
Abstract. Simple geometric arguments based on constructing
the Euclid orchard are presented, which explain the equiva-
lence of various types of distributions that result from rare-
event statistics. In particular, the spectral density of the ex-
ponentially weighted ensemble of linear polymer chains is
examined for its number-theoretic properties. It can be shown
that the eigenvalue statistics of the corresponding adjacency
matrices in the sparse regime show a peculiar hierarchical
structure and are described by the popcorn (Thomae) function
discontinuous in the dense set of rational numbers. Moreover,
the spectral edge density distribution exhibits Lifshitz tails,
reminiscent of 1D Anderson localization. Finally, a continu-
ous approximation for the popcorn function is suggested based
on the Dedekind g-function, and the hierarchical ultrametric
structure of the popcorn-like distributions is demonstrated to
be related to hidden SL�2;Z� modular symmetry.

Keywords: modular form, popcorn function, Dedekind function,
spectrum of sparse matrix, Euclid's orchard, SL�2;Z� modular
group, Lifshitz tails, Anderson localization

1. Introduction

The so-called `popcorn function' [1], g�x�, also known as the
Thomae function, also has many other names: the raindrop
function, the countable cloud function, themodifiedDirichlet
function, the ruler function, etc. It is one of the simplest
number-theoretic functions possessing a nontrivial fractal
structure (another famous example is the everywhere con-
tinuous but never differentiable Weierstrass function). The
popcorn function is defined in the open interval x 2 �0; 1�
according to the following rule:

g�x� �
1

q
; if x � p

q
; p and q are coprime ;

0 ; if x is irrational :

8><>: �1�

The popcorn function g is discontinuous at every rational
point because irrationals come infinitely close to any rational
number, while g�x� vanishes at all irrationals. At the same
time, g is continuous at irrationals.

One of the most beautiful incarnations of the popcorn
function arises in a so-called `Euclid orchard' representation.
Consider an orchard of trees of unit heights located at every
point �an; am� of a two-dimensional square lattice, where n
and m are nonnegative integers defining the lattice, and a is
the lattice spacing, a � 1=

���
2
p

. Suppose we stay in the line
N � 1ÿm between the points A�0; a� and B�a; 0�, and
observe the orchard grown in the first quadrant along the
rays emitted from the origin �0; 0� (Fig. 1).

Along these rays we see only the first open tree with
coprime coordinates, M�ap; aq�, while all other trees are
shadowed. We introduce the auxiliary coordinate basis
�x; y� with the x-axis along the segment AB and y normal to
the orchard plane (as shown in Fig. 1a). We set the origin of
the x-axis at the point A, then the point B has the coordinate
x � 1. It is a nice school geometric problem to establish that:
(i) having the focus located at the origin, the tree at the point
M�ap; aq� is spotted at the place x � p=�p� q�, (ii) the visible
height of this tree is 1=�p� q�. In other words, the `visibility
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diagram' of such a lattice orchard is exactly the popcorn
function.

The popcorn correspondence p=q! 1=q arises in the
Euclid orchard problem as a purely geometrical result.
However, the same function has appeared as a probability
distribution in a plethora of biophysical and fundamental
problems, such as the distribution of quotients of reads in
DNA sequencing experiment [2], quantum 1=f noise and the
Frenel±Landau shift [3], interactions of nonrelativistic ideal
anions with a rational statistics parameter in the magnetic
gauge approach [4], or the frequency of specific subgraphs
counting in the protein±protein network of a Drosophila [5].
Though the extent of similarity with the original popcorn
function could vary, and experimental profiles may drasti-
cally depend on peculiarities of each particular physical
system, a general probabilistic scheme resulting in the
popcorn type manifestation of number-theoretic behavior in
nature definitely survives.

Suppose two random integers, f and c, are taken
independently from a discrete probability distribution,
Qn � f n, where f � 1ÿ e > 0 is a damping factor. If
�p; q� � 1, then the combination n � f=�f� c� has the
distribution given by the popcorn function in the asymptotic
limit e5 1:

P

�
n � p

p� q

�
�
X1
n�1

f n�p�q� � �1ÿ e� p�q
1ÿ �1ÿ e� p�q �

1

e�p� q� : �2�

The formal scheme above can be understood on the basis
of the Euclid orchard construction, if one considers a directed
�1� 1� walker on the lattice (see Fig. 1a), who performs f
steps along one axis of the lattice, followed by c steps along
the other axis. At every step the walker dies with probability
e � 1ÿ f. Then, having a number of walkers starting from the
origin of the lattice, one would get an `orchard of walkers',
i.e., at every spot n on the x-axis a fraction of surviving

walkers P�n� would be described exactly by the popcorn
function.

In order to have a relevant physical picture, consider a toy
model of diblock-copolymer polymerization. Without stick-
ing to any specific polymerization mechanism, consider an
ensemble of diblock-copolymers AB, polymerized independ-
ently from both ends in a cloud of monomers of the relevant
kind (we assume only AÿA and BÿB links to be formed).
Termination of polymerization is provided by specific
`radicals' of a very small concentration e: when a radical is
attached to the growing end (irrespectively, A or B), it
terminates the polymerization at this extremity forever.
Given the environment of infinite capacity, one assigns the
probability f � 1ÿ e to a monomer attachment at every
elementary act of the polymerization. If NA and NB are
molecular weights of the blocks A and B, then the composi-
tion probability distribution in our ensemble, P�j �
NA=�NA �NB��, in the limit of small e5 1 is `ultrametric'
(see paper [6] for the definition of the ultrametricity) and is
given by the popcorn function

P

�
j � p

p� q

�
� 1

e�p� q� �
def 1

e
g�j� : �3�

In the described process, we have assumed identical
independent probabilities for the monomers of sorts
(`colors') A and B to be attached at both chain ends. Since
no preference is implied, one may look at this process as a
homopolymer (`colorless') growth, taking place at two
extremities. For this process, we are interested in statistical
characteristics of the resulting ensemble of the homopolymer
chains.What would play the role of `composition' in this case,
or, in other words, how should one understand the fraction of
monomers attached at one end? As we show below, the
answer is rather intriguing: the respective analogue of the
probability distribution is the spectral density of the ensemble
of linear chains with probability QL for the molecular mass
distribution, where L is the length of a chain in the ensemble.

In our point of view, the popcorn function has not yet
received proper attention among researchers, though its
emergence in various physical problems seems impressive, as
we demonstrate below. Apparently, the main difficulty
concerns the discontinuity of g�x� at every rational point,
which often results in a problematic theoretical treatment and
interpretation of results for the underlying physical system.
Thus, a natural, physically justified `continuous approxima-
tion' of the popcorn function is very much in demand.

Below, we provide such an approximation, showing the
generality of `popcorn-like' distributions for a class of one-
dimensional disordered systems. We demonstrate that the
popcorn function can be constructed on the basis of the
modular Dedekind function, Z�x� iy�, when the imaginary
part, y, of the modular parameter z � x� iy tends to 0.

2. Spectral statistics of an exponentially
weighted ensemble of linear graphs

2.1 Spectral density and the popcorn function
The models explored above are intimately related to the
spectral statistics of ensembles of linear polymers. In a
practical setting, consider an ensemble of noninteracting
linear chains with an exponential distribution of their
lengths. We focus on the emergence of the fractal popcorn-
like structure in the spectral density of corresponding
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Figure 1. (a) Construction of the Euclid orchard; (b) popcorn (Thomae)

function.
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adjacency matrices describing the connectivity of elementary
units (monomers) in linear chains.

The ensemble of exponentially weighted homogeneous
chains is described by the bi-diagonal symmetric N�N
adjacent matrix B � fbi jg:

B �

0 x1 0 0 � � �
x1 0 x2 0
0 x2 0 x3
0 0 x3 0

..

. . .
.

0BBBB@
1CCCCA ; �4�

where the distribution of each bi; i�1 � bi�1; i � xi
�i � 1; . . . ;N� is Bernoullian:

xi � 1 with probability f ;
0 with probability e � 1ÿ f :

�
�5�

We are interested in the spectral density, re�l�, of the
ensemble of matrices B in the limit N!1. Notice that at
any xk � 0, thematrixB splits into independent blocks. Every
n� n block is a bi-diagonal symmetric n� n matrix An with
all xk � 1, k � 1; . . . ; n, which corresponds to a chain of
length n. The spectrum of the matrix An is given by

lk; n � 2 cos
pk

n� 1
; k � 1; . . . ; n : �6�

All the eigenvalues lk; n for k � 1; . . . ; nÿ 1 appear with
probability Qn � f n in the spectrum of matrix (4). In the
asymptotic limit e5 1, one may deduce an equivalence
between the composition distribution in the polymerization
problem, discussed in the previous section, and the spectral
density of the linear chain ensemble. Namely, the prob-
ability of a composition j � p=�p� q� in the ensemble of
diblock-copolymers can be precisely mapped onto the peak
intensity (the degeneracy) of the eigenvalue l � lp; p�qÿ1 �
2 cos �pp=�p� q�� in the spectrum of the matrix B. In other
words, the integer number k in the mode lk; n matches the
number of A-monomers, NA � kz, while the number of
B-monomers matches NB � �n� 1ÿ k�z, where z 2 N is
the respective diblock-copolymer.

The spectral statistics survive if one replaces the ensemble
of Bernoullian two-diagonal adjacency matrices B defined by
(4), (5) by the ensemble of randomLaplacian matrices. Recall
that the Laplacianmatrix,L � fai jg, can be constructed from
the adjacency matrix, B � fbi jg, as follows: ai j � ÿbi j for
i 6� j, and aii �

PN
j�1 bi j. A search for eigenvalues of the

Laplacian matrix L for a linear chain is equivalent to
determining its relaxation spectrum. Thus, the density of the
relaxation spectrum of the ensemble of noninteracting linear
chains with the exponential distribution over lengths has the
signature of the popcorn function.

To derive re�l� for arbitrary values of e, let us write down
the spectral density of the ensemble of N�N random
matrices B with the bimodal distribution of the elements as a
resolvent:

re�l� � lim
N!1

�Xn
k�1

d�lÿ lkn�
�

Qn

� lim
N!1
y!�0

y Im


Gn�lÿ iy��

Qn

� lim
N!1
y!�0

y
XN
n�1

Qn ImGn�lÿ iy� ; �7�

where h. . .iQn
means averaging over the distribution Qn �

�1ÿ e�n, and the following regularization of the Kronecker
d-function is used:

d�x� � lim
y!�0

Im
y

xÿ iy
: �8�

The function Gn is associated with each particular gapless
matrix B of n sequential `1' on the subdiagonals:

Gn�lÿ iy� �
Xn
k�1

1

lÿ lk; n ÿ iy
: �9�

Collecting formulas (6), (7), and (9), we find an explicit
expression for the density of eigenvalues:

re�l� � lim
N!1
y!�0

y
XN
n�1
�1ÿ e�n

Xn
k�1

y�
lÿ 2 cos

�
pk=�n� 1��	2� y 2

:

�10�
The behavior of the inner sum in the spectral density in the
asymptotic limit y! 0 is easy to understand: it is 1=y at
l � 2 cos �pk=�n� 1��, and zero otherwise. Thus, one can
already infer a qualitative similarity with the popcorn
function. It turns out that the correspondence is quantitative
for e � 1ÿ f5 1. Driven by the purpose to show it, we
calculate the values of re�l� at the peaks, i.e., at rational
points l � 2 cos �pp=�p� q��with �p; q� � 1 and end upwith a
similar geometrical progression as for the case of diblock-
copolymer problem (2):

re

�
l � 2 cos

pp
p� q

�
�
X1
s�1
�1ÿ e��p�q�sÿ1

� �1ÿ e� p�qÿ1
1ÿ �1ÿ e� p�q

����
e!0

� 1

e�p� q� �
def

g

�
1

p
arccos

l
2

�
: �11�

The typical sample plot re�l� for f � 0:7 computed numeri-
cally via expression (10) with e � 2� 10ÿ3 is shown in Fig. 2
for N � 103.

0 l

re�l�

ÿ0.5ÿ1.0ÿ1.5 0.5 1.0 1.5

1

2

3

4

5

6

7

Figure 2. Spectral density re�l� for an ensemble of bi-diagonal matrices of

size N � 103 at f � 0:7. The regularization parameter e is taken equal to

2� 10ÿ3.
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2.2 Enveloping curves and tails of the eigenvalues density
Below, we focus on some number-theoretic properties of the
spectral density of the argument l, since in this case the
correspondence with the composition ratio is precise. One can
compute the enveloping curves for any monotonic sequence
of peaks depicted in Fig. 2, where we show two series of
sequential peaks: S1 � f1ÿ2ÿ3ÿ4ÿ5ÿ . . .g and S2 �
f2ÿ6ÿ7ÿ . . .g. Any monotonic sequence of peaks corre-
sponds to the set of eigenvalues lk; n constructed on the basis
of a Farey sequence [7]. For example, as shown below, the
peaks in the series S1 are located at

lk � ÿlk; k � ÿ2 cos pk
k� 1

; k � 1; 2; . . . ;

while the peaks in the series S2 are located at

lk 0 � ÿlk 0; 2k 0ÿ2 � ÿ2 cos pk 0

2k 0 ÿ 1
; k 0 � 2; 3; . . . :

The positions of the peaks obey the following rule: let
flkÿ1; lk; lk�1g be three consecutive monotonically ordered
peaks (e.g., peaks 2ÿ3ÿ4 in Fig. 2), and let

lkÿ1 � ÿ2 cos ppkÿ1
qkÿ1

; lk�1 � ÿ2 cos ppk�1
qk�1

;

where pk and qk �k � 1; . . . ;N� are coprimes. The position of
the intermediate peak, lk, is defined as

lk � ÿ2 cos ppk
qk

;
pk
qk
� pkÿ1

qkÿ1
� pk�1
qk�1

� pkÿ1 � pk�1
qkÿ1 � qk�1

: �12�

The sequences of coprime fractions constructed via the �
addition are known as Farey sequences. A simple geometric
model behind the Farey sequence, known as Ford circles [8], is
shown in Fig. 3a. In brief, the construction goes as follows.

Take the segment �0; 1� and draw two circles O andO 0, both of
radius r � 1=2, which touch each other and the segment at the
points 0 and 1. Now inscribe a new circle O1 touching O, O 0

and �0; 1�. Where is the position of the new circle along the
segment? The generic recursive algorithm constitutes the
Farey sequence construction. Notice that the same Farey
sequence can be sequentially generated by fractional-linear
transformations (reflections with respect to the arcs) of the
fundamental domain of the modular group SL�2;Z�Ðthe
triangle lying in the upper half-plane Im z > 0 of the complex
plane z (see Fig. 3b).

Consider the main peak sequence

S1 � f1ÿ2ÿ3ÿ4ÿ5ÿ . . .g :

The explicit expression for their positions reads

lk � ÿ2 cos pk
k� 1

; k � 1; 2; . . . : �13�

One can straightforwardly investigate the asymptotic behav-
ior of the popcorn function in the limit of k!1. From
progression (11), for arbitrary f < 1 we have the set of
parametric equations

re�lk� �
f k

1ÿ f k�1

����
k4 1

� f k ;

lk � ÿ2 cos pk
k� 1

����
k4 1

� 2ÿ p2

k 2
:

8>>>><>>>>: �14�

From the second equation of Eqn (14), we get k � p=
�����������
2ÿ l
p

.
Substituting this expression into the first one of Eqn (14), we
end up with the following asymptotic behavior of the spectral
density near the spectral edge l! 2ÿ:

re�l� � exp

�
ÿ pj log f j�����������

2ÿ l
p

�
; 0 < f < 1 : �15�

Behavior of Eqn (14) is the signature of the Lifshitz tail
typical of the 1D Anderson localization:

re�E� � exp �ÿCEÿD=2� ; �16�

where E � 2ÿ l and D � 1.

3. From the popcorn function
to the Dedekind g-function

3.1 Some facts about the Dedekind g-function
and its related series
The popcorn function has discontinuous maxima at rational
points and continuous valleys at irrationals. We show in this
section that the popcorn function can be regularized on the
basis of the everywhere continuous Dedekind function
Z�x� iy� in the asymptotic limit y! 0.

The famous Dedekind Z-function is defined as follows:

Z�z� � exp

�
piz
12

�Y1
n�0

�
1ÿ exp �2pinz�� : �17�

The argument z � x� iy is called the modular parameter,
and Z�z� is defined for Im z > 0 only. The Dedekind
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b
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1
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Figure 3.Ford circles as an illustration of the Farey sequence construction.

(a) Each circle touches two neighbors (right and left) and the segment. The

position of the newly generated circle is determined via the � addition:

pkÿ1=qkÿ1 � pk�1=qk�1� �pkÿ1 � pk�1�=�qkÿ1 � qk�1�. (b) The same Farey

sequence generated by sequential fractional-linear transformations of the

fundamental domain of the modular group SL�2;Z�.
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Z-function is invariant with respect to the action of the
modular group SL�2;Z�:

Z�z� 1� � exp

�
piz
12

�
Z�z� ;

�18�
Z
�
ÿ 1

z

�
�

�����
ÿi
p

Z�z� :

And, in general, one has

Z
�
az� b

cz� d

�
� o�a; b; c; d�

�������������
cz� d
p

Z�z� ; �19�

where adÿ bc � 1, and o�a; b; c; d � is some root of the
24th degree of unity [10].

It is convenient to introduce the following `normalized'
function

h�z� � ��Z�z����Im z�1=4 : �20�

The real analytic Eisenstein series E�z; s� is defined in the
upper half-plane,H� fz : Im z>0g for Re s > 1 as follows:

E�z; s� � 1

2

X y s

jmz� nj2s ; z � x� iy : �21�

This function can be analytically continued to the entire
s plane with one simple pole at s � 1. Notably, it shares
the same invariance properties in z as the Dedekind
Z-function. Moreover, E�s; z�, as a function of z, is the
SL�2;Z�-automorphic solution of the hyperbolic Laplace
equation

ÿy 2

�
q2

qx 2
� q2

qy 2

�
E�z; s� � s�1ÿ s� E�z; s� :

The Eisenstein series is closely related to the Epstein
z-function, z�s;Q�, namely

z�s;Q� �
X 1

Q�m; n�s �
2

d s=2
E�z; s� ; �22�

where Q�m; n� � am 2 � 2bmn� cn 2 is a positive definite
quadratic form, d � acÿ b 2 > 0, and z � �ÿb� i

���
d
p �=a.

Eventually, the logarithm of the Dedekind Z-function is
known to enter into the Laurent expansion of the Epstein
z-function. Its residue at s � 1 has been calculated by
Dirichlet and is known as the first Kronecker limit formula
[11±13]. Explicitly, as s! 1 it reads

z�s;Q� � p���
d
p 1

sÿ 1
� 2p���

d
p
�
g� ln

������
a

4d

r
ÿ 2 ln

��Z�z����
�O�sÿ 1� : �23�

Equation (23) establishes the important connection between
the Dedekind Z-function and the respective series, which we
substantially exploit below.

3.2 Relation between the popcorn function
and Dedekind g-function
Consider an arbitrary quadratic form Q 0x�m; n� with a unit
determinant. Since d � 1, it can be written in new parameters

fa; b; cg ! fx � b=c; e � 1=cg as follows:

Q 0x�m; n� �
1

e
�xmÿ n�2 � em 2 : �24�

Applying the first Kronecker limit formula to the Epstein
function with quadratic form (24) and s � 1� t, where t5 1,
but finite, we get

z�s;Q 0x� �
p

sÿ 1
� 2p

�
g� ln

������
1

4e

r
ÿ 2 ln

��Z�x� ie����
�O�sÿ 1� : �25�

On the other hand, use can be made of the e-continuation of
the Kronecker d-function (8), and z�1� t;Q 0x� for small t5 1
can be assessed as follows:

z�1� t;Q 0x� �
1

e

X e 2

�xmÿ n�2 � e 2m 2

� 2

e
lim
N!1

XN
m�1

XN
n�1

1

m 2
d
�
xÿ n

m

�
� y�x� ; �26�

where x 2 �0; 1�, and the factor 2 reflects the presence of two
quadrants on the Z2-lattice that contribute jointly to the sum
at every rational point, while y assigns 0 to all irrationals. At
rational points, y�p=q� can be calculated straightforwardly:

y
�
p

q

�
� 2

e

X1
m ..

.
q

1

m 2
� p2

3eq 2
; �27�

where the symbol ..
.
denotes the division in whole numbers.

Comparing formula (27) with the definition of the popcorn
function, g, one ends up with the following relation at the
peaks:

g

�
p

q

�
�

�������������������
3e
p2

y
�
p

q

�s
: �28�

Eventually, collecting Eqns (25) and (28), we may write down
the regularization of the popcorn function by the Dedekind
Z�x� ie�je!0 function in the interval 0 < x < 1:

g�x� �
������������������������������������������������������������
ÿ 12e

p
ln
��Z�x� ie���ÿ o�e ln e�

r �����
e!0

; �29�

or

ÿ ln
��Z�x� ie���e!0

� p
12e

g 2�x� : �30�

Notice that the asymptotic behavior of the Dedekind
Z-function can be independently derived through duality
relations [6]. However, such an approach leaves in the dark
the underlying structural equivalence of the popcorn and Z
functions and their series representation on the lattice Z2. In
Fig. 4, we show two discrete plots of the left- and right-hand
sides of formula (30).

Thus, the spectral density of the ensemble of linear chains,
(11), in the regime e5 1 is expressed through the Dedekind
Z-function as follows:

re�l� �
�����������������������������������������������������������
ÿ 12

pe
ln

����Z�1p arccos
l
2
� ie

�����
s

: �31�

fm; ng2 Z2nf0; 0g

fm; ng2 Z2nf0; 0g

fm; ng2 Z2nf0; 0g
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4. Conclusion

We have discussed the number-theoretic properties of
distributions appearing in physical systems, when an observ-
able is a quotient of two independent exponentially weighted
integers. The spectral density of the ensemble of linear
polymer chains distributed with the law f L �0 < f < 1�,
where L is the chain length, serves as a particular example.
As f! 1, the spectral density can be expressed through the
Thomae (`popcorn') function, discontinuous and nondiffer-
entiable at all rational points. We suggest a continuous
approximation of the popcorn function, based on the
Dedekind Z-function near the real axis.

Analysis of the spectrum at the edges reveals Lifshitz tails,
typical of 1D Anderson localization. The nontrivial feature,
related to the asymptotic behavior of the shape of the spectral
density of the adjacency matrix, is as follows. The main,
enveloping, sequence of peaks 1ÿ2ÿ3ÿ4ÿ5ÿ . . . in Fig. 2
has the asymptotic behavior r�l� � q p=

������
2ÿl
p

(as l! 2ÿ)
typical of 1D Anderson localization; however, any internal
subsequence of peaks, like 2ÿ6ÿ7ÿ . . . ; has the asymptotic
behavior r 0�l� � q p=jlÿlcrj (as l! lcr), which is reminiscent
of the Anderson localization in 2D.

We would like to emphasize that the ultrametric structure
of the spectral density is ultimately related to number-
theoretic properties of modular functions. We also pay
attention to the connection between the popcorn function
and the invariant measures of some continued fractions
studied by Borwein and Borwein in 1993 [17].

The notion of ultrametricity deals with the concept of a
hierarchical organization of energy landscapes [19, 20]. A
complex system is assumed to have a large number of
metastable states corresponding to local minima in the
potential energy landscape. With respect to the transition
rates, the minima are suggested to be clustered in
hierarchically nested basins, i.e., larger basins consist of
smaller basins, each of these consists of even smaller ones,
etc. The basins of local energy minima are separated by a
hierarchically arranged set of barriers: large basins are
separated by high barriers, and smaller basins within each
larger one are separated by lower barriers. Ultrametric
geometry fixes taxonomic (i.e., hierarchical) tree-like
relationships between elements and, speaking figuratively,
is closer to the Lobachevsky geometry than to the
Euclidean one [21, 22].
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