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Abstract. The Goos — Hanchen (GH) effect, a longitudinal shift
of a wave beam at total internal reflection, is well known in
optics and has been repeatedly observed for light, micro-, and
ultrasonic waves. We consider the GH effect for a massive
particle reflected from a material boundary. A close relation is
shown to exist between the longitudinal shift and the time delay
of reflection. In the case of a neutron reflected from a planar
resonant system, a giant longitudinal shift of either positive or
negative sign can occur, corresponding to a large reflection
group delay time. This time can also be negative, which does
not contradict the causality principle. Prospects of the experi-
mental observation of the GH effect and group delay time for
neutron reflection are reviewed.

Keywords: neutron optics, wave beams, Goos—Hénchen effect,
group delay time, reflection from multilayer structures

1. Introduction

The discovery of a longitudinal shift of a wave packet in the
case of total internal reflection in the optical wavelength
range, which was named the Goos—Hanchen (GH) effect [1,
2], strongly influenced the development of concepts in
reflection physics. Such an apparent violation of geometric
optics laws induced a series of theoretical [3-20] and
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experimental [21-27] studies that continue to date. It
became clear very early that this phenomenon has a very
general nature, and studying the phenomenon went beyond
usual optics. The GH shift was observed for acoustic waves
[5, 28-31] and, later, for microwave radiation [32—-36] and
X-rays [37].

The longitudinal shift was found to be one in a series of
reflection-related effects. A transverse shift of reflected
electromagnetic waves was predicted in [38] and then
discovered experimentally in [39, 40]. Later, the GH trans-
verse shift and the Fedorov—Imbert sideways shift [38, 39]
started being viewed as two manifestations of the same wave
phenomenon [41-45]. It was also found that wave beams
exhibit a shift along the propagation direction, the so-called
focal shift, with the wave beam reflection angle not exactly
equal to the incidence angle, thus defying Snell’s law [11, 36,
46, 47].

The existence of the GH shift for a massive particle
reflected from a region with a potential seems then to be
quite obvious. An analysis of the underlying quantum
problem seems to have been first conducted in [48] and has
afterwards been repeated many times [6, 49]. The quantum
mechanical approach proved to be especially effective after a
direct relation between the GH effect and the quantum
problem of the reflection time [50] had been understood.

Although the history of the problem extends over more
than fifty years, the GH shift for a reflected massive particle
has so far remained in the realm of theory. The best
conditions for experimental observation of the phenomenon
seem to be offered by neutron optics. To the best of our
knowledge, Seregin was the first to consider the GH effect for
bounced neutrons [51]. Later, the theory of the phenomenon
and options for observing the effect in neutron experiments
were discussed in [52, 53]. Paper [54], which reported an
observation of the GH effect in neutron optics, led to a
discussion [55, 56], thus making the problem even more
relevant [57].
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We here consider some aspects of the GH effect for a
massive particle. Section 2 contains background information
about the nature of the GH effect. A formal relation between
the Artmann formula [3] for the longitudinal GH shift and the
group delay time for a bounced massive particle is empha-
sized. We also compare two approaches (see [3, 6]) to the
theory of the GH effect, the results of which have long been
considered incompatible.

In Section 3, the reflection of neutron waves from
multilayer structures is considered. A calculation of the
group delay time for waves reflected from such structures,
which is done within a plane-wave approximation, is
presented. Resonant enhancement of the longitudinal shift is
shown to occur in the case of reflection on multilayer
structures. It is noteworthy that the giant shift and delay
time can be both positive and negative.

Section 4 contains a more accurate theory of the reflection
of collimated neutron beams and wave packets limited in
time. It is shown that a wave packet reflected from a resonant
structure can actually have a negative ‘delay’ time; however,
this phenomenon is related to changes in the packet shape and
does not contradict the causality principle.

In Section 5, the prospects of experimental observation of
the longitudinal shift of a neutron beam and the time of its
reflection from multilayer structures are discussed.

2. Goos—Hanchen shift

and the time of neutron reflection from matter.
The plane-wave approximation

A specific feature of neutron optics is that in the majority of
cases the neutron wave interaction with matter can be
described by introducing the effective potential

_ 2mh?
T om

U

b, (1)

where m is the mass of the neutron, p is the volume density of
atoms, and b is the mean coherent scattering length on atomic
nuclei, which is usually positive.

Representing the medium as a constant potential enables
considering the motion of a neutron wave along each
coordinate axis separately. As a result, the wave vector
component normal to the medium boundary is independent
of the longitudinal component.

To illustrate in the simplest way how the longitudinal shift
of the neutron beam occurs when a neutron wave is reflected
from the boundary of a region where the potential is nonzero,
we consider a simplified form of Artmann’s theoretical
approach [3]. The well-known Artmann method was used,
with some modifications, in a number of later studies (see,
e.g., [4, 5,20, 52]).

We consider a region of space with some potential U,
limited by the plane z = 0. We explore the reflection of a wave
beam from the boundary and for simplicity, following [18],
assume that the beam is formed by only two waves whose
wave vectors are oriented in slightly different directions. For
each wave, the condition of total external reflection (TER)
E, < U holds, where

k2
E, = m (2)

and k. is the wave vector component normal to the
surface. The medium refractive index for neutrons is

n=(1-U/E)" In the case under consideration, b > 0
and, if £, > U, the refractive index is less than unity, similarly
to the X-ray case. It is for this reason that the total external
reflection occurs for neutrons incident on the boundary in the
direction from a less dense medium to a denser medium, in
contrast to total internal reflection in the optical range.

The wave functions of the incident waves can be
represented on the surface of the medium as

exp (ikyx) and exp [i(ky + Aky)x].

Because the wavenumbers of these two waves are not the
same, the phases of the reflected waves corresponding to them
are also different. Therefore, the wave functions of the
reflected waves are

exp (ikyx +ip) and exp[i(ky + Aky)x +i(p + Ap)].

The phases ¢ and ¢ + Ag can be determined in a standard
way, by requiring the continuity of the wave functions and
their derivatives along the direction normal to the interface of
the two media. The waves interfere with each other, yielding a
combined reflected wave

¥ (x) = exp (ikux + i(p){l +exp [i(Akx + Ap)] } G

The condition for the maximum reflected intensity, i.e.,
the constructive interference requirement, is

Akyx + Ap =21y, (4)

where v is an integer.

If there is no TER, as is the case with neutrons with an
energy E, > U above the TER threshold, and absorption is
disregarded, the phase shift does not appear,i.e., A¢p = 0. The
maximum-intensity condition is represented in this case as
Ak,xy =2nv. By comparing the maximum interference
conditions in both cases, we can conclude that the phase
shift accompanying TER results in shifting the beam along
the x axis by £ = x — xo = —A¢@/Ak,. Taking the derivative,
we obtain the well-known formula derived by Artmann [3] for
the longitudinal GH shift:

__do
é——dkx. (5)

We have assumed that the wavenumber k, only changes as
a result of variation of the angle of incidence. Because
k* = k> + k? is invariable, we express the shift & in (5) in
terms of the derivative by the ‘normal energy’ E, in (2):

ik, do

¢= m dE, "’ (6)

The phase ¢ of the wave reflected from the potential U can
be derived in a standard way from the expression for the
reflected wave amplitude:

7k:_q:

) = (7)
where g. = y/k? — k? is the z-component of the neutron wave

vector in the medium and ky = v2mU/h is the boundary
(critical) value of the wavenumber. Equation (7) and the TER



954 V A Bushuev, A I Frank

Physics— Uspekhi 61 (10)

condition | r(k,)| = 1 yield

2\ E (U - E
@ = —arcsin (%), U>E,. (8)

Finally, from (6) and (8), we obtain
2k

ko JI2— k2

in complete agreement with the results in [49].!
We note a distinguishing feature of Eqn (6). The factor

<= k: <ky, ©)

do
t=hiE

(10)

that it contains is the well-known group delay time (GDT)
introduced by Eisenbud, Bohm, and Wigner [58-60] as a
measure of the interaction time in quantum mechanics.?
Therefore, Eqn (6) for the longitudinal GH shift can be
represented as

E=1V,, (11)
where V, = fik,/m is the longitudinal (directed along the
surface) component of neutron velocity.

The GDT in (10) can be identified, with some stipulations,
with the neutron reflection time. Agudin [50] was the first to
indicate a relation between the reflection time and the GH
longitudinal shift.

Equation (11) can be interpreted in simple physical terms.
The incident neutron beam enters the medium and reappears
on the surface (is reflected). For this, it needs some time 7 that
depends on the medium structure, the neutron energy, the
angle of incidence, etc. But because the wavenumber
component k, and the classical velocity V', associated with it
do not change on the interface between the media, the shift of
the reflected beam is determined by the time the neutron stays
in the medium. Equations (9) and (11) show that the time of
reflection from a potential barrier U is

B 2m _ h
ke Ji — k2 V(U= En)

T

(12)

A different approach to the GH effect, which is based on
the balance of fluxes for total internal reflection, was used by
Renard [6]. We consider the basic concepts of that theory as
applied to the reflection of a massive particle from a region
where the potential is nonzero.

When there is TER, the wave penetrates into the region
where the potential is nonzero and exponentially decreases
there. This means that the density of particles in the classically
forbidden region is finite and there is a corresponding flux of
particles directed parallel to the interface (Fig. 1). This
additional flux J!, which is a consequence of the partial
penetration of the wave through the interface, must be
compensated with a decrease in the flux in the region that
corresponds to geometric reflection of the initial beam.
Having calculated this excess flux, we can determine the

I Equation (9) coincides with Eqn (27) in [49] if the wavelength and angle of
incidence are replaced in the latter formula with wave vector components;
however, it differs from Eqn (1) in [49], which contains a typo.

2 For a long time, it was referred to as the phase-delay time.
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Figure 1. (Color online.) Illustration for the derivation of Eqn (18) for the
longitudinal shift using the flux balance method [6].

transverse shift d (see Fig. 1) and the corresponding shift &
along the interface.

In the region where the potential is nonzero, z > 0, the
wave function is given by

¥, (x,z) = texp (ikyx — yz2), (13)
where ¢ is the amplitude and y is the absolute value of the
imaginary-valued wave vector of the decreasing (evanescent)
wave,

2kz(szi\/’ﬁ)7 1= \e -k

t= (14)
ki
The flux along the interface inside the medium is?3
Jt= VxJ !'P,(x,z)!zdz. (15)
0
Substituting Eqns (13) and (14) in (15), we obtain
2h ky k?
Jl==— - Z (16)

The flux densities of the incident and reflected waves
outside the overlap region can be presented as ji =" =
Tikg/m = Vy, where ko = \/kZ + kZ. Equating the reflected
wave flux J* = dj* in a strip with a width d to the flux inside
matter J! in (16), we find the beam shift d in the direction
perpendicular to the direction of the reflected wave propaga-
tion (see Fig. 1):

g ke 2K
 kok? '
0%\ ki — k2

Because the shift along the surface is & = (ko/k.)d, we obtain
the Renard formula [6] for the GH shift:

2k k.

SNEE

Equation (18) differs from Artmann—Carter—Hora for-
mula (9) and is not in line with the understanding of the
relation between the GH shift & in (11) and the GDT t; this
circumstance, however, did not prevent this result from
becoming widely acknowledged. Shortly afterwards, this
result was confirmed by Lotsch [7]. The authors of [52] used

(17)

{= (18)

3 Given the 2D nature of the problem, here and below the term ‘flux’ means
a flux in a unit-width strip along the y axis.
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Figure 2. (Color online.) Illustration for the derivation of Eqn (9) for a
longitudinal shift using the flux balance method with the flux in the wave
overlap region taken into account [15].

Eqn (18) to estimate the GH effect in the neutron experiments
they had proposed, while the authors of [54] compared their
experimental results to that formula.

The reason why the two physical approaches yielded
incompatible results remained unclear for a long time. It was
no less than 20 years after Renard’s study [6] that Yasumoto
and Oishi [15] and Fedoseyev [17] published papers where the
paradox was resolved. The point is that Renard’s approach [6]
assumes that the total reflection only differs from the ideal
geometric reflection by the presence of a flux of evanescent
waves in the medium. The author overlooked the fact that due
to a nonzero phase difference between the incident and
reflected waves, the flux is also distorted in regions where
those waves overlap (Fig. 2), while in Artmann’s approach [3],
as was shown above, the GH effect is caused by the phase shift
that occurs for total reflection.

We show, following [15], how taking this circumstance
into account affects the result. In the region where the
incident and reflected waves overlap, the wave function is

P (x,z) = exp [i(kyx + k-2)] + rexp [i(kex — k2z)] . (19)

In the case of TER from a potential barrier and the absence of
absorption, the reflected-wave amplitude is r = exp (ip),
where the phase ¢ follows from Eqn (8).

Calculation of the flux density ji'(z) = Vy|¥"(x,z) ]2
along the x axis in the wave overlap region under considera-
tion yields

7i(z) = 2V [1 + cos (2k.z — ¢)] . (20)
To calculate the flux J', this density must be integrated over
the entire region where the beams overlap (see Fig. 2).
Following the approach of Yasumoto and Oishi [15], we
assume that the base of the triangular region where the beams
overlap is limited by the points x = —L and x = L, while the
profile height n(x) = (]x| — L)k-/k, of this region depends on
the current coordinate x (—L < x < L):

il (J:(X)ji%z) a:) dx] |

The first integration over the coordinate z in (21) yields
0
| sreya:
n(x)
1 r. .
=2 Vx{n(x) +5 [sm (2k-n(x) — @) + sin q)} } (22)

JY = lim
- L—oo

21

Subsequent integration over x of the first integrand in (22)
yields the flux Iy = VH, where H = (k./k,)L is the max-
imum height of the triangular region where the waves overlap.
This would be the value of the flux if the reflected wave had no
phase shift that emerges due to TER. The integral of the
second oscillating integrand in (22) vanishes if the interval
(=L, L) is extended to a size larger than the wavelength. The
remaining integral

. V. .
T == sing,

z

(23)

which is added to the flux Iy = VH, is the measure of the flux
distortion in the interference region of the overlapping beams
due to TER and the phase shift ¢ related to it.

Thus, the excess flux AJ due to the TER is a sum of the flux
J!in (16) of the wave evanescing in the potential region and
the flux Ji"t in (23) related to the interference of the incident
and reflected waves. Given formula (8) for the phase shift ¢,
we obtain

2hk,y

my [k} — k2
Using the condition AJ = dj" for the transverse beam shift
d=AJ/Vy, we find

2k,

ko/ ki — k2
Using this formula, we obtain the result (9) for the GH shift

Thus, the approach based on the balance of fluxes yields a
result that is exactly the same as in Artmann’s method [3].
Moreover, it enables the reflection time to be determined in a
somewhat different way [15]. Indeed, being finite, the
reflection time 7 results in an excess of neutrons N = AJ/Vy,
where the flux AJ is determined by Eqn (24). Having divided
N by the normal component of the incident flux density V-,
we obtain the reflection time in exactly the same form as
follows from (12).

Because the typical value of the effective potential U in
Eqn (1) is of the order of 100-250 neV and the total external
reflection is only possible if E, < U, Eqn (12) shows that
except for two narrow regions close to zero energy and the
threshold, the group delay time for reflected neutrons is
7~ 5-30 ns. For example, if the neutron velocity is
Ve~ 10 m s~! and the GDT is = ~ 10 ns, the longitudinal
GH shift is & ~ 100 nm.

AT =JL+ T = (24)

d= (25)

3. Giant positive and negative longitudinal shifts
of the reflected beam
in the plane-wave approximation

Direct observation of the neutron beam shift under TER is a
rather difficult task. The difficulty is due not only to the tiny
size of the effect but also to the absence of a point from which
that shift might be measured. In their pioneering experiments
[1, 2], Goos and Hénchen compared the position of a wave
beam that exhibited internal reflection with the position of a
beam reflected from a metal film. It was assumed that if the
beam is reflected from metal, no wave shift occurs; however,
this assumption is not quite true [25]. It is difficult to design
such a ‘zero experiment’ for neutron beams. It was proposed
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in[51, 52] to compare the actual position of the beam with the
calculated one, and in [52], to measure the phase of the
reflected wave using a neutron interferometer. However, the
phase shift of the reflected wave and the effect of the
longitudinal shift are physically different, even if closely
related phenomena. Therefore, it is not quite correct to
interpret the visual manifestation of the phase effects for
bounced neutrons found in [54] as an observation of the GH
shift (see the discussion in [55, 56]).

To resolve the problem, it was proposed in [57] to
implement the idea of resonant enhancement of the shift for
waves reflected from multilayer structures; Tamir and
Bertoni [61] were the first to propose it for light beams. The
problem was studied later theoretically in [62—64], and a large
shift for the waves reflected from a multilayer waveguide
structure was observed in [65, 66]. A similar proposal applied
to neutrons was considered from a somewhat different
standpoint in [53].

The conditions for the waveguide-type propagation of a
neutron flux along the medium boundary seem to hold for a
vast variety of planar structures. The simplest structure of this
type consists of a homogeneous film with an effective
potential U; overlaying a substrate with a potential
U, > U;. The general expression for the amplitude of the
reflected wave r(E,) is given, for example, in [57]. It is obvious
that neutrons with the energy E, < U, exhibit total reflection
from that structure, and r = exp (ip). Having calculated the
reflected wave phase ¢ = arctan (Imr/Rer), we can easily
calculate the derivative d¢/dE, and GDT (10), which is
directly related to longitudinal shift (11). Figure 3 shows the
results of that calculation for a 90 nm thick silver film with the
effective potential U; = 91 neV on a nickel substrate with
U, =245 neV.

As follows from Fig. 3a, the GDT (curve /) in resonance
attains the maximum value 1, = 260 ns for the neutron
energy E, = 109 neV. We note, however, that GDT (12) for
the reflection from the potential U, in the absence of a film is
5.4 ns. The reflection phase (Fig. 3b) increases monotonically
as the energy increases, and hence its derivative is always
positive and t > 0. It follows from (11) that the longitudinal
shift of the reflected beam exhibits the same resonant growth
as the GDT.

There is another noticeable phenomenon that can be
observed in the reflection of neutrons from multilayer
structures. Under some conditions, the GDT and the long-
itudinal shift of the reflected beam can be negative. The
possibility that the GH shift for an optical beam might be
negative was indicated for the first time in study [61] cited
above. The negative shift of the optical beam and a negative
GDT have been explored in numerous theoretical [61-67] and
experimental [72-75] studies. There are sufficiently many
objects and media for which the reflected beam has a
negative shift; in some cases, it is indeed generated by a flux
propagating in the negative direction (see, e.g., [72]). A
detailed review of corresponding publications is beyond the
scope of this paper, and we only consider the reflection of
neutrons from the multilayer planar structure that was
mentioned above.

We study the simplest structure of that kind: a uniform
film covering a substrate. We consider the case where the
hierarchy of the potentials is reversed, i.e., the potential U; of
the film is larger than the potential U, of the substrate. The
effective potential representing this structure has the shape of
an asymmetric barrier. The coefficient of reflection from that
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Figure 3. Group delay time (curve /), reflection coefficient (curve 2), and
phase (curve 3) for neutrons reflected from a silver film with thickness
/ = 90 nm on a nickel substrate. The inset shows the potential U(z) of that
sample. The GDT attains the maximum 7, = 260 ns for the neutron
energy £, = 109 neV.

barrier R(E,) = |r(Ey)|* can easily be calculated. Above the
barrier, i.e., for the energy E, > Uj, it is oscillating and
rapidly decreasing. The group time for the wave reflection
from an asymmetric potential barrier was found in [76]. The
study showed that at transmission resonances, i.e., at the
reflection curve minima, the group reflection time is negative.
According to (11), the reflected beam must exhibit a negative
spatial shift under those conditions.

Figure 4a shows the calculated GDT (curve ) and the
neutron reflection coefficient (curve 2) for a 100 nm thick
nickel film overlaying a silver substrate. It can be seen that
the group time attains large negative values at the minima
of reflection curve 2 (1, = —541 ns for the energy E, =
265 neV). The reflection phase (Fig. 4b) is oscillating and
contains segments where its derivative and hence the GDT
are negative. Although the reflection coefficient is not
large, we can expect that the manifestations of that
negative time and negative longitudinal shift of the beam
can be measurable.

The variety of possible multilayer structures that have a
negative GDT is rather broad. Owing to this, one can choose
the optimal relation between the absolute value of the delay
time and the intensity of the reflected beam.

As an example, calculations for a three-layer structure
whose effective potential is given by two barriers of unequal
width and a well separating them were reported in [57]. An
analytic solution for the reflection and transmission ampli-
tudes for that structure was found in [77], and the tunneling of
particles through a double-peaked barrier was studied in [78].
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Figure 4. Group delay time (curve /), reflection coefficient (curve 2), and
phase (curve 3) for neutrons reflected from an asymmetric barrier created
by a thin nickel film with thickness / = 100 nm on a silver substrate. The
inset shows the potential U(z) of that sample. The GDT attains the

The structure considered in [57] consisted of Ni—Ti—Ni
films with the respective thicknesses 23, 13, and 33 nm. The
calculated phase of the reflected wave and the neutron delay
time are shown in Fig. 5. It is noteworthy that the results
strongly depend on the direction in which the wave is
incident on that structure. If the wave propagates from the
side of the thinner barrier, the reflection phase monotoni-
cally increases (Fig. 5c), and therefore the GDT is positive,
attaining the value 1, = 377 ns (Fig. 5a, curve [). If the
wave propagates from the opposite direction, the GDT is
negative (t,, = —80 ns; Fig. 5b, curve 7). The reflection
phase has in this case an S-like shape (Fig. 5d) with a
negative derivative close to the energy E, ~ 144 neV. At the
same time, the absolute values of the reflection and
transmission coefficients (with absorption ignored) are
independent of the direction of propagation. The reflection
coefficient at the resonance is about 40%, and the absolute
value of the negative GDT is in this case about five times
smaller than in the preceding case.

Thus, a simple calculation for a number of planar
resonance structures shows that the group delay time can
be negative. We recall that in the case of TER, the
reflected wave shift and the GDT proportional to it are
related to the neutron flux along the interface of the media.
However, the flux propagating in the negative direction is
not traceable in the examples discussed above. Therefore,
the phenomenon or paradox of a negative GDT for
neutrons and the negative GH effect requires an explana-
tion.

We emphasize that the results discussed above have been
obtained in the approximation of plane waves, which are
infinite by definition. This problem therefore requires a more

negative value 7, = —541 ns for the neutron energy E, = 265 neV. e X .
accurate study, which is presented in Section 4.
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Figure 5. (a, b) Group delay time (curves /), reflection coefficient (curves 2) and (c, d) reflection phase (curves 3) for an asymmetric structure consisting of
two barriers and a well between them. The shape of the potential and wave propagation direction are shown in the inset; the resonance corresponds to the
neutron energy E, ~ 144 neV; the GDT is 1, ~ 377 nsin (a) and 1, =& —80 ns in (b).
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4. Goos—Hanchen shift
and the time of reflection
of a bounded neutron beam from matter

4.1 General relations

In this section, we study the reflection of a monochromatic
spatially bounded and stationary neutron beam from the
interface between a vacuum and an arbitrary structure.

We consider the neutrons incident on a medium at a
glancing angle 0. The projections of the wave vector k, are
kox = ko cos 0 and k(. = k¢ sin 0, where the x axis is directed,
as before, along the interface and the z axis is perpendicular to
the interface and directed into the medium.

We assume that the beam is formed using a set of slits,
whose boundaries are not necessarily sharp. The wave
function of the neutron beam incident on the medium can be
represented as

Win(r) = Ain(r) exp (ikor) , (26)
where A;,(r) is generically a slowly varying complex-valued
amplitude of the beam with a characteristic transverse size
ro > Ag. At the interface z = 0, we have

Yin(x) = Ain(x) exp (ikoyX) . (27)

To solve the problem of beam reflection, we use the plane-
wave expansion method, well known in wave optics (see, e.g.,
[79]). We represent the wave function amplitude Aj,(x) in (27)
on the surface as a Fourier integral

Mm:r

—00

Ain(g) exp (igx) dg., (28)
where spectral-angular components (amplitudes) are given
by the inverse Fourier transformation:

Ain(x) exp (—igx) dx.

anle) =52 | 29)

—o0

Substituting (28) in (27), we obtain an expression for the wave
function ¥j,(x) on the surface:

Yin(x) = J

00

Ain(q) exp [i(kox + ¢)x] dg . (30)

—0Q

The last equation can be interpreted as an infinite set of plane
waves with amplitudes A4;, (¢) and projections of wave vectors

ke =kox+q, k. =1\/k2— (kox+q)*. (31)

Equation (31) shows that the boundedness of the beam
results in distributions of wave vector projections in both
longitudinal and transverse directions. The function Ai,(q)
attains a maximum at ¢ = 0 and decreases as ¢ increases. The
width of this function is Ag ~ 1/r¢, and hence the angular
spectrum width diminishes if the cross section of the beam
increases.

To find the amplitude of the reflected beam AR (x) on the
surface z = 0, we multiply the amplitude of each plane wave
that forms the incident beam by the corresponding amplitude
reflection coefficient r(k,). As a result, we obtain

Ain(q)r(kox + q) exp (igx) dg .

—00

Aumzj (32)

Equation (32) shows that the reflected beam shifts along the
x axis with respect to the incident beam, and its shape differs
from the original profile 4, (x).

The validity of the first conclusion can be easily illustrated
in the following way. We represent the amplitude reflection
coefficient r(k,) in the form

r(kox + q) = |r(kox + q)| exp [ip(kox + q)] , (33)
where ¢(koy + ¢) is the phase of the amplitude reflection
coefficient of the plane wave with the wave vector projection
ki = kox +¢q. We also assume that within the angular
spectrum width Ag, the variation in the absolute value of the
reflection coefficient is negligible, i.e., |r(kox + q)| ~~ ‘r(kox) |
We expand the reflection coefficient phase in a Taylor series
and keep the first two terms:

do
dk,

(ko + q) = @(kox) + q- (34)

Substituting (34) in (32) with the conclusion regarding the
absolute value of the reflection coefficient taken into account
yields the result

AR(’C) = |r(k0x)| exXp [l@(kov)]

o0 . do
X LC Ain(q) exp {lq (x + d—,ﬂ)] dg.

Using Eqn (28) for A4j, (x), we obtain the absolute value of the
plane wave amplitude

(35)

| AR (x)] = |r(kox)| |Ain(x = &), (36)
where
g0 (37)

dk,

Thus, Eqn (36) shows that within the adopted approxima-
tions and according to the conclusions drawn above, the
beam shifts as a whole along the interface by the quantity & in
Eqn (37); its shape (profile) remains the same as that of the
incident beam, and its amplitude is multiplied by a constant
factor, the absolute value of the amplitude reflection coeftfi-
cient |r(koy)|-

Two important comments are relevant here. First, the
value of the longitudinal shift is determined by the derivative
of the reflection coefficient phase r(k,) rather than the
derivative of the reflected beam phase, which can in general
depend on the phase distribution in the incident beam. This
circumstance is ignored in the plane-wave approximation.
Second, the conclusion that the beam profile does not change
originates from approximation (34) made above. If the next
terms in expansion (34) are taken into account and, moreover,
integral (32) is calculated more accurately, this conclusion is
longer valid [11, 36, 46, 47, 79].

4.2 Reflection of a Gauss beam

with a quadratic phase dependence

In studying the reflection of a beam from an interface, it is not
infrequent that the amplitude Aj,(x) is assumed to be real-
valued and to have the form of a rectangular step (4, (x) =1
for |x| < ro and Aiy(x) = 0 for |x| > r¢) or a Gaussian beam
with the profile A, (x) = exp (—x2/2r¢). It is easy to show
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that the Fourier amplitudes 4j,(g) in (29) are then symmetric
real-valued functions.

However, in the case of both a slit and a Gaussian
beam, the wave amplitude A(x) at an arbitrary distance z
from the source typically has complex values, and the
phase of that amplitude has a quadratic dependence on
the transverse coordinate x. This can be shown in the
simplest way using the Green’s function for free space
G(x,z) = (1/R)exp (ikoR), where R = v/x? + z2. At a suffi-
ciently long distance z > x, the wave phase is kgR ~
koz + kox?/(2z), where the first term is the plane-wave
phase and the second term, which is quadratic in the
transverse coordinate x, describes the parabolic wave-front
curving, i.e., the well-known phenomenon of the angular
divergence of radiation.

We support these qualitative conclusions with an accurate
calculation for the Gaussian beam, for which simple analytic
expressions can be derived.

We assume that in the plane z = 0 we have a wave function
with a real-valued amplitude A(x,0) = exp [-x2/(2r2)]. The
solution of the wave equation AY + k3% = 0 in a vacuum in
an arbitrary plane z has the general form

¥(x,z) = Eo A(q) exp (iqx +iy/k2 - qzz) dg, (39

where, according to (29),

o )

A(q) W exp < > )
In the paraxial approximation ¢ < kg, the expansion
(k3 — ¢*)"* = ko — ¢*/(2ko) holds. From (38) and (39), we
then obtain the wave function at the observation point
Y(x,z) = A(x,z)exp (ikoz), where the amplitude varies
slowly and is given by

(39)

A(x,z) = (40)

1 x2
——exp | —=— +ip(x,z) | .
0D p< 2 o( ))

Here, D = Jgz/(mr§) is the so-called wave parameter [79],
while the characteristic beam size r(z), which exhibits
diffraction broadening as the distance z increases, and the
phase ¢(x, z) are defined as

D x?
¢(x,z) =

= 1+ D2 = .
}"1(2) ro + ) 1+D2 21"02

(41)

Finally, we obtain a generalized form of the complex-
valued amplitude of the Gaussian beam:

x2

A(x) = exp {—;2(1 — ioco)} , (42)
2rg

where oy is a dimensionless parameter of the quadratic phase
on a plane that can be considered the radiation source plane.
From Eqns (29) and (42), we obtain that the Fourier
amplitude of such a beam is independent of the distance z
from the source, is a complex-valued function (for o # 0),
and is given by [cf. Eqn (39)]

A(q) 0 e 4°r; (1 +iog)|. (43)
=—————¢eXp |- ¢ o
V= ol —iag) T L 201+ a) "

The spectrum S(g) of that beam in the conjugatg space,
ie., the space of wave vectors, is S(g) = |A(q)|". It is

proportional to exp(—q?/Aq?), where Aq = (1/r¢)x
(1+ad)"? is the spectrum half-width at the ¢! level. The
angular spectrum width A0 = Aq/k, can be presented as

_ % 2
A = 2 I +og. (44)
It is determined by both the diffraction width 2¢/(2mr),
which depends on the relation between the wavelength and
the beam size on the initial plane z = 0, and the quadratic
phase parameter o, which is determined by the prehistory of
beam formation in the region z < 0.

In this section, we considered a plane that is perpendicular
to the beam propagation along the z axis. If the beam is
incident on the interface at a glancing angle, this can be taken
into account by replacing the characteristic size of the beam r
in the equations above with ro, = ry/ sin 0.

4.3 Reflection of neutron pulses of finite duration
We consider the important problem of the time delay of
reflected neutron pulses in more detail. The most straightfor-
ward approach is to analyze time relations for a finite-
duration neutron pulse reflected from a medium. Tempora-
rily ignoring the longitudinal shift of the beam, we consider
the simplest case of an incident neutron pulse that is not
bounded in the transverse direction (a wave packet) and has a
wave function Aj,(z,7), where z is the axis directed into the
medium and ¢ is the time. The problem is to find the wave
function Ag(z, ) of the reflected pulse.

We represent the wave function of the incident pulse in the
z =0 plane as

Ain(l) = AO(I) eXp (—iwol) ) (45)
where A4y(7) is the pulse envelope and wy is the so-called
central frequency, which is standardly related to the central
energy Ey = hw,, the velocity ¥V = (2hw0/m)1/2, and the
wave number ko = (2mwo/h)"/?. The intensity of the incident
pulse is fiy (1) = ‘Ao(z) |2. It is obvious that in forming a pulse
of finite duration, we automatically assume that the incident
state is characterized by an energy spectrum. Representation
(45) for the pulse is valid if towy > 1, where 1y is the
characteristic duration of the pulse with a slowly varying

amplitude Ay(7).
We decompose wave function (45) in a Fourier integral,
Ain(1) = J A () exp (—iot) do, (46)
—00

where the so-called spectral amplitudes (and, below, the
spectrum) are determined by the inverse Fourier transforma-
tion:

Ain(w) = 49(Q) = LJOC Ay(t) exp (1Q1) dt , (47)

2n

where Q = v — wy.
Let r(w) be the amplitude reflection coefficient of a plane
monochromatic wave with a frequency w, which is complex in
general. The amplitude (envelope) of the wave function of the
pulse reflected in the plane z = 0 is described by the simple
equation
Ar(t) = J Ao(Q)r(wo + Q) exp (—iQ1)dQ.

—00

(48)
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Figure 6. Amplitude and time relations between the intensities of incident (curves /) and reflected (curves 2) neutron pulses. (a) Total reflection, incident
pulse duration 7y = 330 ns (AE = 2 neV), reflected pulse shift Az = 234 ns, GDT 71, = 260 ns. Over-barrier resonant reflection for (b) the incident pulse
durations g = 660 ns (AE = 1 neV), At = =316 ns, 7, = —541 ns and (¢c) 19 = 165 ns (AE = 4 neV), At = =74 ns, 1, = —541 ns.

Equation (48) is a solution of the problem of pulse reflection
from any structure that is characterized by the spectral
reflection coefficient r(w). The intensity of the reflected
pulse is Ig (1) = [Ag (1)]*.

We note that the reflection coefficient r, which is
determined from the requirement of the continuity of the
wave function and its first derivative along the coordinate z at
the interfaces, is frequently expressed in neutron optics as a
function of the normal projection of the incident wave vector
k..* However, we can easily replace k. with the corresponding
‘normal’ frequencies w, using the relation w, = fik?/(2m).

We represent the amplitude reflection coefficient r(w) in
the form

r(w) (49)

()| exp (ip(w))
and consider the case where the absolute value of the
reflection coefficient varies weakly within the limits of the
incident pulse energy spectrum. We can then set
|r(w)] ~ |r(wo)| and take this factor outside the integral
in (48). We expand the phase ¢(wo+ Q) of the reflection
coefficient in a series in the frequency Q:

0(0) = plon) + ¢/ (o0)2 + 3 " (00)0?, (50)

where ¢'(wo) = (dp/dw)|,, is the first derivative of the phase
of the amplitude reflection coefficient and ¢” is its second
derivative. For comparison with previous results for the
longitudinal GH shift, we keep only the first-order term in Q
and insert (50) into (48). We then obtain

(o) = o] exp [ig(on)] | Ao(@)exp [i0(e — 1] a0,

(51)
where the time shift
do
_ 49 52
H do o (52)

coincides with the definition of the GDT in (10).

4 1t is only possible if Eqn (1) and the corresponding dispersion law
k* = k3 — k& are valid.

In comparing (51) and (46), we see that the envelope of the
reflected pulse, up to an insignificant phase, is the incident
pulse envelope, but is time shifted by a ‘delay time’ 7, Eqn (52),
and multiplied by the absolute value of the reflection
coefficient at the frequency wy:

|[AR(1)] = |r(wo)] [Ao(r —7)|. (53)

If the derivative with respect to the phase in (52) is
positive, the pulse is reflected with some time delay. This
phenomenon seems to be quite natural, because the pulse
needs some time to propagate in direct and inverse directions
in the medium.

If the derivative is negative, we obtain a physically
impossible result: the pulse is reflected (or reflection begins)
even before the incident pulse reaches the surface of the
medium. We have shown above that the situation with a
negative-valued derivative (10) is observed in many cases.

This paradox apparently occurs because general for-
mula (48) is oversimplified as a result of expansion of the
phase in series (50). We recall that the GDT concept was
introduced in the classical work of Bohm and Wigner [59,
60], where they considered an example of single scattering
of an incident quantum particle on another particle. If a
wave is reflected from a macroscopic object, the effect of
collective interaction of incident radiation with the med-
ium has to be taken into account; this effect results, in
particular, in a more complex energy dependence of the
reflection phase. Therefore, the equation for GDT (10) is
nothing more than a guiding estimate, and, to obtain the
correct result, the spectral dependences of the functions
Ay(Q2) and r(w) in the integrand in (48) must be accurately
taken into account.

Figures 6 and 7 show calculations of integral (48) for the
reflection of neutrons from planar structures similar to those
considered above. It was assumed in the calculations that
incident pulse (45) has a Gaussian shape:

t? )
2 )

275

where 7 is the pulse duration. The zero-time reference was

chosen in such a way that the pulse maximum at =0
corresponds to the maximum on the medium surface z = 0.

Ao(t) = exp <— (54)
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Figure 7. Amplitude and time relations between the intensities of incident (curves /) and reflected (curves 2) neutron pulses for an asymmetric three-layer
structure Ni(23 nm)/Ti(13 nm)/Ni(33 nm). The resonance energy of neutrons is £, = 144 neV; (a) incident pulse duration 7y = 165 ns (AE = 4 neV),
reflected pulse shift Az = 227 ns, ideal GDT 1, = 377 ns; (b) 79 = 165 ns, At = —21 ns, 7, = —80 ns; (¢) 79 = 660 ns (AE = 1 neV), At = —66 ns,

Tm = —80 ns.

The following formula is then valid for the frequency
spectrum determined by integral (47):

Ao(Q) (55)

1 2
=——exXp|—,
AQV2T P ( 2A92)

where AQ = 1/ is the pulse spectrum width determined by
its duration to. This model apparently assumes that the pulse
is fully coherent, i.e., is a statistically nonrandom regular
wave packet. This model is well suited for explaining the
physics of the phenomenon, but it can hardly be used to
correctly describe results of a real experiment.

Figure 6a shows the shape and relative position of the
incident (curve /) and reflected (curve 2) pulses for a wave
reflected from a planar structure consisting of a thin silver
film on a nickel substrate. The parameters of the structure are
the same as those in the caption to Fig. 3. The neutron energy
E, =109 neV is smaller than the effective potential of the
substrate Uy; = 245 neV (the case of TER), and the pulse
duration is 79 = 330 ns, which corresponds to the energy
spectrum width AE = 2 neV. We can see that the maximum of
the reflected wave packet (curve 2) is shifted to the right by
At = 234 ns, in correspondence to the real time delay. This
value is close to the maximum GDT value 7, = 260 ns
obtained in plane-wave approximation (10) (see Section 2).

Figures 6b and 6¢ show the time transformation of the
pulse for resonant reflection of neutrons with the energy
E, = 265neV above the asymmetric barrier for two durations
of the incident pulse (the structure parameters are given in
Fig. 4). For the pulse duration 7y = 660 ns and the energy
spectrum width AE = 1 neV, the peak of the reflected pulse
indeed shifts to the left by Az = —316 ns (Fig. 6b, curve 2).
This corresponds to a negative real-valued group time of
about half of the limit GDT value 1, = —541 ns obtained in
the plane-wave approximation. If the incident pulse duration
diminishes to 19 = 165 ns (the spectrum width AE = 4 neV),
the shift of the maximum in the time distribution of the
reflected pulse diminishes to At = —74 ns (Fig. 6¢, curve 2).
An increase in the spectrum width by a factor of four
corresponds in this case to a larger width of the function
Ay (Q) in the background of a dip in the reflection coefficient
r(w) in integral (48) and on curve 2 in Fig. 4a; as a result, the

overall intensity of the reflected pulse also increases by
approximately a factor of four. We also note that the
reflected pulse now has a double-peak shape.

Figure 6 shows that the definition of a negative GDT is to
some extent formal. The peak of the reflected packet actually
comes somewhat earlier than the peak of the incident wave
package, but there is no contradiction whatsoever between
this phenomenon and the causality principle. The negative
time is a consequence of different shapes of the incident and
reflected pulses, which occurs because in addition to reflecting
waves, the structure also transmits them, and this phenom-
enon is strongly energy dependent.

Similar results have also been obtained for an asymmetric
three-layer structure (Fig. 7) (the structure parameters are
given in the caption to Fig. 5). Figure 7a shows the relation
between the shape and positions of the incident and reflected
pulses for incident waves coming from the side of a narrower
barrier. The energy spectrum of the transmission through the
three-layer structure has the maximum at the energy
E, =~ 144 neV (see Fig. 5). For a wave packet whose duration
is 79 = 165 ns, the spectrum width is AE = 4 neV, and the
maximum is located at 144 neV, the delay time of the
maximum proved to be Ar=227 ns, a value that is
approximately 1.5 times smaller than the GDT value
Tm = 377 ns calculated using Eqn (10) in the plane-wave
approximation. An even more significant difference between
the results obtained for plane waves and a wave packet is
observed if the pulse comes from the side of a broader barrier
(Figs 7b,c) when the GDT is negative. For a pulse with the
energy width of 4 neV, this time is At = —21 ns (Fig. 7b,
curve 2). If the packet width is reduced to 1 neV, the negative
packet delay time Ar = —66 ns (Fig. 7c) differs less from the
ideal value 7, = —80 ns.

In this case as well, the negative value of the delay time
does not contradict the causality principle. The packet shift is
due to changes in its magnitude and shape, because part of the
flux is transmitted through the potential structure.

There is another method equivalent to the spectral
approach described above, which is based on decomposing
the wave function into plane waves. This method uses the
concept of a response function in the direct space . The
amplitude of the reflected wave can be represented in an
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integral form

t
Ar(t) = J G(t—1t")Ao(t")dt’, (56)
—0o0
which explicitly takes the causality principle into account:
t' < t. Here, G(7) is the response function, also referred to as
the point-like source (or Green’s) function because, for the
delta-shaped wave packet A4y(7) = o(t — 1), the reflected
signal is Ar () = G(t — tp). By comparing (56) and (48), we
can readily derive a relation between the response function
and the amplitude reflection coefficient:

G(1) ! Joc r(wg + Q) exp (—i1Q7) dQ. (57)

T n

—00

Formulas similar to Eqns (56) and (57), where the time 7 is
replaced with the coordinate x and the frequency detuning Q
with the difference in the x projections of the wave vectors
q = ky — koy, are also valid for the bounded monochromatic
beam considered in Section 4.1.

5. Prospects of experimental observation

5.1 Direct measurement of the Goos—Hanchen shift

We have shown in Section 4 that at resonance, the time 7 of
the delay from multilayer structures can have a positive or
negative value of the order of 100-500 ns. This observation
has been confirmed experimentally. The point is that if
thermal or cold neutrons are incident on a resonance
structure at a glancing angle, the beam shift in the waveguide
region ¢ = V1 attains macroscopic levels. Therefore, the
neutrons that entered the wave-guiding layer at distances
smaller than ¢ from the farther end of the sample can leave it
not by tunneling through external layers but directly via the
butt end of the sample. Such radiation was recorded in
experiments [80-82]. GH-type experiments usually measure
the reflected beam shift rather than the longitudinal shift
¢ = V.1, the former being proportional to the latter and
having the value d = (V./Vy)¢ in the transverse direction
(see Fig. 1). Substituting formula (11) for & and the formula
for the total velocity V) in the last relation, we obtain

ViV,
=—— = 1tx=V.1

Because total (or almost total) reflection is usually
considered, the neutron velocity V. normal to the medium
surface is of the order of several meters per second. For this
reason, the inequality in (58) holds well for all neutrons except
the slowest (ultracold) ones. The transverse shift then depends
on the normal velocity V', alone. Under the conditions of TER
from a homogeneous medium, the beam shift is d=
V.1 ~ 10—50 nm, a value that can hardly be measured.

Applying multilayer structures allows using a resonant
enhancement of the GDT and the beam shift proportional to
it. The value of the transverse shift can be aslarge as 1 pm, and
hence the corresponding experiments are feasible. The
resonant behavior of the effect enables resolving another
significant problem. The shift is small everywhere except a
narrow resonance region, and the position of the beam
outside the resonance can be taken as a reference from
which the relatively large resonance shift is to be measured.

It is natural to assume that the experiment can be
carried out using a reflectometer operating in the time-of-

V. < Vy. (58)

flight mode [57]. In this configuration, a narrow neutron
beam is incident on the sample at a fixed glancing angle 0,
and the normal component of the wave vector k.(f) =
ko(?) sin 0 depends on the time of flight. Thus, the reflected
beam shifts from the reference position in only a narrow
and well-known range of time-of-flight values.

5.2 Measuring the group delay time

Direct and correct measurement of the GDT for reflected
neutron pulses does not seem to be feasible. A direct
experiment is possible in optics owing to the availability of a
femtosecond light source [83, 84], while sufficiently short
neutron pulses cannot be produced.

The feasibility of the experiment can be discussed based
on the observation of the interference of the reference wave
with a wave packet delayed by a time Ar as a result of
interaction with a resonant structure. As a result, it is shifted
along the direction of propagation by a Ax = (ik/m)At,
which corresponds to the phase change Ap = kAx (here, k is
the total wavenumber, which is quite close to k., however).
Such an experiment is feasible in principle using an inter-
ferometer that is intended for long-wave, so-called cold,
neutrons [85-87]. However, the correctness of the experi-
ment is based on an assumption that is far from obvious: that
the spectral composition of the packet does not change as a
result of interaction.

The same assumption underlies another method for
measuring the interaction time, named the Larmor clock.
This method originates from Baz’s proposal [88] to use that
clock as a theoretical technique for calculating the time
during which a particle interacts with a 3D potential. Baz’s
idea is briefly as follows.

We assume that in a sphere of radius R containing a region
where the potential is effective, there is an infinitely small
magnetic field B directed along the z axis. If a spin-1/2
particle directed along the x axis enters this sphere, its spin
starts rotating with the Larmor frequency wr, = 2uB/h. Due
to this, the spin of the particle that was scattered and left the
sphere is rotated by an angle 6. This angle can be calculated to
yield the average time At (E) = 6/wp during which the
particle stayed in the magnetic-field region. It is apparent
that to determine the proper interaction time 7 in this way, the
time Az must be diminished by the time needed for the
particle to fly through a sphere of radius R in the absence of
the potential.

It can easily be shown that the Larmor time Afp
determined in this way is closely related to the GDT [89].
Indeed, the Larmor precession angle 0 can be identified with
the phase difference Ap of the two wave functions that
correspond to two spin projection values on the z axis and
differ by the wavenumber values:

B\ 12
ke :k0<1 i%) 7

where k) is the wavenumber of the neutron in the absence of a
field, p is the magnetic moment, and B is the magnetic
induction. Having determined the time A# (E) = Ag/wr
following [88] and taking into account that 2uB = AE, we
obtain the relation Aty = ii(Ap/AE), which coincides in the
limit B — 0 with Eqns (10) and (52).

We note that this conclusion does not involve the
nonobvious assumption that the precession frequency wp
remains constant in the process of interaction: in considering

R

3, (59)
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the problem of a nonadiabatic entry of a particle into a
magnetic field region, we can only use such terms as the
difference in wavenumbers k. and the phase difference
Ap(z) = (ks — k_)z. In the case of free translational motion
of a particle in a magnetic field region, the precession angle
can be expressed in terms of the Larmor frequency
0(L) = wp(L/V), where the distance L is measured from the
region boundary. Thus, the precession angle depends only on
the coordinate and not on time, and the concept of frequency
does not reflect the physical nature of the phenomenon.

If a particle interacts with a potential, any attempt to trace
its coordinate is absolutely incorrect. Thus, the statement
repeatedly made in publications that the Larmor clock
method is based on using the Larmor frequency as a
universal time standard is not quite true, although this
circumstance does not cast doubt on the conclusion about
the relation between the Larmor time and the group time
introduced by Bohm and Wigner. The difficulty described
above can easily be removed if we instead compare the
precession angles of the particles that passed through a
magnetic field region with and without a potential.

Baz’s idea [88] proved to be very fruitful, at least if used as
a theoretical technique. Rybachenko [90] applied that idea to
calculate the time during which a particle tunnels through a
potential barrier.

The concept of Larmor time is present in many theoretical
studies that focus primarily on the tunneling time problem
(see, e.g., reviews [91, 92]). It was shown at the same time that
the method is not free from some intrinsic problems. One of
them is the necessity to take the emergence of polarization
along the z axis into account [93], which is due to the energy
dependence of the transmission and reflection amplitudes of
the object under study, reflection and interference of waves on
the interface between the regions with and without a
potential, and a number of other reasons.

The Larmor clock method has been used in neutron optics
to measure the delay time caused by refraction, reflection
from a multilayer structure, and tunneling in a quasi-bound-
state resonance [89, 94-96]. Experiments used a spin-echo
spectrometer [97, 98] that contained two solenoids tuned such
that if the neutron velocity did not change, the large spin
precession angle that occurred when the neutron passed
through a solenoid was fully compensated in passing through
the other solenoid. The sample under study was placed into a
solenoid such that the total precession angle was determined
by the phase difference of the two spin components that
emerged as a result of the interaction with the sample. The
precession phase in the beam that passed through the sample
was compared with that of the reference beam. Possible
transformation of the spectrum as a result of interaction
with the object was ignored. Although the results obtained
have a semi-quantitative character, they satisfactorily agree
with theoretical estimates. The sensitivity of time measure-
ment was about 0.5 ns, almost an order of magnitude smaller
than the GDT in TER.

Given the limitations described above, this method also
seems to be applicable to measuring the positive and negative
time of reflection from multilayer structures.

6. Conclusions

The well-known GH effect was discussed in this paper from
the standpoint of the reflection of neutrons from matter. The
longitudinal shift of the reflected beam was shown to be

determined in all cases by the product of the longitudinal
velocity of the neutron and the GDT. If neutrons exhibit
TER, this shift is rather small and can hardly be detected. But
in the case of reflection from planar multilayer structures, the
shift effect can be enhanced in a resonant way, and, under
certain conditions, the GDT and longitudinal shift can be
negative. We stress that the equations that determine the
GDT follow from an approximate analysis, and the concept
of the GDT per se is nothing but an estimate of the reflection
time.

A more correct analysis of the wave packet transforma-
tion for reflection from a resonant structure allows conclud-
ing that the negative time shift is due to a change in the time
pulse shape and does not contradict the causality principle.

This conclusion, however, does not compromise the
feasibility of both the experimental observation of positive
and negative shifts of neutron beams under reflection and the
direct measurement of the reflection time. The use of resonant
structures in both cases offers new experimental approaches.
It was proposed to use a time-of-flight neutron reflectometer
to measure the GH shift. As regards the direct measurement
of the neutron reflection time, the conceptual possibility to
measure the GDT of the reflected beam has already been
demonstrated in neutron experiments with the Larmor clock.
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