
Abstract. New effects in systems of quantum dipoles are dis-
cussed, such as anisotropic superfluidity in external fields,
strong correlations, crystallization, and the supersolid phase.
Roton instability effects typical of strongly correlated Bose
systems but also manifesting themselves in weakly interacting
systems of titled dipoles are analyzed. Among the interesting
physical realizations of the systems under consideration are
dipole excitons in single or coupled quantum wells under a
strong transverse electric field and in van der Waals hetero-
structures of new 2D materials, such as transition metal dichal-
cogenides (TMDCs). The use at ultralow temperatures of polar
molecules or atoms with permanent or external-field-induced
dipoles is also interesting, as are Rydberg atoms in an external
electric field.
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We discuss a number of new effects in quantum dipole
systems [1±3] (see also [4]) or, more specifically, anisotropic
superfluidity in external fields, strong-correlation effects, and
crystallization. We also consider the effects of roton instabil-
ity that are typical of strongly correlated Bose systems but
manifest themselves in weakly interacting systems of tilted
dipoles.

Dipole systems are implemented in the following ways.
First, they are realized as dipole excitons in coupled
quantum walls with spatially separated electrons and
holes in coupled quantum wells or in a single quantum
well in a strong transverse electric field. A system of
excitons with spatially separated electrons and holes was
considered for the first time in 1973 in Lozovik's report [5].
Later, the superfluidity of that system and its other
unusual physical properties were explored in detail in [6±
15] and subsequent studies that predicted and thoroughly
investigated superfluidity in systems of spatially separated
electrons and holes, Josephson-type effects (in systems
without superfluidity!) [16±21], drag of excitons by elec-

trons and the control of excitons using electrons [22±24],
behavior in external magnetic fields [25±36], unusual coherent
optical linear and nonlinear properties [37±42], and a phase
diagram for spatially separated electron±hole systems and
dipole excitons [43-46]. As a result, a promising new area
emerged in the physics of coherent phenomena in systems of
excitons in quantumwells and new 2D systems. There are also
new and interesting accomplishments in theory and computer
simulations; a number of experimental teams have obtained
significant experimental results [47±60].

In a system of spatially distributed electrons and holes,
implementation with a high density of electrons and holes is
also possible. In the case of high density, 2D electrons and
holes create Fermi circles or segments, and, if those Fermi
circles are almost congruent, a coherent state similar to the
Bardeen±Cooper±Schrieffer (BCS) state with a spectrum gap
due to coupling of spatially separated electrons and holes
can emerge as the temperature is decreased [6±14]. If those
Fermi lines for 2D systems are not fully congruent, a BCS-
type coherent state emerges under the condition that the
emerging gap (which determines the energy gain in the eÿh
coupling) is larger than the energy difference between the
Fermi lines of electrons and holes. Tunneling between layers
results in fixing the order parameter phase and the occur-
rence of the internal Josephson effect [16±21]. The main
difference between the two-layer system and the 3D uniform
system with the coupling of electrons and holes considered
by Keldysh and Kopaev [61], which describes semimetal±
insulator transitions, etc., is that superfluid currents can
emerge in the former system. The predicted superfluidity was
confirmed in the Eisenstein group experiments for double
electronic layers in a strong magnetic field with half-filled
Landau levels [62].

The dipole systems considered in this review also include
excitons in (now popular) van der Waals heterogeneous
structures consisting of two layers of new materials, such as
transition metal chalcogenides (see [63, 64] and the references
therein) or graphenewith a created gap (see a discussion of the
eÿh coupling in dense spatially separated 2D materials in
[65±71] and the references therein). Structures based on
transition metal chalcogenides are also promising from the
standpoint of attaining high-temperature superfluidity of
excitons.

Of significant interest are also realizations of dipole polar
molecules and atoms with permanent dipoles or those
induced by external fields at superlow temperatures [72±74].
Some interesting features are exhibited by systems ofRydberg
atoms in an electric field, where very large dipole moments
occur such that strong correlations and possibly crystal-
lization occur even in a system of relatively rarefied Rydberg
atoms.
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Next, for the 2D dipole systems described above, we
consider how their properties can be controlled and the
anisotropic superfluidity in external periodic fields created
by specially shaped electrodes, as we predicted in [1] (Fig. 1).
We note that the anisotropic superfluidity was considered
previously for He3 [75±77] and cooled atoms in optical
superlattices [78, 79].

It is known that a persistent quasi-equilibrium current J
can be created in a superfluid system, the value of that current
being proportional to the total momentum of the system P
with the proportionality coefficient equal to the absolute
value of the helicity Ys. The last quantity is, in turn,
proportional to the density ns of the superfluid component:

J�T �
S
� Ys�T �P � ns�T �

m
P ; �1�

where S is the area of the quasi-2D systems under considera-
tion. Similarly, the total momentum P is also proportional to
the superfluid density and the system velocity v:

P�T �
S
� rs�T �v � ns�T �mv : �2�

In an anisotropic system, the density of the superfluid
component does not have its usual meaning, because it is no
longer a scalar but rather a tensor, such that

Pi�T �
S
�
X
j

r i j
s �T �vj ; �3�

which means that as a result of an external effect, the system
gains momentum in one direction but moves in another
direction (Fig. 2).

To make the task simpler, we consider an exciton system
with weak interaction at a zero temperature. The condensate
depletion is in this case small, and the number of particles
above the condensate is also small compared to the con-
densate density. The Gross±Pitaevskii equation for a periodic
external field can therefore be used for the condensate part.
To solve the equation, we used two approaches: (1) the
Gross±Pitaevskii functional in a periodic external field was
numericallyminimized and (2) an analytic solutionwas found
in the second order of perturbation by the periodic external
field.

If the field amplitude is not too large, the analytic results
obtained in the second order of the perturbation theory by a

periodic field agree well with numerical results. To calculate
the anisotropic properties of the excited system (in particular,
the anisotropic speed of sound), we diagonalized the above-
condensate Hamiltonian in the Bogoliubov approximation.
The excitation spectrum exhibits Bloch discontinuities at
momenta equal to the inverse period of the periodic field.
The anisotropy of all physical quantities rapidly increases in
the vicinity of those discontinuities.

The angular distribution of the recombination radiation
from the 2D system of dipole excitons in a condensed state,
which is considered here, differs from that for a homogeneous
system: in addition to the beam perpendicular to the 2D
system, due to periodicity, additional lateral beams appear
whose intensity is proportional to the depth of modulation of
excitons obtained using controlling electrodes. Moreover, the
transverse section of the luminescent beams emitted by the
exciton system in a direction other than the normal to the
system plane acquires an elliptic shape. The vortices in the
system also feature anisotropic properties.

We note that if the periodic external field is strong enough
in the system under consideration (see Fig. 1), narrow
superbands for excitons can emerge, and a phase transition
from the superfluid state to the glassy state can occur, which
was theoretically studied in [4].

We now consider strong-correlation effects and new
exciton phases. In our studies [43±46], we predicted and used
the quantum Monte Carlo method to explore new phases of
the exciton system: a crystal phase [80±84] (see also [85]) and a
supersolid phase [86] (which simultaneously exhibits trans-
verse rigidity, superfluidity, and diagonal and nondiagonal
order); both the structure and optical properties have been
studied. The quantum Monte Carlo method was used to
confirm the existence of supersolids in mesoscopic exciton
systems [87, 88].

In a 2D dipole system, as the dimensionless concentration
of particles nr 20 increases (where r0 � me 2D 2=e �2p�h�2 is the
distance at which the quantum kinetic energy is equal to the
dipole±dipole interaction energy, D is the characteristic
distance between the electron and hole that form a dipole,
and e is the dielectric permittivity), strong correlation effects
occur: depletion of the condensate, the onset of short-range
order, significant modification of the excitation spectrum,
and emergence of the roton minimum at nr 20 � 16 (Fig. 3).

At nr 20 � 290 (the Lindeman parameter equal to 0.23),
crystallization occurs in the dipole system [80±82] (Fig. 4).
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Figure 1. Possible experimental realization of a system with anisotropic

supefluidity: a quantumwell (QW) (or coupled quantumwells or a van der

Waals structure consisting of two 2D transition metal dichalcogenides)

with dipole excitons controlled by the potential of external electrodes.
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Figure 2. An external force pushes the system in one direction

(momentum P) while the current Jsys in the anisotropic system under

consideration flows in another direction.
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Interesting structural features of the dipole system are
clearly exhibited near the instability threshold, where the
roton gap in the excitation spectrum is close to zero.
However, the roton minimum for perpendicular dipoles may
not touch zero because the condensate depletion diverges
when the spectrum touches the zero energy. Stated differ-
ently, the condensate vanishes prior to the spectrum touching
zero energy, and the system switches to a strong correlation
regime. Due to this, all the structural properties that can be
predicted for perpendicular dipoles at the roton instability
threshold are not attainable.

However, the condensate depletion divergence at the
threshold where the spectrum touches zero energy can be
removed if the dipoles are tilted, and the rotational symmetry
in the layer plane is broken as a result. Namely, the spectrum
touches zero in this case not on a circle but only at two points.
Therefore, in the case of tilted dipoles, the condensate
depletion divergence at the point where the spectrum touches
zero energy vanishes, thus making the roton instability
threshold attainable. Owing to this, broad perspectives open
for studying the structural properties of the dipole condensate
near the roton instability threshold.

We have predicted the roton instability effect [2, 3] for
weakly interacting tilted dipoles in a 2D homogeneous
quantum layer. In the case under consideration, the roton
effects typical of quantum systems in the strong-correlation
regime are observed in a weakly interacting gas. It is
important that in contrast to the rotation symmetry of a
system of dipoles perpendicular to the dipole plane, the
rotation symmetry for a system of tilted dipoles is broken,

and hence the condensate depletion is finite up to the roton
instability threshold, and the mean-field approach is applic-
able. In [2, 3], we proposed methods to detect those
phenomena in the system of dipole excitons and ultracold
atoms and polar molecules in optical lattices and estimated
optimal experimental parameters.

We have considered two regimes in which the roton
instability can be realized in a system of tilted dipoles: a 2D
system in a quantum well and a quasi-2D system in a broad
quantum well.

To better understand the nature of the roton instability of
tilted dipoles in qualitative terms, we put forward two
arguments. The first is related to the system of parallel
dipoles located in a plane. This system can form a 2D crystal
consisting of parallel chains [89], because the dipoles in a
`head-to-tail' arrangement attract (a stable state emerges
owing to the repulsion of dipole cores.)

The second argument refers to a broad well. The potential
energy of interaction between dipoles is

Vd�r� � d 2

e
r 2 ÿ 2z 2

r 5
; �4�

and its Fourier transform is

Vd�p� � 4p
3

d 2

e
2p 2

z ÿ p 2

p 2
; �5�

where d � eD is the dipole moment, e is the dielectric
permittivity of the semiconductor, p � fP; pzg and
r � fR; zg are 3D vectors, P and R are 2D vectors (in the
plane of the well), and p � jpj � �P2 � p 2

z �1=2.
The roton instability occurs as a result of negative values

of the dipole±dipole potentialVd�p� at jpzj5 p (Fig. 5), which
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Figure 3. Modification of the excitation spectrum and emergence of the

roton minimum in a 2D dipole system as the dimensionless concentration

nr 20 increases (see [80±82]).
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Figure 4. Pair distribution function in a 2D dipole system in the crystalline

phase (see [80±82]).
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is a consequence of attraction between the dipoles that are
transverse to the quantum well plane. Indeed, the momenta
jpzj5 p correspond to spatial scales jzj4 r, and the dipoles
attract at jzj4 r [see (4)]. As a result, the square of the
Bogoliubov spectrum e 2p � p 4=�4m 2� � Vd�p��n0=m�p2 at
jpzj5 p in an infinite homogeneous 3D system is negative at
small momenta,

e 2p �
p 4

4m 2
ÿ 4p

3

d 2

e
n0
m

p2 ; �6�

where n0 is the 3D density of the Bose condensate andm is the
particle mass (see Fig. 5). Therefore, at small momenta (in the
phonon region) spectrum (6) contains a segment of imaginary
energies, which means that the phonon modes in the 3D
system are unstable as a result of the formation of a 3D crystal
consisting of chains (as the results of our computer simulation
show) (see also [90]).

However, the dipoles in the quantum well are restricted in
the direction of the z axis:

04 jxj; jyj <1 ; 0 < z < L ; �7�

where L is the width of the quantum well. Therefore, at small
scales

r5L ; p4
p�h

L
; �8�

i.e., deep inside the well, the excitons treated as pointlike
dipoles move as if in three dimensions. At the same time, at

large longitudinal scales,

r4L ; p5
p�h

L
; �9�

or at r4 z and p5 jpzj, the quantum well is similar to a thin
layer, and motion occurs as in two dimensions. The 2D
regime, r4L, apparently exists for any L [see (7)]. How-
ever, the 3D regime (p4 p�h=L or L4p�h=p) is only possible
in a well whose width is larger than a certain value

L4
p�h���������
2mm
p ; �10�

where m is the chemical potential of excitons and
���������
2mm
p

is the
momentum p characteristic of the problem. It is the case of a
broad well, which encompasses both the 2D and 3D regimes,
that corresponds to the quasi-2D system.

We consider quasi-2D dipoles in more detail. At large
momenta p4 p�h=L, when the 3D regime is implemented, the
excitation spectrum is close to the 3D branch (Fig. 5b). At
jpzj5 p, the 3D branch is unstable. At small momenta
p � p�h=L, for which the 2D regime is implemented, the
excitation spectrum is close to its 2D branch (Fig. 5b). The
2D branch is stable because the dipoles separated by long
distances repel at r4 z. At intermediate momenta,
p � p�h=L, a crossover occurs from the 3D (unstable)
branch to the 2D (stable) branch (Fig. 5b). This means
that the instability shifts to the region of intermediate
momenta in the 2D case. The broader the well (larger L) is,
the larger the instability region (Fig. 5c). The narrower the
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Figure 6. (a) Variational calculation of the lowest dispersion curves e 2p for g � 0:1gd at g � 20 (curve 1), g � 35 (curve 2), g � 45 (curve 3), g � 55:6 (curve
4), and g � 65 (curve 5). (b) Phase diagram of the roton instability and rotonminimum threshold in terms of variables �gd=g; g�. The stable phases without
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derWaals coupling constant, and g is a dimensionless parameter proportional to the Bose±Einstein condensate density times the dipole coupling constant.
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well (smaller L), the smaller the instability region. At some
value of L (L � L3 in Fig. 5c), the instability region collapses
into a point, such that at smaller L (L � L1; 2 in Fig. 5c) the
quasi-2D dipole spectrum can only have a roton minimum.
The critical value of L �L � L3� at which the roton minimum
touches zero energy (Fig. 5c) corresponds to the roton
instability threshold of quasi-2D dipoles. Immediately after
the threshold, where the lowering rotonminimum just crosses
zero, the spectrum squared e 2p for a certain mode p � pi
becomes negative (Fig. 5d). Due to this, the energy of the pi
mode becomes negative: epi � �i�hk �k 6� 0, k � 0�. As a
result, the plane wave corresponding to that unstable mode
exp �ipiR=�h� iepi t=�h� / exp �kt� �k > 0� starts exponentially
increasing with time. After some time elapses, the wave
becomes microscopic, and spontaneous self-organization
occurs: macroscopic population with nonzero momen-
tumÐa matter density waveÐ appears. The system rear-
ranges in the process of self-organizing: the homogeneous,
weakly correlated Bose-condensed gas transforms into a
crystal-like periodic structure. A more detailed analysis
shows that the supersolid phase can emerge in the system
where crystalline order and superfluidity coexist. A new
phase, the quantum liquid crystal coexisting with super-
fluidity, is also possible.

Thus, the emergence of the roton minimum, roton
instability, and periodic density profile is a consequence of
(a) anisotropy and the existence of a positive-valued region in
the dipole±dipole potential and (b) the property of quasi-two-
dimensionality, i.e., a regime intermediate between unstable
three-dimensionality and stable two-dimensionality. Varia-
tional calculations of the corresponding dispersion curves
and a phase diagram of the system are shown in Fig. 6.

Effects similar to those considered for 2D systems of
quantum dipoles are also typical of 2D systems of higher
multipoles. In particular, with the increase in density,
quantum crystallization occurs in a 2D system of parallel
quadrupoles [91]. In a 2D system of tilted quadrupoles, the
roton instability and emergence of superfluidity are also
possible. The list of interesting physical realizations of
quadrupoles includes 3D excitons or Rydberg atoms in a
strong magnetic field compressing the particle transversely to
the field and ions in superstrong magnetic fields in the core or
vicinity of neutron stars.

This study was supported by the Russian Science
Foundation grant 17-12-01393.
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