 and
E � E2, on some constant background Tb 5 1 originating
from other resonances remote in energy:

T1;2out � Tb � A
4G 2

4G 2 � �Eÿ E1; 2�2
; �16�

where G=�kBT �5 1 (kB is the Boltzmann constant). In this
phenomenological expression, the parameter G determines
the strength of interaction between the system and the
continuum of states in the contacts and, thus, the resonance
width (the effects of population trapping [30, 31] and
resonance narrowing [27, 78, 79] are beyond the scope of
this model); the parameter 04A4 1ÿ Tb � 1 determines
the resonance height. For example, in the case of asymmetric
tunneling couplings to the left and right contacts GL and GR,
the value of G in Eqn (16) is simply the half-sum
G � �GL � GR�=2, and the resonance height is determined
by the coefficient A � GLGR=G 2. The parameter Tb is the
`background' transparency describing contributions to the
transmission coefficient from states that are far away from the
resonance level under consideration. First-principle calcula-
tions indicate that Tb � 10ÿ1ÿ10ÿ3 in real molecular struc-
tures (see, e.g., [80±82].) This value determines the stationary-
state current (leakage) through the gate.

Taking into account that the second term in expres-
sions (16) for T1out and T2out differs from zero only in a range
of energies around E1 or E2, which is much narrower than the
effective integration range, the condition Iout � 0, which
determines the output voltage, can be written as

f �E1 ÿ eVout� ÿ f �E1 ÿ eVref1� � Tbe

2pGA
�Vout ÿ Vref1�

� f �E2 ÿ eVref2� ÿ f �E2 ÿ eVout� � Tbe

2pGA
�Vref2 ÿ Vout� :

�17�
To obtain a symmetric transfer characteristic, it is necessary
to choose the reference voltages Vref1 and Vref2 such that for
the input voltage V 0

in � �Vref1 � Vref2�=2, the resonances be
arranged symmetrically with respect to eV 0

in. Taking the effect
of the input potential into account, we can formulate the
conditions

1

2
�E1 � E2� � eV 0

in � ea�Vin ÿ V 0
in� ; �18�

E2 ÿ E1 � e�Vref2 ÿ Vref1� � 2ckBT :

Here, 0 < a < 1 determines the electrostatic coupling relation
between the input control potential (measured with respect to
V 0

in) and the positions of the energy levels in the quantum
systems, and c is the difference between the resonance
positions (in units of 2kBT ) with respect to the difference in
the reference voltages. The value of a depends considerably
on the thickness of the insulator layer separating the control
electrode [83]; its typical values are of the order of 0.1 or
smaller [84], but, theoretically, it can be as high as 0.5±0.7 for
insulator thicknesses of about 1 nm [83]. The possibility of
obtaining a � 0:2ÿ0:3 was demonstrated experimentally

in [85, 86]. Figure 6 schematically shows the transparency of
the quantum systems and the corresponding difference in the
distribution functions for input voltages corresponding to the
logic 0 and logic 1.Disregarding the background contribution
to the transparency, condition (17) can be illustratively
represented as the requirement that the differences between
the corresponding distribution functions calculated at the
energies of the resonance peaks coincide.

Substituting relations (18) in Eqn (17), we can determine
the output voltage Vout � Vout�Vin� as a function of the input
voltage and analytically estimate the main parameter of the
transfer characteristic, i.e., the highest absolute value of the
gain coefficient g � j qVout=qVinj, which, because of the
symmetry, must evidently be attained at Vin � Vout � V 0

in:

gmax � 2a sinh
eV0

4kBT
sinh

�
eV0

4kBT
� c

�
� 1

1� cosh c

(
1� kBT

Tb

pAG

�
1� cosh

�
eV0

2kBT
� c

��)ÿ1
;

�19�
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Figure 6. (Color online.) Plots illustrating condition (17), from which the

output voltage of an inverter controlled by the shift of transmission

resonances is determined. The two panels correspond to the input

voltages of (a) the logic 1 �Vin � Vref2� and (b) logic 0 �Vin � Vref1�. Thin
lines show the transmission coefficients T1out and T2out calculated

disregarding the `background' contribution (solid red and dashed blue

lines, respectively); thick lines show the differences in the distribution

functions Df1out � fout ÿ f1 and Df2out � f2 ÿ fout (solid red and dashed

blue lines, respectively). If the `background' transparency is disregarded,

condition (17) reduces to the requirement Df1out�E1� � Df2out�E2�.
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where V0 � Vref2 ÿ Vref1 > 0 is the power supply voltage.
With the background transparency Tb, the value of gmax

becomes limited even at high supply voltages. Indeed, for
eV0=�kBT �4 1, Eqn (19) yields

gmax � 2pAGa
Tb�1� cosh c�kBT �

Ion
Ioff

; �20�

where Ion and Ioff are the currents flowing through the
`quantum transistors' in the respective open and closed
states. The open-state current is proportional to the reso-
nance width and height �Ion � AG�; the current in the closed
state is determined by the background transparency
�Ioff � Tb�. Thus, by reducing the closed-state current, it is
formally possible to increase the absolute value of gain in the
inverter indefinitely. However, the background transparency
Tb and the resonance width G in real structures are related to
each other. The former can be qualitatively estimated as the
minimum transparency between two widely separated Breit±
Wigner resonances,

Tb � 4G 2

D2
; �21�

where D4G is the typical energy separation between
resonances. Moreover, the contribution from remote reso-
nances to the current can be disregarded only if they occur
outside the effective integration region in Eqn (14), i.e., the
condition D4max �kBT;Vref2 ÿ Vref1� is satisfied. Taking
Eqn (21) into account, we can rewrite Eqn (20) as

gmax � pAD2a
2G�1� cosh c�kBT : �22�

According to this formula, the gain coefficient increases with
decreasing G, the parameter that characterizes coupling to
the contacts. This leads to a decrease both in the resonance
width (and hence in the open-state current) and in the
background transparency given by Eqn (21) and the closed-
state current. At the same time, we note that in addition to
beneficial effects associated with a decrease in power
consumption and an increase in gain, the reduction in
currents can also have an adverse effect on speed: because
the tunneling contact resistance behaves as R / Gÿ1, the
inverter switching time is t � RC / Gÿ1 (where C is the
input capacitance of the device), which increases as G
decreases. An increase in the separation D between neighbor-
ing resonances, which leads to a decrease in the background
transparency, is also favorable for an increase in gain.
According to general formula (19), the conclusion that an
increase in the Ion=Ioff ratio leads to an increase in gain
remains valid for supply voltages V0 < kBT.

Another way of controlling the transparency of a
quantum system is to change the resonance peak height.
This effect occurs, for example, in semiconductor resonance-
tunneling heterostructures, where the variation of the applied
voltage leads to changes in both the shape and height of the
potential barriers [87]. It was mentioned in [88] that the
resonance amplitude can change as a result of interference
effects, but no specific mechanism for this was suggested. The
mechanism of resonance collapse in the vicinity of an
exceptional point in an open quantum system leading to the
coalescence of an even number of unit-transmission reso-
nances and the appearance of a single resonance with a

transmission coefficient smaller than unity was considered
in [9, 10, 40].

To build a phenomenological model describing the
variation in the height of a resonance maximum, in the same
spirit as above, we consider narrow resonances that occur on
top of some energy-independent background:

T1;2out � Tb � A1;2
4G 2

4G 2 � �Eÿ E0�2
: �23�

Again, we suppose that the value ofTb is small. It is implied in
this formula that in contrast to the case described by Eqn (16),
the resonance peaks corresponding to the two quantum gates
occur at the same energy E0, which can be made equal to
E0 � �e=2��Vref1 � Vref2� by the appropriate choice of the
reference voltages to ensure a symmetric transfer character-
istic. The effect of the input voltage on the resonance height
can be phenomenologically described as

A1 � Amax
G 2

G 2 � �ae�Vin ÿ Vref2�
�2 ; �24�

A2 � Amax
G 2

G 2 � �ae�Vin ÿ Vref1�
�2 :

The first factor in Eqns (24) corresponds to the maximal
(unit) height of the resonance peak, taking the background
contribution to the transparency into account �Amax �
1ÿ Tb � 1�. The second factor describes the effect of the
input voltage, with A1; 2�Vin � Vref2;1� � Amax � 1 and
A1; 2�Vin � Vref1;2� � G 2=�G 2 � a 2e 2V 2

0 �5 1 for eV0 4G.
Phenomenological expression (24) for the resonance ampli-
tude qualitatively describes the effects of both the variation of
the barrier transparency [87] and the collapse of resonances
[10, 40], which were mentioned in the preceding paragraph.

Writing the condition Iout � 0 similarly to Eqn (17), we
can analytically calculate the highest absolute value of the
gain coefficient. In the approximation Tb 5 1, the result is

gmax � 4kBT

eV0
tanh

�
eV0

4kBT

��
2

k 2

1� k 2
ÿ 4kBT

pG
Tbk 2

�
; �25�

where k � aeV0=�4G�. According to this formula, the gain in
this model is restricted by gmax < 2. Thus, the highest gain
coefficient exceeds the threshold value required for the
functioning of an inverter �gth � 1�. Importantly, in the case
of a very weak coupling to the contacts, the inverter can
operate at very low supply voltages V0 if the condition
4G5 eV0 5 4kBT is satisfied. Figure 7 schematically shows
the transparency of the quantum systems and the correspond-
ing difference in the distribution functions for input voltages
corresponding to the logic 0 and logic 1. The condition
Iout � 0 in this case can illustratively be represented as the
requirement of proportionality between the peak heights and
the differences between the distribution functions calculated
at the resonance peak energy.

At the end of this section, we discuss the feasibility and the
main features of an inverter design based on controlling
antiresonances in quantum transistors. An antiresonance
(e.g., a Fano±Feshbach-type resonance) occurs in a quantum
system where particles can travel along different interfering
paths. Much in the same way as with resonances, an
antiresonance can be shifted in energy or eliminated owing
to the suppression of destructive interference. Because
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antiresonance conditions are determined by the topology of
the system, they can be destroyed (without changing the
topology or the number of coupled paths) only by introdu-
cing additional non-Hermitian channels of coupling of the
quantum system to the environment, which leads to the
dephasing of the charge-carrier wave functions. One of these
methods for controlling antiresonances is described in [89] for
a benzene molecule contacted at meta positions. In this case,
destructive interference (antiresonance) is suppressed when
the molecule is acted upon by a third electrode, which
enforces coupling of the molecule to its classical environment
and thus leads to the appearance of the imaginary component
in the self-energy term. A similar mechanism of controlling
the interference transparency was considered in [90] with
regard to a Y splitter based on trans-polyacetylene mole-
cules. We note, however, that inasmuch as the molecule is
electrically coupled to the control electrode, this design is not
truly analogous to an MOS transistor with an (ideally) zero
gate current. Rather, it is an analogue of a Schottky-gate
transistor, where the gate current is finite even in the ideal case
andwhich is unsuitable for the creation of circuits with a large
scale of integration and low power consumption.

Controlling the current through a quantum system by
shifting the antiresonance is much less efficient than in the
case of resonance. Indeed, the transparency in the vicinity of
an isolated antiresonance can be phenomenologically esti-
mated as

T�E� � 4G 2�Eÿ E0�2
4G 2�Eÿ E0�2 � D 4

; �26�

where D is the characteristic energy separation from the
nearest resonance maximum. Changing the current signifi-
cantly requires a voltage of the order of the width of the
minimum in Eqn (26), which can easily be estimated as
DV � D2=�2Gea�. The change in current is proportional to
the small value of the background transparency attained far
away from the antiresonance minimum:

Tb � T �Eÿ E0 � D� � 4G 2

4G 2 � D2
� 4G 2

D2
5 1 :

At the same time, the interaction of nearby resonances and
antiresonances can lead to an improvement in the device
characteristics, which is demonstrated in the next subsection.

4.3 Example models of molecular analogues
of a CMOS inverter controlled by the shift
of resonances or antiresonances
As an example of the simplest implementation of a `quantum-
transistor CMOS inverter,' we consider the structure shown
schematically in Fig. 8a. The role of quantum switches is
played by the simplest single-site resonance-tunneling sys-
tems, each featuring a single resonance (resonance-tunneling
transistors):

T1;2out�E� � 4G 2

4G 2 � �Eÿ e1; 2�2
: �27�

To calculate the inverter transfer characteristic, we suppose
that one of the reference voltages Vref1 � 0, and the other is
determined by the supply voltage, Vref2 � V0. The electro-
static effect of the input voltage can be described as

e1 � e 01 � ae
�
Vin ÿ V0

2

�
;

�28�
e2 � e 02 � ae

�
Vin ÿ V0

2

�
;

where e 01; 2 are the energies corresponding to Vin � V0=2. As
an example, we consider a system with e 01 � ÿ0:025 eV,
e 02 � 0:125 eV, G � 0:01 eV, a � 0:5, and the supply voltage
V0 � 0:1 V. The transfer characteristic is shown in Fig. 9a.
For a higher supply voltage, the transfer characteristic
improves; for example, Fig. 9b shows the transfer character-
istic for V0 � 0:2 V, e 01 � ÿ0:05 eV, e20 � 0:25 eV, and the
same values of G and a.

A more sophisticated example is the structure shown in
Fig. 8b. Here, the role of `quantum transistors' is played by
two-site systems, each of them being connected to the
respective contact via one of its sites. The transport proper-
ties of these systems are characterized by the existence of a
Fano±Feshbach-type antiresonance at an energy equal to the
energy of the side site [91]. Indeed, following the general
method outlined in Section 3 and assuming that quantum
systems 1 and 2 in the inverter shown in Fig. 5 represent such

b

Â

E0

E0

Df2out�E0�
A2

A1

Df1out�E0�

Df1out�E0�
A1

A2

Df2out�E0�

Figure 7. (Color online.) Plots illustrating the condition from which the

output voltage of an inverter controlled by the variation in the height of

transmission resonances is determined. The two panels correspond to the

input voltages of (a) logic 1 �Vin � Vref2� and (b) logic 0 �Vin � Vref1�. Thin
lines show the transmission coefficients T1out and T2out calculated

disregarding the `background' contribution (solid red and dashed blue

lines, respectively); thick lines show the differences in the distribution

functions Df1out � fout ÿ f1 and Df2out � f2 ÿ fout (solid red and dashed

blue lines, respectively). If the `background' transparency is disregarded,

the condition of a zero output current can be written as Df1out�E0�A1 �
Df2out�E0�A2.
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two-site systems described by the Hamiltonians

Ĥ1; 2 � e1; 2 t
t e1; 2

� �
; �29�

we can calculate the transparencies T1out and T2out in the
wide-band approximation (disregarding the real parts of self-
energy corrections resulting from interaction with the con-
tacts [92]) in the general form [cf. Eqn (11)]:

T1;2out�E� �
P 2
1;2out�E�

P 2
1;2out�E� �Q 2

1;2out�E�
; �30�

where

P1;2out�E� � 2G�Eÿ e1; 2� ; �31�
Q1;2out�E� � �Eÿ e1; 2�2 ÿ t 2 :

The form ofQ1;2out in Eqn (31) is obtained in accordance with
Eqn (12) as the characteristic determinant of the auxiliary
Hamiltonian (the input and output are connected to the same
site)

Ĥaux1;2 � Ĥ1;2 � iG 1 0
0 0

� �
ÿ iG 1 0

0 0

� �
� Ĥ1;2 ; �32�

where the Hamiltonian Ĥ1;2 is defined by Eqn (29). The value
of P1;2out in this system, where the contacts interact with only
one node, is expressed via the minor of the matrix of
Hamiltonian (29) obtained by removing the first row and
first column [11]. It can be seen from Eqn (30) that the
transparencies T1;2out are equal to unity for E � e1; 2 � t (the
zeros of Q1;2out) and vanish for E � e1; 2 (the zeros of P1;2out).
The occurrence of a resonance maximum near the antireso-
nance in these quantum switches improves the characteristics
of the device owing to the effective suppression of the
background contribution to the transparency in the presence
of an antiresonance.

The effect of the potential at the input electrode in this
system can be described similarly to Eqn (28). It is easy to pick
an exemplary set of parameters for which the optimum
transfer characteristic of the system (at zero temperature)
are realized. We consider a system with G � 0:01 eV, a � 0:5,
the supply voltage V0� 0:1 V, e 01 ��eV0=2��1�a�� 0:075 eV,
e 02 � �eV0=2��1ÿ a�� 0:025 eV, and t � eV0 � 0:1 eV. This
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(c) controlled Fano±Feshbach resonances with broad minima. Shading

represents the electrostatic effect of the input electrode (the common gate
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choice of parameters ensures a maximum in the transparency
T1out at the energy E � eVref1 � 0 for the input voltage
Vin � Vref2 � V0 and a maximum of T2out at the energy
E � eVref2 � eV0 for Vin � Vref1 � 0. At the same time, the
background values of the transparencies are effectively
reduced owing to the presence of antiresonances in T1out and
T2out in the energy range between 0 and eV0. The transfer
characteristic for this case is plotted in Fig. 10a. The transfer
characteristic for a similar system with the supply voltage
V0 � 0:2 V is shown in Fig. 10b. However, it is possible to
select the parameters of the system such that room-tempera-
ture characteristics are superior to zero-temperature ones.
For example, the transfer characteristic for a system with
e 01 � 0:15 eV, e 02 � ÿ0:05 eV, t � 0:25 eV, G � 0:01 eV,
a � 0:5, and the supply voltage V0 � 0:1 V is plotted in
Fig. 10c. Figure 10d shows the transfer characteristic for a
higher supply voltage V0 � 0:2 V with e 01 � 0:275 eV, e 02 �
ÿ0:075 eV, t � 0:35 eV, and the same values of G and a.

In the same way, we can calculate the model transfer
characteristic of an inverter with even more complex
quantum systems (Fig. 8c) that have broader resonances and
antiresonances owing to their coalescence, described in detail
in [11]. In this case, the quantum systems playing the role of
electric switches are described by the Hamiltonians

Ĥ1; 2 �
e1; 2 t1 t 0

t1 e1; 2 0 0

t 0 e1; 2 t1
0 0 t1 e1; 2

0BB@
1CCA ; �33�

whence it is easy to obtain the corresponding transmission
coefficients in form (30), but with different expressions for
P1;2out and Q1;2out:

P1;2out�E� � 2Gt�Eÿ e1; 2�2 ; �34�
Q1;2out�E� � �Eÿ e1; 2�4 � �Eÿ e1; 2�2�G 2 ÿ t 2 ÿ 2t 21 � � t 4 :

The auxiliary Hamiltonian for the calculation of Q1;2out is

Ĥaux1;2 � Ĥ1;2 � iG

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0B@
1CAÿ iG

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0B@
1CA

�
e1; 2 � iG t1 t 0

t1 e1; 2 0 0

t 0 e1; 2 ÿ iG t1
0 0 t1 e1; 2

0BB@
1CCA ; �35�

with Ĥ1;2 given by Eqn (33). The functions P1;2out are again
calculated via the minor of Hamiltonian (33), because each
contact interacts with only one site in the system [11]. The
structure shown in Fig. 8c has broader antiresonances than
those featured by the structure shown in Fig. 8c, because the
roots of P1;2out have a higher multiplicity. The effect of a
potential applied to the input electrode on the on-site energies
is described similarly to Eqn (28). The transfer characteristics
calculated for the supply voltages V0 � 0:1 and 0.2 V are
plotted in Fig. 11. Evidently, the gain coefficient in this case is
much higher than that for a simpler structure. The following
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parameters were used in these calculations: e 01 � 0:1 eV,
e 02 � 0, t � 0:1 eV, t1 � 0:2 eV, G � 0:01 eV, and a � 0:5 for
V0 � 0:1 V and e 01 � 0:2 eV, e 02 � 0, t � 0:225 eV,
t1 � 0:375 eV, G � 0:01 eV, and a � 0:5 for V0 � 0:2 V.

Thus, we have demonstrated in this section that quantum
analogues of CMOS inverters can be constructed on the basis
of the simplest quantum structures featuring both resonances
and antiresonances, and outlined ways to optimize their
parameters and characteristics.

5. Conclusions

In recent years, there has been a surge in interest in quantum
technologies. The quantum analogues of CMOS gates
considered is this paper offer an example of how quantum
principles can be employed in the development of the
traditional integrated circuit (IC) basic components imple-
menting Boolean functions to perform calculations in the
framework of the approach dating back to von Neumann.

The swift progress in modern information technologies is
underlain primarily by advances in the traditional IC basic
components. Even if quantum computers, which rely on
entirely different principles involving entangled states of
quantum bits (qubits), are ever created, they will find
application for a quite limited range of problems, leaving a
very broad field to traditional computers.Within the next few
decades, the nominal computing capacity of traditional

systems (which can roughly be estimated as the number of
logic gates on a chip) will match that of the human brain,
which opens extraordinarily broad prospects for studies on
artificial intelligence and can radically change our lives.

We emphasize that the molecular quantum gates dis-
cussed in Section 4 are composed of elements representing,
in fact, quantum field-effect transistors, and can therefore be
used for building computers with architectures different from
von Neuman's, which further expands their possible applica-
tion area. The key requirement for the implementation of
molecular gates is the advent of atomic-precision lithography
techniques. If such a technology is developed (to which huge
effort and resources are currently targeted), the broad
adoption of the molecular IC basic components will become
almost inevitable. We note that by `molecule' we mean any
chemically stable object with dimensions of the order of one
or several nanometers and having a discrete energy spectrum.
The investigation of the properties of such objects, and
coherent quantum transport in the first place, as well as the
principles and rules for designing and building computer
systems based on these elements, is a very important problem
in the development of the IC basic components of informa-
tion technologies.

This study was carried out in the framework of a state
assignment for the Lebedev Physical Institute, Russian
Academy of Sciences, and was supported in part by the
Presidium of the Russian Academy of Sciences.

References

1. Hu C C Modern Semiconductor Devices for Integrated Circuits

(Upper Saddle River, NJ: Prentice Hall, 2010)

2. Horowitz P, Hill W The Art of Electronics (Cambridge: Cambridge

Univ. Press, 1989)

3. Gorbatsevich A A et al. Phys. Low-Dim. Struct. (4) 5 (1994)

4. Gorbatsevich A A et al.Mikroelektronika 23 17 (1994)

5. Gorbatsevich A A et al. Elektron. Promyshlennost (4) 28 (1995)

6. GorbatsevichAA,Kapaev VV,Kopaev, Yu V JETP 80 734 (1995);

Zh. Eksp. Teor. Fiz. 107 1320 (1995)

7. Prince B Vertical 3DMemory Technologies (Chichester: JohnWiley

and Sons, 2014)

8. International Technology Roadmap for Semiconductors 2015,

http://www.itrs2.net/

9. Gorbatsevich A A, Shubin N M JETP Lett. 103 769 (2016); Pis'ma

Zh. Eksp. Teor. Fiz. 103 866 (2016)

10. Gorbatsevich A A, Shubin NM Ann. Physics 376 353 (2017)

11. Gorbatsevich A A, Shubin NM Phys. Rev. B 96 205441 (2017)

12. Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic

Theory Vol. 3 (Oxford: Elsevier, 2013); Translated from Russian:

Kvantovaya Mekhanika: Nerelyativistskaya Teoriya Vol. 3 (Mos-

cow: Fizmatlit, 2013)

13. Lindblad G Commun. Math. Phys. 48 119 (1976)

14. Brasil CA, Fanchini F F,RNapolitanoRde JRev. Bras. Ensino FõÂs.

35 (1) 01 (2013)

15. Kurobe A et al. Semicond. Sci. Technol. 9 1744 (1994)

16. Birjulin P I et al. Semicond. Sci. Technol. 12 427 (1997)

17. Valiev K A Phys. Usp. 48 1 (2005); Usp. Fiz. Nauk 175 3 (2005)

18. Joachim C, Renaud N, Hliwa M Adv. Mater. 24 312 (2012)

19. Hatano N et al. Prog. Theor. Phys. 119 187 (2008)

20. Feshbach H Ann. Physics 5 357 (1958)

21. Feshbach H Ann. Physics 19 287 (1962)

22. Feshbach H Ann. Physics 43 410 (1967)

23. Siegert A J F Phys. Rev. 56 750 (1939)

24. SasadaK,HatanoN,OrdonezG J. Phys. Soc. Jpn. 80 104707 (2011)

25. Fano U Phys. Rev. 124 1866 (1961)

26. Mies F H, Krauss M J. Chem. Phys. 45 4455 (1966)

27. Mies F H Phys. Rev. 175 164 (1968)

28. Moldauer P A Phys. Rev. Lett. 18 249 (1967)

29. M�uller M et al. Phys. Rev. E 52 5961 (1995)

0.02

0.04

0.06

0.08

0.10

V
o
u
t,
V

0 0.02 0.04 0.06 0.08 0.10
Vin, V

T � 0

T � 300 K

a

0.04

0.08

0.12

0.16

0.20

V
o
u
t,
V

0 0.04 0.08 0.12 0.16 0.20
Vin, V

T � 0

T � 300 K

b

Figure 11. (Color online.) Numerically calculated transfer characteristics

of a quantum interference inverter based on four-site quantum systems for

supply voltages of (a) 0.1 and (b) 0.2 V. The dashed line shows the critical

transfer coefficient ÿ1. The parameters of the structure used in the

calculations are listed in the text.

1114 A A Gorbatsevich, N M Shubin Physics ±Uspekhi 61 (11)



30. Persson E, Rotter I Phys. Rev. C 59 164 (1999)

31. Persson E et al. Phys. Rev. Lett. 85 2478 (2000)

32. Moiseyev N Non-Hermitian Quantum Mechanics (Cambridge:

Cambridge Univ. Press, 2011)

33. Miroshnichenko A E, Flach S, Kivshar Yu S Rev. Mod. Phys. 82

2257 (2010)

34. Monticone F, Al�u A Rep. Prog. Phys. 80 36401 (2017)

35. Hsu C W et al. Nature Rev. Mater. 1 16048 (2016)

36. Breit G, Wigner E Phys. Rev. 49 519 (1936)

37. Klaiman S, Moiseyev N J. Phys. B 43 185205 (2010)

38. Romo R, GarcõÂ a-Calder�on G Phys. Rev. B 49 14016 (1994)

39. Dragunov V P, Neizvestnyi I G, Gridchin V AOsnovy Nanoelektro-

niki (Fundamentals of Nanoelectronics) (Moscow: Logos, 2006)

40. Gorbatsevich A A, Zhuravlev M N, Kapaev V V JETP 107 288

(2008); Zh. Eksp. Teor. Fiz. 134 338 (2008)

41. Vanroose W et al. J. Phys. A 30 5543 (1997)

42. Vanroose W et al. Phys. Rev. A 64 62708 (2001)

43. Heiss W D, Wunner G Eur. Phys. J. D 68 284 (2014)

44. Ambichl P et al. Phys. Rev. X 3 041030 (2013)

45. Chong Y D, Ge L, Stone A D Phys. Rev. Lett. 106 93902 (2011)

46. Aharonov Y, Bohm D Phys. Rev. 115 485 (1959)

47. Bender C M, Boettcher S Phys. Rev. Lett. 80 5243 (1998)

48. Bender C M, Boettcher S, Meisinger P N J. Math. Phys. 40 2201

(1999)

49. Bender C M Rep. Prog. Phys. 70 947 (2007)

50. Mostafazadeh A J. Math. Phys. 43 205 (2002)

51. Mostafazadeh A J. Math. Phys. 43 2814 (2002)

52. Mostafazadeh A J. Math. Phys. 43 3944 (2002)

53. Zyablovsky AA et al. Phys. Usp. 57 1063 (2014);Usp. Fiz. Nauk 184

1177 (2014)

54. Eleuch H, Rotter I Eur. Phys. J. D 69 229 (2015)

55. Eleuch H, Rotter I Eur. Phys. J. D 69 230 (2015)

56. Kato T Perturbation Theory for Linear Operators (Berlin: Springer,

1995)

57. Mandal I Europhys. Lett. 110 67005 (2015)

58. San-Jose P et al. Sci. Rep. 6 21427 (2016)

59. Kreibich M et al. Phys. Rev. A 87 051601(R) (2013)

60. Chtchelkatchev N M et al. Phys. Rev. Lett. 109 150405 (2012)

61. Guo A et al. Phys. Rev. Lett. 103 093902 (2009)

62. Regensburger A et al. Nature 488 167 (2012)

63. Bittner S et al. Phys. Rev. Lett. 108 24101 (2012)

64. Alaeian H, Dionne J A Phys. Rev. A 89 33829 (2014)

65. Mostafazadeh A Ann. Physics 368 56 (2016)

66. Liertzer M et al. Phys. Rev. Lett. 108 173901 (2012)

67. Brandstetter M et al. Nature Commun. 5 4034 (2014)

68. Landau L D, Lifshitz E M Electrodynamics of Continuous Media

(Oxford: Elsevier, 2013); Translated fromRussian:Elektrodinamika

Sploshnykh Sred (Moscow: Fizmatlit, 2003)

69. Zyablovsky A A et al. Phys. Rev. A 89 33808 (2014)

70. Cannata F, Dedonder J-P, Ventura A Ann. Physics 322 397 (2007)

71. Jin L, Song Z Phys. Rev. A 81 32109 (2010)

72. Jin L, Song Z J. Phys. A 44 375304 (2011)

73. Hernandez-CoronadoH,Krej�ci�rõÂ k D, Siegl PPhys. Lett. A 375 2149

(2011)

74. Datta S Electronic Transport in Mesoscopic Systems (Cambridge:

Cambridge Univ. Press, 1997)

75. B�uttiker M Phys. Rev. Lett. 57 1761 (1986)

76. Theis T N, Solomon P M Proc. IEEE 98 2005 (2010)

77. Ionescu A M, Riel H Nature 479 329 (2011)

78. Celardo G L, Kaplan L Phys. Rev. B 79 155108 (2009)

79. Celardo G L et al. Phys. Rev. B 82 165437 (2010)

80. Nitzan A, Ratner M A Science 300 1384 (2003)

81. Kergueris C et al. Phys. Rev. B 59 12505 (1999)

82. Papadopoulos T A, Grace IM, Lambert C J Phys. Rev. B 74 193306

(2006)

83. Kaasbjerg K, Flensberg K Nano Lett. 8 3809 (2008)

84. Osorio E A et al. Nano Lett. 7 3336 (2007)

85. Puczkarski P et al. Appl. Phys. Lett. 107 133105 (2015)

86. Perrin M L et al. Nature Nanotechnol. 8 282 (2013)

87. Mizuta H, Tanoue T The Physics and Applications of Resonant

Tunnelling Diodes (Cambridge: Cambridge Univ. Press, 2006)

88. Li Y et al. Sci. Rep. 6 33686 (2016)

89. Stafford C A, Cardamone D M, Mazumdar S Nanotechnology 18

424014 (2007)

90. Gorbatsevich A A, Zhuravlev M N, Kataeva T S Russ. Microelec-

tronics 46 414 (2017);Mikroelektronika 46 451 (2017)

91. Miroshnichenko A E, Kivshar Yu S Phys. Rev. E 72 056611 (2005)

92. Dente A D, Bustos-Mar�un R A, Pastawski H M Phys. Rev. A 78

062116 (2008)

November 2018 Quantum logic gates 1115


	1. Introduction
	2. First-generation quantum analogues of CMOS circuits: classical transport and quantum switching...
	2.1 Dissipationless relocation of the wave function in a quantum structure
	2.2 Relocation of the wave function in a quantum structure with dissipation
	2.3 Implementation of the simplest logic circuits

	3. Quantum transport and resonances: a unified theory of resonances and antiresonances
	3.1 Open quantum systems and resonances
	3.2 Exceptional points in open quantum systems and PT symmetry

	4. Second-generation quantum analogues of CMOS circuits: molecular structures with controllable...
	4.1 General operation principles of a quantum inverter
	4.2 Manipulating resonances in a quantum inverter
	4.3 Example models of molecular analogues of a CMOS inverter controlled by the shift of resonances or..

	5. Conclusions
	 References

