
Abstract. Topological Lifshitz transitions involve many types of
topological structures in momentum and frequency±momentum
spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl
points, etc., each of which has its own stability-supporting
topological invariant (N1, N2, N3, ~N3, etc.). The topology of
the shape of Fermi surfaces andDirac lines and the interconnec-
tion of objects of different dimensionalities produce a variety of
Lifshitz transition classes. Lifshitz transitions have important
implications for many areas of physics. To give examples,
transition-related singularities can increase the superconduct-
ing transition temperature; Lifshitz transitions are the possible
origin of the small masses of elementary particles in our Uni-
verse, and a black hole horizon serves as the surface of the
Lifshitz transition between vacua with type-I and type-II Weyl
points.

Keywords: topological Lifshitz transitions, Fermi surface, Dirac
point, Weyl point, black hole event horizon

1. Introduction. Fermi surface, Dirac line,
Weyl point

The key word in considering Lifshitz transitions is topology.
Following original Lifshitz paper [1], the Lifshitz transition
was viewed as a change in the topology of the Fermi surface
without symmetry breaking. Later on, it became clear that the
topology of the shape is not the only topological character-
ization of the Fermi surface. The Fermi surface itself
represents the singularity in the Green's function G, which is
topologically protected: it is the vortex line in the four-
dimensional frequency±momentum space in Fig. 1a. The
stability of the Fermi surface under interaction between
fermions constitutes the origin of the Fermi-liquid theory
developed by Landau.Moreover, the Fermi surface appeared
to be only one in the series of topologically stable singularities
[2, 3], which include, in particular, the Weyl pointÐ the
hedgehog in momentum space in Fig. 1b, and the Dirac
lineÐ the vortex line in the three-dimensional momentum
space in Fig. 1c. The stability of these objects is supported by
the corresponding topological invariants in momentum space
or in extended frequency±momentum space.

The combination of topology of the shape of the Fermi
surfaces, Fermi lines, and Fermi points, together with the
topology, which supports the stability of these objects, as well
as the topology of the interconnections of objects of different
dimensions, provides a large number of different types of
Lifshitz transitions. Examples of Lifshitz transitions coming
from the interplay of different topological objects in momen-
tum space are discussed in Refs [4±6] and in Sections 3.3 and
4. This makes the Lifshitz transitions ubiquitous, with
applications in high-energy physics, cosmology, black hole
physics, and the search for room-Tc superconductivity.

Notably, the Lifshitz transition may give the solution to
the hierarchy problem in particle physics: why the masses of
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elementary particles in our Universe are so extremely small
compared with the characteristic Planck energy scale. Indeed,
when we compare the mass � 102 GeV of the most heavy
particleÐ the top quarkÐwith the Planck energy
� 1019 GeV, we can see that the vacuum in our Universe is
practically gapless. There are several topological scenarios
which may lead to the (almost) gapless vacuum.

In one scenario, the quantum vacuum belongs to the class
of gapless (massless) Weyl materials in Fig. 1b, where the
nodes in the spectrum of elementary particlesÐ the Weyl
pointsÐare topologically protected [2, 3, 9] (see Section 3.1
and Fig. 9). According to this scenario, the physical laws are
not fundamental, but emerge in the low-energy corner of the
quantum vacuum, i.e., in the vicinity of the Weyl points,
where the spectrum becomes linear and all the symmetries of
the Standard Model, including Lorentz invariance and
general covariance, emerge from nothing. In this scenario,
the Lifshitz transition between type-I and type-II Weyl vacua
takes place at the black hole horizon (see Section 3.4).

At an even lower energy, some of these symmetries
experience spontaneous breaking, analogous to the super-
conducting transition, in which the hierarchy problem is
understood: inmost superconductors, the transition tempera-
ture Tc is exponentially small compared to the characteristic
Fermi energy scale (an analog of the Planck scale), which
forces us to search for exceptional materials with enhanced

Tc. The role of the Lifshitz transition in the elevation of the
superconducting transition temperature is discussed in Sec-
tions 2.4 and 3.3.

In the other scenario, the massless (gapless) vacua emerge
at the Lifshitz transition between the fully gapped vacua with
various topological charges (see Section 6 and Fig. 18). The
almost perfect masslessness of elementary particles in our
Universe suggests that the Universe is very close to the line of
the topological Lifshitz transition between fully gapped
vacua, at which fermions necessarily become gapless [10]
(see Section 6). This is the topological analog of the so-called
multiple point principle, according to which the Universe
lives in the coexistence point (line, surface, etc.) of the first-
order phase transition, where different vacua have the same
energy [11±15].

2. Fermi surface and Lifshitz transitions

2.1 Fermi surface as topological object
The primary topology, which is at the origin of Lifshitz
transitions, is the one which is responsible for the stability of
the Fermi surface itself. If the Fermi surface is not stable
under electron±electron interactions, the consideration of the
topology of the shape of the Fermi surface and of the
corresponding Lifshitz transitions does not make much
sense. To view the topological stability of the Fermi surface
with respect to interactions, let us start with the Green's
function of an ideal Fermi gas in Fig. 2a. The Fermi surface
e�p� � 0 of the noninteracting Fermi gas is the boundary in a
momentum space, which separates the occupied states with
e�p� < 0 from the empty states with e�p� > 0. The Green's
function G�o; p� with o on imaginary axis, viz.

Gÿ1�o; p� � ioÿ e�p� ; �1�

has a singularity at o � 0 and e�p� � 0. In Fig. 2b, the pz
coordinate is dropped for clearness, and the Green's function
singularity forms the closed line in the 2� 1 momentum±
frequency space �px; py;o�. This line represents the vortex
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Figure 1. Topologically stable nodes in the energy spectrum of electrons in

metals or fermions in general case. (a) Fermi surface represents the

singularity in the Green's function, which forms the vortex in the 3� 1

�p;o�-space, see Section 2.1 andFig. 2 (in the 2� 1 �px; py;o�-space, this is
the vortex line). The stability of the vortex is supported by the winding

numberÐ the integer-valued invariant N1, expressed in terms of the

Green's function. Lifshitz transitions, which involve the Fermi surfaces,

are discussed in Sections 2 and 4. (b) Conical point in the fermionic

spectrum of Weyl materials (Weyl semimetals, chiral superfluid 3He-A,

and the vacuum of the Standard Model in its gapless phase; see Section 3

and Fig. 9). The directions of spin (or of the emergent spin, isospin,

pseudo-spin, etc.) form the topological object in momentum spaceÐ the

hedgehog or the Berry phase monopole [7]Ðdescribed by the integer-

valued topological invariant N3. Lifshitz transitions, which involve Weyl

nodes, are discussed in Sections 3, 4, and 6. (c) Dirac linesÐ lines of zeroes

in the energy spectrum, described by the topological invariant N2. The

circular line is the Dirac line in the quasiparticle spectrum in the polar

phase of superfluid 3He, which has been recently created in aerogel [8]. The

same invariantN2 stabilizes the point nodes in the spectra of 2Dmaterials,

such as graphene (see Section 5).
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Figure 2. Fermi surface is robust to interactions, because it represents the

topologically stable singularity in the Green's functionÐ the vortex in the

3� 1 �p;o�-space. The stability of the vortex is supported by the winding

number of the phase F of the Green's function G � jGj exp �iF�. In

general, the winding number is given by the integer-valued invariant N1,

expressed in terms of the Green's function, see Eqn (2).
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line, in which the phase F�px; py;o� of the Green's function
has the 2p winding. As in the case of the real-space vortex in
superfluids, the integer winding number provides the stability
of the Fermi surface with respect to perturbations, including
the interaction [if the pz component is restored, the singularity
forms the vortex sheet in the 3� 1 momentum±frequency
�p;o� space].

In general, when the Green's function has the spin, band,
and other indices, the winding number can be written in terms
of the Green's function as the following topological invariant

N1 � tr

�
C

dl

2pi
G�o; p� qlGÿ1�o; p� : �2�

Here, the integral is taken over an arbitrary contourC around
the momentum±frequency vortex sheet, and tr stands for the
trace over all the indices.

Due to topological stability, one cannotmake a hole in the
Fermi surface. As in the case of vortex lines, which cannot
terminate in a bulk, the Fermi surface has no edges.

2.2 Fermi surface and Lifshitz transitions
Because of topological stability, a Fermi surface may be
formed even in the superconducting state. The conditions
for that are a multiband structure, symmetry breaking with
respect to time T reversal and parity P [16±20]. These so-
called Bogoliubov Fermi surfaces also appear in gapless
superfluids, when the Weyl points in 3He-A and the Dirac
nodal line in the polar phase of 3He are inflated to Fermi
pockets in the presence of superflow, which violates both T
and P symmetries [21, 22].

The Fermi surface can also be formed in fully gapped
superfluids if the velocity of superflow exceeds the Landau
critical velocity [3, 23]. Exceeding the Landau velocity with
the formation of closed Bogoliubov Fermi surfaces is an
example of one of the two transitions suggested by Lifshitz
(Fig. 3).

Another original Lifshitz transition takes place when the
Fermi surface crosses the stationary point of the electronic
energy spectrum. Near the transition, the expansion of the
generic spectrum has the form [1]

ep � ap 2
x � bp 2

y � cp 2
z ÿ m : �3�

For a > 0, b > 0, c < 0, the transition with disruption of the
neck of the Fermi surface at m � 0 is shown in Fig. 4a. In

terms of the vortex singularities of the Green's function in a
3� 1 �p;o� space, this Lifshitz transition represents the
interconnection of the vortex lines in Fig. 4b. In superfluids,
the interconnection of the real-space vortices exhibits an
important process in the vortex turbulence [24].

2.3 From pole of Green's function to zero
While in a conventional Landau Fermi liquid the Green's
function has a pole, for a Luttinger liquid the residue of the
pole in theGreen's function has a singularityÐ the parameter
g in Eqn (5) is nonzero [25]:

G � Z

ioÿ e�p� ; Z / ÿo2 � e 2�p��g : �4�

Nevertheless, the topological invariant remains the same for
all g, i.e., the Green's function has the same topological
property as the Green's function of a conventional metal
with a Fermi surface at e�p� � 0. This is the reason why the
Luttinger theorem is still valid [26, 27]. The particle number
density of interacting fermions is equal to the volume in the
momentum space enclosed by a singular surface with the
topological charge N1 � 1, irrespective of the realization of
the singularity.

The suppression of residueZ can be so strong that the pole
in the Green's function is transformed to the zero of the
Green's function, which corresponds to the special case of
g � 1 (Fig. 5):

G / io� e�p� : �5�

This situation in particular takes place for Mott insulators
[26], which means that the topology of the Fermi surface is
preserved even in the insulating phase, and thus the Luttinger
theorem is still valid [26, 27]. Thus, it may be argued that the
transition betweenmetals and insulators can also be viewed as
a type of zero-temperature Lifshitz transition, in which the
property of the energy spectrum drastically changes without
symmetry breaking. However, this quantum phase transition
is not topological, since the topological invariant does not
change across the transition.

It cannot be ruled out that in the so-called pseudogap
phase of cuprate superconductors and some other materials

Fermi surface
in supercritical 3He-B

Fermi surface
in supercritical 3He-B

Fermi surface
in normal 3HeFlow

v4 vLandau

Figure 3. Lifshitz transition in which the closed Fermi surfaces (pockets)

appear in the fully gapped superfluid 3He-B, when the flow velocity of the

liquid with respect to the walls of the container exceeds the Landau critical

velocity [3, 23].
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Figure 4. Since the Fermi surface represents the vortex in a 3� 1 �p;o�
space, the Lifshitz transition with disruption of the neck of the Fermi

surface [1] (a) is equivalent to the interconnection of vortices in quantum

turbulence [24] (b).
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(see, e.g., Ref. [28]) a part of the Fermi surface transforms into
a surface of zeroes in the Green's function and Fermi arcs are
formed (see right-hand panel in Fig. 5b).

2.4 From Fermi surface to flat band
The flat bandÐor the so-called Khodel±Shaginyan fermion
condensate, where all the states have zero energyÐ is caused
by electron±electron interactions [29±31]. This is a manifesta-
tion of the general phenomenon of merging the energy levels
due to interactions (Fig. 6). Such an effect has been observed
for Landau levels in 2D quantum wells [32, 33]. Since the flat
band has a huge density of electronic states, this may
considerably elevate the transition temperature to the super-
conducting state (Fig. 7).

The flat band is more easily formed in the vicinity of the
conventional Lifshitz transition [34, 35] (Fig. 8). Flattening of
the single-particle spectrum near the Fermi momentum has
been reported in a 2D quantum well [36]. It is possible that

this effect is responsible for the occurrence of superconduc-
tivity with high Tc observed in pressurized sulfur hydride [37,
38]: there is some theoretical evidence that high-Tc super-
conductivity takes place at such a pressure when the system is
close to the Lifshitz transition [39±41]. Enhanced super-
conductivity at the Lifshitz transition has been reported for
an FeSe monolayer [42].

3. Lifshitz transitions governed
by Weyl point topology

3.1 Topology of Weyl fermions
Weyl particles are the elementary particles of our Universe.
The Weyl spinor contains 2 complex components, and these
massless particles are described by the 2� 2 complex
Hamiltonian: H � crp for right-handed quarks and leptons,
and H � ÿcrp for left-handed particles, where c is the speed
of light. Their spins in momentum space form the hedgehog
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surface does not change at this quantum phase transition. As a result, the

Luttinger theorem remains valid [26, 27], i.e., the particle number density

of interacting fermions is equal to the volume in the momentum space

enclosed by a singular surface with the topological charge N1 � 1.
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(Fig. 9a) and anti-hedgehog (Fig. 9b), respectively. The
hedgehog is a topologically stable object, and thus the
Weyl point in the center of the hedgehog is topologically
protected. The corresponding topological invariant N3 for
hedgehogs can be expressed in terms of the Green's function
as a surface integral in the 3� 1 momentum±frequency
space pm � �p;o� [3]:

N3 � Emnrs
24p2

tr

�
Sa

dS s G
q
qpm

Gÿ1G
q
qpn

Gÿ1G
q
qpr

Gÿ1: �6�

Here, Sa is a three-dimensional surface around the isolated
Weyl point in �p;o� space.

From the point of view of the general properties of the
fermionic spectrum, theWeyl point represents the exceptional
point of level crossing analyzed by vonNeumann andWigner
[43]. Their analysis demonstrated that two branches of a
spectrum which have the same symmetry may touch each
other at the conical (or diabolical) point in the three-
dimensional space of parameters, which in our case are px,
py, and pz. The touching of two branches is described in
general by a 2� 2 Hamiltonian H � rg�p�. The topological
invariant N3 is expressed in terms of the unit vector
ĝ�p� � g�p�=jg�p�j in Fig. 1b, which forms the hedgehog
configuration in Fig. 1b (right). The touching point also
represents the Berry phase monopole in Fig. 9c [7]. It cannot
be ruled out that the Weyl fermions in the Standard Model
(quarks and leptons) are not elementary particles, but
emerge from a level crossing at a more fundamental level
[2, 3, 9]. In particular, the underlying quantum vacuum may
be described by the quantum field theory based on real
numbers (Majorana fermions), while the imaginary unit,
which enters the Schr�odinger equation, emerges in the low-
energy limit together with the relativistic linear spectrum of
Weyl fermions [44].

The linear (`relativistic') spectrum emerges only for
elementary topological charges N3 � 1 or N3 � ÿ1. If the
Weyl point has a higher topological charge, jN3j > 1, and if

there is no special symmetry which leads to the degeneracy of
the levels, the spectrum possesses different dispersion rela-
tions along different axes [3, 45]. For example, at jN3j � 2, the
spectrum is `relativistic' in one direction, and quadratic in the
other two directions.

3.2 Lifshitz transitions with splitting of Weyl points
A typical Lifshitz transition, which involvesWeyl nodes in the
fermionic spectrum, describes the formation of Weyl points
with opposite charges N3 � �1 from the fully gapped state.
Figure 10 demonstrates the formation of a pair ofWeyl points
from the vacuum state with massive Dirac fermions. The
intermediate state has a massless Dirac point in the fermionic
spectrum with the topological charge N3 � 0. Such a gapless
Dirac point is marginal but can be protected by symmetry, as
takes place in the Standard Model above the electroweak
transition. If the symmetry is violated by an external action or
is spontaneously broken, the Dirac spectrum either acquires
mass or splits into a pair of Weyl points [46].

Figure 11 demonstrates the formation of 4 right-handed
and 4 left-handed Weyl points in the Lifshitz transition
between the BEC strong coupling regime and the BCS weak
coupling regime. Such an arrangement of the Weyl nodes
takes place in the energy spectrum in the O�D2� symmetry
class of pair correlated systems [47, 48]. In both cases, the
total topological charge N total

3 � 0, and thus there is an even
number of Weyl fermions, which supports the fermion
doubling principle [51]. In relativistic theories, the analogical
arrangement of 8 left and 8 right Weyl fermions on the
vertices of a cube in the 3� 1 �px; py; pz;o� space has been
discussed [49, 50]. It is interesting that each family of
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Standard Model fermions contains 8 left and 8 right Weyl
particles.

3.3 Lifshitz transition to type-II Weyl cone
There is A type of Lifshitz transition which involves both the
Fermi surface (invariant N1) and the Weyl point (invariant
N3). This is the transition between the isolated Weyl points
(type-I Weyl spectrum) and the Weyl point connecting two
Fermi surfaces (called the type-II Weyl point [52]). Such
transitions have been discussed in Refs [44, 53] in relativistic
theories.

The simplest realization of the type-II Weyl point comes
from the followingHamiltonian with two parameters c and v:

H � crpÿ vpz : �7�

At v � 0, this is theWeyl point with theWeyl cone in Fig. 12a.
For 0 < v < c, the cone is tilted. For v > c, the cone is
overtilted, so that the cone crosses the zero energy level
forming two Fermi pockets connected by the Weyl pointÐ
the type-II Weyl point (Fig. 12b). The Lifshitz transition
between two types of Weyl points occurs at v � c. It was
demonstrated that such a Lifshitz transition also leads to the
elevation of the transition temperature to the superconduct-
ing state [54, 55] (Fig. 12c).

3.4 Lifshitz transition at the black hole horizon
The Lifshitz transition discussed in Section 3.3 takes place at
the black hole horizon. In General Relativity, the stationary
metric, which is valid both outside and inside the black hole
horizon, is provided, in particular, by the Painlev�e±Gull-
strand spacetime [57]. The line element of the Painlev�e±
Gullstrand metric is equivalent to the so-called acoustic
metric [58±60]:

ds 2 � gmn dx
m dx n � ÿc 2 dt 2 � �drÿ v dt�2 : �8�

This metric is expressed in terms of the velocity field v�r�
describing frame dragging in the gravitational field:

v�r� � ÿr̂c
�����
rh
r

r
; rh � 2MG

c 2
: �9�

Here, M is the mass of the black hole, rh is the radius of the
horizon, and G is the Newtonian constant of gravitation.
Behind the horizon, the drag velocity exceeds the speed of
light, jvj > c, and particles are trapped in the hole (see
Fig. 13b). The behavior of the light cone (the cone in

spacetime) across the event horizon is shown in Fig. 13a.
The light cone is overtilted behind the horizon.

The behavior of the Weyl cone (the cone in momentum
space) across the horizon is described by the Hamiltonian of
the Weyl particles in the gravitational field of the black hole,
which for the Painlev�e±Gullstrand metric has the following
form [53]:

H � �crpÿ prv�r� ; v�r� � c

�����
rh
r

r
: �10�

Here, the plus and minus signs correspond to the right-
handed and left-handed Weyl fermions, respectively, and pr
is the radial component of the linear momentum of the
particle. Behind the horizon, where v > c and the light cone
is overtilted, the Weyl cone is also overtilted, but in the way
shown in Fig. 12. TwoFermi pockets are formed, which touch
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each other at the type-II Weyl point in Fig. 13c). The event
horizon at r � rh thus serves as the surface of the Lifshitz
transition.

The correspondence between Weyl semimetals and black
holes allows us to simulate the black hole horizon using the
inhomogeneous Weyl semimetal, where the transition
between the type-I and type-II Weyl points takes place on
some surface [60]. This surface would play the role of the
event horizon. The formed black hole will be fully stationary
in equilibrium. However, just after the creation of this black
hole analog, the system is not in the equilibrium state, and the
relaxation process at the initial stage of equilibration looks
similar to the process of Hawking radiation.

In the discussed Lifshitz transition between type-I and
type-II Weyl points, the element g00 of the effective metric
changes sign. Another type of Lifshitz transition occurs when
the element g 00 changes sign. In Weyl semimetals, this
corresponds to the transition to type-III Weyl fermions [61],
while in General Relativity this is the transition to spacetimes
with closed timelike curves.

4. Lifshitz transitions
with several topological charges

In Sections 3.3 and 3.4, we considered the Lifshitz transition,
which involved the interaction between two topological
charges: the charge N1, which characterizes the Fermi sur-
face, and the charge N3 of the Berry phase monopole. There

are other Lifshitz transitions with the interplay of these two
topological invariants. This happens, in particular, when the
closed Fermi surface is described by two invariants: the local
charge N1, which provides the local stability of the Fermi
surface, and the global charge N3, which describes the Weyl
point inside the Fermi surface in Fig. 14. The latter takes
place, for example, when the Weyl point shifts from the zero
energy position forming the small Fermi sphere around the
Weyl point (see Fig. 14). This Fermi sphere contains the N3

charge, which can be obtained from Eqn (6) by integration
over the surface, which encloses the Fermi sphere.

In the Lifshitz transition, Fermi surfaces can exchange
their global charges N3 or lose the global charge [6, 46]. An
example of exchange is in Fig. 15 and an example of the lost
global charge is in Fig. 16. In both cases, the intermediate
state at the point of Lifshitz transition contains the type-II
Weyl points.

5. Lifshitz transition governed
by conservation of N2 charge

The conical Dirac point in 2D graphene and the nodal lines in
3D semimetals and nodal superfluids and superconductors
are stabilized by the topological charge N2 in Fig. 1c [4, 62].
Dirac nodal lines were known to exist in the polar phase of
superfluid 3He [8, 63], in cuprate superconductors, and in
graphite (band crossing lines) [64±66]. They are now exten-
sively studied in semimetals [67].
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The type of Lifshitz transitions governed by the con-
servation of the topological charge N2 is illustrated in Fig. 17
using the example of bilayer graphene, when one graphene
layer is shifted with respect to the other one. Merging the
two conical points with N2 � 1 leads to the formation of the
Dirac node with quadratic dispersion in Fig. 17a, which has
the topological charge N2 � 2. This point, in turn, may split
into four Dirac conical points with N2 � �1 in Fig. 17c. This
is the so-called trigonal warping. The total topological charge
is conserved, N2 � 1� 1� 1ÿ 1 � 2. The trigonal warping
can be seen in Bernal graphite (see Fig. 17b), and the
transition occurs as a function of pz [64ë66], when pz crosses
the so-called nexus point [62, 68].

6. Lifshitz transitions between gapped states
via the gapless state

Lifshitz transitions between gapped states include transitions
between topological and nontopological insulators; transi-
tions between fully gapped superfluids/superconductors;
transitions between 2D systems, which experience the

intrinsic quantum Hall effect; etc. Here, we consider this
transition using the example of 2D systems, where the Hall
conductance is expressed in terms of the integer-valued
topological invariant ~N3 in Fig. 18a [69±72]. This topologi-
cal invariant has the same structure as the invariant N3 in
Fig. 1b, but the integration is taken now over the whole 2D
Brillouin zone. This is an example of dimensional reduction
from 3D systems with Weyl nodes to 2D topological
insulators [3].

Figure 18a demonstrates the Lifshitz transition between
the topological insulator with ~N3 � 1 and the trivial insulator
with ~N3 � 0. Here, the topological charge is not conserved
across the Lifshitz transition, but abruptly changes, resem-
bling the first-order phase transition. Nevertheless, the
transition occurs smoothly, because at the point of transition
the gap in the energy spectrum vanishes and the topological
invariant becomes poorly defined. The nullification of the gap
in the transition reflects the fact that in the 3D space
�px; py; m�, where m is the chemical potential or some other
parameter along which the transition occurs, the gap node
represents the Weyl point with topological charge N3 �
~N3�right�ÿ ~N3�left� [3, 74].

One example is the 2D px � ipy superfluid/superconduc-
tor [73], where the Lifshitz transition between the superfluid
states with ~N3 � 1 and ~N3 � 0 occurs at the same point
m � 0 as in a normal Fermi liquid. A detailed consideration
shows that the Lifshitz transition represents the third-order
quantum transition [75]: the third derivative d3E=dg3 of the
ground state energy E with respect to the interaction
strength g is discontinuous. Compare this with the original
2 1=2-order transition [1] and the 31=2-order transition
discussed recently [66].

N3=+1

p
z
=�
m
c�

a

p
z
=�
m
c�

0ÿ50
ÿ4
ÿ5

ÿ3

ÿ1

3

1

5
px=�mc�

py=�mc�

jp0z j < pF

0ÿ5ÿ1ÿ5
ÿ6

ÿ4

ÿ2

2

0

4

5
px=�mc� py=�mc�

jp0z j � pF b

0ÿ5ÿ1ÿ5

ÿ5

ÿ3

ÿ1

3

1

5

5
px=�mc� py=�mc�

p
z
=
�m

c�

cpF < jp0z j < jp0z jt

0ÿ5ÿ1ÿ5

ÿ4

ÿ2

4

2

0

6

5
px=�mc� py=�mc�

p
z
=
�m

c�

jp0z j > jp0z jt d

Figure 16. (Color online.) Lifshitz transition in which the Fermi surfaces

lose the Weyl charge N3 [6]. (a) Below the Lifshitz transition point, both

surfaces contain the same Berry phase monopole with N3 � 1. (b) At the

transition, the Weyl point connects the inner and outer Fermi surfaces.

(c) Above the transition, the monopole comes out from the Fermi surfaces,

and both Fermi surfaces become globally trivial, with N3 � 0. Without

global stability, the Fermi surfaces may shrink and disappear in the

conventional Lifshitz transition, as happens with the red Fermi surface in

figure (d).

N2= 1

N2 � �2

N2= 1

N2= 1 N2 � ÿ1
px

py

N2 � �1� 1� 1ÿ 1 � �2

H

kz

K

px

py

E

Bilayer graphene
Bernal graphite

Trigonal warping

Quadratic touching

a b

c

Figure 17. Lifshitz transition governed by conservation of the topologi-

cal charge N2 in bilayer graphene, in which two conical points with the

same charge N2 � 1 on two graphene layers either merge to form the

Dirac point with topological charge N2 � 2 and with a quadratic

spectrum (a) or split into four Dirac conical points (c). The latter is

called trigonal warping. The total topological charge N2 � 2 in both

cases, and thus one configuration may transform into the other one via

the Lifshitz transition.

96 G E Volovik Physics ±Uspekhi 61 (1)



The nullification of the gap in the fermionic spectrum
at the transition between the gapped vacua suggests a
scenario for the solution to the hierarchy problem in the
particle physics: the relativistic quantum vacuum is almost
massless, because our Universe is very close to the line of
the Lifshitz transition. The reason why nature would
prefer the critical line may be that the gapless states on
the phase transition line are able to accommodate more
entropy than the gapped states [10].

7. Conclusion

Topological Lifshitz transitions are ubiquitous, since they
involve many types of topological structures of the fermionic
spectrum: Fermi surfaces, Dirac lines, Dirac andWeyl points,
edge states, Majorana zero modes, etc. Each of these
structures has their own topological invariant, such as N1,
N2, N3, ~N3, etc., which supports the stability of the
topological structure of a given class. The topology of the
shape of the Fermi surfaces and the Dirac lines, as well as the
interconnection of objects of different dimensionalities in
momentum and frequency±momentum spaces, leads to the
appearance of numerous classes of Lifshitz transitions.

The consequences of Lifshitz transitions are important in
various areas of physics. In particular, the singular density of
electronic states emerging at the transition is important for
the construction of superconductors with an elevated transi-
tion temperature; the Lifshitz transitionmay be the reason for
the origin of the small masses of elementary particles in our
Universe; the black hole horizon serves as the surface of the
Lifshitz transition between vacua with type-I and type-II
Weyl points, etc.
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