
Abstract. The anomalously strong amplitude dependence of the
second sound wave velocity allows experimentally studying the
behavior of nonlinear waves in a linearly dispersive medium, the
processes of energy transformation from single-frequency har-
monic pumping into the high-frequency dissipation edge of the
spectrum, and the formation and decay dynamics of direct and
inverse energy cascades.
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1. Introduction

As is well known, motions in liquids and gases can be divided
by their type into two sharply distinct classes: quiet and
smooth flows, called laminar, characterized by predictable
behavior and allowing an exact description, and their
opposite, turbulent flows, showing disordered pulsations in
the velocity, pressure, temperature, and other hydrodynamic
quantities, varying unpredictably in time and space [1, 2].
Turbulence is presumably the most frequently encountered
phenomenon in the Universe. It occurs in strongly nonlinear
media with weak dissipation and many degrees of freedom

subject to large perturbations (deviations from their equili-
brium). An external action exceeding a threshold level can
drive a system away from equilibrium either entirely or partly.
Then either the perturbed state of the entire system or its
locally perturbed state returns to its equilibrium in the
presence of strong dissipation, or the perturbation propa-
gates into the neighboring parts of the system, disturbing their
equilibrium. As a result, an excitation wave propagates in the
medium.

Linear motions or linear waves obey the superposition
principle, according to which the propagation of waves
through each other without interaction cannot create unpre-
dictable behavior, i.e., turbulence. For wave interaction, it is
required that the waves be nonlinear or, if linear, then such
that they do not obey the superposition or additivity
principle: two interacting linear waves with small amplitudes
can create a nonlinear wave with characteristics different
from those of the linear wave. Of special interest are
mechanisms of energy exchange in intense nonlinear waves,
in particular, the energy transfer between the pumping and
dissipation intervals, influenced by wave dispersion and
dissipative processes. As a simple example, we consider
propagation and interaction of nonlinear waves in a medium
without dispersion, or with a linear dispersion relation

k � o ; �1�

where k is the wave vector magnitude and o the wave
frequency. The propagation of a nonlinear wave with
negligible dissipative processes was analyzed by Riemann [3]
for an equation with the canonical form

ut � uux � 0 : �2�

Here, u is a variable characterizing wave motion, typically the
wave amplitude. In (2), the effect of the medium on wave
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propagation, namely, the effect of viscosity and related wave
absorption, is disregarded.

An equation describing nonlinear behavior in a medium
with damping was first proposed by Bateman in 1915 [4];
later, Burgers proposed Eqn (3) as the simplest model of
hydrodynamic turbulence [5], clarifying many aspects of
model turbulence behavior in follow-up work [6, 7]. Solu-
tions of the Burgers equation correctly describe the propaga-
tion of nonlinear waves in media with a linear dispersion
relation, in particular, their steepening because of the
nonlinearity and dissipation through viscosity:

ut � uux � nuxx ; �3�
where the right-hand side describes viscous dissipation.

Theoretical aspects of nonlinear processes with a detailed
analysis of the Burgers equation are addressed in numerous
books and articles, including those in Physics±Uspekhi (see,
e.g., [8±17]). These studies thoroughly treat theoretical
questions of nonlinear wave dynamics taking the momentum
conservation and energy dissipation rate into account, as well
as the evolution of unipolar pulses and random saw-tooth
and periodic waves, including those in resonance conditions
in an acoustic resonator. Based on the Burgers equation, a
mathematical model has been proposed for the formation of
the large-scale structure of the Universe [18].

Experimental realizations of wave processes obeying the
Burgers equation are for the most part connected with large-
amplitude nonlinear acoustic waves, whose dispersion law is
close to linear. An extensive review of related works is given in
Ref. [19].

Studies of nonlinear effects in sound wave propagation
in air [20] and liquids [21±24] began in the middle of the
20th century. These experiments have shown that non-
linear properties of the medium play a notable role in the
propagation of even moderately intense sound waves,
contrary to a widespread opinion that nonlinearity is
unessential for wave propagation in liquids. The formation
of saw-tooth signals from a harmonic wave launched in a
waveguide and the interaction of two nonlinear waves passing
through each other were observed experimentally. Theoreti-
cal models were proposed and the experimental discovery was
made of parametric signal amplification by two interacting
acoustic waves [25±28].

An example of nonlinear waves in a medium with a linear
dispersion relation is provided by second sound waves
observed in experiments in superfluid helium, for which the
nonlinearity coefficient is exceptionally high. This allows
working with thermal waves, whose amplitude is small
compared to the ambient medium temperature (small
perturbations), while manifestations of nonlinear effects are
seen over distances of several centimeters from the source for
theMach numberM � u=c20 � 10ÿ4, where c20 is the speed of
small-amplitude waves; in contrast, in air, for analogous
nonlinear processes and similar Mach numbers, discontinu-
ities in a harmonicwavewith a frequency of 1 kHz formover a
distance of several kilometers [29]. Furthermore, for second
sound waves in superfluid helium, not only the magnitude of
the nonlinearity coefficient but also the nonlinearity sign can
be varied from negative to positive, which substantially
broadens the possibilities of experimental research on non-
linear waves described by the Burgers equation. In particular,
this allows studying the behavior of U and N waves for a
thermal pulse propagating in a three-dimensional geometry in
superfluid helium [30]. In a propagating bipolar wave (for

example, a sound wave with regions of compression and
rarefaction, or a second sound wave with regions of heating
and cooling), shock waves of compression and rarefaction
move apart for a positive nonlinearity coefficient. This is an
example of a U wave. For a negative nonlinearity coefficient,
the waves come closer and absorb one another; such waves
are referred to as N waves.

In one-dimensional geometry, a propagating rectangu-
lar pulse of second sound is transformed into a triangular
pulse with a discontinuity at the wave front or the trailing
edge, depending on the temperature (and nonlinearity
sign), and its amplitude decreases because of the nonlinear-
ity and weak dissipation. The shape of such wave forma-
tions is described fairly well by a self-similar solution of the
Burgers equation, determined by the acoustical Reynolds
number Reac [9, 17].

It is evident that as the triangular pulse propagates, its
amplitude and nonlinear dependence of the velocity decrease
owing to the increasing pulse duration, which reduces Reac.
Additionally, the signal decays because the medium is
nonideal and there is friction against the waveguide walls.
We note that for second sound waves propagating in super-
fluid helium, we can also vary the coefficient of inviscid
damping by introducing quantum vortices into the system in
a controlled way. This provides one more degree of freedom
for changing the conditions of acoustic wave propagation and
dissipation in carrying out experiments.

In this paper, we consider experimental manifestations
and theoretical results pertaining to the propagation of
weakly attenuating strongly nonlinear waves of second
sound in superfluid helium, a medium with a linear disper-
sion relation, using an example of a cylindrical resonator.
Such experiments allow studying energy fluxes in acoustic
turbulence and the processes of formation and decay for a
direct (toward higher frequencies with respect to the driving
frequency) and inverse (toward lower frequencies) energy
cascades in the simplest quasi-one-dimensional geometry.

2. Nonlinear waves of second sound
in superfluid helium

A peculiar feature of superfluid helium is the existence of two
components, normal and superfluid, whose independent
motions determine its unique properties. The ordered
motion of excitations entrains only a part of the fluid, its
normal component with a density rn. The remaining part, the
`superfluid' component with the density rs � rÿ rn, per-
forms independent potential motion. The presence of two
independent components of fluid motion gives rise to several
forms of weakly attenuating oscillations, including the first
and second sounds. For sound waves of density or pressure
(the first sound), the solutions are found from 1

q2r
qt 2
� Dp ; �4�

where p is the pressure. Equations of two-fluid hydrody-
namics contain one more solution: the waves of second sound
(thermal waves or entropy waves)

q2s
qt 2
� rs

rn
s 2DT ; �5�

1 We skip the details of the two-component fluid dynamics of superfluid

helium, which are thoroughly described, for example, in Ref. [31].
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where s is the entropy density. The second sound wave can be
described as a density wave in a gas of excitations for which
the pressure and density in real space do not change,

r � rn � rs � const or
qrn
qt
� ÿ qrs

qt
; �6�

j 0 � rnv
0
n � rsv

0
s � 0 ; �7�

where v 0n and v
0
s are velocity (or flux) variations of the normal

(n) and superfluid (s) components. In a second sound wave,
the normal and superfluid components move in opposite
directions, such that the total mass transport remains
unchanged.

For waves with small amplitudes (DT=T5 1 and
Dp=p5 1), because of the smallness of the thermal expansion
coefficient in helium-II [�qr=qT �p 5 1, which leads to
approximately equal specific heats Cp � CV], two waves (of
density and temperature, the waves of the first and second
sounds) can propagate with the speeds given by

c1 �
������
qp
qr

s
; �8�

c2 �
������������������
rss 2

rn

qT
qs

s
: �9�

A theoretical approach to detecting second sound was
proposed by Lifshitz [32]. It was discovered experimentally
by Peshkov [33, 34].

Taking the finite coefficient of thermal expansion in liquid
helium into account gives rise to a coupling between the first
and second sound waves, which increases in approaching the
superfluid transition temperature. For example, the coeffi-
cient of thermal expansion is 2� 10ÿ4 Kÿ1 at the temperature
T � 1:2 K, 2:5� 10ÿ3 Kÿ1 at T � 1:5 K, 1� 10ÿ2 Kÿ1 at
T � 1:9 K, and � 2� 10ÿ1 Kÿ1 at T � 2:08 K, where most
measurements were carried out [35]. The weak dependence of
density on temperature is the basis for the measurements of
the first sound amplitude carried out in Ref. [36] using a
superconducting bolometer.

The propagation of thermal waves in superfluid helium, in
contrast to such waves in most of other substances, is due to
their wave nature, and not the diffusive heat propagation
whereby the wave decays at distances comparable to the
wavelength. The attenuation of second sound waves is
remarkably weak, which is due to the two-fluid nature of
thermal waves in superfluid helium. At low frequencies (less
than 100 Hz), the attenuation of second sound waves
propagating in helium is determined not by the bulk viscosity
but mainly by wave-induced friction against the waveguide
walls.

For any turbulent process, its dissipation is determined by
viscous processes. In this respect, it is of interest to compare
the kinematic viscosity coefficients n for various media.

From the table below, an unambiguous conclusion can be
drawn about the unique properties of helium (especially in the
superfluid phase), which allow a reduction in the size of
experimental setups intended for studies of turbulence in
various manifestations owing to its exclusively small viscos-
ity [37±40]. The governing principles in this case are those of
similarity based on the characteristic geometric size of the
system L and a characteristic velocity V (the Reynolds
number Re � VL=n); accounting for external forces, for
example, gravity, introduces one more dimensionless para-

meter: the Froude number, as well as the Prandtl number
when accounting for thermal conductivity, and so on. For us,
of importance here are the dimensionless parameters for
acoustic wave processes [41], in which considerable changes
in hydrodynamic wave parameters occur on a characteristic
length scale, dominated by nonlinear �ZNL� or dissipative
�Zdis� processes,

ZNL

Zdis
� rVL

Z
� Vl

n
� Reac ; �10�

where a change in the oscillatory or acoustic velocity occurs at
a wavelength l, the characteristic time scale in this case being
� 1=o (Z � nr is the dynamic viscosity). An essential
parameter describing nonlinear effects is the Mach number,
reflecting the influence of nonlinear effects on wave propaga-
tion:

M � u

c20
: �11�

Although nonlinear effects have been observed in various
gases and liquids, it is very likely that most rigorous and
unambiguous results can be obtained with second sound
waves because of their special properties, which give them
an advantage over nonlinear waves in other media.

A characteristic feature of second sound waves in super-
fluid helium is the absence of dispersion, i.e., the absence of
the dependence of the wave speed on frequency in the
experimental frequency range (up to several mHz) [42]. The
second sound frequency depends on the wave vector as [43]

o � c20k
ÿ
1� l0x

2�T �k 2 � . . .
�
; �12�

where x�T � � x0�1ÿ T=Tl�ÿ2=3, x0 � 2ÿ3 �A, and l0 � 1.
We stress that the dispersion of second sound becomes
noticeable only in a close vicinity of the superfluid transition
(i.e., for Tl ÿ T < 1 mK) and is negligibly small for tempera-
tures T < 2:1 K. This allows considering the interaction of
collinear waves as three- and four-wave processes with energy
and momentum exchanges.

For temperatures T > 0:9 K (roton second sound) and at
frequencies below the phonon±roton (ph±r) interaction [44],

o <
c20
c10

1

tphÿr
; �13�

where c10 and c20 are the speeds of the first and second sound
waves of infinitesimal amplitude, the spectrumo�k� is a linear

Table. Kinematic viscosity coefécients for some substances.

Medium Temperature, K n, cm2 sÿ1

Glycerine 293.15 6.8

Air 293.15 0.15

Alcohol 293.15 0.022

Water 293.15 0.010

Mercury 293.15 1:2� 10ÿ3

Helium (gas) 5.5 (for p � 2:8 bar) 3:21� 10ÿ4

Liquid helium 2.25 (at SVP)* 1:96� 10ÿ4

Superêuid helium 1.8 (at SVP)* 9:01� 10ÿ5

* SVP: saturated vapor pressure.
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function of the wave vector k defined by (1) [31]. The
condition otphÿr � c20=c10 can be written as lph � l, where
lph is the photonmean free path and l is the wavelength of the
second sound. Thus, dispersion for second sound is observed
at such frequencies where the second sound wavelength
becomes comparable to the phonon mean free path. Experi-
mental searches for second sound dispersion have been
carried out by Peshkov [45], and no deviation from linearity
in the frequency range from 10 Hz to 10 kHz was found.

The dispersionless nature of thermal waves allows the
second sound in superfluid helium to be used as an object to
study wave interaction in the one-dimensional (quasi-one-
dimensional) geometry, the simplest one from the standpoint
of the mathematical description. In this geometry, waves are
collinear, their behavior and interaction are governed by their
nonlinear properties, and both three-wave and four-wave
interactions are possible, including three-wave processes of
wave merger and decay:

o1 � o2 ! o3 ; k1 � k2 ! k3 ; �14�
o1 ! o2 � o3 ; k1 ! k2 � k3 : �15�

Anonlinear wave is characterized by the dependence of its
speed on its amplitude. In the simplest case, we can express the
dependence of the wave speed c on its amplitude A as

c � c0�1� aA� ; �16�
where c0 is the wave speed of an infinitesimal wave, a is the
wave nonlinearity coefficient, and A is the amplitude, which
can be identified with the wave heightH for a surface wave in
fluids, Dp for pressure waves, Dr for density waves, DT for
thermal waves, and so on. In this respect, the second sound
waves in superfluid helium offer experimenters a unique
possibility: the speed of these waves shows a strong depen-
dence on both their amplitude and the temperature at which
the experiments are carried out. The nonlinearity coefficient
can attain large positive values, stay equal to zero, and even
become negative (Fig. 1), which is not observed for almost
any other acoustic waves. Furthermore, as the temperature
approaches the lambda point Tl, the negative nonlinearity
coefficient tends to infinity, and the speed of second sound
waves tends to zero. The existence of an anomalously large
nonlinearity coefficient in superfluid helium has the conse-
quence that the propagation of second sound (thermal) waves
with even a rather small amplitude �dT=T5 1� is accompa-

nied by the occurrence of discontinuities either at the front or
the trailing slope (depending on the nonlinearity sign) over a
path of several centimeters. In the sameway, a harmonic wave
is enriched with multiple harmonics for a fairly small system
size.

Computations performed in [46] express the nonlinearity
coefficient for second sound as

a2�T � � sT
C

q
qT

ln

�
c 320

C

T

�
: �17�

The theoretical curve and measurement results are given in
Fig. 1.

We used these unique properties of helium to model and
experimentally study the propagation of strongly nonlinear
waves in a medium characterized by a linear dispersion
relation and weak attenuation.

A fundamental advantage of working with nonlinear
second sound (thermal) waves is that their amplitude is a
small perturbation of the ambient temperature, whereas, for
example, in sound waves in conventional media, the pressure
perturbation p 0 is not necessarily small. The velocity
amplitude u in nonlinear acoustic waves (2) is defined as

u � p 0

rc0
: �18�

In air, the nonlinearity coefficient a in formula (16) is � 1:2,
while a � 4 in water, which, it may seem, should imply that
the effect of nonlinearity on wave propagation processes is
significant. A nonlinear acoustic wave (for example, in water)
propagates with the speed

c � c0 � au � c0

�
1� au

c0

�
� c0

�
1� a

c0

p 0

rc0

�
: �19�

If a sound wave pressure p 0 � 1 atm is inserted in (19), as
defined by limitations imposed on the wave amplitudes by
possible cavitation at small depths, we find theMach number
M � Dc=c0 of the order of 10ÿ4; in contrast, for second sound
waves suchMach numbers can be obtained for thermal waves
with the amplitude dT � 10ÿ4 K, which is small compared to
the temperature of the fluid T � 2 K.

In superfluid helium with propagating second sound
waves, the simplest situation can be realized, that of one-
dimensional (or quasi-one-dimensional in experiments) inter-
acting nonlinear waves in a medium with a linear dispersion
relation. In experiments, we studied propagation andmultiple
self-intersections of a wave that was initially harmonic at its
pumping frequency and was strongly distorted due to
nonlinearity.

Acoustic turbulence, according to the definition formu-
lated by Zakharov and Sagdeev [48], is the turbulence of
compressible fluid such that the fluid motion is potential,
representing an ensemble of interacting sound waves. If wave
dispersion is weak or fully absent, the properties of turbulence
are determined by strong interaction among a large number
of coherent wave harmonics.

In describing acoustic turbulence governed by nonlinear
interaction among many waves (or multiple harmonics), we
have to take into account not only the nonlinear transforma-
tion of these waves but also kinetic relations of three- and
four-wave processes for multiple harmonics initiated by a
pumping wave. (For more details on the analysis of nonlinear
acoustic equations, see monograph [17].)

0.5
T, K

0 1.0 1.5 2.0

Ta

a, Kÿ1 Tl

0

ÿ1

ÿ2

ÿ3

1

Figure 1.Dependence of the nonlinearity coefficient for the second sound

velocity on temperature. The solid curve presents Khalatnikov's computa-

tions [46], the circles are experimental results from Ref. [47].
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In carrying out experiments in superfluid helium, the
existence of quantum vortices must be taken into account.
In superfluid liquids, in addition to classical vortex motion,
which decays with time due to viscous losses, quantum
nondecaying vortical motion of the superfluid compo-
nentÐquantum vorticesÐcan be present. The motion of a
body with high velocities in superfluid helium would result in
a turbulent state, quantum turbulence, whose behavior is also
governed by quantum properties of He-II, especially at
temperatures T! 0 [49]. Counterflows of the normal and
superfluid components due to propagating second sound
waves also lead to increasing the vortex system density.
However, this increase is observed for heat fluxes in excess
of 30±50 mW cmÿ2 [50, 51], limiting the excitation level of
second sound waves in our experiments.

The idea of using second sound to study the behavior of
nonlinear waves was first discussed by Khalatnikov [31].
Indeed, superfluid helium, given its properties, is an ideal
model system to explore nonlinear waves and Burgers
turbulence. Using the Burgers equation to describe nonlinear
finite-amplitude waves in superfluid helium was proposed in
[52, 53]. However, experimental research has demonstrated
that the propagation of such waves in real situations is more
complicated than predicted by a simple theoretical analysis of
the Burgers equation and Burgers turbulence.

3. Experimental technique

The complexity of experiments with second sound waves in
superfluid helium is related to the low temperatures needed to
carry out the experiments, requirements regarding careful
work with a moderate vacuum, and measurement peculia-
rities of small-amplitude thermal waves. Experimental tem-
peratures for superfluid transition (below Tl � 2:17 K) are
achieved in our experiments by pumping out helium-4 vapor.

In experimental studies of second sound waves, we
followed a technique traditionally used for already more
than 60 years, beginning from the time second sound waves
were discovered: the excitation of standing waves in a
cylindrical resonator, with a plane heater fitted to one of its
ends and a thermometer to the other. The advantage of this
setup is that to excite a periodic wave with a relatively high
amplitude, it suffices to apply aweak exciting harmonic signal
to the heater at the resonance frequency. Weak harmonic
heating creates only a relatively weak stationary heat flux;
large stationary heat fluxes could trigger the development of a
vortex component.

Judging by the method of generation and registration of
second sound waves, all experimental techniques can be
divided into two groups. In the techniques belonging to the
first group, the sensitive elements are thermometers of
different types, showing high sensitivity at low tempera-
tures, for example, superconducting or semiconducting
films [33, 52, 54±60] and film heaters. Techniques of the
second kind for detecting waves in superfluid helium are
based on the ability of the superfluid component to penetrate
through small pores in membranes, which are impermeable
to the flow of the normal component [61±63]. The superfluid
component filling a closed volume changes the pressure there
and bends the membrane, which is recorded as a change in
capacitance of a capacitor having the membrane as one of its
plates. A generator of second sound can work by the same
principle, creating a varying flow of the superfluid compo-
nent.

In experiments, we used the superconducting properties of
thin tin±copper films deposited on a quartz or glass substrate.
The sensitivity of bolometers manufactured with this technol-
ogy reached the level of � 10 V Kÿ1, which allowed the
detection of thermal waves with an amplitude of several mK
and temporal resolution better than t < 0:1 ms, which
corresponds to frequencies up to f � 10 MHz. The minimum
second sound wavelengths with which it was possible to work
using superconductive bolometers are � 2 mm.

Film heaters were used in experiments as a source of
second sound. The threshold stationary heat fluxes at which
the density of the vortex system starts to increase are
� 30ÿ50 mW cmÿ2 [50, 51, 64, 65]. In our experiments, we
worked with powers smaller than these, and therefore the
changes in the vortex system could be ignored when
considering the dynamics of turbulent processes in second
sound waves.

Eigenfrequencies of the resonator. For most of the
experiments described below, we used a cylindrical resonator
with the inner diameter D � 16 mm and length L � 70 mm.
To test the effects observed, resonators of other sizes were
used, for example, with the length L � 20 mm. The film
heater had ameandering shape to create uniform heating over
the entire section of the cylinder and occupied the entire
cylinder cross section. The eigenmodes of oscillations in a
cylindrical resonator can be defined as [66]

fpmn � 1

2
c20

"�
p

L

�2

�
�
2amn

D

�2
#1=2

; �20�

where the integers p, m, and n are the mode numbers for the
harmonics of the resonator. The quantity amn is a solution of
the equation

dJm�pa�
da

� 0 ; �21�

where Jm�pa� is the Bessel function of the mth order.
In the case of a cylindrical resonator, despite precautions

taken to ensure uniform heating, radial (`Bessel') modes were
excited, in addition to longitudinal oscillations. The genera-
tion of radial modes by longitudinal modes from the heater
can be explained, among other factors, by the not truly
uniform profile of the counterflows of the superfluid and
normal components because of the friction of the latter
against the resonator walls. As a result, if the frequency of
such a wave fits in a radial resonance, the generation of radial
modes can be observed. The excitation of Bessel modes by a
flat `uniform' heater in a cylindrical resonator was observed
previously in Refs [34, 54, 67].

Plane waves in the resonator correspond to solutions with
a00 � 0, and frequencies for such resonances are expressed as
fp � �1=2�c2p=L. In our experiments, we also observed radial
modes with nonzero n. For a resonator with L � 70 mm and
D � 16 mm, the first radial mode was very close to the 11th
longitudinal resonance.

Resonator Q factor. The Q factor of the resonator is of
fundamental importance in experiments with nonlinear
standing waves of second sound. Most attention in the
fabrication of the resonator was paid to keeping its ends
parallel to each other and perpendicular to the cylinder axis.
The Q factor of the resonator measured in our experiments
was about several thousand for resonances with numbers
N > 10. For resonances with the smallest numbers, the
Q factor was lower. At low frequencies ( f < 10 kHz), the
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resonator Q factor can be expressed as

Q � 1

LNL
� o3=2 ; �22�

where L � 1=
����
o
p

is the penetration depth of viscous wall
friction and LN is the distance the wave propagates before it
loses phase because of the nonparallel ends of the resonator
cylinder �DL�, which reflect second sound waves (in our case,
DL=L � 5� 10ÿ4). We note that the wavelength l becomes
smaller than DL at frequencies higher than 100 kHz.

For the resonance frequency � 1000 Hz, the penetration
depth of viscous friction is of the order of 2.5mm(T � 2:08K).
TheQ factor can then be determined as the ratio of the area of
the freely moving fluid to the area of fluid delayed by friction
at the distance L from the walls, �pD 2=4�=�pDL� � 1000,
which is close to the values observed experimentally. Thus,
the Q factor of the resonator of second sound waves at low
frequencies is mainly determined by surface losses, which, as
mentioned in Ref. [67], is explained by the dominance of
surface damping over the bulk damping for second sound at
temperatures above 1.3 K.

At high frequencies (for resonances with large numbers),
the Q factor is determined by second sound bulk damping,
n � o2, which prevails at frequencies higher than 100 kHz.

For acoustic turbulence, the development of turbulent
processes is governed by the acoustic Reynolds number Reac,
which reflects the relation between nonlinear processes
causing distortion of the wave profile and the processes of
wave dissipation in the course of propagation [see Eqn (10)].
For second sound waves in superfluid helium, the Reynolds
number in the resonator is expressed as [68, 69]

Reac � a2u20
g

�
qdT
qx

�
� a2QdT : �23�

Propagation of nonlinear waves in the resonator is
accompanied by interaction among all harmonics and
modes. This interaction becomes especially strong if
resonance occurs at multiple frequencies, when excitation
of harmonic oscillations in a closed resonator produces a
standing wave. In this case, the wave field can be
represented as a superposition of two waves traveling in
opposite directions [70±74]. For plane density waves in a
viscous heat-conducting fluid in the first approximation
(ignoring nonlinearity and attenuation), the solution is
given by arbitrary perturbations propagating in the posi-
tive and negative directions of the x axis and preserving
their shape. Resonant oscillations in a resonator with a
linear dispersion relation and weak attenuation are gov-
erned by the parameter S � �au0o=�2c0��t characterizing the
degree of manifestation of nonlinearity, with the nonlinear-
ity coefficient a, and for S � 1 the profile of each of the
counter-propagating waves becomes multivalued, which
corresponds to the discontinuity formation. The time it
takes for the discontinuity (a shock) to develop in the
initially harmonic wave is [75]

tbr � T

pM
; �24�

whereT is the period of oscillations and M � Dc=c0 theMach
number.

We note that for waves propagating in the resonator in the
positive-x direction, the solution is described by the Burgers
equation.

Qualitatively, the behavior of resonant oscillations of a
harmonic wave in a waveguide with damping can be seen as
passing through three temporal stages. The first stage lasts
from the initial moment until tbr when nonlinear distortions
of a harmonic large-amplitude wave are accumulated and
energy starts being transferred to higher frequencies, but
dissipation can still be disregarded. The second stage begins
when shock fronts in traveling waves have already formed,
accompanied by energy absorption at higher frequencies.
Finally, in the third stage, the energy transfer to higher
frequencies has already ceased, the energy injected into the
system initially is strongly reduced via dissipative processes,
and only propagating sinusoidal waves of small amplitude are
left. On a qualitative level, similar stages can be partly
observed as a standing wave is formed in a resonator and
decays when pumping is switched off. The solution for forced
nonlinear waves in a resonator with damping, proposed in
[74], approximately corresponds to the arrangement of our
experiments, in which, in particular, we estimated the effect of
the acoustic Reynolds number on the resonator Q factor.

The resonator Q factor has two parts: linear and non-
linear. The ratio of `amplitudes' of a standing nonlinear wave
and boundary oscillations grows with time and reaches a
stationary limit having the meaning of a stationary nonlinear
Q factor,

QNL �
����������
c

2aA

r
: �25�

For small nonlinearity, the resonatorQ factor is independent
of the amplitude of oscillations and is determined by the usual
linear absorption,

QL � 1

2D
� c 3r

bo2L
� c 2r

pbo
; �26�

where b is the effective medium viscosity.
To compare the results of measurements, we consider

several particular solutions of the general inhomogeneous
equation describing oscillations forced with a harmonic
external force:

u�x � 0; t� � ÿM

2
sin x ; u�x � L; t� � 0 ; �27�

where x � ot� p and M � A=c0 are dimensionless variables
and A is a characteristic amplitude.

Leaving aside the details of mathematical substitutions
and transformations, we only write the equation describing
each of the counter-propagating nonlinear waves [75, 76]:

qU
qT
� D

qU
qx
ÿ paU

qU
qx
ÿD

q2U

qx 2
� ÿM

2
sin x : �28�

Here, U is an arbitrary function describing the profile of
nonlinear traveling waves, normalized with the wave speed c,
T � ot=p is the dimensionless time variable, D is the
frequency detuning (the difference between the given and
resonance frequencies), and D � bo2L=�2c 3r� is the dimen-
sionless dissipative parameter, D5 1 for weak dissipation.

If the frequency detuning is zero (D � 0, resonance
conditions), the solution can be expressed as a series in
even Mathieu functions [17]; for zero initial conditions,
U �T � 0; x� � 0, the function U begins to grow as � t. The
equilibrium value of U attained at an infinite time, t!1,
under the dominant influence of nonlinear processes
(w � paM=�2D 2�4 1, where w is the ratio of nonlinear
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coefficient to the dissipative ones) is fully independent of the
linear Q factor of the system [77], being determined by the
processes transferring energy from the pumping range of the
nonlinear resonant system to its dissipation range. Nonlinear
distortion of a harmonic wave and transformation of the
frequency spectrum of interacting counter-propagating
waves lead to the formation of energy fluxes to higher
frequencies, where they are dissipated (the direct energy
cascade).

When studying energy transfer, i.e., energy fluxes in the
frequency domain from the pumping range to the dissipative
edge of the spectrum, we relied on the frequency Fourier
analysis of the form of recorded signals and on changes of
such spectra with time.

4. Direct energy cascade in acoustic turbulence

To study a complex phenomenon such as turbulence, the
most productive approach is to simplify the system so as to
understand its behavior and the laws of energy transfer from
the pumping range to the range of viscous dissipation under a
controlled change in parameters. As such amodel system, one
can use a system of surface waves in waveguides of various
shapes with the length reaching several hundred meters [78],
and resonators of various sizes (from several centimeters to
10 m) and shapes [79, 80]. The fluid in such a model system
can bewater [81±83], mercury [84], or cryogenic liquids: liquid
hydrogen [85] or helium [86]. In this case, gravity and
capillary waves have dispersion dependences of different
characters (for water, the capillary waves are replaced by
surface gravity waves for wavelengths longer than l � 2mm).

We note that turbulent phenomena for waves on a fluid
surface can also be attributed to acoustic turbulence, where
the formation of the high-frequency spectrum is determined
by competition between nonlinear and dissipative processes.
The analogy becomes more transparent for quasi-one-
dimensional standing or traveling surface waves in long
waveguides or resonators. We now consider the subject of
this paper, the nonlinear processes accompanying the
propagation of second sound waves and energy transfer
over the frequency range.

As shown experimentally [87], intense pulses of second
sound in superfluid helium transform into shock waves
practically instantaneously, forming discontinuities at wave
fronts or rear slopes, depending on the sign of the nonlinearity
coefficient. As Tl is approached, the nonlinearity coefficient
increases without a bound, tending to ÿ1 for Tl, and hence
the nonlinearity plays a decisive role even for waves of a very
small amplitude [88, 89].

The speed of a second sound wave c2 � 20 m sÿ1 at
T � 2 K is one to two orders of magnitude smaller than the
typical speed of the first (conventional) sound in gases and
condensed media. The low sound wave speed allows achiev-
ing an improved temporal resolution when measuring the
profile of a sound wave compared to the case of traditional
research dealing with nonlinear effects in sound waves.

The condition that thermal waves are reflected back by
the ends of a cylindrical resonator implies the absence of a
normal flux of the normal and superfluid components
through the reflecting surfaces,

j � 0 for x � 0 and x � L : �29�
In reality, condition (29) does not hold strictly: the heater at
x � 0 permanently pumps energy into the system, and hence

small fluxes, both constant and variable, pass through this
end, just as heat and wave leak through the other end;
however, in the first approximation for an experimental
explanation of the effects observed, these losses can be
ignored. We note that the thermal wave is excited at twice
the pumping frequency, which allows the useful signal to be
separated from the signal related to the electric induction at
the pumping frequency.

Under the resonance condition fd � c2=�2L�, the wave
amplitude significantly increases, in agreement with the
system Q factor, until the moment when the incoming energy
is equilibrated by wave losses in the resonator. In this case, for
sufficiently small energy pumping and small heat fluxes from
the heater into the resonator volume, the wave begins to
strongly amplify, whereas its shape is distorted by nonlinear
processes. The magnitude of distortions depends on the
pumping amplitude UG, which is in fact confirmed by
observations. If UG is increased, the wave temperature,
recorded by a bolometer, increases quadratically with the
signal from the generator,

A � dT � q � U 2
G : �30�

For a small thermal wave pumping voltage, the losses have a
linear character, being determined by the Q factor at a given
frequency. The deviation from linearity [the quadratic
dependence dT�UG�] begins at the heat flux density
q > 6 mW cmÿ2, which is clearly seen in Fig. 2b.

For small pumping amplitudes and hence second sound
amplitudes, the nonlinear effects are weak and wave distor-
tions are not apparent, which is expressed in the absence of
multiple harmonics. The increase in the wave amplitude
causes wave distortion and the generation of higher harmo-
nics. The energy flux generating this energy cascade deter-
mines the deviation from linearity (Fig. 2b). This is seen as a
cascade of multiple harmonics (Fig. 3).

One possible explanation of the distortion of the second
sound wave shape and hence the formation of higher
harmonics is the interaction of counterflows of normal and
superfluid components with vortices in helium. As is well
known, heat fluxes increase the concentration of vortices in
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superfluid helium [64, 65, 90]; however, this phenomenon
becomes noticeable for heat fluxes in excess of 30±
50 mW cmÿ2, the reason why we tried to avoid large fluxes
in experiments. Remarkable properties of the second sound
nonlinearity coefficient allow checking whether the observed
effect of higher harmonic formation is indeed related to the
nonlinear wave behavior. As the temperature approaches Ta,
the nonlinearity coefficient approaches zero, and the ampli-
tudes of higher harmonics begin to decrease. At Ta, only the
main harmonic remains, and its multiple harmonics occur
only for T 6� Ta. Such a temperature dependence of the
frequency spectra points at the decisive role of wave
nonlinearity in the formation of harmonics. We note that at
Ta, we can test the generation of nonlinear waves and
discontinuities for a cubic nonlinearity, for example, when a
bipolar wave with the crest temperature higher than Ta and
the trough temperature lower than Ta has different values of
the nonlinearity coefficient, with a2 < 0 and a2 > 0 [57].

Kolmogorov cascades. The increase in amplitude strength-
ens the influence of nonlinear interactions, which is mani-
fested in higher probabilities of three-wave processes (14),
leading to the formation of higher harmonics.

The shape distortion of a harmonic wave increases
together with the pumping signal [90]. In the frequency
domain, this is reflected in the development of a dense
`comb' of higher harmonics (the direct energy cascade) [92].
In experiments, it was possible to observe 30±50 spectral
peaks with amplitudes above the noise level of the instru-
ments, which enabled a rather reliable analysis of how their
amplitudes and energies are distributed over frequency. A
stationary process of energy transfer in the frequency domain
occupies the range from the pumping frequency to the
spectral end at high frequencies, where dissipative processes
begin to dominate.

Thus, acoustic turbulence represents competition between
two mechanisms changing the wave shape: nonlinear propa-
gation, tending to form a shock wave, and dissipation,
smoothing any steepening in the wave profile. Frequencies
where viscous losses begin to prevail are denoted as fb,
identifying the end of the frequency range where inertial
energy transfer among multiple harmonics is superseded by
a process in which a high-frequency wave loses more energy
through damping than it gains via energy transfer between
neighboring modes.
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The role of three-wave processes becomes apparent if we
consider the influence of the pumping amplitude on the
inertial range width. For nonlinear waves, the energy
transfer to multiple harmonics in three-wave interactions is
governed by amplitudes of both interacting waves, and the
inertial range broadens as the pumping amplitude is
increased.

Figure 4 demonstrates the shift in the end of the inertial
range caused by the increased signal on the heater. In the
inertial range, the exponent of the power-law dependence
A� f � � f ÿm (or E� f � � f ÿ2m for energy) drops to 1.5.

A theoretical model of the spectral energy transfer in
three-wave interactions was built in Ref. [93]. To understand
how the direct energy cascade is formed, we proposed amodel
for the interaction of nonlinear waves, with the presence of a
counterflow of normal and superfluid components in super-
fluid helium taken into account. Previously, such an
approach to numerical modeling was used in Ref. [94]. In
the framework of this model, numerical simulations were
carried out with Hamiltonian variables representing second
sound [95], and direct integration of wave shape modification
in the resonator was performed with quadratic terms taken
into account [96]. In this model, it is assumed that bulk
attenuation is essential in the entire frequency range.

This model differs to some degree from the experimental
situation in real resonators (where bulk attenuation super-

sedes the surface one and becomes dominant only for
harmonics with numbers N > 100) but, in general, appro-
priately describes the results obtained in measurements.

The equation describing energy balance in a system of
multiple harmonics can be written as

i
qbn
qt
�
X
n1; n2

Vn; n1; n2�bn1bn2dnÿn1ÿn2 � 2bn1b
�
n2
dn1ÿn2ÿn�

ÿ ignbn � Fdn ; �31�
where b (with various indices) are the amplitudes of the
respective harmonics, Vn; n1; n2 is the probability of interac-
tion between waves n, n1, and n2, dn1ÿn2ÿn is the delta
functions defining the frequencies of two waves merging
into one and one wave decaying into two, the asterisk
denotes complex conjugation, gn is the wave attenuation
coefficient, and Fdn is the external pumping at the
frequency of wave n. The time evolution of the amplitude
of the nth harmonics is determined by the probability of
two wave harmonics n1 and n2 merging [the first term in
parentheses in the right-hand side of Eqn (31)] and the
probability that this wave decays into two waves with
lower frequencies (the second term in the parentheses).
The probability of wave interaction Vn; n1; n2 depends on the
nonlinearity coefficient a [96],

Vn; n1; n2 � a const �T � ������������nn1n2
p

: �32�

Numerical integration of Eqn (31) for the standing-wave
energy balance in the resonator was carried out in the case of
generation at the resonance frequency. We computed the
changes in the energy of each harmonic,

P�n� � 
��bn�t���2� ; �33�

and the energy distribution over harmonics for a constant
energy flux and a stationary spectrum:

E�o� � onP�n� : �34�
The resulting stationary distributions for the energies of
harmonics for various pumping intensities in the resonator
are presented in Fig. 5.

Formation of energy spectra in acoustic turbulence of
second sound waves was found in both experiments and
numerical simulations.

According to the main ideas in Refs [48, 97±100], such a
highly excited state of a systemwith a large number of degrees
of freedom is defined as a turbulent one. The formation of the
observed direct cascade qualitatively resembles the occur-
rence of the Kolmogorov velocity distribution in the
frequency domain in compressible fluid turbulence or in a
system of capillary or gravity waves on a fluid surface [101,
102]. A distribution resembling the Kolmogorov one can be
constructed for the dependence of amplitudes of multiple
frequency harmonics on the developed acoustic turbulence,
A� f � � f ÿm, where m � 1:5.

As the pumping amplitude is increased, the cascade in the
system of second sound waves forms through a gradual
widening of the inertial range (the shift of fb toward higher
frequencies) and a reduction in the power-law exponent m.
The frequency fb first appears as pumping surpasses the
magnitude q � 10 mW cmÿ2. The frequency fb marking the
boundary between dissipation-free energy transfer among
multiple harmonics and strong dissipative losses depends on
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the amplitude of the principal harmonic. The dependence of
fb on A for different resonances and the nonlinearity
coefficient is plotted in Fig. 6.

For the 31st resonance, the end of the inertial range for
both positive and negative nonlinearity coefficients is fairly
satisfactorily described by the relation

fb � const �T �A ; �35�

which corresponds to the results of theoretical analysis [103].
The deviation from the linear dependence for the 32nd
resonance is determined by the possibility of generating an
inverse cascade (in particular, of half the frequency) and
redistributing energy fluxes toward both low and high
frequencies. This mechanism is considered in more detail in
Sections 5 and 8.

To learn how the intensity of the pumping signal affects
the development of the turbulent cascade, we thoroughly
studied the spectra of standing waves. As the intensity of the

signal on the heater is increased, the number of multiple
harmonics with the amplitude exceeding the noise level begins
to rapidly increase (Fig. 7). In this case, the power-law
exponent m in A� f � � f ÿm drops rapidly to m � 1:5. From
Fig. 8, we can determine energy fluxes that correspond to the
change in the character of energy transfer. After the heat flux
reaches q � 10 mW cmÿ2, the rapid change in the power-law
exponent m is replaced by a gentle one. This same magnitude
of q approximately corresponds to the crossover from a
quadratic to a linear dependence of the wave amplitude in
the resonator on the generator signal (see Fig. 2 and the inset
in Fig. 4a).
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The change in the power-law exponent related to the
development of a cascade of higher harmonics in the
frequency domain corresponds to the regime of developed
turbulence. If pumping is weak, only higher harmonics
appear in the spectral space, and this can be related to a
nonlinear signal distortion. In this case, the dominant
interaction of higher harmonics is with the main harmonic
at which the system is pumped. The increase in the pumping
amplitude, by all probability, leads to the intense interaction
of oppositely propagating waves in the resonator under
resonance conditions and the mutual interaction of higher
harmonics, which is reflected in a sharp change in the slope of
the dependence A� f � � f ÿm. Three- and four-wave interac-
tions of counter-propagating waves should lead to a detuning
between the phases of high-frequency modes and the phase of
the main frequency signal, and thus a situation of developed
turbulence is realized, as we show in the analysis of the shape
of the high harmonic signal (see Section 6).

At high frequencies, the inertial energy flux is strongly
hampered by dissipative absorption of high-frequency
waves. From Fig. 9, it is seen that the power-law
dependence at low frequencies is replaced by an exponen-
tial decrease in wave amplitudes for frequencies higher
than 20±30 kHz. The experimental dependences of viscous
absorption of high-frequency harmonics in this measure-
ment can be described as

A � exp �ÿ0:2n� ; �36�

where n5 6 is the harmonic number. This behavior can be
attributed to the finite viscosity of helium for wavelengths
shorter than l � c20=fb � 4� 10ÿ4 m, i.e., less than several
micrometers.

5. Combinative interaction of harmonic waves

The interaction of harmonics driving the developed turbu-
lence, in addition to direct three-wave processeso1 � o2 � o,
should also be accompanied by reverse processes
o1 ÿ o2 � o. A possible way to indirectly learn about the
development of turbulent processes is the interaction of two
frequencies of resonances whose numbers do not divide one
another, for example, 31 and 9.

If the heater is simultaneously driven by signals at two
resonance frequencies with different amplitudes, four stand-
ing temperature waves with different frequencies are excited
there. In this case, signals at four frequencies 2o1, o1 ÿ o2,
o1 � o2, and 2o2 should appear in the spectrum of excited
waves. Thus, on the excitation of the main wave with a
relatively high amplitude (UG � 5 V) at the 31st resonance
(31R) and an additional wave at the frequency o2 of the 9th
resonance (9R) with a small amplitude (UG � 2 V), signals at
the following resonances are excited: R18 � 2o1; R22 �
o1 ÿ o2; R40 � o1 � o2; and R62 � 2o2.

In addition to the dependences that correspond to
arithmetic relations 2o1, o1 ÿ o2, o1 � o2, and 2o2, we can
see the appearance of combinative frequencies that corre-
spond to the interaction of multiple harmonics with the
additional frequency of the 9th resonance (Fig. 10). In
Fig. 10a, we mark peaks 1+, 2+, formed by summing the
frequencies of harmonics that are multiples of the main signal
with the additional wave, and 1±, 2±, 3± are the peaks that
correspond to the difference between multiple harmonics and
the frequency of an additional resonance. At temperatures
close to Tl, the speed of the second sound has a strong
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dependence on temperature, and the addition of a weak signal
at the second resonance frequency from another generator
slightly changes the superfluid helium temperature, which
strongly shifts the resonance frequencies. Given a high
Q factor, the resonator initially tuned to a maximum signal
drifts out of resonance. For this reason, we used a technique
whereby one of the signals (with a small amplitude) was
detuned from the resonance frequency. We were able to
observe how the increase in the amplitude of the additional
signal (for a fixed total heat flux from the heater) modifies the
character of the stationary distribution due to themain signal.

It is apparent from Fig. 10 that the increase in peaks at
combinative frequencies is accompanied by an increase in the
slope of the power-law dependence A� f � � f ÿm. For parti-
cular measurements, the value ofm increased from 1.9 to 2.5.
Thus, the creation of additional degrees of freedom in the
resonator via combinative interactions greatly suppresses the
amplitudes of the direct turbulent cascade. It can be assumed
that the energy flux toward the high-frequency spectral end is
governed by the amplitudes of multiple harmonics, and the
energies of all harmonics (the integral of the Fourier
spectrum) make up this flux:

E � 1

2

�
qC
qT

X
o

jdToj2
�
: �37�

Integrals of spectral dependences with a developed and a
suppressed turbulent cascade coincide with each other up to
2% (compare Fig. 10a and b).

That the direct turbulent cascade is suppressed in the
presence of a weak additional resonant standing wave can be
qualitatively explained as follows. For a somewhat augmen-
ted energy flux in the inertial range (with the added signal
increasing q by less than 20%), the number of wave
interactions contributing to the nonlinear process of energy
transfer from low to high frequencies increases. The number
of interactions per unit frequency interval then strongly
increases for a fixed energy transfer per interaction act.
However, a quantitative description of the suppression of
the turbulent spectrum by additional excitation requires a
detailed theoretical treatment.

Even if the additional perturbation is switched on, the
behavior of the high-frequency end of the turbulent
cascade stays practically the same, remaining exponential
despite the amplitudes of harmonics being reduced by
about an order of magnitude. This testifies in favor of
the statement that viscous losses dominate at frequencies
higher than fb.

In classical nonlinear acoustics, such an interaction of
waves with different frequencies is rather well known and is
exploited in parametric receivers and transducers [19, 25±28];
in particular, the interaction of the 31st and 9th harmonics
and the appearance of combinative frequencies close to the
harmonics of the pumping wave can be interpreted in terms
of classical nonlinear wave dynamics as a parametric receiver
of a low-frequency signal with an intense pumping wave
[104]. However, for second sound waves (thermal waves),
there is one more possibility for the amplification of a weak
harmonic wave: by using a constant heat flux instead of the
second wave [49],

F�o� � IDCIAC sin �oGt� ÿ 1

4
I 2
AC cos �2oGt� ; �38�

where IDC is the direct current of the heater and IAC is the
alternating current at the resonance frequency. Thus, two
resonance frequencies are excited in the resonator, and the
amplitude of the main frequency depends on the direct
current magnitude. In this case, not only does the frequency
of the wave generated in helium change, but also a possibility
appears to amplify a weak harmonic wave by a constant heat
flux. This is a specific manifestation of second sound as
thermal waves.

6. Statistical properties of acoustic turbulence
of second sound waves

The most important process in turbulence is the energy flow
from an external source into the dissipative range of the
spectrum. The energy transfer in turbulent processes is
described in the framework of a cascade in spectral space.
From a theoretical standpoint, the simplest case of turbulence
is weak turbulence, in which waves interact with each other
during a short time interval, exchanging only a small part of
their energy. The interaction of wave packages is weak, and
their phases are random [100, 105]. Such an approach allows
using a statistical description for a broad class of external
forces in the system.

An example of weak turbulence is the wave interaction in
media with strong dispersion, for example, waves on a fluid
surface [79, 106]. Statistical fluctuations of the velocity field in
a turbulent flow are described in Kolmogorov's theory with
the power-law dependence Ek � kÿ5=3, giving the so-called
ÿ5=3 law (Kolmogorov cascades). For one-dimensional
weak turbulence, the energy flux P determines the distribu-
tion of excitations in the frequency domain as [107]

nk � P 1=3kÿ5=2 �39�

when processes ok $ ok1 � ok2 � ok3 dominate. For weak
turbulence in the inertial range, the probability density of
finding waves with different amplitudes is close to the
Gaussian one.

Acoustic turbulence is an example of strong turbulence,
where the approach of a weak interaction of harmonic waves
is not applicable. Strong turbulence is characterized by long
interactions, when the interaction time is not small compared
to the wave period and the energy exchange is of the order of
the energy of at least one of the interacting waves [107].

For a strongly nonlinear wave in a dispersionless medium,
higher harmonics are fed by the main harmonic and multiple
interactions between higher harmonics, including interac-
tions with counter-propagating waves in a resonator. It is
shown theoretically that selective absorption of the frequency
of a higher harmonic (or higher harmonics) dramatically
slows the nonlinear energy transfer in the frequency domain
and is accompanied by increased amplitudes of lower
harmonics [108]. Experiments described below demonstrate
to what extent the phase of higher harmonics is governed by
the phase of harmonic pumping or, in other words, when the
interaction of higher harmonics makes the process of energy
transfer in acoustic turbulence chaotic.

We note that artificially formed saw-tooth waves, for
example, a traveling strongly nonlinear harmonic wave, have
a qualitatively different, ordered character of higher harmon-
ics. In this case, energy dissipation also mainly occurs at wave
discontinuities, in the range of high frequencies [109]. The
energy spectrum of a saw-tooth wave is described by the
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dependences that are close to Kolmogorov's, Eo � oÿ2, if
multiple harmonics are in phase. The probability density for
the amplitude of such a wave is constant, which is in strong
contrast to the case where higher harmonics become chaotic
via their interaction.

We have shown above that for a real situation observed
for a system of standing waves in a resonator, a major role is
played in developed turbulence by the interaction of waves
not only with the main harmonic but also among themselves,
including three- and four-wave interactions in counter-
propagating waves. This is reflected, for example, in the
generation of combinative frequencies under double pump-
ing. In this case, both the formation of a summary wave and
decay processes are possible and play a significant role. This
alone is different from how the spectral dependence in the
saw-tooth wave spectrum is formed. To verify the last
statement, we explored the statistical characteristics of
waves in acoustic turbulence under various conditions.

If pumping in a high-Q resonator is monochromatic
(Fig. 11), the behavior of the first higher harmonics is
governed by the energy flux from the main harmonic, and
the influence of the interaction between higher-frequency
harmonics on the behavior of these low-frequency modes is
weak. To determine the statistical behavior of high-frequency
harmonics, we filtered low-frequency signals, by successively
increasing the filter frequency.

In Fig. 11, the arrows show the boundaries of successive
filtering. If the initial wave is a strongly distorted harmonic
wave (Fig. 12a), the successive filtering gradually makes the
result more chaotic (Fig. 12b-d). For signals with a developed
turbulent cascade, we computed the probability density of
finding a wave with a given amplitude.

For a random variable X with any admissible value x, the
probability distribution function P�x� is defined as the
probability of an event where the observed quantity is less
than or equal to x [110],

P�x� � Pr �X4 x� : �40�
The probability density function (PDF) is then defined as a
the derivative of the probability distribution

p�x� � lim
Dx!0

P�x� Dx� ÿ P�x�
Dx

: �41�

In an experiment with digital signal registration, the prob-
ability density function is computed as the number of points
with a given deviation from the mean.

The probability density of the signal presented in Fig. 11
upon successive filtering is plotted in Fig. 13. The probability
density of the initial signal is close to the PDF of a harmonic
wave. The influence of the pumping signal extends to several
nearest harmonics, but disappears for higher harmonics.
Filtering of low-frequency harmonics transforms the PDF
of the harmonic wave into a Gaussian curve. The Gaussian
PDF for higher harmonics of second sound waves always
comes with a small asymmetric perturbation, which is
probably related to the specifics of standing wave generation
in the resonator.

The process whereby the PDF approaches the Gaussian
shape depends on the degree of turbulence development and
the amplitude of higher harmonics. A more developed
turbulent cascade, which corresponds to a higher pumping
amplitude, starts to resemble a Gaussian distribution after
removing only the main harmonic, whereas for a signal with
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lower pumping the influence of the main harmonic also
persists for higher harmonics, which can be explained by the
weaker interaction of the harmonics with each other.

The influence of the interaction among harmonics outside
the pumping range on the development of turbulence and
chaotization of harmonics in evolving standing waves is
clearly seen in the formation of combinative frequencies.
The system is in this case pumped at two resonance
frequencies: the main one, maintaining a turbulent cascade,
and an additional one, which cannot launch a developed
cascade on its own. The waves at this additional frequency
can efficiently interact with the basic turbulent cascade, which
gives rise to combinative frequencies (see Fig. 10).

Thus, the analysis above shows that the increase in
amplitudes of the main and hence higher harmonics, extra
degrees of freedom added to the system, and the interaction of
waves with each other, including combinative interactions,
are the reason why the PDF of high-frequency harmonics
becomes progressively closer to a Gaussian distribution,
characteristic of a statistically random process. As a result
of such multiple interactions, a Gaussian distribution can
already be observed at the stage when the second harmonic is
being formed [111].

The appearance of singularities in acoustic turbulence,
characteristic of random waves, indicates that acoustic
turbulence in the system of second sound waves shares
properties of strong as well as weak turbulence. Therefore,
for such a model system in some approximation, one can use
theories and approaches derived, among others, for weak
turbulence; however, the effect of stochastization requires a
detailed theoretical consideration.

7. Dynamics of spectra in the k-space
in direct cascades

The problem of the formation and decay of energy cascades as
energy is transferred from the range where the signal is
pumped by an external force to the dissipation range plays a
key role in our understanding of the physics underlying
turbulence. Studying acoustic turbulence, we succeeded in
experimentally exploring the formation of direct cascades
upon switching on external pumping and increasing the
amplitude of the main signal at the resonance frequency fd.
Similar experiments and temporal analyses were carried out
upon switching off the external pumping.

7.1 Formation of the direct cascade
Pumping the system at a resonance frequency entails an
experimental difficulty related to the change in the tempera-
ture of helium if the heater is on, and the corresponding
change in the second sound propagation speed (which is
particularly pronounced at temperatures close to Tl, at
which most of the experiments were carried out) and the
resonance frequency of the system. Some experiments were
carried out in the regime of switching off and on: tuning to
the resonance frequency, obtaining a direct cascade, switch-
ing off the pumping signal, and then switching it on. In this
case, in approximately 10 s the direct cascade decayed and
the disappearance of the main harmonic was detected, but
the temperature of the bath did not substantially change, and
the resonance was observed at the same frequency. Similar
results were obtained for a simple change in the generator
frequency to off-resonance and then returning to the
resonance one. The wave amplitude at the out-of-resonance

frequency decayed rapidly, but the net heating of the system
was unchanged.

The energy of the second sound wave is proportional to
the temperature increment squared �dT �2 [31, 32, 34]:

e � 1

2
rnv

2
n �

1

2
rsv

2
s ;

e � rnq
2

2rrss 2T 2
; �42�

e � rC�dT � 2
T

:

All subsequent discussion of the formation and decay of
energy cascades are therefore carried out in terms of the
squared wave amplitude A2.

Upon switching on the generator signal under resonance
conditions, the amplitude of the main harmonic, at which the
system is pumped, first starts to grow. For oscillations in a
resonant circuit, the process of wave formation is governed by
the external force. For an ideal resonant circuit, the increase
in the amplitude of oscillations in the resonator under the
action of the resonance force is described by the relation

A�t� � Fd

2go0

�
1ÿ exp �ÿgt�� cos �o0t� : �43�

Expanding Eqn (43) in small t gives the dependence of the
form A � t. Thus, the increase in the amplitude in the initial
time interval, when we can disregard the influence of damping
in the system and nonlinear energy transfer in the cascade, is
proportional to time. And the wave energy grows as time
squared. Such an increase in energy is related to the system
being pumped by an external monochromatic force.

However, the situation changes if the system is pumped
keeping the energy rate constant in time, for example, if we
begin to heat the system assuming a constant power of the
heater. For a harmonic wave, this occurs when all the energy
supplied to the heater, Qt � f�U0 sin �ot��2=Rgt, is fully
transferred to the wave. It is apparent that in this case, the
growth of wave amplitude is different from that in the case of
a constant force applied to the circuit. The energy in the
system grows at a constant rate; hence, the wave amplitude
grows proportionally to the square root of time,

qheater t! DE � q0 t� q0 ac t � CmDT� rC dT 2

T
V ; �44�

where V is the volume occupied by helium with the mass m.
With the growth in the first harmonic, more and more

energy is successively transferred to higher harmonics,
triggering the interaction of higher harmonics with the
pumping wave and with each other; the interaction with
oppositely propagating waves also evolves, and the turbulent
processes described above can be observed. Thus, the type of
the process changes: from a purely `linear' one, it evolves into
a `linear±nonlinear' one, judging by the character of energy
transfer. In real experiments with heat leakage from the
heater into the volume of the substrate, with its continuous
heating and the presence of an additional resistance at the
boundary between the heater and the fluid, an intermediate
situation is possible where the increase in the amplitude of the
main second sound harmonic in the resonator differs some-
what from the square root dependence on the initial time
interval.
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Experimental possibilities for recording long signals and
low speeds of second sound waves allowed us to study the
dynamics of the formation of energy cascades in turbulence
developing in the resonator. Figure 14 plots the measurement
results showing the growth in higher harmonics. From the
figure, it can be seen how higher harmonics successively grow,
acquiring energy from lower-frequency modes. They closely
follow a power law. In this experiment, the power-law growth
of harmonics continues for 0.1 s after the pumping signal is
switched on, and this time depends on the pumping amplitude
and on the amplitude of the wave forming at the pumping
frequency, for which nonlinear energy transfer into higher
harmonics begins to dominate over linear losses. This
transition occurs when the acoustic Reynolds number
reaches unity, Reac � adTQ5 1. This condition is achiev-
able for high-quality resonators. In low-quality resonators,
the wave amplitude does not reach critical values, and all the
energy pumped in the resonator is converted into linear
losses, Reac � adTQ < 1.

The growth in the amplitude of the main resonance at the
initial stage follows a time dependence close to A1 �

��
t
p

. The
growth in higher harmonics in the experiment is described by
a dependence close to

An � Anÿ1 t � t 1=2��nÿ1� : �45�

Figure 15 presents the data obtained in experiments
exploring the formation of the direct cascade of second
sound waves. Even with the scatter in the experimental
points, the index of the power-law function is close to that in
dependence (45). From a physical standpoint, this implies
that the growth in the amplitude of the nth harmonic is
governed by the amplitude of the preceding harmonic, but it
takes some time to transfer energy from the (nÿ 1)th
harmonic to the nth harmonic, which means that higher
harmonics in the resonator have inertial properties. Thus,
the increase in the energy of the nth harmonic can be
expressed as En � Enÿ1 t 2.

To determine the temporal dependence of harmonics
growing higher, we performed computer simulations of
energy transfer in interactions of harmonics with a linear
dispersion relation k � o. The following model of interaction
was adopted: two interacting waves with frequencies o1 and
o2 form a wave o1 � o2 ! o3 with some probability.

Computations were carried out under the assumption that
the probability of merging into a wave with the frequency o3

depends on the energies of waves with o1 and o2. There is no
damping in the inertial range, but at the 150th resonance the
energy flux disappears: the range of total energy dissipation
begins, where all wave decay processes o3 ! o1 � o2 cease.
All the energy injected into the system is transferred to the
growth of amplitudes of all interacting harmonics, up to the
150th, and part of the energy is lost through the right end of
the spectrum. Stationary values of amplitudes under these
conditions are close to the observation results [92].

Computations carried out by Kolmakov [112] under the
assumption of a constant force acting on the resonator lead to
the following behavior of growth of the amplitudes with time:

Ai � t 1�2�iÿ1� : �46�

This behavior is shown in Fig. 15 by the dotted line. It can
be seen that the experimental dependences are closer to (45)
than to (46).

7.2 Decay of the direct cascade,
the `linear' and `nonlinear' times
When exciting harmonic signals in a resonator, part of the
energy is removed by linear losses related to the dissipation of
the harmonic wave, and the remaining part feeds the energy
transfer to higher harmonics. This energy transfer determines
the `nonlinear' timeÐ the time during which energy is
transferred from the pumping frequency to the second and
higher harmonics. The `linear' time can be found experimen-
tally from the resonator Q factor by exciting the resonator
with a low-intensity wave. Nonlinear energy transfer to
higher harmonics is characterized by smaller times of energy
loss in the resonator. This reasoning laid the foundation for
studies of the temporal evolution of the frequency spectrum
after the pumping is switched off.

The results of exploring the Q factor of the resonator as a
function of the pumping amplitude and the temporal
dependence of the decay of the oscillation amplitude are
plotted in Fig. 16.

The quality of the resonator was defined as the width of
the resonance curve at the height Amax=
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excitations, the Q factor is governed only by the physical
properties of the resonator (linear attenuation processes). An
increase in the signal amplitude leads to nonlinear energy
transfer to higher harmonics. The Fourier analysis in this case
shows the growth in the amplitude of higher harmonics in a
distorted second sound wave, accompanied by a decreasing
resonator Q factor.

Switching off the pumping for small amplitudes of
oscillations leads to their exponential decay

A�t� � A0 exp �ÿgt� sin �od t� j0� ; �47�

where g is the attenuation coefficient and od is the oscillation
frequency of the resonator with damping. The decay time
scale t, found from the resonatorQ factorQ � 240 for a given
resonance frequency (Fig. 16a) as t � 1=g � 2Q=od � 0:22 s,
is close to the value measured by the oscillation decay time
t � 0:19 s (Fig. 16b).

The resonator Q factor measured at large excitation
amplitudes is substantially lower, which is related to the
nonlinear wave distortion. This is seen in the time depen-
dences of oscillations fading away in the resonator as changes
in the characteristic signal decay times at large and small
oscillation amplitudes (thigh � 0:085 s and tlow � 0:19 s,
respectively). The reduction in the signal level below the
position marked with the arrow leads to a noticeable
reduction in nonlinear transfer to higher harmonics, leaving
only the losses related to the resonator Q factor at the
pumping frequency: the slope of exponential decay coincides
with the slope of decay in the resonator at a small signal
amplitude (the curve for UG � 2 V).

We explored the temporal characteristics of decay
processes in more detail for the 11th resonance, where the
resonator Q factor is very large �Q � fR=Df � 3900�, which
allowed observing very long oscillation decay times.

We analyzed a signal with a duration of 20 s, stored
numerically by time intervals to clarify the behavior of higher
harmonics upon switching off the pumping (Fig. 17). During
the analysis, it was possible to follow the change in amplitudes
of at least 10multiple harmonics. When the external pumping
is off, the energy losses of the main harmonic, which was
directly pumped, follows two channels: that of linear
damping and that of nonlinear energy transfer in higher
harmonics.

The process of energy flux redistribution between the
nearest harmonics after pumping is switched off leads to
chaotic changes in amplitudes of higher harmonics. It is
noteworthy that a sharp reduction, for example, in the
second harmonic causes a reduction in the decay rate of the
main harmonic (arrows in Fig. 17), i.e., the process of energy
transfer between the neighboring harmonics depends not only
on the difference between the energies of these modes but also
on some inertial component: an increase in the amplitude
(and the energy of a given mode, e.g., the second harmonic)
takes a time of the order of several tenths of a second. If this
inertial time is different for different harmonics, this naturally
leads to a chaotic change in respective amplitudes as they fade
away.

The chaotic behavior of higher harmonics continued for
1±1.5 s, which corresponds to approximately 1500 periods of
the main harmonic; the higher harmonics were indistinguish-
able later. Their extinction begins from high frequencies: the
second and then the main harmonic disappear last. Similar
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behavior was observed experimentally in the decay of
capillary waves on the surface of liquid hydrogen [101].

This behavior differs from theoretical predictions for
processes characteristic of weak turbulence [100], where a
situation is possible when the energy flux is conserved and the
spectral peak moves from low to high frequencies. For
example, oscillations of a capillary wave can continue long
after gravity waves have disappeared.

After approximately 2 s, the energy flux from the main
harmonic to higher harmonics becomes negligibly small;
higher harmonics disappear and the main harmonic decays
with a characteristic time tL. The decay time tL in Fig. 17
corresponds to a resonator with the Q factor Q � 5400. This
value is approximately 40% higher than the measured
Q factor of the 11th resonance for the pumping signal
UG � 2 V, which points to the presence of a nonlinear
process for such pumping �QNL < QL�. `Linear' decay lasts
for at least 10 s (5 10;000 oscillations at the pumping
frequency).

If we assume that linear and nonlinear processes are
additive, the main harmonic energy losses can be represented
as

DEmain � DEL � DENL : �48�

In this case, the linear time, which is determined from the
decay of oscillations after t � 2 s, is tL � 3:3 s. For the `linear'
decay, we then have

Amain�t� � A exp

�
ÿ t

tL

�
: �49�

Accounting for energy balance (46), the difference between
the observed decay of the main harmonic and the extra-
polated `linear' decay is determined by the nonlinear energy
flux to higher harmonics, beginning from the second,

A 2
NL�t� � A 2

main�t� ÿ A 2
L�t� � exp

�
ÿ 2t

tNL

�
: �50�

This difference is depicted in Fig. 18. Initially, the reduction in
the amplitude of the main harmonic is governed only by the
energy flux to higher harmonics, and `linear' losses are small

in its background,

Amain�t� � A exp

�
ÿ t

tNL

�
: �51�

An estimate shows that the nonlinear time is almost an order
of magnitude smaller than the linear one (tL � 3:3 s and
tNL � 0:6 s).

8. Inverse wave cascades

Second sound waves have a linear dispersion relation, and
their interactions must respect the conservation of energy
o � o1 � o2 or o� o1 � o2 � o3 and momentum k �
k1 � k2 or k� k1 � k2 � k3 for three- and four-wave pro-
cesses. Nearly plane waves in the resonator are collinear, and
for such waves the generation of multiple harmonics follows
automatically from the linear dispersion relation

o1 � o2 ! o3 : �52�

However, for collinear waves, with some probability given
by (32), the inverse process is possible in addition to the direct
process, according to the linear balance equation (31),

o1 ! o2 � o3 : �53�

Such an inverse process can lead to the formation of two
waves with equal or different frequencies from the wave at the
frequency at which the energy is pumped into the system. An
inverse cascade can develop in this case, carrying energy to the
low-frequency spectral edge instead of the high-frequency
one.

8.1 Inverse energy cascade as a wave decay process
The formation of an inverse cascade means the excitation of
frequencies lower than the pumping frequency in the
resonator spectrum. Such a situation is possible for the
enstrophy flux in two-dimensional geometry, given by a
contour integral for vector fields of a vortical system, when
small eddies can merge into large vortices [113]. In this case,
energy is also transferred to the high-frequency spectral end,
where it is removed by viscosity, but vorticity can be
transferred to the low-frequency end. In the one-dimensional
geometry, given potential wave fields, the formation of
vortices is impossible by definition, and therefore in one-
dimensional (or quasi-one-dimensional) acoustic turbulence,
only potential flows and transitions between frequencies of
wave modes are possible, together with the associated energy
flows in spectral space, the direct and inverse energy cascades.

For plane waves with the linear dispersion relation, in
addition to decay process (53), two waves of the main
harmonic can interact, forming two mutually complement-
ing oscillations [114]:

ok0 � ok0 ! ok0�k � ok0ÿk : �54�

For a linear dispersion relation, Eqn (54) can be rewritten as
2o! o1 � o2, where o1 � o� Do and o2 � oÿ Do. The
inverse cascade can evolve via three-wave (53) and four-
wave (54) processes.

The inverse cascade was observed in several numerical
experiments that model wave behavior under different
conditions, in particular, the behavior of a surface gravity
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wave on water [115±117]. The first experimental observation
of the inverse cascade was apparently that in Ref. [118].

8.2 Inverse cascade, stationary regime
The generation of subharmonics in a discrete resonant circuit
(resonator) is possible only if there are sufficiently many
degrees of freedom at frequencies smaller than the pumping
frequency, and, as indicated by the experiments described
below, if the pumping signal exceeds some threshold value
close to that at which nonlinear effects dominate in wave
interactions.

If pumping is at the 51st resonance, a large number of
subharmonics are generated, and peaks of the inverse cascade
approximately match the resonances indicated in Fig. 19.
Experimental studies have shown that inverse cascade spectra
are formed under a detuning from the resonance frequency
toward higher frequencies. An example of such a develop-
ment of the inverse cascade is given in Fig. 20.

Attempts to relate the development of the inverse cascade
to the sign of the nonlinearity coefficient and nonlinear
behavior of waves in the resonator failed to explain the
direction of the frequency shift needed to trigger the inverse
cascade. Indeed, the nonlinear dependence of the wave
propagation speed bends the resonance dependence [119],
and for a2QdT > 1, the resonance curve bifurcates: three
different amplitudes correspond to one frequency.

With increasing the signal amplitude, the resonance curve
becomes asymmetric and acquires a discontinuity from the
high-frequency side. However, the generation of the inverse
cascade in experiments proves to be unrelated to the
nonlinearity coefficient. For the temperature T � 2:08 K,
the nonlinearity coefficient is negative, and therefore the
resonance curve should bend toward lower frequencies,
f � �c20 � a2dT �=�2L�, which is not observed experimen-
tally. Moreover, the change in the nonlinearity sign to
positive (experiments at T � 1:7 K) gives the same effect: the
inverse cascade is observed only if the pumping frequency is
biased toward higher frequencies from the resonance curve
maximum. Thus, it is quite obvious that the observed effect is
related to nonlinear wave behavior (the threshold character of

the effect), but conditions for its appearance (frequencies of
pumping the system) are not governed by the nonlinear
properties of the wave in a resonator.

The onset of the inverse cascade of second sound waves in
superfluid helium is defined by a set of conditions:
�Wave generation in the resonator should occur at

resonances with large numbers to ensure sufficiently many
degrees of freedom at low frequencies;
� The intensity of the pumping wave should exceed the

value above which nonlinearity begins to play an essential
role in wave interactions in the system (approximately,
q5 6ÿ10 mW cmÿ2);
� To have the inverse cascade, a frequency shift toward

frequencies higher than the resonance frequency by a small
increment of the order of Df � 2 Hz is needed.

The formation of the inverse cascade is always character-
ized by a time delay in the development of subharmonics,
which can take up to several dozen seconds, and by a
frequency hysteresis of this process. When the pumping
frequency was varied above the main resonance frequency,
the inverse cascade existence domain, the number of sub-
harmonics and their amplitudes were strongly dependent on
the direction and speed of the frequency change. The time the
inverse cascade began to evolve was also dependent on the
frequency offset from the resonance.

The origin of the frequency offset from the resonance
maximum can be explained by the frequency properties of the
resonator. According to themeasurements, the dependence of
resonance frequencies on the resonance number has the form
on � o0n� Do (where Do � 2 Hz), whence it follows that a
small frequency shift toward higher frequencies allows the
resonance conditions to be exactly satisfied at smaller
numbers:

od � Do � �o0nd � Do� � Do

� �o0n1 � Do� � �o0n2 � Do� � o1 � o2 : �55�

Thus, the conditions for the formation of the inverse cascade
in the one-dimensional geometry are as follows:
� sufficiently many degrees of freedom in the low-

frequency domain of discrete spectral space (for the resona-
tor);
� collinear arrangement of wave vectors for a linear

dispersion relation;
� sufficiently large amplitude of the pumping signal for

the manifestation of nonlinear wave interactions;
� frequency shift by some value determined by the details

of the resonator frequency response.

8.3 Formation of the inverse cascade
To answer the question about the nature of the inverse
cascade, we experimentally explored the processes pertaining
to the inverse cascade formation and fading; with this aim, the
technique of cutting the signal into time intervals and
performing a frequency analysis for each interval was used,
enabling us to study the temporal behavior of higher
harmonics and subharmonics. Figure 21 shows results of a
temporal signal analysis.

At the time moment t � 0, the signal was switched to the
inverse cascade formation frequency close to the 51st
resonance. We can clearly see a well-developed direct cascade
with multiple harmonics, the amplitudes of the second and
third being denoted as R102 and R153. After 10 s, the
subharmonics start to evolve; in this example, they corre-
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spond to the 35th and 16th resonances. The amplitudes of all
harmonics of the direct cascade begin to decrease. After 40 s, a
pair of 24th and 27th resonances appears. It is clearly seen
that the resonances evolve pairwise and that the sum of their
frequencies corresponds to that of the main harmonic.

These experiments confirm that subharmonics occur in
correlated pairs, which points to the decay character of the
inverse cascade spectrum,

od ! o1 � o2 ; �56�

with the appropriate conditions for frequencies and ampli-
tudes. Further, the subharmonics interact with each other,
scattering on each other, interacting with higher harmonics,
and forming combinative frequencies due to interactions
with the main and multiple harmonics. This is clearly seen
from the Fourier analysis, which reveals a broad row of
frequency peaks between multiple harmonics of the direct
cascade. However, we are at present not in a position to
make an unambiguous statement about turbulent interac-
tion in the inverse cascade.
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8.4 Decay of the inverse cascade
Our experimental technique allows us to explore the decay of
stationary spectra for ranges of higher harmonics and
subharmonics. Observing the dependence on time, we can
conclude that for the inverse cascade, just as for the direct
one, switching off the external pumping leads to the decay of
the spectrum beginning from the high-frequency end. The
decrease in the energy flux induces a chaotic change in the
amplitudes of all harmonics. The last to `ring' in the decaying
developed inverse cascade is a subharmonic with the initially
large amplitude for which the system's Q factor was
sufficiently high.

Indeed, in experimental studies of the decay of oscillations
in a system with a developed inverse cascade and the pumping
frequency at the 96th resonance ( fG � 4715 Hz), it was found
that as the main harmonic fades, one of the intense
subharmonics takes over, in this case, the subharmonic with
the frequency f � 2900 Hz. This is an argument in favor of
the statement that the energy cascade decays from the high-
frequency spectral end. Without pumping, only interactions
between harmonics persist. The energy flux is damped at each
harmonic, and is transferred by the harmonics because of the
nonlinear wave interaction into both the high-frequency part
of the spectrum (summation of frequencies) and its low-
frequency part (a wave decay process). To quantitatively
describe the process of inverse cascade decay, we need an
adequate theoretical model of energy transfer into the low-
frequency spectral range, which is currently missing.

8.5 Energy fluxes in the inverse cascade
One interesting question concerning the inverse cascade is
related to the direction of the energy flux: does the energy flux
remain unchanged in the high-frequency domain or is the
energy pumped into the system divided between direct and
inverse processes? It is quite possible that the subharmonics in
the inverse cascade, once excited, stay in equilibrium with the
energy of themain harmonic, at which the excitation energy is
pumped into the system. For example, in a river, the presence
of a dam does not influence the total flux of water at a given
location, which is determined only by net runoff from
external sources.

We can compute the total energy in the direct and
inverse spectrum as integrals of the amplitudes of Fourier

components over the ranges of small � f < fd� and large
� f > fd� frequencies. It can be assumed that the energy flux
entering the system determines the total energy of all
harmonics in the inertial range. When combinative waves
were excited in the system by pumping it with two
resonance signals (see Section 5), the direct cascade was
suppressed. However, this suppression had no impact on
the common energy in the cascade, which implies a
correlation between the total energy in the harmonics and
the spectral energy flux. Results of exactly such computa-
tions of the net energy for all harmonics during the
development of the inverse cascade are given in Fig. 22.

The growth in the subharmonics of the inverse cascade
(after 20 s) leads to an increase in energy in the low-frequency
wing of the spectrum. At the same time, the energy in the
right-hand part of the spectral cascade decreases. However,
the total energy over the entire spectrum is practically
unchanged. This indicates that the energy flux becomes
redistributed between the high- and low-frequency parts of
the spectrum. If the inverse cascade had no energy flux, then
the total energy in the right-hand part of the spectrum would
be unchanged, as in the case where the system is pumped at
two resonant frequencies.

There is still a question of energy dissipation in the low-
frequency spectral domain. We recall that the resonator
Q factor depends on the frequency of waves excited in it.
And the lower the number of a resonance is, the lower the
Q factor. Thus, energy transferred to the low-frequency
spectral domain is effectively lost via viscous friction against
the walls, which becomes larger as the frequency of standing
waves decreases.

Thus, experiments indicate that during the formation of
the inverse cascade, energy is indeed transferred into the
high-frequency range, where it decays on bulk viscosity and
(or) geometric irregularities, as well as into the low-
frequency range, where friction against the walls is sub-
stantial and the system Q factor is small compared to that at
high frequencies.

After all, the nature of dissipative processes does not play
a fundamental role: the occurrence of fluxes of energy
pumped into the system by an external source and trans-
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ferred to the regions of high as well as low frequencies is
discovered experimentally.

9. Conclusions

Experimental studies of acoustic turbulence of second sound
waves in superfluid helium are based on the unique properties
of helium: its extraordinarily small viscosity (and hence weak
damping for temperature waves) and anomalously high
nonlinearity coefficient a2, which, furthermore, can change
sign if the temperature of superfluid helium is varied, taking
values from a � ÿ1 close to Tl to large positive values at
temperatures lower than T0 � 1:88 K, at which a2 � 0. The
experiments carried out in a resonator of second sound waves
enabled us to explore the specifics of energy transfer in the
spectral domain and the formation and decay of spectral
cascades. Both direct and inverse energy fluxes were dis-
covered, directed from the pumping range to the dissipation
range at the high-frequency edge of the spectrum (the direct
cascade) and to the low-frequency part (the inverse energy
cascade). The energy flux was created by nonlinear processes
in initially harmonic waves.

It has been found experimentally that for quasi-one-
dimensional acoustic turbulence, the processes of interaction
of higher harmonics in the direct cascade are strongly
amplified in a resonator with a Q factor of the order of
several thousand for the net heat flux power q5 10mWcmÿ2.
This is reflected in the formation of the inertial energy transfer
range in the spectral domain, and in interactions between
higher harmonics and counter propagating waves forming
standing waves under resonance conditions, which is
described in terms of random processes for higher harmonics
of the energy cascade.

The power-law dependence of amplitudes of multiple
harmonics in the inertial range is A� f � � f ÿm with m � 1:5.
The end of the inertial range for both positive and negative
nonlinearity coefficients is rather satisfactorily described by
the relation fb � const �T �A, where A is the pumping
amplitude, which agrees with the results of theoretical
analysis.

As we have shown, the formation of higher harmonics in
acoustic turbulence of second sound waves in superfluid
helium follows the dependence An � Anÿ1t � t 1=2��nÿ1�,
which can be explained in the framework of the model of
pumping at a constant power.

The study of decay of turbulent processes upon switching
off the pumping allowed us to separate linear and nonlinear
decay times for oscillations in a system of standing second
sound waves, which are governed by the Q factor of the
resonator (linear time) and the rate of spectral energy transfer
to higher harmonics (nonlinear time). The linear time proved
to be much larger than the time of energy transfer in the
spectral domain, which imposes substantial limitations on the
conditions enabling the observation of the acoustic turbu-
lence of second soundwaves in a resonator: a resonator with a
high Q factor is required to ensure that tL 4 tNL.

We have shown that the formation of the inverse cascade
is governed by decay processes of a pumpedwave; in this case,
the energy of pumping, remaining constant, is split into two
fluxes, supplying the high- and low-frequency parts of the
spectrum.

However, not all observed phenomena are described
theoretically. For example, stochastization of higher harmo-
nics in interactions of counter-propagating nonlinear waves

in a resonator and the dynamics of the formation and decay of
inverse and direct cascades are understood qualitatively, but
their quantitative description requires appropriate theories.
One motivation of this review was to attract the attention of
theoreticians to available experimental results.

The research carried out illustrates a series of feasible
tasks from the standpoint of studying strongly nonlinear
interacting waves in a high-Q resonator using the example of
second sound waves in superfluid helium. In particular, one
can explore the generation of standing resonant waves
pumped by noise, the interaction between nonlinear waves
and noise in a resonator, and the formation and decay of
energy cascades in nonlinear waves interacting with noise.
Yet another problem arising in studies of this system is the
interaction of nonlinear waves (potential perturbations) and
controlled vortex features (quantum vortices), which also
opens broad perspectives for theoretical models.
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