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Abstract. Applying a quantum mechanical treatment to a high-
frequency macroscopic electromagnetic field and radiative phe-
nomena in a medium, we construct quantum operators for
energy—momentum tensor components in dispersive media and
find their eigenvalues, which are different in the Minkowski and
Abraham representations. It is shown that the photon momen-
tum in a medium resulting from the quantization of the vector
potential differs from that defined from Abraham’s symmetric
energy—momentum tensor but is equal to the momentum defined
from the Minkowski tensor. A similar result is obtained by
calculating the intrinsic angular momentum (spin) of an electro-
magnetic field in the medium. Only the Minkowski tensor leads
to the experimentally confirmed spin values that are multiples of
h, providing the grounds for choosing the Minkowski represen-
tation as the proper form for the momentum density of a
transverse electromagnetic field in a transparent medium, in
both classical and quantum descriptions of the field. The Abra-
ham representation is unsuitable for this purpose and leads to
contradictions. The conclusion drawn does not apply to quasi-
static and static fields.

Keywords: Minkowski energy—-momentum tensor, quantum theory,
radiation phenomena, spin and mass of a photon in matter

1. Introduction

Electromagnetic fields in a medium are standardly described
by the classical macroscopic Maxwell equations (see [1-5]).
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Quantum notions are most frequently used in macroscopic
electrodynamics to calculate the linear response of matter in
an electromagnetic field, the electric and magnetic permittiv-
ity. But an alternating electromagnetic field in a transparent
medium (i.e., in a medium with negligible absorption), as in a
vacuum, preserves the quantum structure. It consists of
photons —discrete excitations with properties that are
different from those of photons in the vacuum and are
largely determined by the reaction of the electron compo-
nent of the matter on the field. These properties turn out to
be more complicated than those of vacuum photons and are
specific for different media. These excitations are often
referred to as polaritons, excitons, plasmons, and so on.
Along with this detalization, of certain interest is the general
quantum approach to describing the macroscopic electro-
magnetic field and quantum interpretation of basic funda-
mental field characteristics: the energy density, the momen-
tum density, etc. This approach was first applied by
Ginzburg [6] to Vavilov—Cherenkov radiation.

A quantum description of the electromagnetic field
enables an improved treatment of some problems that have
been discussed for a long time and that apparently cannot be
solved classically. In this paper, we analyze one such problem
related to the construction of the energy—-momentum tensor
in classical electrodynamics. It is well known that in the first
decade of the 20th century, two different expressions for the
momentum density of the electromagnetic field in a medium
were proposed. When describing the field using four vectors,
the field strengths E and H and inductions D and B, these
expressions are

1 1

M A

=—DxB =—ExH. 1

g drne 8 4rne (1)
The first expression was proposed by Minkowski [7, §] but

was criticized by Abraham [9] and other researchers, mainly

because it led to a nonsymmetric structure of the energy—

momentum tensor. Abraham symmetrized this tensor, which
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gave rise to the appearance of an additional term in the
momentum balance equation, the Abraham force. The
Abraham force density is determined by the time derivative
of the difference between quantities (1):

0 1 0

fA:a—l(gM—gA):Ea—t(DxB—ExH) (2)
(see textbooks and monographs [2, 10-13], as well as reviews
[14-16]). In general, without the Abraham force, the
momentum conservation law involving Abraham’s represen-
tation (1) is violated. However, in our recent paper [17], we
considered the field as a collection of transverse eigenmodes
(a wavepacket) of a transparent dielectric. It turned out that
in this frequently occurring situation, a separate Abraham
force is not required: it is incorporated into the structure of
the Maxwell stress tensor. It was also found that both
momentum densities (1) satisfy the continuity equation and
preserve the total momentum of the wavepacket. In these
conditions, there is no criterion for choosing the correct
alternative in classical theory. To derive such a criterion, an
analysis of all possible consequences and the comparison with
all available experimental data are needed.

For this, we use the canonical quantum description of a
macroscopic field, which enables a deeper insight into
physical phenomena than the classical treatment. Our
approach includes the following stages:

(a) construction of a Lagrangian for the macroscopic
electromagnetic field in a dispersive but dissipationless
medium and derivation of the Maxwell equations for this
case;

(b) transition to the Hamiltonian form of the field
equations in dispersive media;

(c) canonical quantization and construction of quantum
operators for the field vectors and energy—momentum tensor
components in Minkowski’s and Abraham’s representations;

(d) calculation of eigenvalues of the corresponding
operators and their comparison in the case under considera-
tion;

(e) quantum description of radiation processes and the
proper angular momentum (spin) of photons in a transparent
medium.

Stage (a) is included for completeness and because this
problem has not been considered in available textbooks.

2. Derivation of macroscopic Maxwell equations
from the Lagrangian formalism

This problem is of certain interest because the relation
between vectors describing a field in a dispersive medium is
nonlocal [see Eqn (3) below]. In vacuum electrodynamics, the
Lagrangian is local, i.e., components of the vector potential
A (x) and their derivatives relate to the same point in 4-space
[18], which simplifies the Lagrangian structure and the
derivation of the field equation from it.

We describe the electromagnetic field in a homogeneous
isotropic dissipationless medium by four vectors E, B and D,
H. The first pair of vectors in the four-dimensional notation
forms the antisymmetric field tensor Fy(x), and the second
pair forms the antisymmetric induction tensor H™*(x) (see
[2]), depending on coordinates and time. We assume a linear
integral relation between the components of these tensors:

H”"(x) _ Jciknm(x_x/)an(x/) d*x’. (3)

The 4-tensor e (x — x') describes the electromagnetic
properties of the medium. In a vacuum, the tensors Fj and
Hj;, are identical, which corresponds to the condition

6ikmn(x _ x') _ gi/ngkn5(4)(x _ xl)’ (4)

where g is the metric tensor.

In an immobile dispersionless medium, the linear response
ekmn is expressed in terms of constant dielectric and magnetic
permittivities ¢ and u:

6ikmn(x_x/) _ /.L_l(gim—‘rKé(;é(;”)(glm—i-Kéé((s(’)l)(su)()(—x,),

(5)
K=c¢eu—1

(see, e.g., review [19]). This tensor yields the usual relations

D=¢E, B=puH (6)
for a quasistatic field. Writing the relation equation in
integral form (3) allows us to take space and time dispersion
into account.

Below, we assume that the four-dimensional ‘influence
domain’ AQ over which integration is performed in (3) at a
fixed x and which is defined by the properties of the tensor
e®mn(x —x') is small compared to the region in which the
field is considered. This assumption is fully consistent with the
macroscopic field description. The size of the influence
domain is determined by macroscopic parameters— the
relaxation time of the electronic system of matter and the
size of its structural components (atoms, inclusions, mean free
paths, etc.). The tensor response function ¢ (x — x') must
have all symmetry properties ensuing from the symmetry of
the medium and the antisymmetry of the tensors Fy and Hy,
in particular,

Elkmn _ Emnlk _ _6k1)1m _ _611(}1)71 . (7)

In addition, in a nongyrotropic medium, this tensor is an even
function of its argument:

Ei/cmn(x _ X/) — Eikmn(xl _ X) (8)

[see expression (14) below]. The field tensor Fj is expressed in
terms of the vector potential A;(x),

F,‘k = aiAk(X) — akA,'(.X) s (9)

which enables writing the Maxwell equation for the field
tensor:

O1Fj + 0iFi + 0, F; = 0. (10)
The equation for the induction tensor Hj can be obtained
from the stationarity condition for the action functional

S= JL(Ak,a,Ak,x"’)d“x, (11)

which should be written in terms of the Lagrangian of the
electromagnetic field in a medium:

1 . 1.
L=—— H"F; — - jl;t(x)Ak(x) .

12
o e (12)
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Here, the external current j£

o (x) represents a specified field
source. The Lagrangian is a relativistic invariant, and under
the electric charge conservation, 9 jX = 0, the variation of
the action is invariant under gauge transformations of the
vector potential Ay — Ay + O f(x), where f(x) is an arbi-
trary scalar function.

Using connection equation (3), we represent the action in

the form of a double integral over 4-space:

1

S=——
161

J d4xJ d4xl€ikmn(x_x/)Fik(x)an(x/)
Q Q

| Aoty 1)
Clo

The integration domain can be taken as an arbitrarily large
(‘macroscopic’) region at the boundary of which all field
functions A (x) and their variations 84 (x) vanish.

The parity of the tensor ¢ ®™ as a function of coordinates,
which is expressed by equality (8), is due to the symmetry of
the double integral in Eqn (13). Making the substitution
x <> x’ in this integral and using symmetry (7), we can
represent the integral in the form

1 . )
_J d4xJ d4x/ [Ezkmn(x _ X/) +6lkmn(x/_ X)]F[/((X)an(x,)7
Q Q

32n
(14)
which enables us to write equality (8).
By calculating variations, we find
H*§Fy = —2H™ 0,84,
(15)
SH™ = 2[ e®mn(x — x")0! 84, (x")d*x" .
Q

The derivative of the vector potential variation can be
eliminated by integration by parts over the coordinate x'™.
The term arising in the integration vanishes at the boundary
of the domain Q. As a result, the action variation becomes

(16)

1 w  4n o 4
38 = EL) (6,-H k - je’;n)SAk(x) d*x.
The action variation must vanish for any 8A4x(x), and this
requirement yields the Maxwell equation in the 4-form:

4n

G;Hk[(x) == Jet (%) .

(17)
It should be complemented with connection equation (3) and
Maxwell equation (10).

The structure of action functional (13) suggests that the
Lagrangian of interaction of a macroscopic field with an
external source retains the form that it has in a vacuum:

1 .,

Lint = =~ (V) Ak(x) . (18)
Here, clearly, the vector potential Ax(x) depends on the
properties of matter. The results in this section can be applied
to transparent media with time and space dispersion.

3. Hamiltonian form of electromagnetic field
equations in a transparent medium

Canonical quantization of an electromagnetic field as a
continuous oscillating system in a vacuum includes the

following main stages: (a) choice of generalized coordinates
in the form of amplitudes of Fourier harmonics of the vector
potential that depend on the frequency and wave vector;
(b) construction of the classical Hamiltonian function
depending on canonical variables— the generalized coordi-
nates and momenta (the Hamiltonian function is constructed
from the expression for the total energy of the field);
(c) transition from classical variables to quantum operators
satisfying the Heisenberg commutation relations and con-
struction of the operators of main physical quantities—
components of the energy—-momentum tensor of the electro-
magnetic field in a medium; (d) calculation of eigenvalues of
the energy, momentum, and other physical quantities, as well
as of the transition probability between quantum field states.
When pursuing this plan for a field in a medium, we take
into account that the physical system under consideration is
made of two coupled subsystems. Therefore, the description
of such a system by methods of classical electrodynamics is
much more complicated than the field description in a
vacuum. It suffices to recall that the energy density in a
medium in classical electrodynamics was written in the
approximate form obtained by Brillouin (1921):

w g ((UC(U)))E*E+%(U),U(CO))H*H ,

" 16m | dw (19)
where ¢(w) and p(w) are linear responses of the medium in the
field that is described by macroscopic vectors E and H (i.e.,
those averaged over the states of the medium) (see [2], pp. 381—
382). The main conditions restricting the application of
formula (19) are as follows.

(1) The external field is small compared to internal fields
in the medium.

(2) The electromagnetic energy dissipation, described by
imaginary parts of the dielectric and magnetic permittivity, is
low:

¢"(w) <e'(0), p'(w) <p'(w). (20)
Conditions (20) are satisfied only in certain frequency ranges
representing ‘transparency windows’ of the dielectric (see [2]),
but cannot be satisfied in an unbounded frequency range due
to the Kramers—Kronig relations.

(3) Formula (19) results from averaging over the period
T =2n/w of the energy of a wavepacket with the central
frequency w, whose field represents a plane wave with a
slowly changing amplitude. Electromagnetic field vectors for
such a packet can be written as the Fourier integral over the
small frequency range o < Aw < w and wave vector range
q< Ak <k

E,(r, 1) = JS(k +q,0+0a)

d*qdo

(2m)°*

= &(r, 1) exp (ip)
(1)

x exp [i(k +q)r —i(w + )]
o(r,t) =kr — or.

The amplitude &(r,¢) is determined by the external field
sources and properties of the medium. It changes in space
and time slowly compared to the phase factor exp (ip). In
particular, coordinate and time derivatives of £(r, ) are of the
respective order of Ak/k and Aw/w, unlike derivatives of the
phase factor. A similar expression can be written for the field
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H,,(r, ). The frequency interval is chosen in the transparency
window of the dielectric.

In accordance with the adopted approximations, we use
the following formulas for the electric and magnetic induc-
tions in what follows:

Dy (r, ) = e(w)Ey(r, 1), By(r,t) = p(w)Hy(r, 1) . (22)
Thus, our approach is based on considering wavepackets, or
‘quasimonochromatic waves,’” for which only classical expres-
sions for the electromagnetic field energy and momentum are
known. Other components of the energy-momentum tensor
in a medium are calculated in the same approximation and are
analyzed in our paper [17]. Wavepackets, unlike monochro-
matic waves, have a finite extent in space and time, although
their sizes significantly exceed the wavelength and the central
harmonic period.

The need for condition 2 (smallness of the absorption) is
briefly explained in [2, p. 386]: for strong absorption, ¢” = ¢’
and p” = u’, the field decays at distances of the order of the
wavelength A and does not penetrate into the medium; the
quantized field (photons) are also absorbed over the same
wavelength. The interaction of the field with matter in this
case cannot be described using the linear responses ¢ and
solely. The heat capacity and other macroscopic parameters
of the medium, which are used in nonequilibrium thermo-
dynamics, should be involved. Brillouin energy density (19)
(as well as other components of the energy—momentum
tensor, to be explored below) is defined in the zeroth order
in the small parameters Aw/w, Ak/k, ¢"/¢’, and p” /u'.

Several decades after Ginzburg’s pioneering paper men-
tioned above [6], interest in a quantum description of the
macroscopic field in a medium has been revived [20-23]. In
these and other papers, the authors consider media with
arbitrarily high dissipation of the electromagnetic field. To
do this, in the action functional of the system, variables of the
medium (‘reservoir’) and unbounded imaginary parts of the
electric and magnetic permittivity were included in addition
to the field variables. The same quantities enter the quantum
mechanical Hamiltonian derived from the original Lagran-
gian. This approach as the basis for a quantum theory is
questionable. The inclusion of dissipative variables into the
Hamiltonian function violates the canonical scheme of
classical mechanics. Dissipative processes cannot be
described in classical mechanics by a Hamiltonian function
and canonical Hamiltonian equations derived from the least
action principle. Dissipation is additionally introduced into
equations with the help of a dissipative function (see, e.g.,
classical textbook [24]). Here, at the microscopic level, the
description of the interaction with the ‘reservoir’ does not
assume the initial use of the macroscopic quantities ¢ and p”.
The equivalent parameters should result from microscopic
calculations, which apparently should be carried out using the
density matrix for the electromagnetic field in a medium.

For these reasons, the approach to quantum electrody-
namics in media that has been developed in [20-23] cannot be
considered correct. The efficiency of these methods is also
unclear. In these papers, eigenvalues of the electromagnetic
field energy in a medium and the field momentum are not
calculated, properties of quantum field excitations (photons
in the medium) are not analyzed, and comparisons with
experimental data are not made. Therefore, despite the title
“Canonical quantization...” (see [20-22]), these authors’
approach to quantization proves to be noncanonical and

requires additional justification, while the applicability limits
of the method are unclear and raise doubts.

In this paper, we use the systematic canonical approach to
field quantization inside the transparency windows of a
dielectric. The unavoidable cost for this is the refusal to
describe dissipative processes. The field in a medium is
treated as a classical linear oscillating system without
dissipation. Our purpose is to construct quantum operators
for components of the energy—momentum tensor in a medium
and to calculate their eigenvalues within the applicability
domain of macroscopic electrodynamics. This condition
implies that the effect of an isotropic medium on the field
can be described using the dielectric ¢(w) and magnetic u(w)
permittivities with negligible imaginary parts without invok-
ing other macroscopic parameters of the medium. Calcula-
tion of the linear responses ¢ and u is a separate problem,
which we do not consider here. For most media, it should be
solved (and in fact has been solved for many simple models of
matter) using quantum theory.

In this problem setting, the procedure of passing to the
quantum description repeats all stages worked out by many
authors [25-30] to quantize the electromagnetic field in a
vacuum. Here, we repeat only the initial assumptions and the
specific features for a dispersive medium. We use the
Coulomb gauge for the vector potential:

VA, (r,1) =0. (23)
The d’Alembert equation involves the medium parameters
¢(w) and p(w):

e 0% A,

Ao e 0

(24)

We consider a field in a macroscopic (large) volume V'
with periodic boundary conditions and decompose the vector
potential into plane waves. The wave vector projections ky,
ky, k- form a quasidiscrete countable set. Their values, along
with the polarization vectors ex,, ¢ = 1,2, orthogonal to k,
determine the oscillation type (eigenmode) and the eigenfre-
quency wy:

Ay, (1) = e, A4 exp (ikr) . (25)
The normalization constant A is to be specified later from
the canonical form of the energy operator.

The decomposition of the vector potential A(r, ), which is
considered a real function of coordinates and time, has the
form

A1) = Y [bro (D Ake (1) + b, (1) A, (r)]

k,o

(26)

The complex amplitudes by, (7) satisfy the classical linear
harmonic oscillator equations:
b‘ka(z) + wibko—(l) = 07 bko(l) = ka exp (—iwkt) ,
27
(o) (o)
where the last equation defines the relation between the

frequency and the wavenumber, which is important in what
follows. The field vectors can also be decomposed into plane
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waves
E(r,1) - _% =i [ 0w () — B (DAL (6],
ko (28)
B(r,t) =VxA= 1Zk (Do (1) Ao (r) — by, (1) A (r)] -
k.o (29)

Expansions (26)—(29) are valid in the entire frequency range,
including the strong-dissipation domain. However, when
passing to the Hamiltonian description, we should restrict
ourselves to considering only transparency windows and use
formulas for the energy density wy, and momentum density
gl in a dispersive medium, which are known from macro-
scopic electrodynamics:

1 0 0
ke =5 | 30 (wre(wr))Ex, + 2or (wrp(or))Hi, |, (30)
A _
gko’ - 4TECH(UJk) [Ekﬂ' X Bka] . (31)

In contrast to formula (19), in Eqns (30) and (31) we use the
mode index k, ¢ and real quasimonochromatic fields (28) and
(29) not averaged over time.

The densities wy, and gf are related by the energy and
momentum conservation laws in a dissipationless medium. In
terms of the group velocity

da)k ck dwk

U, = ) (32)
Ak K d(og/e(o0u(or))
this relation is expressed simply as
u
glé; = Wke C_]; . (33)

Here, we represent the momentum density according to
Abraham [9], which corresponds to the symmetric energy—
momentum tensor. We distinguish between Abraham’s and
Minkowski’s notations by the superscripts A and M. The
classical quantities written above and their derivation were
discussed in detail in our paper [17]. Using (33), we find a
useful representation for the energy density in terms of the
group velocity and momentum density:

2

&

A
- uy gka .
U

(34)

Wke =

The total momentum G,é, of the wavepacket (quasi-
monochromatic mode) can be obtained using formulas (29)-
(31) after integrating (34) over the entire domain of
periodicity V'

(49)* Voo

(o) MOLHOR

Gl =k (35)

The field periodicity and the normalization of polarization
vectors ey exs = Oq¢' have been used here. The mode energy

2
C

Wio = —
U

G (36)

is the same in both Abraham’s and Minkowski’s representa-
tions and is always nonnegative, because the momentum and
the group velocity vector u; have the same direction.

The total field energy in a volume V is obtained by
summing (36) over all wavepackets within the ‘transparency
window’ of the dielectric. By expressing the wave number in
terms of the frequency, k = wy /efi/c, we obtain the field
energy expressed via complex amplitudes:

(A Verp | elon)

W= by ()bys (1) . 37
Z el \| (o) Do VPre() (37)

We also note that the total Abraham force (2),
A= JfA dv, (38)

vanishes, F* = 0, if the integral is extended to the entire
volume containing the wavepacket. This follows from the fact
that Abraham’s force density (2) can be written as the
divergence of some tensor:

da?, : kyk 1
A_ " of f altp 2
1= Oxp ’ %ap = T 4nk? (8 B ﬁ) i

which represents a part of the Maxwell stress tensor expressed
in terms of the electric field strength (see [17]). The Abraham
force is interpreted as a result of the field effect on the medium
(see[2], p. 361). The vanishing of this force is quite natural for
a wavepacket propagating without dissipation with energy
and momentum conservation.

Passing in (37) to real canonical variables Qk,(f) and

Pka(t)a

(39)

Al = % (Qk“(l) i %> ’ (40)
bia(0) = 3 (uat) - P).

we find the classical Hamiltonian function of the electro-
magnetic field in a medium as the sum of energies of
independent oscillators,

1
:EkZ(Pk0+kaka)’ (41)

and find the normalization constant by requiring the
canonical form of Hamilton function (41):

40— \/4nc|uk (u(wm)”z.
k vV e(wy)

The obtained relations differ from similar formulas of
vacuum electrodynamics mainly by coefficients that now
depend on the linear response functions of the medium. But
these differences become quite significant in some cases. This
becomes especially apparent in analyzing properties of
quantum field excitations (‘photons in a medium’) and in
the quantum interpretation of the main quantities of
quantum electrodynamics, including the energy, momen-
tum, and angular momentum.

(42)

4. Quantization of a macroscopic
electromagnetic field

Next, we replace the canonical variables Qg (#) and Py,(?)
with operators ri and Py, and subject them to the
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Heisenberg commutation relations

[Q P] I, = (k,O’) ) (43)
where we introduce a single mode index s. All other pairs of
operators commute. After that, the Hamiltonian function
turns into the Hamiltonian operator H; the vector potential
and complex amplitudes b also become operators. We use the
Schrodinger representation, in which operators P and O do
not depend on time.

The creation and annihilation operators of photons are
introduced in the usual way,

2wy ~ oy~ iP
ct= ) ==pF =/ 20, — =
h by V 2h(Q‘S w)7

(44)
2 55 iP,
i B0 )
and satisfy the commutation relations
[CS’7 4 ] - ays . (45)
The field energy operator is
. 1
= cle —
H ZS: fio (cs ¢, + 2) . (46)

In a similar way, using (36) and subsequent formulas, we find
the field momentum operator:

G oy

s

hoyéle, . (47)

Both operators are expressed in terms of operators of the

number of quanta in a mode s:

iy = ¢le, .

(48)
By specifying the Fock state of the field (i.e., the number of

quantang = 0, 1,...1in each mode), we can find eigenvalues of
the energy £ and momentum G* of the field in this state:

S—ZS:th(ns—i—%), GA:ZJ:%

It follows that the energy &, and momentum p) of an
individual ‘photon in a medium’ are expressed as

hiogn . (49)

£, =ho, p;j:;zhw.

(50)
The energy of a quantum is expressed in terms of the
frequency in exactly the same way as in a vacuum. The
momentum of a quantum, which is derived here from the
classical-to-quantum correspondence principle, significantly
depends on the medium properties via the group velocity and
raises certain questions, which we discuss below after formula
(56) and in the subsequent sections.

The vector potential and the field strength also become
self-adjoint operators. We write them in the Heisenberg
representation, i.e., with the time dependence:

Z [esAs(r, 1) +

S

Alrr) = eAL(r )], (s1)

(52)

E(r, 1) —12
B(r,0) =i kx [6A(r,1) = ¢]AL(r,1)] .

(6 0) = elAI(r )],
(53)

With all substitutions, the wave functions change normal-
ization, which now includes quantities characterizing the
medium:

Ar, 1) = e (54)

ahelug| (p\'?
%(g) exp (ikr — iwg?) .

However, the main difference from the vacuum case is in the
photon momentum definition. In a vacuum, the photon
momentum is

h
pY =nk = COn
¢

(55)
where nis a unit vector. This expression follows both from the
wave equation for A and from the classical expression for the
momentum density after its quantization.

In a medium, the wave equation leads to formulas (27),
which imply the momentum

q="7k= M n (56)
This expression is distinctly different from expression (50) for
the photon momentum defined according to the quantum-to-
classical correspondence principle for Abraham’s electro-
magnetic field momentum (31) [9], leading to a symmetric
energy—momentum tensor for the electromagnetic field (see
[2, 11, 16, 31]). Hence, in this case, we are dealing with a
violation of the correspondence principle, which is valid in all
other cases and leads to the quantum mechanical means of
physical quantities (‘observables’ in Dirac’s terminology [32])
being related by the same relations as the corresponding
classical quantities (the Ehrenfest theorem [33]).

To clarify this contradiction, we consider the definition of
the electromagnetic field momentum proposed by Minkowski
[7, 8]. In [17], the representation for the density of Minkow-
ski’s momentum of a wavepacket was obtained:

w O¢

Mo g  Ou
& = e Ekﬂg(“’)\ﬁO T tw T @w)

which is written here in terms of the non-time-averaged
electromagnetic field strength. Using group velocity (32), we
arrive at

(57)

M _ ne(wg) o

= E,
ko 41tu ko > (58)
where
¢ w 0e  Ou
— 14— =4 =2 59
u=n Vel ( 26 0w 2u 660) (59)

is the group velocity. We consider the ordinary isotropic
dielectric medium in which the vector u is directed along the
wave vector and u = un > 0. Comparing (58) with Abraham’s
momentum density (33),

e(wr) o

A_n
() o (60)

ko ™ 4
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also written in terms of the electric field, we find

M A CVEH
8ks = 8ko u .

(61)

This formula allows us to relate the quantized field excitations
in a medium for two classical representations of the
momentum density:

=—>Y"n

C
p = vampl =" (62)

It is Minkowski’s momentum of an individual excitation that
enters the exponents in quantum operators of the electro-
magnetic field. This result was first obtained and used by
Ginzburg in his pioneering paper [6] on the quantum theory
of Vavilov—Cherenkov radiation. Therefore, representation
(62) for the photon momentum in a medium can be justly
referred to as the Minkowski—Ginzburg representation.

Here, we encounter a major inconsistency: the quantum-
to-classical correspondence principle is violated if Abraham’s
momentum is used, while it holds for Minkowski’s momen-
tum. This fundamental principle is used to construct quantum
operators of all quantities that have classical counterparts. Its
violation suggests the incorrectness of Abraham’s theory for
this problem.

To confirm this conclusion, we consider other quantum
phenomena, but first discuss the correctness of the use of the
classical energy—-momentum tensor constructed for wave-
packets as a basis for the quantum description of the field.

5. Quantum interpretation
of classical wavepackets

In quantizing the electromagnetic field, we used classical
expressions for the energy density (30) (Brillouin’s formula)
and the momentum density (31) (Abraham’s formula) and
(57) (Minkowski’s formula). All of them are related to a
narrow wavepacket, i.e., to a collection of harmonics with
close frequencies and wave vectors and with well-defined
phases. The packet shape significantly depends on phase
shifts between harmonics, which can be set arbitrarily. The
quantization resulted in field operators (51)—(53) with
quite definite phases [see (54)]. For this reason, the
legitimate questions arise as to whether the classical
packets are consistent with the quantum description and
how we can construct a pre-defined wavepacket (with
specified phase shifts between harmonics) using quantum
operators (51)—(53).

This problem cannot be solved only by using the Fock
quantum field states defined by the occupation numbers 7,
in each mode. Exactly such an approach is used in quantum
electrodynamics [29] in the absence of matter. This
approach does not apply in our case due to the ‘number of
quanta—phase’ uncertainty relation: if the number of quanta
in some mode is given, the phase of this wave is undefined.
This purely quantum property of photons results, in
particular, in the vanishing of the mean field strengths in a
state with a fixed n;:

(ns|Elns) =0,  (ngBlng) =0. (63)
Therefore, a quantum analog of classical wavepackets cannot
be constructed from the Fock states.

For this, we should use coherent (or Glauber) states (see
[30, 34-36]; information for beginners can also be found
in [37]). These states, denoted by the symbol |z;) for a mode
s, are defined as eigenstates of the non-self-adjoint photon
annihilation operator ¢;:

&slzs) = z4lz,) - (64)
The eigenvalue z; of a non-Hermitian operator ¢ can be any
complex number, i.e., the spectrum of eigenvalues is contin-
uous. The eigenfunction |z) can be represented as an infinite
series in Fock states |n), and the Fock eigenfunction |r), in
turn, can be represented as an integral over d?z, i.e., over the
argument and phase of the complex number z. The number of
photons in a mode |z) is undefined, but the quantum
mechanical mean of the photon number is simply expressed
through z:

n = (zlilz) = (zlefe|z) = z(zle"|z) = |z (65)

We can expand in vectors of coherent states, although they
are nonorthogonal for z/ # z:

(zlz"y =exp (272’ —ﬁfﬂ
2 2 )’

[(z1z")" = exp (=|z = 2']*) #0.

(66)

We use the ‘Ehrenfest theorem’ [33] relating the observed
variables to quantum mechanical means and, as the obser-
vable field E(r, 7) of a wavepacket, consider the mean of the
electric field operator E(r, r) over some set of coherent states

1Z) =11 |=):
E(r,1) = (Z|E(r, 1)| Z) = IZ% [2,A(r, 1) — 22 AX(r, )] .

(67)

This real expression is made of harmonics that acquire known
phases due to the complex numbers z;. By varying them, we
can construct any wavepacket. A similar representation can
be written for the field vector B.

As a result, we have realized two complementary descrip-
tions of the electromagnetic field in a medium — the classical
one using wavepackets based on relations (26)—(31) and the
quantum one using coherent states—and traced the direct
and inverse transitions between these treatments.

6. Angular momentum of a field
in Minkowski’s representation

The next significant effect depending on the momentum is the
spin (the proper angular momentum) of a photon in a
medium. We calculate its value using Minkowski’s and
Abraham’s expressions for the field momentum.

We construct the field momentum using Minkowski’s
nonsymmetric energy—momentum tensor

. wo —cgy!
Ty = Vs M (68)
. 0

The quantities w (energy density) and y (energy density flux
vector) are identical in Abraham’s and Minkowski’s repre-
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sentations. The quantities gM
defined according to Abraham:

and a;‘g differ from those

MV
gr =" O = o Vakp = =S o= vgka . (69)

We construct a third-rank 4-tensor representing the
angular momentum densities,

Iku T/xl xl Tlg/[xl" (70)
which is antisymmetric in the last two indices, I} = y Ikﬂ
Taking the divergence, we obtain

akII\u (akT/\z )xl + T}:vl - (aka]}/[)X, Tzljvl . (71)
Using Eqns (68) and (69), we calculate the divergence

1 /ow
—.(a—‘jwo —0, i=0,
T ={ ¢ N (72)
g; Ty :
-2+ =90 =1,2,3.
o Tow, 0 TP

Thus, the original divergence is expressed as the difference
between energy—momentum tensors:

M =TM TN (73)

Turning to nonsymmetric 4-tensor (68) and taking the

symmetry of the three-dimensional tensor (i.e., the stress
tensor) into account, we obtain
FIM =0, i, j=1,2.3, (74)
. 1
aklk%:fakl,g\g,.:i yi—cgM#0, i=1,2,3. (75)

The vanishing of the four-dimensional divergence in (74)
means that the integral over three-dimensional space is time-
independent:

Qiﬁ - JIO%Id d3x = const, o, ﬁ = l, 27 3. (76)

This is clear after integrating Eqn (74) over three-dimensional
space and using the three-dimensional Gauss—Ostrogradsky
theorem. The antisymmetic three-dimensional tensor Qg is
equivalent (dual) to the pseudovector JM of the field angular
momentum defined according to Minkowski:

JM:ergMd3x:const, (77)

which is a conserved quantity. Abraham’s three-dimensional
angular momentum is also an integral of motion:

JA:ergAd3x:const, gA:LExH. (78)

4mc

But for Abraham’s symmetric tensor T2, the mixed space—
time components Q, unrelated to the three dimensional
angular momentum are also conserved. In the Minkowski
case, these components are not conserved.

7. Photon spin in a medium

The proper angular momentum — spin—is a feature of each
elementary particle. It is well known that a photon, one of
the most well-studied and widespread fundamental bosons,
also has this important feature. But the spin of a photon
cannot be defined in a way similar to that of an electron, i.e.,
as the angular momentum in the particle rest-frame. There is
no such frame for a photon in a vacuum. Therefore, most
authors [25, 28-31] consider the total angular momentum J
of the electromagnetic field according to its classical
definition and then identify two components: the orbital
angular momentum L and the proper angular momentum S,

J=L+S8S. (79)
The criterion for such a separation is the dependence of the
orbital angular momentum on the coordinate origin, as
well as the appearance of the operator r x V characteristic
of the orbital angular momentum in quantum mechanics.
The proper angular momentum does not have any
dependence on the reference frame and is determined by
the properties of the field itself. We also use this possibility
here to define the spin angular momentum of a photon in a
medium.

We write the total angular momentum of a wavepacket of
a classical electromagnetic field relative to the coordinate
origin in terms of the momentum density, which is defined
according to expression (31) or (78), i.e., according to
Abraham:

1 .
A _ A _ 2 : 3.
J — Jr >< dG —_ S“q/ WJ r >< [Es’ >< Bs] d ] . (80)

The integral extends to the entire periodicity domain V; at the
region boundary, the field is zero. By expressing the field By in
terms of the vector potential, we integrate by parts to
represent the total angular momentum as the sum of two
terms:

zﬁJ Falr '
(81)

In accordance with the criterion given above, the first term in
the right-hand side is interpreted as the orbital angular
momentum relative to the chosen coordinate origin, and the
second term as the proper angular momentum (spin) of the
field in the volume V. The second term is more interesting for
our purpose:

1 3
- E, x A, d*F. 2
§4nc,u(ws)J o X Asd'r (82)

We calculate possible values of this quantity in the
quantum field description. For this, we symmetrize expres-
sion (82) and consider it as a self-adjoint quantum operator
by expressing it in terms of field operators (52)—(54):

1 I A A - 3
= Z WJ{E x Ay — A, x Egydr.  (83)
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When integrating vector products over coordinates, we use
the orthogonality of wave functions (54):

J AL (r, 1) x Ay(r,0)dr
14
2nlicuy, (u(wk))m

Wy e(wy)

= Skk/[eia/ X ekg]

This enables us to write (83) in the form

Uj

SA = —in K
kz c\/eu

1
e X exo] (eig,@ka +3 5) . (85)

If the photon polarization vectors are real, ex; = ej; and
ex> = ey, (linear polarization), the vector product in (85) is
nonzero only for ¢’ # ¢. But in this case, the spin vector
vanishes when averaging over states with a fixed number of
photons, i.e., with fixed ny ; and ny . The vector product is
nonzero for the circular polarization of photons if ¢’ = o:
ex 11 = (e tex)/ V2. Because the polarization vectors are
orthogonal to k, we obtain

e;il X ekil = i% . (86)
After averaging operator (85) over the state with a fixed

number of photons, we obtain
Z hk M[‘
k c\/_

According to this result, one photon with a given circular
polarization contributes /uy /c,/ep to the spin. This result is
unsatisfactory because, according to the general properties of
the angular momentum in quantum mechanics and its
relation to spatial isotropy, its eigenvalues can take only
integer or half-integer values 0,1/2, 1, ... in units of /. In the
formula, however, the factor u;/c,/eft can take continuous
values, depending on the medium properties.

This contradiction provides grounds to assert that
Abraham’s definition of the momentum density, Eqn (31),
which we have used to calculate the spin angular momentum
of the field, does not enable the correct description of the
quantum properties of photons in a medium. However, a self-
consistent description of spin can be obtained if Minkowski’s
momentum density (61) or (77), and, correspondingly, the
photon momentum defined according to Ginzburg (62), are
used in Eqns (80)—(87). The undetermined extra factor then
disappears, and the desired integer value remains:

hk
sM = Z ?(”k«,H —flkfl)‘
k

Nk, +1 _nk,—l)- (87)

(88)

Thus, we arrive at the conclusion that the photon momentum
defined according to Minkowski and Ginzburg provides a
correct description of the spin of a photon in a transparent
medium. Abraham’s momentum, in spite of the full symmetry
of the energy—momentum tensor, gives rise to contradictions
in the quantum description.

8. Quantum theory
of Vavilov—Cherenkov radiation

Vavilov—Cherenkov radiation [38, 39] was the first experi-
mentally discovered radiation effect from a fast charged
particle uniformly moving in a medium or near its bound-

ary. The theoretical explanation of this effect and necessary
conditions for its appearance were provided by Tamm and
Frank [40, 41] based on classical electrodynamics.

The classical theory can explain this effect with quite a
high accuracy because a low-energy quantum is emitted (for
example, in the optical range) by a particle moving with a
subluminal velocity. Therefore, in most textbooks on electro-
dynamics, the radiation intensity is calculated classically (see,
e.g., [2, 42, 43]). However, the quantum explanation of this
effect was necessary from the fundamental standpoint and for
completeness. Such an interpretation was proposed by
Ginzburg [6]. The quantum treatment is very useful for
understanding the properties of photons in transparent
media, which are significantly different from the well-known
properties of a photon in a vacuum. Contradictions related to
the use of Abraham’s photon momentum in a medium have
been discussed in Section 4.

In a vacuum, the emission of a photon by a free particle is
prohibited by the energy and momentum conservation. But in
a transparent medium, the radiation from a free particle
becomes possible due to the change in the dispersion
equation relating the energy and momentum of a photon in
the medium. To calculate the probability of the process, we
use the well-known formula of the perturbation theory for the
transition probability of a quantum system per unit time from
an initial state |7) to a final state | f):

(89)

dwrad — i_;f ‘(f|I7|i)\25(5(P) —&(p') —hw)dv.

Here, dv is the number of quantum states of the emitting
particle and of the quantum in the continuum, and

P =ik An)

(90)
is the operator coupling the relativistic electron to a quantized
electromagnetic field, derived from classical Lagrangian (18).
We choose the Coulomb gauge, in which the scalar
potential ¢ =0 and VA(r) = 0. Then, instead of the four-
dimensional current j* (k = 0,1,2,3), we can use the Dirac
three-dimensional current:
i) = ecy ) (R, (r) (91)
where @is the vector of Dirac matrices and y/(r) are bispinors
describing the initial (pu) and final (p’u’) states of the
emitting electron. Explicitly, the bispinors are given by

Ypu(r) = %"/ exp (% pr>7

(92)
iG E+me?\'?
upy = N c(p&)w, |, N= ( e > ,
&+ mc?

where w, is the two-component spinor describing the spin
state in the electron rest frame and normalized to unity. As
with photons, the bispinor field is subject to periodic
boundary conditions, which yields the normalization factor
V=172 in (92) containing the periodicity volume. We assume
the electron moving in the medium to be free, as was assumed
in the pioneering paper by Tamm and Frank [40].

The matrix element (f|¥]i) in (89) includes integration
over the volume and the normalization of three exponentials
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containing momenta p and p’ of the emitting particle and the
momentum q, Eqn (56), of a photon in the medium. The
periodicity condition for the bispinors and the electromag-
netic field leads to the momentum conservation law:

i YA 3., V’
LeXp{h(p P q)r]dr—{m

Energy and momentum conservation laws (89) and (93)
allow us to find the angle 0 of the radiated quantum relative to
the initial particle velocity v:

cost = s [1 s (%) = D1 = 57

/]
A= ,
mec

p'=p—q,

pEp—a. )

n(w) =

dwuo), ==

The quantum correction proportional to A/ is of the order of
10~° for the electron, and we ignore such corrections in what
follows.

Using formulas (51) and (54) for the quantized field, as
well as quantities (92) and (93), we can write the required
matrix element in the form

D 2mheluy| (1) .
Vi) = e %'V“'(ﬁ) (g (0€)up) . (94)

&

In this and subsequent expressions, q can be treated as the
change in the momentum of the emitting electron,q = p — p’,
and as the momentum of the emitted photon.

The number of quantum states dv in probability (89), after
using conservation law (92) and eliminating the momentum
p’, relates only to the photon, and with its dispersion law (55)
can be written in terms of the frequency in the form

2
V:Vw 3daz)d9,17 (95)
(21) vy, [ug
where vpy, = ¢/,/eft is the phase velocity and u, = diw/dg is
the group velocity. When calculating the emitted energy,
probability (89) should be averaged over the initial spin
states u of the electron and summed over its final states u’ as
well as over polarizations s of the emitted transverse photon.
These operations can be carried out using projection
operators and are well known [25-29].
Omitting the technical details of the calculation, we
present the final result:

: we e [ = 42 ! K
EM;J(M;qu’(aes)upu)’ = ﬁ (1 —m) , ﬁ _; .
B (96)

The energy d/(w) of particle emission per unit frequency
interval dw can be obtained by multiplying the energy of one
quantum 7w by the emission probability dw™¢ integrated
over possible photon angles d, using the é-function. Its
argument is represented in the form

Ep)—E(p—q) — how =vq — hw =vgcosO —ho  (97)
and, after integration, yields the factor

JS( 0 — ) dQ, — —" (98)
o(vg cos w)dQ, = Faopn(@)

Collecting all necessary factors in (89) and subsequent
equations, we obtain

_ ePopu(w)

The total radiation per unit time is found by integrating (99)
over the frequency range where the energy and momentum
are simultaneously conserved, i.e., |cos 0| = 1/fn(w) < 1:

R
1= B Jﬁn>1 1 (o) ww)odow.

For pu(w) =1, the obtained result coincides with that of
Tamm and Frank [23], in which the authors assumed u =1
and n(w) = y/¢(w).

The presented calculation using Dirac’s theory was
carried out for a charged particle with spin 1/2 (fermion). In
this case, the radiation is produced, generally speaking, not
only by the charge of the moving particle but also by its spin
magnetic moment. However, the contribution of the magnetic
moment to the radiation is very small: according to
Ginzburg’s estimate [6], the relative contribution of this
effect is less than 107>, Therefore, expression (100) can in
fact be applicable to any charged particle regardless of its spin
moment.

The well-known quantum formula (89), which also
includes the energy conservation law and which has been
used to derive the correct Vavilov—Cherenkov radiation
intensity, leaves no doubt that the full energy #hw =
E(p) — £(p’) and momentum of the Cherenkov photon are
taken from the moving particle but not from the medium. The
quantum state of the medium does not change.

Processes in which other excitations of matter besides the
Cherenkov quantum participate have been considered by
various authors (see [44-46]). However, all such processes
are described using higher orders of the perturbation theory
and have a much lower intensity than the Vavilov—Cherenkov
radiation.

The presence of matter not only gives rise to macroscopic
radiation mechanisms that are absent in a vacuum (Vavilov—
Cherenkov radiation and transitional radiation [47, 48]) but
also affects other radiation processes, for example, the
spontaneous radiation of excited atoms in a medium. It is
easy to verify that the probability of the spontaneous electric
dipole emission of an atom in a medium compared to the
probability of this emission in a vacuum acquires the factor
Vé(w)u?(w). This results from the change in the number of
quantum states of a photon in the continuum (95) and the
change in the normalization constant.

(99)

(100)

9. Photon mass in a medium

It is well known that the mass of a photon in a vacuum is zero:
mpp = 0. In special relativity, the mass of an elementary
particle can be correctly defined only as a relativistically
invariant quantity (the widespread but not quite appropriate
term for this quantity is the ‘rest mass’). There is no correct
definition of a ‘velocity-dependent mass’. This important
property of the mass notion was relatively recently —in the
21st century — explained in several papers and notes by Okun
(see [49, 50] and especially [51]).

The mass of a photon in a medium can be most
straightforwardly found from the Klein-Gordon-Fock equa-
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tion for a free vector particle with mass m (see, e.g., [52]):

1 &> m2e?

e Y =0,

—— k=0,1,23.  (101)

As is well known, this equation implements the relation
between the energy and momentum of a particle on the
quantum level, irrespective of the internal degrees of freedom
of the particle. Therefore, it is applicable to both bosons and
fermions.

For photons in a medium, the vector potential satisfying
Eqn (24) acts as an analog of the wave function:

e O°A,,
c? 0t

A comparison of the last two equations shows that the mass
term is absent in the equation for photons and that the mass
of a photon in a medium, as in a vacuum, is zero: m,, = 0.
Because both equations have covariant forms, this result is
valid in any inertial reference frame, i.e., the zero photon mass
is invariant.

This result, quite obvious from general considerations, is
presented here because papers [53, 54] appeared recently,
treating the quantum theory of Vavilov—Cherenkov radiation
incorrectly. There, the ‘mass of a photon in a medium’ m,,
defined by the author similarly to the mass of an ordinary
relativistic particle is considered:

AA,

=0. (102)

2
Emn

e’ C—Q—Pza (103)

myc” =

with Abraham’s momentum p. This leads to the mass in the
form

ho\ 2 1
202
= () (-5

This mass is not invariant and can take imaginary values for
eu < 1. In addition, the author believes that the Cherenkov
photon is emitted by the medium and not by the fast particle
and asserts that “during the emission of a photon with energy
Epn the energy of the medium should decrease by the amount
mphc2, where mpy is the mass of the photon in the medium
with (/e # 17 (see [53], p. 20). Both statements about the
final and noninvariant photon mass and about the emission
of the photon by the medium are incorrect.

By criticizing the studies by Tamm and Frank [40, 41], as
well as by Ginzburg [11, 55], the author of [53] restricts
himself to considering only kinematic relations — the energy
and three-momentum conservation laws involving the
‘photon mass’. The pretentious section “A novel quantum
theory of Vavilov—Cherenkov radiation” does not contain
calculations of probabilities or intensity of the radiation
produced by a fast particle. The initial assumptions of this
criticism are erroneous and the criticism is wrong.

(104)

10. Conclusions

The analysis of the macroscopic energy—momentum tensor
presented in this paper continues the history of more than a
century (see recent papers [56—60]) of discussions of the
fundamental physical quantities involved in this notion. Our
consideration is applicable not to the most general case but to
a sufficiently high-frequency electromagnetic field in the form

of quasimonochromatic transverse waves (wavepackets) in
the absence of external charges, currents, and energy
dissipation in a chosen space region. The second feature of
our approach is the use of quantum theory, which, as the
author believes, allows a deeper insight into physical
phenomena than does a classical approach.

We quote the opinion of the outstanding physicist,
V L Ginzburg, on the issues considered here [15]; he
frequently returned to this field in his research: “Everything
asserted allows us to consider the Abraham tensor ‘correct’,
but in our opinion it is possible to claim the Minkowski tensor
‘incorrect’ only in a somewhat formal approach to the
problem. In fact, in most situations, the results obtained by
using the Abraham and Minkowski tensors are fully identical.
This gives us the opportunity in the corresponding cases to
use the Minkowski tensor and makes this quite expedient as
long as some simplifications can be achieved.” And later,
when discussing Abraham’s force (2): *“... the account for the
action of this force in the classical approach is very simple (see
above), but quantum mechanically it would turn out to be
rather cumbersome. In any case, as far as we know, such a
quantum treatment has not yet been given.”

In this paper, we have taken the Abraham force into
account at the quantum level because it is included (see [17])
in Abraham’s stress tensor a;}, and we have found quantum
mechanical eigenvalues for all components of the energy—
momentum tensor. However, this has been done not in the
general case, which could encompass static, quasistatic, and
rapidly varying fields, but for a transverse high-frequency
field that only requires a quantum treatment. Static and
quasistatic fields are fully described by classical methods [61].
No contradictions arise here. However, the transverse
electromagnetic field is significantly different from the field
generated by immobile or slowly moving charged particles.
Therefore, there are no a priori grounds to believe that
formulas describing the energy and momentum density of
the field preserve the form in all unbounded frequency and
wavenumber ranges.

As noted in the preceding sections, quantum relations
appropriate for high-frequency transverse fields in a medium
make the use of characteristics of ‘photons in the medium’
defined by Minkowski’s tensor and by the related Ginzburg
formula (62) for the photon momentum not only efficient but
also necessary. The use of Abraham’s momentum density
does not agree with experimental data.

We note that in the paper by Polevoi and Rytov [62], the
energy—momentum tensor of the electromagnetic field is
written in terms of the group velocity exactly in the
nonsymmetric Minkowski form (see Eqns (53) in [62]). As
the quantum approach described above shows, just this form
turns out to be correct for the high-frequency field. Therefore,
our criticism in paper [17] of the expression g, = wk, /w for
Polevoi’s and Rytov’s momentum density is untenable and
does not correspond to the results obtained here, which the
author ought to state here with regret.

Thus, the above calculations lead to the following
conclusions.

(1) The correct expression for the momentum density of
transverse electromagnetic waves in a transparent medium is
given by Minkowski’s formula (2), and the correct expression
for the individual photon momentum is given by Minkowski—
Ginzburg’s formula (62) first used by Ginzburg [6] in 1940.

(2) This conclusion is justified by the classical-to-quan-
tum correspondence for the momentum density of transverse
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waves in a medium, by the agreement with experimental
values of the photon spin in a medium, and by the correct
result for the probability of photon emission by a fast charged
particle (the Vavilov—Cherenkov effect). The use of Abra-
ham’s expression for these purposes leads to contradictions
and is inconsistent with experimental data.

(3) The quantum description of the transverse field in a
medium includes its classical description by macroscopic
electrodynamics equations as a particular case; therefore,
the result derived from quantum theory holds in classical
macroscopic electrodynamics for a high-frequency transverse
electromagnetic field. This conclusion is inapplicable to static
and quasistatic fields.

The author thanks the researchers of the Peter the Great
St. Petersburg Polytechnic University and Ioffe Physical-
Technical Institute, RAS, for discussions of this paper. The
author acknowledges the referee for a very careful reading of
the manuscript and the useful comments that clarified the
presentation.
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