
Abstract. Conditions for applying mean field theory to the
thermodynamics of the 4He crystal surface are determined.
Although the faceting transition itself is of the Berezinskii±
Kosterlitz±Thouless type, the thermodynamic potential outside
a narrow neighborhood of the transition temperature can be
expanded in the spirit of the Landau theory of second-order
phase transitions. A Ginzburg±Levanyuk parameter is found.
The singular behavior of the surface stiffness near critical
directions observed for essentially noncritical temperatures is
explained.
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Yurii Vasil'evich Kopaev is recognized for his outstanding
contribution to the theory of phase transitions. In particular,
Keldysh and Kopaev's [1] model of an excitonic dielectric is
effectively used to describe metal±dielectric phase transitions
in solids. Kopaev showed that the excitonic dielectric model
describes a wide variety of new states, among them orbital
antiferromagnetism and toroidal ordering. It seems natural
that the memory of Kopaev be honored by publishing a study
on the physics of peculiar phase transitions related to a
change in the equilibrium shape of a crystal. Specifically, in
this paper we discuss phase transitions that cause a crystal to
facet as the temperature is decreased. These `roughening'
transitions are described by the theory of Berezinskii,
Kosterlitz, and Thouless (BKT) [2]. In [3], one of the present
authors proposed a `mean field' theory of faceting transitions,
which is similar to the Landau theory of second-order
transitions. It has been argued (see [4, 5]) that the mean field
theory has zero applicability because of the significant role of
fluctuations.

In this paper (see also Ref. [6]), based on the analysis of
experimental data on the properties of 4He crystal surfaces,
we show that on the contrary, the applicability of mean field

theory is very wide. The theory is inapplicable only in a very
narrow domain around the critical temperature. The relation
between the BKT theory and the mean field theory is similar
to that between the BKT theory and the Ginzburg±Landau
theory for superconducting films (see, e.g., Ref. [7]).

In the simplest case of one-dimensional geometry, the
mean field theory is developed by introducing the surface
thermodynamic potential f related to the surface energy per
unit surface area a as f � a

��������������
1� h 2
p

, where h � qz=qx � tan y
is an angular variable, y is the angle between the surface and
the basal plane of the crystal, and z � z�x� is the crystal
surface equation. In equilibrium, the relation to the surface
energy is

lz�x� � ~f �ÿlx� ; �1�

where ~f � ~f �Z� � fÿ Zh is the Legendre transform of the
potential f �h�, Z � qf=qh, and l is a constant.

The mean field theory is based on expanding the potential
~f for vicinal �h5 1� surfaces in powers of Z,

~f � ÿ a

2
Z 2 ÿ b

4
Z 4 ; �2�

where a � a�T � is a function of the temperature and b is a
constant. To determine the conditions of applicability of
expansion (2), we pass to the dimensionless variables

~f 0 � b 1=3 ~f ; Z 0 � b 1=3Z :

We have

~f 0 � ÿ 1

2

ÿ
abÿ1=3

�
Z 0 2 ÿ 1

4
Z 0 4 : �3�

The angular parameter is expressed as

h � ÿ q~f

qZ
� aZ� bZ 3 � ÿabÿ1=3�Z 0 � Z 0 3 : �4�

If the condition��abÿ1=3��5 1 �5�

is satisfied, expansion (3) is valid for Z 05 1 or, equivalently,
h5 1.

A direct way of finding the coefficients in expansion (3) is
to monitor the shape of the equilibrium surface h�x�. From
relation (1), it follows that

h�x� � ÿalxÿ b�lx�3 : �6�

Babkin, Kopeliovich, and Parshin [8, Fig. 3a] performed such
measurements for vicinal directions very near (both above
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and below) the faceting phase transition pointTR. It turns out
that outside a narrow region dT9 0:01 near the critical
temperature, the shape of the crystal is independent of the
temperature (we note that crystal shapes are evidently
different for T > TR and T < TR). This implies that the
coefficient a is temperature-dependent only in this region,
where it is a positive constant a � ah for T > TR and a
negative constant a � ÿal for T < TR. Results for two
particular samples, with

ahb
ÿ1=3 � 0:03 �7�

and

alb
ÿ1=3 � 0:06 ; �8�

are given in Fig. 1.
We now show that expansion (2) can be used to describe

the still unexplained features of the angular dependence of the
surface rigidity g (Fig. 2), which were experimentally observed
by Andreeva and Keshishev [9] close to the special facets
�0001� and �10�10� below TR.

We consider the 4He crystal's basal face (0001) perpendi-
cular to the sixth-order symmetry axis. The faceting tempera-
ture TR � 1:28K itself is determined by the universal relation
from the BKT phase transition theory,

TR � 2

p
gd 2 ; �9�

where d � 3 �A is the lattice constant normal to the face and

g � a� q2a

qy 2
� q2f

qh 2
� qZ

qh
�10�

is the surface rigidity at T � TR and h � y � 0. The mean
field theory critical temperature Tc is determined by the
vanishing condition for the second-order coefficient in
expansion (2), a�Tc� � 0, and hence sufficiently close to the
critical temperature, jTÿ Tcj5 dT, we have a � a0t, where
t � �Tÿ Tc�=Tc.

Assuming TR to be close to Tc, we use Eqn (2) to find
g � �a0t�ÿ1 and

tR � TR ÿ Tc

Tc
� 2

p
d 2

a0Tc
:

Thus, the condition for the theory under discussion to apply is
t > tR, and the parameter

Gi � tR � 2d 2

pa0Tc
5 1 �11�

plays the role of the Ginzburg±Landau parameter in the
theory of second-order phase transitions [7].

Detailed experimental data on the angular dependence of
the surface rigidity (10) at low (T < TR) temperatures are
presented in theses [10] (see Fig. 19 therein). Expansion (4)
allows calculating this dependence, with the result

g �
�
qh
qZ

�ÿ1
� ÿ3bZ 2 ÿ al

�ÿ1
: �12�

From Eqns (4) and (12), the relation between g and the
angular parameter h follows as

�h �
�

�g� 1

3�g

�3=2

ÿ
�

�g� 1

3�g

�1=2

; �13�

where �h � �a 3
l =b�ÿ1=2h, �g � alg. For �h5 1, we have �g �

1=2ÿ 3=4 �h; for �h4 1, the rigidity decreases in proportion
to hÿ2=3: �g � 1=3 �hÿ2=3.
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Figure 1. Equilibrium crystal shape h�x� for T > TR (circles) and

T < TR (black dots) (see Fig. 3a in Ref. [8]). The curves are put into

correspondence with expansion (6), with the best fit obtained for

aljT>TR
� 3:6� 10ÿ3 mmÿ1, bl3jT>TR

� 1:3� 10ÿ3 mmÿ3, aljT<TR
�

ÿ8:3� 10ÿ3 mmÿ1, and bl3jT<TR
� 2:2� 10ÿ3 mmÿ3.
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Figure 2. Angular dependence of surface rigidity (from Ref. [9]).
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For T < TR, the value �a 3
l =b�ÿ1=2 � 62:5 follows from

Eqn (8). The parameter

aÿ1l � 1:6 erg cmÿ2 �14�

is determined from the best fit to the experimental data. The
corresponding dependence (13) is plotted in Fig. 3. We note
that the minimum angle for which the experimental points fit
curve (13) well is precisely the one corresponding to con-
straint (16) on the applicability region of mean field theory
(see also Fig. 5 below).

The fact mentioned above that the surface rigidity is
temperature independent outside the immediate neighbor-
hood of the critical temperature implies that the parameter a
is temperature dependent only in this region, where it changes
by an amount of the order of al, i.e., a0 0 al�Tc=dT �. Using
Eqn (14), we estimate the value of Gi from Eqn (11) as

Gi9
2d 2dT
palT 2

c

� 0:1 :

The vicinal surface of a crystal in the zero-temperature
limit consists of a series of sparse steps of height d on a
symmetric face [11], with the consequence that the surface
rigidity tends to zero as y! 0 (Fig. 4). This picture breaks
down if fluctuations on the surface `wash out' the discreteness
of the crystal structure and the concept of a finite-height step
itself becomes meaningless. In accordance with the universal
relation (9), this should arguably occur at

T0TR�y� � 2d 2g�y�
p

; �15�

where d is independent of y, and the surface rigidity g�y� can
be determined from Eqn (13). Thus, at temperatures below
the faceting point, the applicability region of the theory under
discussion is determined by the condition

�h0
�

�g� 1

3�g

�3=2

ÿ
�

�g� 1

3�g

�1=2

�
�
1

3
� 2d 2

3palT

�3=2

ÿ
�
1

3
� 2d 2

3palT

�1=2

: �16�

Figure 5 shows the corresponding set on the �T; y� plane.
Our analysis of the observed surface shape does not

include the effect of gravity. The equilibrium condition in
the field of gravity g has the form (the subscript g indicates the
inclusion of gravity)

qZg
qx
� ÿl� gzg Dr ; �17�

where Dr is the density difference between the crystal and the
liquid. Integrating in the leading approximation over x yields

Zg �
�
�ÿl� gDrzg� dx � ÿl

�
x� agDr

6
x 3

�
: �18�

The surface profile zg itself can be obtained in the same
approximation by integrating the relation

qzg
qZg
� qzg

qx
qx
qZg
� h

ÿl� gzgDr

� h

ÿl
�
1� gzDr

l

�
� q

qZ

�~f

l
� g ~f 2Dr

2l3

�
�19�

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

45 20 10 6 4 3 2

y, deg
1

g,
er
g
cm
ÿ2

� g
�

g
1
:6

ÿ
0
:0
4
8

er
g
cm
ÿ2

0.25

0.20

0.15

0.10

0.05

0
0.2 0.80.4 0.6 1.0

�h
ÿ2=3 � �a3l =b�1=3 tanÿ2=3 y

Figure 3.Angular dependence of surface rigidity for four samples from the

experimental data of Andreeva and Keshishev (see Fig. 9 in Ref. [10]) and

theoretical curve (11).
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Figure 4. Angular dependence of surface rigidity for vicinal directions at

low temperatures (from the data in Refs [10, 12]).
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Figure 5.Constraint on the region of applicability of the mean field theory

in accordance with Eqn (16).
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to yield

zg � 1

l
~f �Zg� �

gDr

2l3
~f 2�Z� � zÿ l

a 2gDr
24

x 4

� ÿ al
2

x 2 ÿ bl3

4
x 4 ÿ l

a 2gDr
24

x 4 : �20�

Thus, the condition that allows disregarding the force of
gravity is

E � a 2gDr

6bl2
5 1 : �21�

Under the conditions considered here, the parameter E can be
estimated by using Eqn (14) and the data from the legend to
Fig. 1 to give E � 0:07.
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