
Abstract. According to classical textbooks on thermodynamics
or statistical physics, there are only two types of phase transi-
tions: continuous, or second-order, in which the latent heat L is
zero, and first-order, in which L 6� 0. Present-day textbooks
and monographs also mention another, stand-alone typeÐ the
Berezinskii±Kosterlitz±Thouless transition, which exists only
in two dimensions and shares some features with first- and
second-order phase transitions. We discuss examples of non-
conventional thermodynamic behavior (i.e., which is inconsis-
tent with the theoretical phase transition paradigm now
universally accepted). For phase transitions in smectic liquid
crystals, mechanisms for nonconventional behavior are pro-
posed and the predictions they imply are examined.

Keywords: fluctuations, phase transitions, liquid crystals

1. Introduction. Problem formulation

The theory of second-order phase transitions, whose founda-
tions were laid by Landau in the 1930s, crucially relies on the
concept of the so-called order parameter [1], which reflects the
fact that a second-order phase transition relates to the
symmetry properties of the material. Namely, as the tempera-
ture decreases, spontaneous symmetry breaking occurs in the
system, related to the fact that the mean value of the order
parameter becomes nonzero. In the neighborhood of a
second-order phase transition, fluctuations of the order
parameter, i.e., its spontaneous changes due to thermal
motion, are important, and their significance increases in
approaching the transition point. In a certain neighborhood
of the phase transition point, fluctuations destroy the simple
mean-field picture. This occurs if jTÿ Tcj=Tc < Gi, where Gi
is the so-called Ginzburg number and Tc is the phase

transition temperature. Thus, for mean field theory to apply
in a certain region, the Ginzburg number must be small.

As predicted by the theory of phase transitions (see, e.g.,
Refs [1±6]) and shown experimentally [7, 8], various thermo-
dynamic quantities exhibit singular behavior in the region of
strong fluctuations. The spatial behavior of the order
parameters is characterized by the critical radius rc, which
depends on the distance to the transition temperature in
accordance with a power law,

rc / jTÿ Tcjÿn ; �1�

with a critical exponent n. The value of n is positive, and hence
the critical radius tends to infinity as the temperature
approaches the transition point. In the region of strong
fluctuations, the singular contribution to the heat capacity
behaves as

Csing / jTÿ Tcjÿa : �2�

Such is the current picture of continuous phase transitions
in the case where the correlation radius rc is the largest spatial
scale in the system under consideration. Under these condi-
tions, the e-expansion method (where e � dÿ dc, d being the
dimension of the system and dc the so-called upper critical
dimension, for which only logarithmic corrections to the
Landau mean-field theory exist) allows calculating (or more
precisely, estimating) all critical exponents [1±6]. The critical
exponents are uniquely determined by the spatial dimension
and the number of the order parameter components (all of
which are tabulated and presented in textbooks; see Refs [1, 7,
8]). The situation with first-order phase transitions (for
example, gas±liquid transitions or the melting of solids)
looks even simpler, and the theoretical picture, in its general
features, remains the same as given in van der Waals's
doctoral dissertation [9]. Van der Waals's results apply to
most model and real systems exhibiting strong first-order
phase transitions. From a quantitative standpoint, the term
`strong first-order phase transition' means that the latent heat
L is large, i.e., if calculated per molecule, it is of the order of
kBTc or even greater (where kB is Boltzmann's constant).

Fortunately for phase transition physicists, history is not
over yet, and things are not that dull: the paradigm we
discussed above relates to simple systems, whereas modern
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physics (in particular, the physics of soft matter) deals with
ever more complex systems, in which rc is not always the
largest length in experimentally relevant conditions. In
addition, a first-order phase transition is not at all bound to
always being strong. In what follows, we discuss how such a
nonconventional phase transition picture arises and what
physical experimental consequences this nonconventionality
implies with the example of phase transitions in smectic liquid
crystals. Clearly, nonconventional phase transitions can
occur not only in liquid crystals, and the reason for choosing
them here is primarily that their experimental study does not
require any extreme conditions and therefore is apparently
easier to perform.

The rest of this paper is structured as follows. In Section 2,
we discuss the phase transition from an orthogonal smectic A
to a tilted smectic C, a transition in which a nonconventional
behavior arises on spatial scales where orientational aniso-
tropy is important. Section 3 illustrates nonconventional
behavior at smectic-A±hexatic-smectic transitions; this beha-
vior relates to the fact that the continuous phase transition
being studied is close to another, weak first-order transition,
namely, the crystallization of a hexatic smectic. In Section 4,
we summarize the results and discuss some implications.

2. Smectic-A±smectic-C phase transition

The term liquid crystal refers to systems that exhibit broken
orientational symmetry [characterized by a subgroup of the
full rotational symmetry group O(3)] but are not three-
dimensional crystals. The simplest and most common type
of liquid crystals is called nematic (N). The uniaxial symmetry
of the N phase, D1h � T�3�, is specified by a unit vector
(director) n [T(3) is the full three-dimensional translational
symmetry]. As the temperature decreases, theN phase usually
transforms into a smectic liquid crystal in which, in addition
to orientational symmetry, one-dimensional translational
symmetry is also broken, with the result that the smectic is a
system of equidistant layers. If the layers of a smectic liquid
crystal are isotropic (theD1h symmetry with an infinite-order
axis along the layer normal), then such a smectic is called a
smectic A [10, 11].

To describe a smectic A, a single director n (aligned along
the layer normal in this case) is insufficient. To describe the
layered structure of the smectic, it is appropriate to introduce
a scalar functionW�x; y; z� such that the conditionW � const
determines equidistant layers. The free energy of the smectic
(which attains a minimum for such a system of layers) can be
written in covariant form as [10±12]

Fsm � 1

2
B
�
l 2�HW�2 ÿ 1

�2
; �3�

where l is the equilibrium layer separation and B is the
phenomenological Frank elastic modulus. Energy (3)
should be supplemented by Frank's orientational elasti-
city energy [10, 11]

FF � 1

2

�
K1�div n�2 � K2�n rot n�2 � K3�n� rot n�2� ; �4�

where K1, K2, and K3 are the Frank elastic moduli.
In terms of the function W, the normal to the smectic

layers is specified by HW, and in a smectic A the director is
parallel to the layer normal, n � HW=jHWj. As the tempera-
ture decreases, the smectic A layers lose their isotropy, and
hence the uniaxial symmetry groupD1h breaks. If a preferred

direction appears in the layers, which is traditionally called
the c-director, then they acquire the D2h symmetry. Such
smectics are known as smectics C. Figure 1 outlines the
molecular structures in orthogonal smectics A and tilted
smectics C. A preferred direction in smectic layers can arise
due to the cooperative tilt of the director with respect to the
layer normal. In a smectic C, molecular forces fix only the
polar tilt angle (i.e., specify the projection of the vector n onto
HW). Hence, the energy is independent of the azimuthal angle
between n andHW, and is therefore aGoldstone variable for a
smectic C. Introducing a vector fi by

fi � Eikjnknj ; �5�

(where m � HW=jHWj is the unit normal vector to the layers
and Eikj is the totally antisymmetric tensor), we can express the
director n as

n � ÿHWÿ1ÿ jffj2� � �HW� m�� ; �6�

and then the Frank energy (4) takes the form

FF � 1

2
K1�EabHafb�2 �

1

2
K2�Hafa�2 �

1

2
K3�Hzfa�2 ; �7�

where the z axis is chosen to be along the layer normal and
fa � �fx;fy�.

Thus, the phase transition from a smectic A to a smectic
C is described by a two-component order parameter and,
according to the traditional paradigm of second-order
phase transitions [1±6], the behavior of all thermodynamic
quantities at this transition should be of the same univers-
ality class as in the case of the phase transition to the
superfluid state of helium-4. However, gradient energy (7)
is anisotropic �K1 6� K2 6� K3�, and therefore the universal
critical behavior is realized only in a very narrow neighbor-
hood of the transition, jTÿ Tcj=Tc 4 10ÿ3, in which the
fluctuations (in the second(!) order of the e-expansion)
effectively isotropize the gradient energy [13]. Outside this
region, we have a nonconventional behavior with critical
exponents dependent on the orientational elastic aniso-
tropy [13].

The reason for the nonconventional behavior in the above
example is the anisotropy of the nematic orientational Frank
energy, which plays an important role in a broad neighbor-

a b

Figure 1. Schematic of molecular ordering in (a) orthogonal smectics A

and (b) tilted smectics C.
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hood of the smectic-A±smectic-C transition point. The
smectic order parameter W and the nematic director n are
defined in the real coordinate space, and therefore this phase
transition depends essentially on the anisotropy of the
gradient energy (in analogy with magnetic phase transitions,
it can be argued that this phase transition is characterized by a
strong spin±orbit coupling). A totally different reason for
nonconventional behavior is discussed in Section 3 with the
example of the smectic-A±hexatic-smectic phase transition.
In that case, the reason for the nonconventional behavior is
the proximity of the second-order smectic-A±hexatic-smectic
phase transition to the transition consisting in a weak
crystallization of the hexatic smectic.

3. Smectic-A±hexatic-smectic phase transition

There are smectic liquid crystals in which decreasing the
temperature reduces the D1h symmetry of the isotropic
layers of a smectic A to the hexagonal symmetry D6h (see,
e.g., Refs [10, 11, 14, 15]). Such smectic liquid crystals are
called hexatic smectics (or simply hexatics) (Fig. 2).
Hexatics are not just exotic structures in some liquid-
crystal materials. Such phases (long-range or quasi-long-
range hexagonal orientational order or short-range posi-
tional order) are well known in the world of two-
dimensional crystals [16] and are observed in dust plasmas
[17±20] and lipid membranes [21, 22].

The reason for considering liquid crystals in this paper is
that, first, they are the subject of the author's work and,
second, they do not require extreme conditions for experi-
menting on them and are easier to bring to equilibrium.

The natural order parameter for the smectic-A±hexatic
phase transition is the irreducible, symmetric, sixth-rank
tensor Qinjklm. The irreducible nature of this tensor means
that its contraction over any pair of indices yields zero,
Qii jklm � 0. Besides, the tensor order parameterQinjklm relates
to the plane of a smectic layer and is therefore orthogonal to
the layer normal. These conditions leave us with only two
independent order parameter components [23], which can be
taken to beQxxxxxx andQxxxxxy or their complex combination

C � Qxxxxxx � iQxxxxxy : �8�

Because of the high (hexagonal D6h) symmetry of a
hexatic, the gradient part of the Landau free energy is
isotropic (unlike the anisotropic energy (7) for the phase
transition from a smectic A to a low-symmetry �D2h�
smectic C). Therefore, according to the theory of second-
order phase transitions and the universality paradigm, the
thermodynamic behavior at the phase transition from a
smectic A to a hexatic should be described by the universality
class of helium-4. In particular, a low negative critical
exponent of the heat capacity, a � ÿ0:01, typical of this

universality class [8, 24], should be expected. However, all
calorimetric experimental data on the smectic-A±hexatic
phase transition (see, e.g., Refs [25±29]), yield a large positive
heat capacity exponent, a � 0:5ÿ0:7, giving a clear example
of nonconventional behavior. Clearly, this does not mean
that there is something wrong with the Nobel Prize-winning
theory of phase transition. Nor does this suggest any crude
systematic errors in the experimental data. The resolution of
this paradox turns out to be less dramatic and lies in the
simple fact that theory and experiment relate to different
ranges of parameters and conditions.

Directly measuring the hexatic order parameter and the
hexatic correlation length rh is very difficult, if at all possible.
The high (sixth-order axial) symmetry of a hexatic virtually
prevents using optical methods, whereas X-ray scattering is
sensitive to the electron density rather than to the orienta-
tional order parameter or rh. The precision X-ray methods
currently available [30±32] give a very large value of the
positional correlation length rtr: the value of rtr, which is 1±
2 nm in the smectic phase, increases to 5±10 nm near the
smectic-A±hexatic phase transition, reaching 20 ± 30 nm deep
in the hexatic phase. For the hexatic correlation length rh to
reach such values, the system has to be in a sufficiently close
vicinity of the phase transition point. The theoretical estimate
in [33] shows that the universality criterion of second-order
phase transitions is satisfied in the neighborhood
�Tÿ Tc�=Tc 4 10ÿ3ÿ10ÿ4. Outside this narrow temperature
region, a nonconventional critical behavior should be
expected.

We discuss this behavior in greater detail. In the region
rtr 5 rh, not only fluctuations of the hexatic order parameter
but also fluctuations of the translational (positional) order
parameter should be taken into account. Such an order
parameter is given by the short-wavelength density modula-
tion dr (with a characteristic wave vector q0 � aÿ1, where the
molecular size is a � 0:1ÿ0:3 nm). The experimental fact we
have mentioned above that rtr 4 a implies that a hexatic
smectic (liquid crystal) is on the verge of crystallization
(which is a transition to a molecular crystal). This deceptively
simple fact implies the applicability of the theory of weak
crystallization [34±36].

According to the theory of weak crystallization, on
approaching a weak first-order phase transition, the struc-
tural factor of a liquid S�q� (i.e., the Fourier image of the pair
correlation function hdrdri) has the form

S�q� � T

D� b�q? ÿ q0�2
; �9�

where b is the Landau free energy expansion coefficient before
the gradient term for the weak first-order crystallization
transition [36], and the parameter D, known as the gap,
satisfies the self-consistency equation

D � a� Tq0l

4
������
bD
p ; �10�

(where l is the coefficient in the Landau free energy expansion
at the fourth power of density �Dr�4 [36]) and describes the
softness (i.e., easy excitability) of the short-wavelength
density fluctuations in the vicinity of the full circle
q? ÿ q0 � 0 in reciprocal space (and not at the isolated point
q? � 0, as in conventional second-order phase transitions
with a long-wavelength order parameter). It is from this fact,
trivial at first glance, that all the nonconventional features of

Figure 2. Schematic of molecular ordering in hexatic smectics.
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weak crystallization originate. For example, it follows from
Eqn (10) that the gap D can never vanish [at arbitrarily low
temperatures (!)], i.e., the liquid phase always remains at least
metastable. This observation illustrates the important role of
thermal fluctuations. Although individual density fluctua-
tions are, as it were, weak due to the large volume of their easy
excitation region (in the case of hexatics, the neighborhood of
the circle q? ÿ q0 � 0), they always have a dramatic effect.

Having the smectic-A±hexatic-smectic phase transition in
mind, we should now take the interaction between the density
fluctuations (i.e., of the positional order parameter) and the
hexatic order parameter into account. In the first approxima-
tion (assuming this interaction to be weak), the correction to
the gap D is

dD � ÿ 1

2T

�
d3q

�2p�3 F�q�S�k� q� ; �11�

where the wave vector k refers to the density fluctuations, and
we therefore have short-wavelength fluctuations in the
vicinity of the circle (in our case of layered smectics, a
cylinder) k? � q0, whereas the magnitude of the wave vector
q is much smaller, k4 q. Using this inequality and the weak
crystallization condition, we obtain

dD � ÿ 1

8p2
������
bD
p

�
dqz dq? F�q� : �12�

To calculate the heat capacity, we need to know the
derivative of the gap with respect to temperature,

q
qT

D / jTÿ Thj nZÿ1 : �13�

This quantity determines the second derivative of the free
energy, i.e., the heat capacity,

ÿT q2F
qT 2
� V

8

qa
qT

T 2q0

lb 1=2D3=2

qD
qT

: �14�

Formula (14) makes an additional contribution to the heat
capacity due to the interaction of the orientational (hexatic)
and translational (positional) order parameter fluctuations.
Our derivation shows that in the vicinity of the smectic-A±
hexatic transition we are considering, the critical contribution
to the temperature dependence of the heat capacity is
determined by two terms: one with a small critical exponent
a, consistent with the corresponding universality class, and
the other with a large exponent (close to unity, 1ÿ nZ), which
arises due to the interaction with weak-crystallization-related
fluctuations of the positional order parameter.

The theoretical scheme proposed above allows represent-
ing the heat capacity at a smectic-A±hexatic phase transition
in the form

C �
p1

jxjÿ0:013 �
p3
jxj � p5 ; x < 0 ;

p2
xÿ0:013

� p4
x
� p5 ; x > 0 ;

8>><>>: �15�

where x � �Tÿ Th�=Th, and the value of the exponent
a � ÿ0:013 is chosen in accordance with the standard
theory of second-order phase transitions with a two-
component order parameter. The experimental data are
ideally fitted by Eqn (15) with the following values of the

parameters involved: Th � 341:11 K, p1 � ÿ48:09599, p2 �
ÿ48:19495, p3 � 0:0008, p4 � 0:00064, and p5 � 91:60242. It
is important to note that although the parameters p3 and p4
are very small, they lie within the numerical accuracy of the
procedure and support the above assumption that the
interaction between the orientational and positional order
parameters is weak. In Fig. 3, we compare the results for the
heat capacity of a liquid crystal 65OBC measured in Ref. [28]
(circles) and calculated by theoretical formula (15) (solid line).
The agreement appears to be almost ideal (and better than
one would expect from the first-order perturbation theory). A
similar agreement can be achieved for measurements with
other materials.

4. Conclusion

The main assertion in this paper is that the standard
theoretical paradigm of phase transitions offers an adequate
description of second-order phase transitions under condi-
tions where there is only one largest length scale, the
correlation length of order parameter fluctuations. The
traditional scheme for describing first-order phase transi-
tions is valid if the latent transition heat is not small
compared to kBTc, the characteristic energy for a phase
transformation occurring at a temperature Tc. There are,
however, many real systems, both interesting from a funda-
mental perspective and attractive for applications, in which
these conditions for conventional behavior either are not
fulfilled at all or are fulfilled in a very narrow transition
neighborhood not very important for the description of
experimental data.

We have discussed two examples of such nonconventional
behavior of liquid crystals. The first example is the phase
transition from an orthogonal smectic A to a tilted low-
symmetric smectic C. Due to the anisotropy of layers in a
smectic A, the gradient energy, which is important for
describing thermal fluctuations in the neighborhood of a
continuous phase transition, turns out to be anisotropic (i.e.,
is characterized by three Frank orientational elastic constants
of different magnitudes). Therefore, in a broad temperature
range, the critical exponents for the transition from a smectic
A to a tilted low-symmetry smectic C turn out not to be
universal (contrary to conventional theory) but rather are
dependent on the ratio of the elastic constants. It is only in a
very narrow neighborhood jTÿ Tcj=Tc 4 10ÿ3 of the transi-
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Figure 3. Experimental calorimetric data [28] (circles) and the theoretical

results based on Eqn (15) (solid line) for the liquid crystal material 65OBC

(n-hexyl-4 0-n-pentyloxybiphenyl-4-carbxylate).
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tion point, where the fluctuation-assisted isotropization of
the gradient energy occurs, that the universal picture of
second-order phase transitions is restored.

In the second example of the phase transition from a
smectic A to a hexatic smectic, the gradient energy is isotropic
due to the high (sixth-order axial) symmetry of the hexatic.
However (in fact, also because of the high orientational
symmetry), such smectics are close to a crystalline state, and
hence the positional correlation length (determining the
proximity to the crystalline state) is very large throughout
the region of existence of the hexatic smectic, much larger
than the characteristic atomic or molecular scale. For the
same reason, the condition that the correlation length for the
orientational (hexatic) order parameter fluctuations be the
only and largest spatial scale is fulfilled in a very narrow
neighborhood of the transition. At the same time, in a broad
temperature range of importance for the experimental study
of hexatics, the critical behavior is controlled by the
interaction of two fluctuating order parameters, the orienta-
tional (hexatic) one, whose fluctuations are determined by the
corresponding universality class, and the positional (crystal-
line) one, whose fluctuations are described by the theory of
weak crystallization and are important in the neighborhood
of a circle in Fourier space.

Undoubtedly, such reasons for nonconventional thermo-
dynamic behavior are not determined by any exotic property
of liquid crystals. Similar phenomena should also be observed
in many other real systems that have one or more complex
order parameters and undergo phase transitions.

The author is grateful to V V Lebedev and A RMuratov,
with whom most of the presented results were obtained.
Thanks also go to B I Ostrovskii, I A Vartanyants, and
I A Zaluzhnyi for discussions of the current status of the field
and to S M Stishov for his useful questions during the talk
which the author delivered at the Scientific Session of the
Physical Sciences Division of RAS on 21 December 2016 and
on which the present paper draws.
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