
Abstract. The main aspects of the theory of phase transitions in
two-dimensional degenerate systems (Berezinskii±Kosterlitz±
Thouless, or BKT, transitions) are reviewed in detail, including
the transition mechanism, the renormalization group as a tool
for describing the transition, and how the transition scenario
can possibly depend on the core energy of topological defects (in
particular, in thin superconducting films). Various melting
scenarios in two-dimensional systems are analyzed, and the
current status of actual experiments and computer simulations
in the field is examined. Whereas in three dimensions melting
always occurs as a single first-order transition, in two dimen-
sions, as shown by Halperin, Nelson, and Young, melting via
two continuous BKT transitions with an intermediate hexatic
phase characterized by quasi-long-range orientational order is
possible. But there is also a possibility for a first-order phase
transition to occur. Recently, one further melting scenario,
different from that occurring in the Berezinskii±Kosterlitz±
Thouless±Halperin±Nelson±Young theory, has been proposed,
according to which a solid can melt in two stages: a continuous
BKT-type solid±hexatic transition and then a first-order hexa-
tic-phase±isotropic-liquid phase transition. Particular attention
is given to the melting scenario as a function of the potential
shape and to the random pinning effect on two-dimensional
melting. In particular, it is shown that random pinning can

alter the melting scenario fundamentally in the case of a first-
order transition. Also considered is the melting of systems with
potentials having a negative curvature in the repulsion regionÐ
potentials that are successfully used in describing the anoma-
lous properties of water in two dimensions.
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Thouless transition, superfluid films, superconducting films,
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vortices, dislocations, disclinations, hexatic phase, two-di-
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1. Introduction

On October 4, 2016, the names of the laureates of the 2016
Nobel Prize in physics were announced in Stockholm: these
were the British physicists David Thouless, now at the
University of Washington in Seattle (USA), and Duncan
Haldane of Princeton University (USA), as well as John
Michael Kosterlitz of Brown University in Providence
(USA), ``for theoretical discoveries of topological phase
transitions and topological phases of matter,'' according to
the Nobel citation. Duncan Haldane is undoubtedly an
outstanding theoretical physicist, recognized for his work on
the topological states in one-dimensional magnetic chains
and the fractional Hall effect, but in this review we restrict
ourselves to a discussion of the properties of the Kosterlitz±
Thouless transition (to be more precise, the Berezinskii±
Kosterlitz±Thouless transition).
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Prior to turning to the description of the physical aspects
and applications of the theory developed by the laureates, it is
necessary to enlarge on one issue that arises for anyone who is
familiar, at least vaguely, with the history of this discovery. In
the English-language scientific literature, the term ``Koster-
litz±Thouless transition'' is commonly used, while Russian
scientists most often speak about the Berezinskii±Kosterlitz±
Thouless (BKT) phase transition.

It is hard to overestimate the role of the untimely deceased
talented Soviet physicist Vadim L'vovich Berezinskii in the
development of the theory of phase transitions in degenerate
planar systems. Berezinskii was the first to formulate the
fundamentals of the theory [1, 2] that was awarded the Nobel
Prize in 2016. It is pertinent to note that the basic paper by
Kosterlitz and Thouless [3] contains due references to both
Berezinskii's papers on this subject and appropriate commen-
taries. Furthermore, in his 2016 review [4] expressively
entitled ``Kosterlitz±Thouless physics: a review of key
issues,'' Kosterlitz wrote that he and Thouless felt disappoint-
ment when they learned about the earlier work by Berezinskii.
However, Kosterlitz noted there that he and Thouless did not
know Russian and were not familiar with Berezinskii's work.
We note, however, that the Journal of Experimental and
Theoretical Physics (JETP), where Berezinskii's paper was
published, was translated into English on a regular basis at
that time (see, e.g., Ref. [5]).

Phase transitions are among the most frequently occur-
ring and interesting effects, which are encountered in every-
day life as well as in basic research and technological
applications. A theory that proved to be capable of describ-
ing the key aspects of the physics of phase transitions was
proposed by Landau [6] in 1937. The basic point of Landau's
theory is his proposed notion of the order parameterÐa
quantity that is equal to zero at temperatures above the
transition temperature (in the disordered phase) and takes
nonzero values in the ordered phase. The order parameter
characterizes symmetry breaking that occurs in phase transi-
tions.

According to the standard classification, there are two
types of phase transitions: of the first order, where the order
parameter experiences a discontinuity, and continuous (often
referred to as second-order transitions), where the order
parameter changes continuously. The simplest example of
the order parameter is magnetization (the average value of the
magnetic moment) in a ferromagnetic material. Qualitatively,
the transition in a magnet can be represented as follows: at a
high temperature, magnetic moments rotate freely and there
is no preferred direction in the system, which is therefore
isotropic. As the temperature decreases, however, at some
critical temperature Tc, a nonzero value of magnetization (of
the order parameter) spontaneously appears in the system,
i.e., a phase transition to the ferromagnetic state occurs. In
this case, a preferred direction appears, which coincides with
the direction of the magnetization vector, and the system
ceases to be isotropic.

Landau's theory did not take thermal fluctuations of the
order parameter into account, but nevertheless provided a
quite satisfactory description of experimental facts. The most
brilliant achievement of this theory was the phenomenologi-
cal descriptionof superconductivity, forwhichAAAbrikosov
and V LGinzburg were awarded the 2003 Nobel Prize. At the
same time, by the 1960s it became clear that the inclusion of
fluctuations is critical for correctly describing the behavior of
a system in the vicinity of a second-order phase transition.

This resulted in the construction of the fluctuation theory of
phase transitions (AZPatashinskii,VLPokrovskii, LKadan-
off, M Fisher, K Wilson) (see, e.g., Refs [7±14]), which
brought Wilson the Nobel Prize in 1982.

The above and other authors called attention to the role of
the dimensionality of space in which the transition occurs in
the description of its properties. In particular, as shown by
Peierls and Landau, and later by Bogoliubov, Mermin, and
Wagner, in two-dimensional systems with continuous order
parameter symmetry (the Heisenberg magnet, the plane rotor
(or XY) model, superfluid and superconducting systems, as
well as two-dimensional crystal lattices), thermal fluctuations
destroy the long-range order, which means that a nonzero
value of the order parameter extends to the entire system.
Hence, it was concluded that a phase transition in such
systems is possible only at a zero temperature. At the same
time, experimental works on superfluidity in thin liquid
helium-4 films appeared [15±21], as did several investigations
based on computer simulations of hard disks [22±26] and
numerical techniques applied to magnetic systems [27±29],
which were at variance with the above-mentioned conclusion.

It was Berezinskii, Kosterlitz, and Thouless [1±3, 30, 31]
who clarified the matter. Berezinskii [2] was the first to show
that a thin liquid helium film, even without a long-range
order, exhibits superfluidity at low temperatures. Two-
dimensional crystals, although exhibiting no long-range
translation order, have a finite shear modulus and are
therefore solid. Two-dimensional magnets are resistant to
nonuniform rotation of spins. Berezinskii recognized that
these phenomena are common in nature and devised the term
`transverse rigidity' for them, which is now commonly used in
the literature. For systems with transverse rigidity, Berezins-
kii showed that the two-point correlation functions that
describe the mutual effect of order parameters exhibit a slow
power-law decay with distance, with the power depending on
the interaction parameters and the temperature. We recall
that in the presence of long-range order, a similar correlation
function tends to a nonzero limit as the distance between the
points tends to infinity, while in the high-temperature
disordered phase, correlations decay exponentially fast.

The new phase, sometimes referred to as the Berezinskii
phase, is fundamentally different from what can be observed
in three dimensions. In view of the slow decay of correla-
tions, this phase is commonly said to have a quasi-long-
range order. Similar results were later obtained by Kosterlitz
and Thouless [3, 30]. Furthermore, they corrected an error
made by Berezinskii, who mistakenly believed that a quasi-
long-range order can exist in a two-dimensional Heisenberg
magnet, i.e., in a system with three-component magnetic
moments.

Because the correlations in the low- and high-temperature
phases obey different decay laws that do not match smoothly,
it became clear that there should be a phase transition
between them. Berezinskii discovered the important role of
topological effects in the transitionÐvortices in a superfluid
helium film, dislocations in a two-dimensional crystal, and
vortex configurations in a two-dimensional magnet with two-
component magnetic moments (XYmodel)Ðand provided a
qualitative explanation for the transition mechanism. At a
low temperature, defects couple into pairs, which do not
break the quasi-long-range order. However, as the tempera-
ture increases, the pairs dissociate giving rise to free defects,
which transform the quasi-long-range order into a disordered
phase with an exponentially fast correlation decay. Amethod
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for calculating the transition temperature was developed in
subsequent work by Kosterlitz and Thouless [3, 30, 31].

The theory of transitions in two-dimensional degenerate
systems developed by Berezinskii, Kosterlitz, and Thouless
has played an outstanding role in the study of the physics of
two-dimensional melting. Despite the almost 40-year-long
history of the problem, so far there is no theory that
consistently describes the melting of two-dimensional sys-
tems from the microscopic standpoint. The problem of two-
dimensional melting is among the oldest unsolved problems
of condensed matter physics. Although a wealth of publica-
tions is concerned with this subject, contradictions relating to
the description of melting in two dimensions persist and even
multiply. Unlike melting in the three-dimensional case, which
always occurs due to conventional first-order transitions [32],
two-dimensional melting can be described by several pro-
posed scenarios. The main reason for this difference is a
dramatic increase in fluctuations in passing from two to three
dimensions. Peierls, Landau, and,more recently, based on the
Bogoliubov 1=q 2 theorem [33±35], Mermin [36] showed that
the long-range crystalline (translational) order cannot exist in
two dimensions owing to thermodynamic fluctuations and
transforms into a quasi-long-range order characterized by a
slow decay of order parameter correlations. On the other
hand, true long-range orientational ordering (the order in the
orientations of `bonds' connecting a molecule to its nearest
neighbors) does take place in two dimensions, as was first
noted by Mermin [36]. In this case, an ordinary isotropic
liquid exists at high temperatures.

Even in their original work [3], Kosterlitz and Thouless
noted that a two-dimensional crystal should melt by dissocia-
tion of dislocation pairs, which are topological defects in this
case. In the presence of the quasi-long-range translational
order, these effects are well defined. Besides the quasi-long-
range translational order, long-range orientational order
exists in a two-dimensional crystal, i.e., the order in the
directions of the vectors connecting a particle to its nearest
neighbors, and therefore, as later noted by Halperin and
Nelson [37, 38] (see also Ref. [39]), a liquid turns out to be
anisotropic in a state above the point of dislocation pair
dissociation. The authors of Refs [37, 38] noted that
dislocation pair dissociation does not destroy the long-range
orientational order but transforms it into a quasi-long-range
order. The resultant new phase received the name `hexatic' by
analogy with liquid crystals. In the hexatic phase, there are
free dislocations, and therefore its shear modulus is equal to
zero, which means that we here deal with a liquid with
elements of ordering.

We note that a dislocation can be represented as a coupled
pair of two disclinations. The hexatic phase transforms into an
ordinary isotropic liquid as a result of the subsequent BKT
transition via dissociation of disclination pairs. The presented
theory bears the name Berezinskii±Kosterlitz±Thouless±
Halperin±Nelson±Young (BKTHNY) theory. In the frame-
work of this theory, a two-dimensional crystal should melt by
means of two continuous BKT transitions with an inter-
mediate hexatic phase (we recall that melting in the three-
dimensional case is always a first-order transition). As was
shown later, a first-order transition is also possible for a low
dislocation core energy.

The BKTHNY theory seems to be highly attractive and
universal, and in a sense one may hypothesize that all two-
dimensional crystal should melt in the framework of this
scenario. However, some of its aspects are debatable. In the

framework of this theory, for instance, there is no way of
calculating the energy of a topological defect core or the
energy of the effective interaction between disclinations in the
hexatic phase. The BKTHNY theory gave rise to a wealth of
publications, both experimental and those reliant on compu-
ter simulations, some of which are described below.

Presently, it is believed that the melting scenario of a two-
dimensional system is radically dependent on the kind of
interparticle interaction. In particular, it was shown that the
BKTHNY theory is applicable to systems with a long-range
interaction. For systems with short-range potentials, the
melting can also occur via two transitions with an inter-
mediate hexatic phase; in this case, however, the crystal±
hexatic phase transition proceeds in accordance with the BKT
theory, while the hexatic phase transforms into an isotropic
liquid by a first-order transition (see the discussion in
Sections 3.7 and 4).

There are numerous books and reviews that discuss many
aspects and applications of the BKT theory. First of all, we
note book [40] reproducing Berezinskii's thesis. Book [41],
which was published to the 40th anniversary of the first
papers by Kosterlitz and Thouless, is a collection of papers
concerned with different aspects of BKT theory applications
to various systems (see the review of this book inRef. [42]). As
mentioned above, published in 2016 was the review by
Kosterlitz [4], which not only considered numerous aspects
and applications of the BKT theory but also contained
interesting remarks relating to the construction of this theory.

In this review, we outline the basic ideas underlying the
BKT theory, including issues that were not treated at length in
the publications cited above. In doing so, we place emphasis
on the modern state of the theory and experiment in the
physics of two-dimensional melting.

2. Berezinskii±Kosterlitz±Thouless theory

2.1 Berezinskii±Kosterlitz±Thouless transition
in the XY model and in superfluid films
The BKTHNY theory is underlain by the mechanism of
quasi-long-range order breaking in two-dimensional systems
with a continuous symmetry group, which was proposed by
Berezinskii [1, 2] and by Kosterlitz and Thouless [3, 31].
Examples of such systems are provided by two-dimensional
superconductors and superfluid liquids with the order
parameter of the form c � �����

rs
p

exp �iy�, where rs is the
superfluid component density and y is the phase of the order
parameter, and by the classical XY model described by the
Hamiltonian

H � ÿ J

2

X
h i6�j i

SiSj ' J

2

�
d2r �Ho�2 ; �1�

where J is the exchange integral, Si and Si are the classical
magnetization vectors, and o is the angle between vectors Si

and Sj (i and j are nearest neighbors).
At low temperatures, the behavior of the system is

governed by Gaussian fluctuations. We use the mean value
theorem for Gauss-distributed quantities to find


S�r�S�r0�
�

� 
exp �iÿo�r� ÿ o�r0�
��� / � jrÿ r0j

a0

�ÿkBT=�2pJ�
; �2�
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where a0 is the lattice constant. Therefore, the system has a
quasi-long-range order characterized by power-law correla-
tion decay, hS�r�S�r0�i / rÿZ, while at high temperatures the
correlations decay exponentially, hS�r�S�r0�i / exp �ÿr=x�
(see, e.g., Ref. [14]). The mechanism of quasi-long-range
order breaking was proposed in the works by Berezinskii,
Kosterlitz, and Thouless mentioned above. They showed that
quasi-long-range order breaking in a system results from the
formation of free topological defectsÐvortices described by
the equation

dH
do
� JH 2o � 0 ; �3�

whose solution is of the form

o � q arctan
y

x
; vq � Ho � q

r
ej : �4�

Here, q � �1;�2; . . . is the topological vortex charge and ej
is the unit vector in a polar coordinate system with the origin
at the vortex center. Then

� �Ho� dl � 2pq, where the integral
is taken along the contour around the vortex.

A vortex is a topological defect that cannot be trans-
formed by continuous rotations into the ground state,
wherein all spins point in the same direction. Figure 1 shows
two vortices on a square lattice with q � �1 and q � ÿ1.
Shown in Fig. 2 is a dipole consisting of a vortex and an
antivortex. This configuration can be continuously trans-
formed into the ground state.

The transition temperature can be determined from
simple energy considerations: the energy of an individual
vortex obtained from Eqn (1) is of the form

Ev � J

2

� L

0

2p
r

dr � Jp ln
L

a
; �5�

where L is the system size. The change in the free energy
upon production of a vortex is F � Ev ÿ TS, where
S � 2kB ln�L=a� is the vortex entropy, which is proportional
to the area of the system, and kB is the Boltzmann constant.
The quantity F � �Jpÿ 2kBT � ln�L=a� turns out to be
negative for T5TBKT � pJ=�2kB�, and hence the produc-
tion of a vortex becomes energetically favorable.

As follows from Eqn (2), at T � TBKT, the correlation
function has the form hS�r�S�0�i / rÿ1=4. Therefore, at the
transition point, the correlation function exponent is Z � 1=4.

However, this simple physical picture is not entirely
correct because the coupled pairs of oppositely `charged'
vortices do not destroy the quasi-long-range order and have
a finite energy (see Fig. 2). Such pairs can exist at low
temperatures. The above Hamiltonian of the subsystem of

the vortices is equivalent to the Hamiltonian of a two-
component two-dimensional Coulomb gas [3, 43]:

Hc � ÿpJ
X
i<j

q�ri� q�rj� ln jri ÿ rjj
a
� Ec

X
i

q 2�ri� : �6�

The harmonic approximation used in the derivation of
Eqn (6) is invalid for small r, and hence the core energy Ec

was introduced to include the contributionmade by the small-
r domain of the order of the core diameter a. Ec plays the role
of the chemical potential of the Coulomb gas.

At the phase transition point, the mean-square distance
hr 2i between the vortices that form a dipole becomes infinite:

hr 2i /
�1
a

r 2 exp

�
ÿ E�r�

T

�
r dr �

�1
a

r 3ÿ1=�2D� dr ; �7�

where D � kBT=�4pJ�. Here, formula (6) is used for E�r�.
Integral (7) diverges at large r for D5 1=8.

A superfluid film is described by aHamiltonian coinciding
in form with Hamiltonian (1), with the substitution
J! �h2rs�T �=m 2, where m is the mass of 4He atoms and
rs�T � is the superfluid component density. In then follows
that D � kBT=�4pJ � � kBTm

2=�4p�h 2rs�T ��. From the con-
dition D � 1=8, it follows that the ratio of the superfluid
density to the transition temperature for the superfluid
helium film, which was theoretically found by Kosterlitz and
Nelson [4] and experimentally confirmed in [45, 46], turns out
to be a combination of world constants:

rs�TBKT�
TBKT

� 2m 2

p�h 2
: �8�

Interestingly, the BKT phase transition combines the features
of jump-like and continuous behaviors: the entropy, the area,
and even the heat capacity change continuously, while the
transverse rigidity (the superfluid density) jumps to zero.

The BKT transitionmechanism [1±3] is the dissociation of
a dilute vortex-pair gas. TheCoulomb potential screening due
to thermally excited pairs must be taken into account here.

a b

Figure 1. (a) Positive, q � �1, and (b) negative, q � ÿ1, vortices on a

square lattice.

Figure 2.Dipole of positive and negative vortices on a square lattice.
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The dissociation occurs at the temperature at which the
permittivity of the two-dimensional Coulomb gas diverges.

The BKT theory is a renormalization-group treatment of
screening effects. The theory predicts a continuous transition
from the low-temperature phase with a quasi-long-range
order to the high-temperature disordered phase. In this case,
the quantity K � J=�kBT � renormalizes at the transition
point TBKT to a universal limit value, which then jumps to
zero. The equations describing the renormalization of the
parameters of the system in the vicinity of the transition were
derived in Ref. [3], but they were found incorrectly, because
the approximation was not quite correct. The inaccuracy was
corrected by Young [47], resulting in the derivation of
renormalization group equations of the presently well-
known form [4, 14, 31, 43, 47]

dy�l �
dl
� ÿ2ÿ pK�l;T �� y�l� ;

dKÿ1�l;T �
dl

� 4p3y 2�l � ;
�9�

where l � ln r and y is the fugacity. The solution of Eqns (9)
has been repeatedly discussed (see, e.g., Refs [4, 14, 41, 43]),
and we do not discuss it here. We only note that Eqns (9) are
valid for y5 1. Because y / exp �ÿEc=�kBT ��, it can be
inferred that they correspond to the case of high energies of
the topological defect core. This is a very important point,
and we return to its discussion below. As a result of the
solution of system (9), the (y, Kÿ1) plane is divided into three
domains. In the first one, y! 0 as l!1, while Kÿ1�l;T �
tends to a finite renormalized value defined by the initial
temperature-dependent values Kÿ10 �l;T �. The transition
temperature TBKT is defined as the highest temperature at
which the renormalized Kÿ1�l;T � value remains finite as
l!1. For T � TBKT and l!1, we obtain the relation

K�l!1;TBKT� � Jr�l!1;TBKT�
TBKT

� 2

p
; �10�

where Jr is the renormalized value of the exchange integral. It
is noteworthy that the transition temperature obtained using
the renormalization groupmethod is formally coincident with
the temperature calculated above from simple energy con-
siderations, if the coupling constant is replaced with its
renormalized value. The physical meaning of renormaliza-
tion is rather simple: with an increase in l � ln r, the influence
of paired vortices vanishes, and the part of the renormalized
Hamiltonian that corresponds to topological defects is
removed. As a result, a quasi-long-range order sets in within
this domain. The two remaining domains of the phase
diagram in the yÿKÿ1 plane are characterized by both
y�l;T � and Kÿ1�l;T � approaching infinity as l!1 for any
initial values y0�l;T � and Kÿ10 �l;T �.

At temperatures T > TBKT, the correlation function
decays exponentially. In this case, the correlation length
exponentially tends to infinity as the temperature approaches
the transition temperature from above [4, 14, 41, 43]:

x / exp

�
const

jTÿ TBKTj1=2
�
:

Equations (9) were derived by Kosterlitz [31] (see also
Young's work [47]) in the framework of the two-dimensional
Coulomb gas model. More recently, they were rederived by

standard methods of quantum field theory in Refs [49±51]
using a representation of the partition function of a two-
dimensional Coulomb gas in the field theory framework with
the Hamiltonian of the sine-Gordon form [43]. Obtained in
Ref. [51] was the next approximation in the expansion in the
small parameters y and 2ÿ pK�l;T �.

In a series of studies by Minnhagen et al. [43, 52±64], an
attempt was made to go beyond the lowest-order approxima-
tion in powers of the fugacity y in the derivation of
renormalization group equations. In the framework of the
sine-Gordon theory and dielectric formalism, they obtained a
system of nonlinear integro-differential equations that led to
the same BKT transition point for small y. The behavior of
the system in the vicinity of this point corresponds to the
results obtained from the standard system (9) and the
equations derived in Ref. [51], but the entire phase diagram
turns out to be much more complex. In the limit of a low
vortex density (of high energy of the topological defect core),
the transition is described in the renormalization group
framework [31] and is a continuous transition of infinite
order. In the high-density case, the vortices can dissociate by
a first-order transition, as has been shown, for instance, using
renormalization group equations [43, 61, 62] and the Monte
Carlo method [63±69]. The first-order transition line termi-
nates at the critical point. The BKT transition line continu-
ously joins the first-order transition line at temperatures
somewhat lower than the critical temperature. It turned out
that the jump universality (8) is violated in the first-order
transition domain and the correlation function exponent
Z 6� 1=4.

A first-order transition in a two-dimensional Coulomb
gas was also discovered in the framework of the sine-Gordon
theory in Refs [70, 71].

Levin andFisher [48] calculated the phase diagram (Fig. 3)
of a two-dimensional Coulomb gas using the Debye±H�uckel
and Boltzmann±Poisson approaches supplemented with the
method described in Ref. [72] [Debye±H�uckel±Bjerrum
Dipole-Ion-Hard-Core (DHBjDIHC) theory]. As is clear
from the phase diagram, a BKT-type transition occurs in the
system at low densities, with the formation of coupled states

0.25

T�

p�, arb. units

r1 4 0

Conductor

r1 � 0

Dielectric

Tricritical point

0.24

0.23

0.22
0.002 0.004 0.006 0.008 0.0100

DHBjDIHC

Figure 3. Phase diagram of a two-dimensional Coulomb gas in tempera-

ture±density variables (T �, r �). Here, r � � rd 2, d is the ion core diameter,

r1 � r� � rÿ, T � � kBTD=q
2,D is the permittivity of the system, and q is

the ion charge. Calculations were made in the framework of the

DHBjDIHC model [48].
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of positive and negative charges. At higher densities, the
coupled states dissociate by a first-order transition.

We note that the use of standard methods of classical
statistical mechanics, of Mayer diagrams [73] in the first
place, turn out to be rather beneficial for describing the
behavior of the two-dimensional Coulomb gas [74±77]. In
particular, renormalization group equations (10) were
derived in [76, 77] using Mayer expansions.

Special mention should be made of the paper by Salzberg
and Prager [78]: in considering the behavior of two-dimen-
sional electrolytesÐ10 years before the publication by
Kosterlitz and Thouless [3]Ð they were the first to find the
condition for dissociation of coupled pairs in a two-dimen-
sional Coulomb gas, which coincides with the condition for
dissociation of topological defects obtained by Kosterlitz and
Thouless a decade later [3, 30]. Unfortunately, this short
paper (less than one page long) was never developed further.

2.2 Berezinskii±Kosterlitz±Thouless-type transition
in a thin superconducting film (cycle approximation)
The special features of intervortex interactions in a thin
superconducting film do not allow describing the dissocia-
tion of vortex±antivortex pairs (a BKT-type transition) by
adhering to the unambiguous analogy with the XY model or
the system of vortices in a thin superfluid film. Applications
of the BKT theory to two-dimensional superconducting
systems are discussed in detail, for instance, in book [41] and
in reviews [4, 43].

In this section, we consider an approach to describing this
transition within the cycle approximation used to calculate
thermodynamic quantities for a system of vortices with a
long-range intervortex interaction.

As mentioned above, Kosterlitz and Thouless [3] pro-
posed a theory for the phase transition in neutral superfluid
films in terms of vortex±antivortex pair dissociation. How-
ever, it was mistakenly stated in [3] that coupled vortex±
antivortex pairs cannot be produced in a thin superconduct-
ing film because the intervortex interaction behaves as 1=r in a
thin superconducting film at long range, while the BKT
transition requires a logarithmic increase in the interaction
potential.

The applicability of the BKT theory to superconducting
films was first discussed in Ref. [79]. For an infinite super-
conducting film of thickness d and bulk penetration depth
lB�T �, Pearl [80] showed that the intervortex interaction
energy behaves logarithmically for r5L�T � � 2lB�T �=d
and behaves as 1=r for r4L. The quantityL can be regarded
as the effective penetration depth for the magnetic field
perpendicular to the film plane. The BKT transition would
be expected to occur when L exceeds the film size. This
condition can be reached both by decreasing the film
thickness and by enhancing the degree of disorder in the
system, as was first noted in Ref. [79]. Hence, it can be
concluded that the phase transition, in its strict sense, does
not exist in a superconducting film because free vortices exist
in it for any T > 0.

As shown in Ref. [79], type-II superconducting thin films
can have an effective penetration depth of the order of several
centimeters, i.e., experimental samples can be smaller in size
than L. To describe vortices in a charged two-dimensional
superfluid liquid in this case, an approximate analogy with a
two-dimensional Coulomb gas can be used [43, 79]. There-
fore, the authors of Ref. [79] extended the BKT theory, which
was developed for the neutral superfluid 4He liquid, to thin

superconducting films and showed that

kBTBKT � j 2
0

16p2
1

L�TBKT� ; �11�

where j0 � hc=�2e� is the flux quantum. It turned out that in
doped superconductors, TBKT is lower than the critical
Bardeen±Cooper±Schrieffer (BKS) temperature Tc. We
note that TBKT does not correspond to thermodynamic
instability.

It is noteworthy that we sometimes encounter a lack of
understanding regarding the nature of vortices in a thin
superconducting film giving rise to BKT-type transitions.
These vortices are of the same nature as Abrikosov vortices in
a bulk superconductor and transform into them with
increasing the film thickness. The form of correction terms
to Pearl's solution with the inclusion of film thickness was
obtained in Ref. [81].

For T > 0, a superconducting film always has a finite free
vortex density %�, with magnetic moments directed along ���
or opposite �ÿ� the external magnetic field H. These free
vortices are responsible for energy dissipation and result in
the formation of a resistance `tail' in the low-temperature
region. The resistance is described by the Bardeen±Stephen
formula [82]

R

RN
� 2px 2�%� � %ÿ� ; �12�

whereR is the resistance caused by the motion of vortices,RN

is the film resistance in the normal state, and x is the
correlation length. Consequently, the relations between the
free vortex density and the temperature and field must be
known for the calculation of the superconductor resistance
caused by the motion of vortices. These relations can be
obtained using the two-dimensional Coulomb gas theory [43]
in the framework of the renormalization group method [31,
43, 83].

The existence of BKT-type transitions was confirmed
experimentally in [43, 55±57, 84±88].

At the same time, there are obvious deficiencies in the
description of superconducting film behavior in the frame-
work of the two-dimensional Coulomb gas model. The form
of the function R=RN obtained using renormalization group
equations can be substantiated only in a narrow temperature
interval TBKT < T5Tc, while the bulk of experimental
results were obtained at temperatures outside this region.
The renormalization group method is not applicable to
superconductors at the temperatures sufficiently close to
TBKT [43]. Furthermore, the low-temperature resistance
`tail' cannot be described within the BKT theory.

Described in this section is the statistical theory of vortex
plasma in two-dimensional superconductors, which over-
comes some of the indicated difficulties and proposes a way
of calculating the quantities in the right-hand side of Eqn (12)
in the temperature range 0 < T < Tc. The presentation is
based on Refs [100±104].

2.2.1 Cycle approximation for a system of vortices in a two-
dimensional superconductor. We consider the free energy of a
system of N vortices �N � N� �Nÿ�, whose coordinates in a
sample of thickness d are ri�z� � �xi�z�; yi�z��, i � 1; . . . ;N
(the external field H is aligned with the z axis). Let e be the
energy per unit vortex length. Then the free vortex energy can
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be represented as [82, 105±107]

F � eNd� 1

2

XN
i6�j

sisj

�d
0

dzV
ÿ
ri�z� ÿ rj�z�

�
� 1

2

XN
i�1

e
�d
0

dz

���� dridz

����2 ; �13�

where dzV�ri�z� ÿ rj�z�� is the interaction potential between
two vortices with coordinates ri�z� and rj�z� in layers of
thickness dz, with si � �1. The last term in the right-hand
side of Eqn (13) was obtained by expanding the total energy of
the vortex line E � e

� d
0 �1� j dri=dzj2�1=2 dz. If the vortex

coordinates are assumed to vary slowly with z, it is possible to
obtain the potential that is local in z: the vortices interact at
the same height z. This approximation is valid for bulk
samples only for vortices parallel to z. In the opposite case
of a thin film, it is exactly valid in the limit d! 0.

In can be shown [100±104] that the Gibbs energy of N
interacting vortices is expressed as

G�H;T � �
�
eÿ j0H

4p

�
N�d�

�
e� j0H

4p

�
Nÿd

� 1

2

XN
i6�j

sisj

�d
0

dzV
ÿ
ri�z� ÿ rj�z�

�
� 1

2

XN
i�1

e
�d
0

dz

���� dridz

����2 ÿ 1

8p
NB 2

1ÿN ; �14�

where H is the external field, B is the induction, and N is the
demagnetization coefficient. The canonical partition function
for the system described by Eqn (14) is [105, 106]

ZN � GN

N�!Nÿ!

�
dr 01 . . .

�
dr 0N

�
dr1

. . .

�
drN r�r 01; . . . ; r 0N; r1; . . . ; rN; d � ; �15�

where �GN=N�!Nÿ!� r�r 01; . . . ; r 0N; r1; . . . ; rN; d � is the parti-
tion function for N vortices with fixed endpoints:
�r1; . . . ; rN� for z � 0 and �r 01; . . . ; r 0N� for z � d. The factor
r�r 01; . . . ; r 0N; r1; . . . ; rN; d � can be represented in the form of a
path integral over the vortex lines fri�z�g:

r�r 01; . . . ; r 0N ; r1; . . . ; rN; d �
�
�
Dr1�z� . . .

�
DrN�z� exp �ÿbG� ; �16�

where b � 1=�kBT � and where Feynman's definition of
functional integration is used [108]. For a finite d, the
statistical mechanics of the system described by Eqns (15)
and (16) was discussed in detail in [106].

Here, we consider the opposite case d! 0, which
corresponds to the `high-temperature limit' �b�h! 0� for the
path integral with imaginary time [108]. In this case, theGibbs
free energyG�H;T� [see Eqn (14)] in the exponent in the right-
hand side of (16) can be approximated by the expression

G�H;T � � ÿm�N� ÿ mÿNÿ �
1

2

XN��Nÿ
i 6�j

sisjF�ri j�

� 1

2
e
XN��Nÿ
i�1

�r 0i ÿ ri�2
d

� dG ; �17�

where m��ÿ�eÿ j0H=�4p�� d, mÿ�ÿ�e� j0H=�4p�� d,
F�ri j� � dV�ri�0� ÿ rj�0��, dG � ÿ�8p�ÿ1NB 2�1ÿN�ÿ1Od,
and O is the area of the superconducting film.

For a thin superconducting film, the energy e per unit
vortex length has the form [80]

e � pr 20 x
2

�
H 2

c

8p

�
� j 2

0

16pLd

�
H0

�
x
L

�
ÿ Y0

�
x
L

��
; �18�

where the first term is the contribution of the vortex core, r0 is
vortex core radius (in x units), Hc is the thermodynamic
critical field,H0 is the Struve function, andY0 is theNeumann
function. The interaction energy of the two vortices located at
points ri and ry (rij � jri ÿ rjj4 x) is [80]

F�ri j� � j 2
0

8pL

�
H0

�
ri j
L

�
ÿ Y0

�
ri j
L

��
;

F�ri j� � ÿ j 2
0

4p 2L
ln
ri j
L
; ri j 5L ; �19�

F�ri j� � j 2
0

4p 2ri j
; ri j 4L :

The corrections to this energy due to a small but finite film
thickness were obtained in Ref. [81].

We substitute expression (17) in (16) and integrate over all
fr 0i g in the sum in (15) to find

ZN � exp �ÿbdG� z
N�� zNÿÿ

N�!Nÿ!

�
�
dr1 . . .

�
drN exp

�
ÿ b

2

X
i6�j

sisjF�ri j�
�
; �20�

where the activities z� and zÿ are of the form z��G exp�bm��.
We estimate the constant G. Setting N � 1 and H � 0 in

Eqn (20), we obtain (z� � zÿ � z)

Z1 � zO : �21�

The vortex free energy corresponding to the partition
function Z1 must be equal to the energy of creating a single
vortex oriented perpendicular to the film (in the limit
L!1):

Fvor � edÿ TS : �22�

The entropy S has the form S � ln �O=z�, where z is the area
occupied by the vortex. It is assumed that z is proportional to
the area of the domain occupied by the vortex core: z � cx 2,
where c is a temperature-independent constant [43]. We use
formulas (21) and (22) to obtain

G � 1

cx 2
: �23�

The grand canonical partition function is of the form

Z � exp �ÿbdG�
X1

N� ;Nÿ�0

zN�� zNÿÿ
N�!Nÿ!

�
dr1 . . .

�
drN

� exp

�
ÿ b

2

X
i6�j

sisjF�rij�
�
� exp �ÿbdG�Z 0 : �24�
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The sum in (24) is taken over all configurations with different
N� and Nÿ.

The Gibbs free energy associated with (24) is expressed as [73]

G � ÿkBT lnZ � dG

� kBT

�
%�

�
ln
%�
z�
ÿ 1

�
� %ÿ

�
ln
%ÿ
zÿ
ÿ 1

�
ÿ S

�
O ; �25�

S �
X

n��nÿ5 2

X
n�

X
nÿ

bn�nÿ%
n�� %

nÿÿ ; �26�

where bn�nÿ is the sum of irreducible Mayer diagrams [73],

bn�nÿ � �n�!nÿ!O�ÿ1
�
dr1 . . . drn

XY
fi j ;

fi j � exp
ÿÿ bF�ri j�

�ÿ 1 : �27�
Here, n � n� � nÿ, the product operator corresponds to
connected diagrams without nodal vertices, for which
1 < i < j < n, and the sum is taken over all such diagrams.

The induction B is related to the free vortex densities %�
and %ÿ as B � j0�%� ÿ %ÿ�. Substituting this formula in
expression (25) gives G as a function of T,H, %�, and %ÿ.

To obtain the equations for %� and %ÿ, we use the virial
expansion [73, 109]

%� � z� exp
�

q
q%�

S

�
: �28�

We note that Eqn (28) can be derived from the extremum
condition for the free energy G:

qG
q%�
� qG

q%ÿ
� 0 : �29�

The long-range nature of interaction (19) gives rise to the
problem of convergence of certain terms in Mayer expan-
sion (26). This problem can be solved using the cycle
approximation, which is well known in plasma physics. In
this approximation [109],

S �
X
n5 2

Sn ;

Sn �
X
n�

X
nÿ

�nÿ 1�!
2

�ÿb%�� n�
n�!

�ÿb%ÿ� nÿ
nÿ!

Jn

� 1

2n

�ÿ b�%� � %ÿ�
�n
Jn ; �30�

where Jn � Oÿ1
�
dr1 . . . drn F�r12�F�r23� . . .F�rn1�. The

quantity Jn can be calculated using the Fourier transforma-
tion and taking into account that the Fourier transform ~F�q�
of potential (19) has the form

~F�q� � j 2
0

2pL
1

q�q� 1=L� : �31�

Calculations with Eqns (30) and (31) show that

ÿ 4pS

�

1

2
� 2 ÿ 1

2

�
� 2 ÿ 1

2L 2

�
ln �� 2L 2� ÿ o

L
arctan �2oL� ;

� 2 ÿ 1

4L 2
5 0 ;

1

2
� 2 ÿ 1

2

�
� 2 ÿ 1

2L 2

�
ln �� 2L 2� � s

2L
ln
1� 2Ls
1ÿ 2Ls

;

� 2 ÿ 1

4L 2
< 0 ;

8>>>>>>>>>>>><>>>>>>>>>>>>:
�32�

where � 2 � b�%� � %ÿ�j 2
0 =�2pL�, o � �� 2 ÿ 1=�4L 2�1=2,

and s � �1=�4L 2� ÿ � 2�1=2.

2.2.2 Vortex system in the absence of a magnetic field. We
discuss the properties of a superconducting magnetic film in
the absence of an external magnetic field. In this case,
%� � %ÿ � %=2 and z� � zÿ � z. Substitution of formulas
(32) in expression (28) gives

% � 2z exp

�
b

j 2
0

16p 2L

�
ln �� 2L 2� � 1

oL
arctan �2oL�

��
;

� 2 ÿ 1

4L 2
5 0 ; �33�

% � 2z exp

�
b

j 2
0

16p 2L

�
ln �� 2L 2� � 1

2sL
ln
1� 2sL
1ÿ 2sL

��
;

� 2 ÿ 1

4L 2
< 0 ; �34�

where � 2 � b%j 2
0 =�2pL�.

Using Eqns (25) and (32), we write G�T � as
G�T �
kBTO

� %
�
ln

%

2z
ÿ 1

�
� 1

4p

�

1

2
� 2 ÿ 1

2

�
� 2 ÿ 1

2L 2

�
ln �� 2L 2� ÿ o

L
arctan �2oL� ;

� 2 ÿ 1

4L 2
5 0 ;

1

2
� 2 ÿ 1

2

�
� 2 ÿ 1

2L 2

�
ln �� 2L 2� � s

2L
ln
1� 2Ls
1ÿ 2Ls

;

� 2 ÿ 1

4L 2
< 0 :

8>>>>>>>>>>><>>>>>>>>>>>:

�35�

By substituting Eqns (33) and (34) in formulas (35), we
express the free energy in the form of the `equation of state'
[73, 109]:

P

kBT
� %ÿ 2%

qS
q%
� S ;

where the vortex plasma pressure is P � ÿG�T �=O.
The behavior of % as a function ofT in the vicinity ofTBKT

and for low T can be obtained in explicit form. We consider
these cases.

For T! 0, as is seen from Eqn (34), the vortex density
%! 0,

% � 2

cx 2
exp

�
ÿ ed
kBT

�
: �36�

We now consider approximate solutions of Eqns (33) and
(34) in the vicinity of TBKT. In this case, Eqn (33) has to be
solved, because the inequality � 2 ÿ 1=�4L 2�5 0 is satisfied
for a nonzero % and a sufficiently small thickness d. In the
small-d limit, the second term in the exponent in Eqn (33) can
be disregarded and Eqn (33) reduces to

� 2L 2 � zbj 2
0L
p

exp

�
b

j 2
0

16p 2L
ln �� 2L 2�

�
: �37�

The solution of Eqn (37) is of the form

% � 2pkBT
j 2
0L

qkBT=�kBTÿY�T �� ; �38�
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where q � zbj 2
0L=p andY�T � � j 2

0 =�16p 2L�T ��. Equation
(38) is similar to the equation used to describe the Kosterlitz±
Thouless transition [43]. In accordance with Eqn (38), %! 0
as T! TBKT from above, where TBKT is defined by the
equation kBTKT � Y�TBKT� [see Eqn (11)] (when q < 1).

Incidentally, for exact equations (33) and (34), there is no
phase transition in the sense that the vortex density % never
vanishes exactly, but % varies quite rapidly in the vicinity of
TBKT due to the dissociation of vortex±antivortex pairs.

Parameters for specific calculations were borrowed from
experimental paper [85], where the properties of a 20 �A thick
Nb film were studied in detail. In this case,

x�t� � x�0�=
����������
1ÿ t
p

and lB�t� � l�0�=
����������
1ÿ t
p

;

where t�T=Tc, Tc'3:66 K, x�0�'104 �A, and l�0�'1600 �A;
Tc is defined as the temperature at which R � 0:5RN. The
constant c can be determined from this condition. Using
formulas (12), (23), and (33), we obtain c � 6p. The
derivation of the core radius r0 is described in detail in what
follows. The calculations were done for two r0 values: 1.25
and 2.3. (The latter estimate was borrowed fromRef. [53].) In
general, r0 can be considered a tunable parameter.

2.2.3 Dependence of the phase transition on the vortex core
radius (or vortex core energy).As discussed above, the form of
the solutions of Eqns (33) and (34) depends on the vortex core
radius r0 because of relation (18) between r0 and the vortex
core energy.

We represent Eqn (33) in the form [see Eqn (38)]

% � 2pkBT
j 2
0L

qkBT=�kBTÿY�T ��

� exp

�
Y�T �

kBTÿY�T �
1

oL
arctan �2oL�

�
: �39�

It follows fromEqn (39) that for q < 1, the free vortex density
%!1 asT tends toTBKT from below. On the other hand, for
q > 1, the density % tends to infinity as T approaches TBKT

from above. The critical value of the vortex core radius r c0 can
be found from the equation q�TBKT; r0� � 1, whence
r c0 � 1:2237.

The behavior of the solutions of Eqns (33) and (34) (see
Refs [100±102]) can be regarded as an indication that the
dissociation of vortex pairs for r0 < r c0 occurs via a first-order
transition. However, we note the obvious drawbacks of these
solutions. First, the free vortex density tends to infinity as
TBKT is approached from above. Furthermore, there is a small
neighborhood of TBKT in which the solution is not defined.
The possible reason why the free-vortex density tends to
infinity can be the fact that Eqns (33)±(35) were derived with
the use of the point-like vortex assumption, whereby the core
radius appears in the equations only via the vortex core energy.

To take the finite size of the vortex core into account, we
represent the interaction energy in the form [43, 52]

~F�r� �
�
d2r 0 d2r 00 n

ÿjrÿ r 0j�Fÿjr 0 ÿ r 00j� n�r 00� ; �40�

where n�r� is the `charge' distribution of a single vortex,�
n�r� d2r � 1.
The Fourier transform of the potential ~F�r� has the form

~Fq � j 2
0

2pL

n 2
q

q�q� 1=L� ; �41�

where nq is the Fourier transform of the charge distribution
n�r� of a single vortex,

nq �
�
d2r exp �iqr� n�r� ; �42�

n�r� � 0 for r!1, and n�r� 6� 0 in the neighborhood r4x.
Using the cycle approximation, it is easy to show that the

free energy G for non-point-like vortices with interaction (40)
is expressed as

G

kBTO
� 2%

�
ln

%

2z
ÿ 1

�
� 1

8p 2

�
d2q

�
ln�1� � 2~uq� ÿ � 2~uq

�
; �43�

where

~uq �
n 2
q

q�q� 1=L� : �44�

To obtain the equations for %, we use the virial expansion
[73] or the extremum condition for the energy G,

qG
q%
� 0 : �45�

From Eqns (43) and (45), we have

ln
%

2z
� ÿ 1

8p 2

q
q%

�
d2q

�
ln �1� � 2~uq� ÿ � 2~uq

�
: �46�

We choose the following n�r� distribution:

n�r� �
�
q4B

d2q

4p 2
exp �ÿiqr� : �47�

From Eqn (47), we obtain

nq � 1 ; q4B ,
0 ; q > B .

�
�48�

We note that the behavior of the two-dimensional
Coulomb gas depends only weakly on the specific form of
the charge distribution [53, 54, 70, 71]. In much the same way,
it can be assumed that simple equations (47) and (48) are
sufficient to describe the vortex±antivortex pair dissociation
in a two-dimensional superconductor. To determine the
parameter B, we note that two vortices with opposite signs
placed at the same point must annihilate. The energy of two
opposite vortices that are perpendicular to the superconduc-
tor plane and are located at a distance r from each other can
be represented in the form

DFpair�r� � 2e� ~F�r� ; �49�

where the energy of a single vortex is [see Eqn (18)]

e � pr 20 x
2d

H 2
c

8p
� j 2

0

16pL

�
H0

�
x
L

�
ÿ Y0

�
x
L

��
: �50�

Using the condition DFpair�0� � 0, we obtain the equation
for B. It can be shown that B ' 1=x for x5L, i.e., in the limit
x! 0 we have n�r� ! d�r�.
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We use Eqns (46) and (48) to find

ln
%

2z
� bj 2

0

16p 2L

�
ln

� �B� 1�2
B 2 � B� z

z
�
� J�B; z�

�
; �51�

where

J�B; z�

�

2������������
4zÿ1p

�
arctan

2B� 1�������������
4zÿ 1
p ÿ arctan

1������������
4zÿ1p

�
; 4zÿ15 0 ;

1�������������
1ÿ 4z
p ln

�
2B�1ÿ �������������

1ÿ 4z
p

2B�1� �������������
1ÿ 4z
p

�
1� �������������

1ÿ 4z
p

1ÿ �������������
1ÿ 4z
p ; 4zÿ14 0 ;

8>>>>><>>>>>:
�52�

and z � � 2L 2. ForB!1, Eqn (51) reduces to the point-like
limit in Eqns (33) and (34).

Figure 4 shows the behavior of log10�R=RN� with
temperature. The values of log10�R=RN� were calculated
from Eqn (51) with r0 � 1:25. The dotted curve shows the
solution of Eqn (51) corresponding to the limit B!1. We
can see that the transition becomes broader, but the behavior
remains qualitatively the same. As discussed above, the
behavior of the solution changes qualitatively for r0 smaller
than the critical value r c0 � 1:22. Figure 5 shows the solution
of Eqn (51) for r0 � 0:9, corresponding to the non-point-like
limit in (40). The dotted line that runs to the left in Fig. 5
shows the nonphysical solution corresponding to the `point-
like' limit B!1.

The S-like structure of the log10 �R=RN� curve is char-
acteristic of a first-order transition. The transition tempera-
ture can be calculated from the plot in Fig. 6, which shows the
Gibbs free energy G�T �=�kBO� corresponding to the solid
curve in Fig. 5. The transition temperature is T1 � 3:6396 K,
T1 < TBKT (the vertical line in Fig. 5).

Thus, our treatment is based on the explicit equations
for the free vortex density and Gibbs free energy derived
within the cycle approximation in the case of long-range
intervortex potential (19). In the absence of an external
magnetic field for high core energies, the free vortex density
% is nonzero for arbitrary T 6� 0, but one can speak about
the BKT transition in the sense that % varies quite rapidly in
the vicinity of TBKT. For low core energies, the vortex±
antivortex pair dissociation occurs by means of a first-order
transition, the transition temperature depending on the core
energy.

The cycle approximation was developed for studying the
three-dimensional plasma properties [73, 109]. It was natural
to attempt to use this approximation in the two-dimensional
case. In two dimensions, there are two kinds of long-range
potentials that are commonly considered: the logarithmic
potential, which is a solution of the two-dimensional Poisson
equation and is referred to as the two-dimensional Coulomb
potential (two-dimensional Coulomb gas [43]), and the
ordinary three-dimensional Coulomb potential of the form
1=r used, for instance, to describe a two-dimensional
electron system.

It can be shown that the application of the cycle
approximation to these potentials gives rise to the respective
infrared and ultraviolet divergences of thermodynamic
functions. Formula (19) for the intervortex interaction
potential can be considered an interpolating relation
between the formulas describing these two potentials, with
the result that the theory outlined above is free of divergences
in the absence of a magnetic field.

The experimentally observed transition (see, e.g., Fig. 9
in Ref. [85]) is in good qualitative agreement with the data
given in Fig. 4, but is broader. This discrepancy, in our
view, is attributable to the fact that the proposed theory
neglects pinning, which is always present in experimental
samples. The influence of pinning results in additional
dissociation of vortex±antivortex pairs (see, e.g., Ref. [99]),
which in turn must entail an additional broadening of the
curves plotted in Fig. 4.
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3. Two-dimensional melting

3.1 Special features of crystal ordering in two dimensions
The nature of two-dimensional melting has been the
subject of intense discussion over the last 40 years [110±
114]. Considerable progress in explaining two-dimensional
melting was made after the advent of the theory by
Halperin and Nelson [37, 38] and Young [39] based on
the ideas of Berezinskii, Kosterlitz, and Thouless (the
BKTHNY theory). This theory predicts that melting in
the two-dimensional case can be fundamentally different
from the melting of ordinary three-dimensional systems
[32, 115]. In comparison to an isotropic liquid, two
symmetries are violated in a three-dimensional solid
crystal: translational and rotational. These symmetries are
not independent. Indeed, rotation of one part of an ideal
crystal relative to another breaks not only orientational
correlations but also translational ones. However, we can
imagine a state of a condensed medium with long-range
correlations between the directions of local crystallo-
graphic axes but without a long-range translational order
[116±121]. The notion of anisotropic liquids of this kind is
an important part of modern melting theories of two-
dimensional systems.

Due to well-developed fluctuations, the properties of two-
dimensional crystals are significantly different from the
properties of three-dimensional ones. Even in the mid-1930s,
Peierls and Landau [122±124] independently adduced argu-
ments that a periodic lattice cannot exist in the cases of one
and two dimensions. Peierls's arguments were based on the
harmonic approximation in the crystal theory. Landau used
his theory of phase transitions [14].

We briefly consider the properties of crystal ordering in
two dimensions [125, 126]. The two-dimensional analogue of
an ordinary three-dimensional crystal can be described by a
local density of the form r�x; y� �PR rA�rÿ R�, where
rA�r� is the density function of a single atom and fRg is a
two-dimensional lattice site. We let u�x; y� denote the
displacement vector of some small crystal domain, the
displacement being due to thermodynamic fluctuations at
T 6� 0. The probability of a fluctuation w characterized by a
vector u is w / exp �ÿdF=�kBT ��, where dF �

� �Fÿ �F� d2r is
the deviation of the total energy of the system from the mean
value �F, and F is the free energy per unit area of the two-
dimensional system. The mean value of a quantity hAi is
calculated as [125]

hAi �
P

u�r� A exp �ÿdF=�kBT ��P
u�r� exp �ÿdF=�kBT ��

;

with the summation performed over all possible vectors fug.
In the harmonic approximation, the free-energy func-

tional is of the form

dF
�
u�r�� � 1

2

�
li jlm

qui
qxj

qul
qum

d2r ;

where li jlm is the tensor of elastic moduli [127]. The vector u�r�
can be expanded in a Fourier series

u�r� �
X
k

uk exp �ikr� ;

where uÿk � u �k , k4 1=d, and d is the linear size of the domain
characterized by the vector u�r�. In this case, dF takes the
form

dF�u� � 1

2
V
X
k

li jlmkjkmui ku �l k �
1

2
V
X
k

bil�k� uiku �lk ;

where V is the volume of the system and the elements of the
real tensor bil�k� are quadratic functions of the components
of the k vector. By the quadraticity of the expression for dF,
the mean-square fluctuations of uk have the form

hui ku �l ki �
kBT

V
bÿ1il �k� ;

where bÿ1ik is the inverse tensor to bil. The tensor b
ÿ1
il �k� can be

written in the form �Ail�n̂�� k 2, where Ail depends only on the
direction of k : n̂ � k=k.

The mean-square displacement hjuj2i is found by sum-
ming over k. We replace the sum over k with integration to
obtain
juj2� � kBT

�
Aii�n̂�
k 2

d2k

�2p�2

� kBT

�2p�2
� 2p

0

Aii�j� dj
�1=d
0

dk

k
: �53�

The integral over k diverges logarithmically as k! 0, which
has the result that the fluctuation displacement tends to
infinity logarithmically in the thermodynamic limit of an
infinite system. Therefore, a two-dimensional harmonic
crystal is devoid of two-dimensional translational order: this
order is destroyed by thermodynamic fluctuations at a finite
temperature.

Nonetheless, it is noteworthy that the logarithmic diver-
gence is very slow (for instance, according to the estimates in
[128], a fluctuation displacement of the order of 10 intera-
tomic distances emerges in a system in which the number of
particles exceeds the number of atoms in the observable
Universe). Therefore, experimental systems can be treated as
two-dimensional crystals with a rather high degree of
accuracy.

Expression (53) defines the mean-square fluctuation
displacement at each point of a two-dimensional crystal. A
more rigorous explanation of the behavior of such systems
can be achieved by considering fluctuation correlations at
different points of the system [125].

At T � 0, a two-dimensional lattice exists irrespective of
its size, because the divergence arises primarily from thermal
fluctuations. Let r0�r� be the density function of the system at
T � 0. At sufficiently low temperatures, only long-wave-
length fluctuations exist in the system, i.e., u�r� changes little
over a distance of the order of the lattice constant a (which
corresponds to short-wave-vector fluctuations). In this case,
the density can be represented in the form r�r� � r0�rÿ u�r��
and the fluctuation correlation is defined by the expression


r�r1� r�r2�
� � 
r0�r1 ÿ u�r1�

�
r0
�
r2 ÿ u�r2�

��
: �54�

The function r0�r� can be expanded in the Fourier series in
reciprocal lattice vectors:

r0�r� � �r�
X
G 6�0

rG exp �iGr� :
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We substitute this expression in expression (54) and use the
average of the form


exp
�ÿ iG�u1 ÿ u2�

�� � exp

�
ÿ 1

2
GiGlwil

�
;

wil�r� �

�ui 1 ÿ ui 2��ul 1 ÿ ul 2�

�
� kBT

�
Ail�n̂�
k 2

2
�
1ÿ cos �kr�� dkx dky

�2p�2

� kBT

p
�Ail ln �kmaxr� ;

to obtain

gG
ÿjr1ÿr2j� � 
r�r1� r�r2��ÿ �r 2 / 1

r kBTaG
cos �Gr� ;

aG � GiGl
�Ail

2p
;

�55�

where G is taken as the principal period of the reciprocal
lattice with the smallest aG, and �Ail is the average over the in-
plane directions of k.

Although correlations decaying in accordance with a
power law formally rule out long-range order, a two-
dimensional harmonic crystal nevertheless has a high degree
of ordering. The structure factor of the two-dimensional
crystal has the form

S�q� � b
�
dr exp �ÿiqr� 
r�0� r�r��

� b
�
dr exp �ÿiqr� exp �iGr�

r ZG

� b

jGÿqj2ÿZG
�1
0

x 1ÿZG dx
�2p
0

df exp �ÿix cosf�: �56�

The remaining integral is model-independent and is a
constant, with the temperature dependence absorbed into in
the first factor. Therefore, the power-law singularity replaces
the d-like one typical of a three-dimensional crystal. In real
experiments, it is sometimes rather difficult to distinguish a
power-law correlation function decay from a true long-range
order. The ordering with a slow power-law decaying correla-
tion is commonly referred to as a quasi-long-range order. It is
a consequence of the dimensionality of the system.

But there is a true long-range order in two-dimensional
systems, the bond orientation order. In 1968, Mermin [36]
considered the behavior of crystal ordering in a two-
dimensional system of particles interacting via a pair
potential. Assuming rather general boundary conditions, he
showed that the Fourier components of the density with k 6� 0
vanish in the thermodynamic limit, i.e., the system has no
periodic long-range order. Mermin also showed that the
averaged direction of the vector connecting any two neigh-
boring atoms at a finite temperature is the same as the
direction of this vector at T � 0, i.e., the two-dimensional
lattice has a long-range orientational order even though there
is no periodic long-range order.

To illustrate the behavior of orientational ordering, we
consider a harmonic crystal. In the continuous approxima-
tion, the angle between the local crystallographic axis and
some axis of the ideal lattice has the form

#�x; y� � 1

2
�qxuy ÿ qyux� : �57�

Using the Fourier expansion of #�x; y�,

#�x; y� � 1

2

X
k

�ikxuy;k ÿ ikyux; k� exp �ikr� ; �58�

for the mean h# 2i we obtain the expression

h# 2i � kBT

�4p�2
X
i j

�2p
0

fi�j� fj�j�Ai j�n̂� dj
�1=d
0

kdk ;

where fx�j� � cosj and fy�j� � sinj. Therefore, the mean
square of the fluctuations of the angle #�x; y� remains finite
even for an infinite sample, i.e., the orientation of the bond
direction `propagates' throughout the crystal.

The correlation function of bond directions has the form



#�r1�#�r2�

� � kBT

�4p�2
X
i j

�2p
0

fi�j� fj�j�

� Ai j�n̂� dj
�1=d
0

cos
�
k�r1 ÿ r2�

�
kdk :

This expression is finite even for r!1, and hence the
orientational order is a long-range one.

Prior to considering modern theories of two-dimensional
melting, we emphasize that owing to the high ordering of a
two-dimensional lattice, topological defects like dislocations
and disclinations turn out to be well defined despite the
absence of the long-range periodic translational order. This
is significant because it is precisely dislocations and disclina-
tions that play the main role in modern theories of two-
dimensional melting.

3.2 Berezinskii±Kosterlitz±Thouless±Halperin±Nelson±
Young theory
As discussed in Section 3.1, the BKTHNY theory, based on
considering the behavior of topological defectsÐdisloca-
tions and disclinationsÐpredicts that melting can occur by
means of two continuous transitions. At the same time, there
are several theories predicting that the melting can occur by a
first-order transition. This contradiction has spawned a large
number of experimental studies and computer simulations,
but this issue has not been completely clarified.

In the BKTHNY theory, two-dimensional melting was
treated in the framework of the BKT theory, but with some
complications imposed by the specific symmetry of the crystal
lattice. As mentioned in Section 2, the crystal lattice is
characterized by two kinds of broken symmetry: transla-
tional and rotational, which correspond to two different
order parameters and, accordingly, two types of topological
defects: dislocations (Fig. 7) and disclinations (Fig. 8). Below,
we outline the main results of the BKTHNY theory.

The BKTHNY theory is based on considering the elastic
Hamiltonian for a two-dimensional triangular lattice [127]

HE � 1

2

�
d2r �2mu 2

i j � lu 2
kk� ; �59�

where

ui j � 1

2

�
qui�r�
qrj
� quj�r�

qri

�
�60�

and m and l are Lam�e coefficients.
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The quasi-long-range periodic translational order is
destroyed due to the production of free dislocations (which
play the role of vortices in the XYmodel). The appearance of
free dislocations has the result that the shear modulus m
vanishes. The main difference of the dislocation melting
theory from the vortex±antivortex pair dissociation in the
XY model, which was discussed in Section 2, is that a
dislocation is described by the Burgers vector b rather than a
scalar charge [see formula (6)]. The dislocation at a point r is
defined by the increment acquired by the contour integral of
the displacement field taken over a closed contour around the
dislocation [127] (see Fig. 7):�

du � a0b�r� � ÿn�r� a0e1 ÿm�r� a0e2 ; �61�

where b�r� is the dimensionless Burgers vector, a0 is the
spacing of the triangular lattice under consideration, e1 and
e2 are the basis vectors of the lattice, andm and n are integers.

A disclination in a triangular lattice has the property that
the integral of rotation angle (57) taken along a closed
contour enclosing the disclination acquires an increment
that is a multiple of 2p=6 (see Fig. 8):�

d#�r� � ÿ 2p
6

s ; s � �1;�2; . . . : �62�

(The contours in integrals (61) and (62) run in the counter-
clockwise direction.) As is evident from Fig. 7, a dislocation
can be considered as a coupled pair of disclinations.

The energy of a single dislocation diverges logarithmically
with the size of the system. The Hamiltonian of the system of
dislocations is [37, 39]

Hdis�ÿ a 2
0K

8p

XM
i 6�j

�
b�ri� b�rj� ln ri j

a
ÿ �b�ri� ri j��b�rj� ri j�

r 2i j

�

� Ec

XM
i�1

b 2�ri� ; �63�

where Ec is the dislocation core energy and K is the Young
modulus,

K � 4m �m� l�
2m� l

: �64�

The dissociation of dislocation pairs, which results in melting
at a temperature Tm and is an analogue of the vortex±
antivortex dissociation in the standard BKT transition,
occurs if [3, 37, 39]

kBTm � Ka 2
0

16p
: �65�

Halperin and Nelson [37, 38] and Young [39] derived
equations that include the renormalization of the moduli m
and l due to coupled dislocation pairs. These equations,
which are analogues of Eqns (9), have the form

dmÿ1�l �
dl

� 3py 2�l � exp
�
K�l �
8p

�
I0

�
K�l �
8p

�
�O�y 3� ;

d
�
m�l � � l�l ��ÿ1

dl
� 3py 2�l � exp

�
K�l �
8p

�
�
�
I0

�
K�l �
8p

�
ÿ I1

�
K�l �
8p

��
�O�y 3� ;

where I0�x� and I1�x� are modified Bessel functions. The
quantities K�l � and y�l � are determined from the equations

dKÿ1�l �
dl

� 3

2
py 2�l � exp

�
K�l �
8p

�
I0

�
K�l �
8p

�
ÿ 3

4
py 2�l � exp

�
K�l �
8p

�
I1

�
K�l �
8p

�
�O�y 3� ;

dy�l �
dl
�
�
2ÿ K�l �

8p

�
y�l � �O�y 3� : �66�

Here, the fugacity y is of the form y � exp �ÿEc=�kBT ��.
Using the renormalization group analysis of the system
described by Hamiltonian (63), several predictions for the
parameters characterizing two-dimensional melting were
made in Refs [37±39].

Figure 7.Dislocation as a disclination dipole.

a b

Figure 8. (a) Positive, s � �1, and (b) negative, s � ÿ1, disclinations.
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In the density±density correlation function gG�r� / rÿZG ,
Eqn (55), the exponent Tm takes the values 1=44ZG�Tm�4
1=3 at the melting point. As T tends to Tm from below
(T! T ÿm ) [38],

a 2
0K

kBT
' 16p

1ÿ cjtjn ; �67�

where t � �Tÿ Tm�=Tm, n � 0:3696, and a0 is the distance to
the nearest neighbor. Below the transition point, the correla-
tion function and the structure factor are [38]

gG�r� / rÿZG�T � ;

ZG�T � � kBT jGj2 3mR � lR
4pmR�2mR � lR� ; �68�

S�q� / jqÿGjÿ2�ZG�T � ;

where mR and lR are the renormalized Lam�e coefficients.
Above the transition point, a finite dislocation density

results in an exponential decay of the correlation function:
gG�r� / exp �ÿr=x��T ��, where x��T � / exp �c=jtjn�. The
heat capacity peaks at temperatures above Tm, with the
shape of the peak depending on the type of model.

The properties of melting in the BKTHNY model are
similar to those of the usual BKT transition. However,
Halperin and Nelson [37, 38] noted that a liquid turns out to
be nonisotropic above the point of dislocation pair dissocia-
tion. They found in [37, 38] that the dislocation pair
dissociation does not completely destroy the long-range
orientational order and merely transforms it into a quasi-
long-range one. This can be qualitatively explained by simple
estimates [129]: in the presence of a free dislocation, the
displacement field is of the form u / lnL, where L is the
system size, and hence the appearance of dislocation should
destroy the long-range translational order. At the same time,
the angle of rotation associated with the relevant displace-
ment field, Eqn (57), is o / 1=L, and hence the orientational
order should not be completely destroyed.

As the phenomenological orientational order parameter
for a triangular lattice, Nelson and Halperin [38] suggested
considering the quantity

c�r� � exp
ÿ
6i#�r�� ; �69�

where #�r� is the orientation of the bond between the two
nearest neighbors relative to some fixed axis. At a tempera-
ture above Tm, the quasi-long-range order is characterized by
a power-law correlation decay:


c ��r�c�0�� / rÿZ6�T � : �70�

A similar power-law correlation decay should be obser-
vable in two-dimensional nematic liquid crystals [130], but the
order parameter then has the form exp �2i#�r��, which is
reflective of the two-fold symmetry of the liquid crystal. In
the case of triangular lattice melting, the order parameter has
a six-fold symmetry, and therefore the anisotropic phase was
termed hexatic.

Disclinations in a solid are strongly bound in dislocations
because the interdisclination interaction potential is propor-
tional to the distance squared. But in the hexatic phase, this
interaction is screened by free dislocations, resulting in the
logarithmic form of the interaction potential [38].

To describe long-wavelength fluctuations in an anisotrop-
ic liquid, Nelson and Halperin [38] proposed the phenomen-
ological Hamiltonian

HA � 1

2
KA�T �

�
d2r
ÿ
H#�r��2 ; �71�

where the Frank constant KA�T � is related to Z6 as

Z6�T � �
18kBT

pKA�T � : �72�

With the use of expression (71), it is shown in [38] that the
disclination interaction Hamiltonian in the hexatic phase
takes the form [cf. expression (6)]

Hdisc � ÿ pKA�T �
36

X
i<j

s�ri� s�rj� ln jri ÿ rjj
a
� Ecd

X
i

s 2�ri� ;

�73�
where Ecd is the disclination core energy, s�r� � ÿ1 for an
atomwith seven nearest neighbors, and s�r� � �1 for an atom
with five nearest neighbors (see Fig. 8).

Disclination Hamiltonian (73) can be brought to the form
of expression (6), and therefore all results of the BKT theory
for the XY model can be used for describing the hexatic-
phase±isotropic-liquid transition that is associated with the
dissociation of disclination pairs.

Nelson and Halperin [38] hypothesized that the dissocia-
tion of disclination pairs occurs forTi > Tm. The equation for
Ti is

Ti � pKA�Ti�
72kBTi

: �74�

At a temperature T > Ti, the Frank constant vanishes in a
jumpwise manner. As T! Tm from above, KA�T � / x 2

��T �.
The exponent Z6�Ti� � 1=4. The orientational correlation
length behaves as x6 / exp �b=jTÿ Tij1=2� as T! Ti from
above.

We note that Hamiltonian (71) coincides in form with
Hamiltonian (1) of the XY model, which evidently results in
the coincidence of renormalization group equations and the
critical behavior in the vicinity of the phase transition.

Thus, the BKTHNY theory predicts that the melting of
two-dimensional lattices can occur by means of two contin-
uous transitions. During the first one, dissociation of
dislocation pairs occurs with the formation of an intermedi-
ate hexatic phase, which next transforms into an isotropic
liquid by means of a second continuous transition, during
which the dissociation of disclination pairs occurs.

As mentioned above, the BKTHNY theory involves
several significant assumptions. First of all, there is the
assumption of a high dislocation core energy, which corre-
sponds to the low activity y / exp �ÿEc=�kBT ��, in which the
expansion is performed. We can expect that the kind of
transition would vary with the core energy Ec. This varia-
tion, which is observed in the ordinary BKT theory, was
discussed in Section 3.1 [43, 62, 63, 66, 69, 131±133].

Unfortunately, approaches that allow consistent calcula-
tions ofEc are so far nonexistent.We also recall that presently
there is no theory of the hexatic phase that would include a
microscopic expression for the Frank modulus KA�T � (see,
however, Refs [134, 135]). Furthermore, a canonical version
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of the theory [38, 39] was developed in the simplest case (and,
in fact, the only case observable experimentally at that time)
of a close-packed triangular lattice. The situation has now
changed, which we discuss in Sections 3.6 and 3.7 below. For
example, we note different lattice versions discovered in
computer [136±146] and real experiments, to which the
BKTHNY theory should apply. In particular, discovered in
recent experimental papers was a square phase in a thin water
film confined between graphene sheets [147], as well as in iron
in graphene pores [148]. There are indications of the existence
of nontrivial two-dimensional structures in a vortex ensemble
in a system of several thin superconducting films [149], in a
system with the Hertz potential, which describes two-
dimensional neutral colloidal ensembles [150], and in deoxyr-
ibonucleic acid (DNA) complexes [151].

Renormalization group equations for other types of
crystal lattices are presently nonexistent, which significantly
complicates the description of their melting.

3.3 Melting as a first-order phase transition
At the same time, there are theories that predict that a two-
dimensional system melts by means of a single first-order
transition with the hexatic phase absent. Chui [152, 153]
developed a theory in which the possibility of melting via
grain boundary formation was considered. The grain
boundaries are dislocation strings, which lead to rotations
of one part of the crystal relative to another. Multiple grain
boundary production results in crystal melting by means
of a first-order transition, which precedes the dissociation
of dislocation pairs. The competition between random
dislocations and grain boundary production depends on
the dislocation density. Chui found a weak first-order
transition for a low dislocation density (a high dislocation
core energy Ec=�kBT � > 2:84) and a first-order transition
for low Ec.

In this connection, we mention the results of disclination
system simulations [132]. They suggest that the transition
order can change from the BKTHNY type to the first-order
transition for the dislocation core energy Ec=�kBT �4 2:84.
This corresponds to Chui's results as regards the part that
states the existence of the crossover core energy. However, for
a high dislocation core energy, the melting, at variance with
Chui's results [152, 153], is a two-stage process.

Kleinert and Janke [154±156] considered the possibility of
simultaneous production of free dislocations and disclina-
tions in the system and showed analytically in the framework
of the mean-field theory and with Monte Carlo simulations
thatmelting is a first-order transition in this case. Their model
relied on the possibility of representing dislocations as
disclination dipoles. This model was proposed by Nelson
[157] and came to be known as the Laplacian roughening
model (LRM). The LRM was the subject of intensive Monte
Carlo studies, and contradictory results were obtained. Janke
and Kleinert [158] drew a conclusion that the system should
melt by means of a single first-order transition, while
Strandburg et al. [132, 159] showed that there are two
continuous transitions in the system.

More recently, Kleinert came up with a lattice model that
explicitly took the rotational stiffness of the lattice into
account. The model was investigated analytically and with
the use of the Monte Carlo technique [113, 160±163]. It was
shown that there is a critical value ac of the rotational
stiffness: when the rotational stiffness is higher than the
critical one, the melting proceeds by means of two contin-

uous transitions, while for a < ac the system melts via a first-
order transition.

A continuous version of the model, which takes the
existence of orientational order into account (and is formally
equivalent to the model proposed by Kleinert), was consid-
ered inRefs [129, 164]. In this case, the result is identical to the
previous one for l > lc, but for l < lc the situation turns out to
be more complicated: melting can occur both by a first-order
transition and by two continuous transitions, depending on
the core energy. In this model, the free energy of a deformed
isotropic solid can be represented as

F � 1

2

�
d2r �2mu2i j � lu2kk� � 2a

�
d2r ei jelmqiujkqlumk : �75�

Here, summation over repeated indices is understood, ei j is an
antisymmetric tensor (eii � 0, e21 � ÿ1, e12 � 1), qi � q=qri, m
and l are Lam�e coefficients [127], the parameter a char-
acterizes the orientational stiffness of the lattice, and
ui j � 1=2�qiuj�r� � qjui�r�� is the deformation tensor. Using
(75), we can present the energy of dislocations and disclina-
tions in the form

Fs � p
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�
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�
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XM
i�1

b 2�ri� ; �76�

where Ec and Ed are the disclination and dislocation core
energies, ri j � ri ÿ rj, and

K � 4m�m� l�
2m� l

: �77�

The first two terms in the right-hand side of (76) describe the
energy of interacting disclinations, the third term describes
the dislocation±disclination interaction, and the last two
terms correspond to the dislocation interaction energy. It
can be shown that the energy of a given configuration of
disclination and dislocation charges is finite only ifX

j

sj � 0;
X
j

rjsj � 0;
X
j

b�rj� � 0 : �78�

We note that the last term in the right-hand side of (75) does
not contribute to the long-range interaction between disloca-
tions (although it does contribute to Ed). It is easily seen that
the interaction between dislocations coincides with the
dipole±dipole disclination interaction (in this case, the
Burgers vector b is orthogonal to the vector of the disclina-
tion dipole moment d: d1 � b2, d2 � ÿb1, d 2 � b 2 ). As
mentioned above, a dislocation can be treated as a disclina-
tion dipole, and we therefore use the dipole moment d instead
of the Burgers vector b in what follows. Conditions (78) show
that a two-dimensional lattice is devoid of free disclinations
and disclination dipoles (dislocations).
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In the low-temperature phase, dislocations can exist only
in the form of pairs with a zero Burgers vector and
disclinations in the form of strongly coupled quadrupole
complexes. With increasing temperature, free dislocations
or, directly, free disclinations can appear in the system in
accordance with themelting scenarios described above. In the
first case, free dislocation charges screen the opposite-sign
charges, resulting in a short-range (exponentially decaying)
interaction between dislocations. The interaction between
disclinations is then modified and, while remaining long-
range, increases merely as ln r. The system transforms into
an ordinary liquid after the appearance of free dislocations. In
the second case, the system transforms into a liquid by means
of a single transition. In this case, due to screening, the
interaction between disclinations becomes short-range.

In Ref. [129], Hamiltonian (76) was considered in the
framework of an approximation similar to theDebye±H�uckel
approximation in the theory of a two-dimensional Coulomb
gas [43]. The two-dimensional melting scenario was shown to
depend heavily on the orientational elasticity a, the core
energy Ec, and the relative disclination core size t � r0=a0.
It turns out that for a > ac � Ka 2

0 �9=�4p2� � t 2=16�, a two-
dimensional lattice, in accordance with the results in Refs
[113, 160±163], melts via two continuous transitions occur-
ring as a result of the successive dissociation of dislocation
and disclination pairs. The transition parameters then
coincide with those in the BKTHNY theory. It was shown,
in particular, that the dislocation density on the hexatic-
phase±ordinary-liquid transition line has the form

a 2
0 n0�T � �

p
108

: �79�

This value can be compared with the result obtained by
computer simulations more recently [165]: n0 � 1=�22a 2

0 �.
We also emphasize that the free-dislocation critical density
in (79) is in qualitative agreement with the results obtained in
considering vortex lattice melting in high-temperature super-
conductors [166].

Comparing formulas (74) and (79), we find the expres-
sions for the Frank modulus and the exponent Z6:

KA�T � � 2kBT

3a 2
0 n0�T �

; �80�

Z6�T � �
27a 2

0 n0�T �
p

: �81�

As can be seen from relations (80) and (81), as the melting line
is approached, n0�T � ! 0, we have KA�T � ! 1 and
Z6�T � ! 0, which corresponds to the existence of a long-
range orientational order in a two-dimensional crystal.
Condition (79) for the hexatic-phase±ordinary-liquid transi-
tion, as well as the expression for the exponent Z6, is
independent of the interaction details of a concrete system
(but depends on the lattice symmetry). The appearance of a
free dislocation generates a displacement field u / lnR, which
destroys the quasi-long-range translational order. However,
in this case the emergent rotation angleo / 1=R and therefore
the quasi-long-range orientational order persists until the free
dislocation density reaches its critical value (79). We also note
that relation (79) allows obtaining an expression for the
number of sites of the initial hexagonal lattice per disloca-
tion: n0�T �ÿ1=D�216=�p ���

3
p � � 40; hence, in the vicinity of

the melting line, there is one dislocation for every 40 lattice
sites, making the dislocations well-defined defects.

However, crystals can melt by means of not only the two
transitions described above but also one transition, whereby
disclination complexes dissociate in the system to give rise to
free disclinations. Due to screening, the interdisclination
interaction becomes short-range. In the presence of disclina-
tions, the displacement field at a long range is of the form
u / R lnR, and hence the phase into which the crystal
transforms is completely disordered. Therefore, disclination
melting occurs as a first-order transition.

As shown in Ref. [129], the disclination transition
temperature increases with the disclination core energy Ec

and for some E �c exceeds the dislocation transition tempera-
ture (65). Therefore, forEc < E �c , themelting occurs as a first-
order transition and for Ec > E �c as two continuous transi-
tions. In Ref. [129], the energy E �c was estimated as a function
of a and t. The importance of the defect core energy for
determining the transition has been noted in numerous papers
on two-dimensional melting simulation (see, e.g., Refs [112,
131, 132]). Unfortunately, no unambiguous value of the
defect core energy has been found for a realistic model of
interacting particles. Commonly used for the simulations are
different lattice representations of elastic Hamiltonian (59)
(or Hamiltonian (75) with a � 0). Putting t � 3 (a realistic
value for the defect core size [167]), for a � 0 we find
E � 2:24, where E � 16pE �c =�Ka 2

0 �. With the dislocation
core energy � 2E, we arrive at a reasonable agreement with
the estimates obtained by simulations [112, 131, 132].

It turns out that there are a � values at which E �c vanishes.
For a < a �, it is likely that melting occurs via two continuous
transitions (we note that a � depends on t). Also, there are
values of t � for whichE �c � 0, and for t > t � one would expect
a two-stage melting. Unfortunately, we are unaware of either
real or computer experiments that investigated the depen-
dence of melting on the defect core size.

It is evident that the model considered is a significant
simplification in comparison with real systems. Nevertheless,
in our opinion, it permits describing a variety of transitions
observed in two-dimensional melting. Considering the melt-
ing of concrete systems requires relating the parameters that
enter Hamiltonian (75), as well as the defect core energies and
the defect size t, to microscopic parameters of the system.
Unfortunately, so far this has been possible to achieve only
for the Lam�e coefficients in elastic Hamiltonian (59). We also
note the work by Lozovik and Farztdinov [168, 169], who
predicted a first-order phase transition based on their analysis
of the anharmonic phonon instability of a two-dimensional
lattice.

3.4 Relation with the Landau theory of phase transitions
We consider the simple qualitative picture of two-dimen-
sional melting in the framework of Landau's theory of phase
transitions [170±175]. For this, we define the corresponding
order parameter.

In an ideal crystal, the single-particle distribution function
has the symmetry of the crystal lattice. At the zero tempera-
ture, T�0, the local density of the system, which is propor-
tional to the single-particle distribution function, has the
symmetry of the two-dimensional crystal lattice and can be
expanded in the Fourier series in reciprocal lattice vectors G.
In this case, the Fourier coefficients are the order parameters
for the liquid±crystal transition. For T 6� 0, the long-range
translational order is smeared by thermal fluctuations.
However, for sufficiently low temperatures, the expansion in
the Fourier series persists, but the Fourier coefficients acquire
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a dependence on r:

r�r� �
X
G

rG�r� exp �iGr� : �82�

The order parameters rG�r� change only slightly over a
distance � Gÿ1 and have an amplitude and a phase:

rG�r� � rG exp
ÿ
iGu�r�� : �83�

Here, u�r� has the meaning of the displacement field in the
crystal. In two dimensions, the phase of the order parameter
fluctuates most strongly [14], and hence fluctuations of the
modulus are not considered below. The displacement field
can be decomposed into two components, one of which varies
smoothly and corresponds to the phonon field, and the other
is singular and corresponds to dislocations and disclinations.

The Landau expansion of the free energy, which takes
long-wavelength order parameter fluctuations into account,
can be written in the form

F � 1

2

�
d2r

X
G

�
AjG� HrGj2 � BjGHrGj2

� CjrG�GH� rGj
�� 1

2
aT
X
G

jrGj2

� bT
X

G1�G2�G3�0
rG1

rG2
rG3
�O�r 4� : �84�

Substituting formula (83) in expression (84), we easily see that
the first term in (84) is the free energy (59) of a deformed solid.
In this case, the Lam�e coefficients m and l are functions of the
parameters A, B, and C and are proportional to the squared
absolute value of order parameter (82).

Using expansion (84), the melting can be described as
follows. For T � 0, there are long-range translational and
orientational orders. For T > 0, the long-range translational
order is destroyed by smooth phase fluctuations and trans-
forms into a quasi-long-range order characterized by slow
power-law decay of the order-parameter correlation function.
The long-range orientational order persists, with the shear
modulus m 6� 0. With increasing the temperature, free dis-
locations that correspond to singular phase fluctuations
(vortices) of the order parameter appear in the system. This
has the result that the system ceases to resist shear (m � 0), i.e.,
it becomes liquid. The temperature Tm at which free
dislocations appear in the system is defined by the para-
meters of the first term in expansion (84) and is the melting
temperature.

We emphasize that the order parameter modulus rG is
determined from the minimum condition for expansion (84)
(without taking the first term into account) and does not
vanish at the temperature Tm and that the quasi-long-range
order in the system is destroyed by singular phase fluctuations
of the order parameter. The order parameter modulus
vanishes at some temperature TMF, which can be determined
from the equality between the free energies of liquid and solid
phases as functionals of the order parameter (or the local
density). In terms of expansion (84), the equation aT � 0
corresponds to the absolute instability line of the liquid phase.
The temperature TMF corresponds to the transition in the
mean field approximation. Two cases are possible:
1) Tm < TMF, the system melts via two BKT-type transitions
with the dissociation of dislocation pairs; 2)TMF < Tm, the

systemmelts via a first-order transition due to the presence of
third-order terms in expansion (84).

The ideas based on the use of expansion (84) led to the
development of a microscopic theory of two-dimensional
meltingÐ the density functional method in crystallization
theory [134, 135, 170, 171, 173±179]. This method has been
used to study the melting of a system of hard disks [170, 171],
a Coulomb system [170, 171], a vortex lattice in a thin
superconducting film [171], and systems with the potential
of hard disks to which an attractive well [173, 174] and a
repulsive step [175, 176] were added. Reasonable agreement
(good for the system of hard disks) with the results of
computer simulations was obtained in this case. It was
shown that systems with a short-range potential should melt
via a first-order transition, while for long-range potentials the
quasi-long-range order vanishes due to a BKT-type contin-
uous transition. At the same time, this theory does not permit
determining the nature of the liquid phase.

3.5 Effect of disorder on the two-dimensional melting
scenario
In real experiments in the investigation of two-dimensional
melting, experimental systems typically contain frozen-in
random fields of various natures: frozen-in impurities with
short-range and long-range potentials, random substrate
relief, and a random pinning force that owes its origin to
substrate nonuniformity.

From the intuitive standpoint, it is clear that the
introduction of disorder acting on the particles should exert
different effects on the translational and orientational orders.
It is evident that even a small disorder must significantly
disrupt the particle arrangement on lattice sites. At the same
time, the orientation of vectors pointing to nearest neighbors
should not change greatly due to the existence of point
defects. Therefore, the translational order is rather easily
destroyed by disorder, while its effect on the orientational
order should be insignificant. As a result, the crystal±hexatic-
phase transition temperature should decrease, while the
hexatic-phase±isotropic-liquid transition temperature
should hardly change. This simple physical picture was
corroborated by Nelson in [180, 181], where the Hamiltonian

Hdis � 1

2

�
d2r
�
2mu 2

i j � lu 2
kk ÿ 2odc�r� ukk

� �85�

was considered. Here, dc�r� describes the Gauss-distributed
fluctuations of the impurity density and o is a parameter
related to elastic moduli. In this case, the exponent ZG�T � has
the form

ZG�T � �
�
kBT

3m� l
4pm�2m� l� �

so 2

4p�2m� l�2
�
jGj2 ; �86�

where s is the root-mean-square deviation for the Gaussian
distribution, which describes the probability of realizing a
specific disorder configuration.We can see fromEqn (86) that
even atT � 0, the presence of impurities has the effect that the
quasi-long-range translational order exhibits a power-law
decay.

Hamiltonian (85) was studied by the renormalization
group method. It turned out that the system should exhibit
reentrant melting in the framework of the BKTHNY theory:
thermally excited dislocation pairs break under the action of
the random impurity potential at low temperatures and the
solid becomes unstable atT � 0 [180±182]. At a high impurity
density, the solid phase becomes completely unstable. In this
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case, the hexatic phase turns out to be highly immune to
random fields.

But from the physical standpoint, this behavior seems to
be very strange. The contradiction was resolved in Ref. [183]
on the basis of the continuum model (85) and molecular
dynamics simulations. It was shown that reentrant melting is
absent at low temperatures. This is explained by the fact that
the renormalization group method used by Nelson is valid
only at low fugacities, while the system can contain config-
urations that do not satisfy these conditions. However, at
high temperatures, the phase diagram corresponds to the
diagrams obtained in Refs [180, 182]. Figure 9 shows the
qualitative phase diagram of a two-dimensional disordered
system obtained by analytic techniques as well as by
molecular dynamics simulations of a colloid system with a
long-range dipole±dipole interaction [184].

These results were confirmed in experimental studies of
the behavior of paramagnetic colloidal particles with the
dipole±dipole interaction [185, 186]. Disorder arises in the
system due to the pinning of some particles to the substrate at
random positions.

We also note that pinning to the positions corresponding
to crystal lattice sites and thereby the elimination of a random
set of particles from the dynamics, by contrast, stabilizes the
crystal and practically leads to the disappearance of the
hexatic phase [187].

As shown in Ref. [182], the behavior of a two-dimensional
electron crystalÐa Wigner crystalÐdepends on the kind of
impurity. In an anisotropic random field corresponding to
substrate inhomogeneity, there is a short-range crystal order
only, and the genuinely critical behavior is impossible.

3.6 Experiment and computer simulations
As is easily seen, the interaction potential does not appear in
the equations of the BKTHNY theory in explicit form. The
only limitations that are inherent in the basic equations are a
triangular lattice and a high core energy of topological defects
[see, e.g., expression (66)]. In this sense, as noted in the
Introduction, the theory appears to be universal, and at the
moment of its emergence one might even pose the question of
whether all two-dimensional systems should melt in accor-
dance with this scenario.

The theory of dislocation melting of two-dimensional
lattices gave impetus to a wealth of experimental investiga-
tions and to computer simulations aimed at verifying its
predictions. These experiments are performed on a wide
range of objects, including two-dimensional colloids, elec-
trons on the surface of liquid helium, rare-gas atoms on
substrates (in particular, xenon on graphite), two-dimen-
sional granular systems, cylindrical magnetic domains in a
thin film, vortex systems in high-temperature superconduc-
tors (HTSCs) and thin superconducting films in a magnetic
field, dust plasmas, and thin liquid (water) films. The number
of these papers is so high that it is impossible to dwell on each
of them (see reviews [4, 41, 110±114, 188]), and we only list the
main results below.

It is noteworthy that computer simulation studies of the
behavior of different systems are performed in order to
interpret the results of real experiments and simultaneously
to consider model systems with different interaction poten-
tials, in order to elucidate the effect of the form of the
potential on the character of melting, which we discuss in
detail in what follows.

One of the best-known two-dimensional experimental
systems in which two-dimensional melting was observed is a
system of electrons above a liquid helium surface. Research
was undertaken in this area immediately after the advent of
the BKTHNY theory. The electrons are held above a
superfluid helium-4 surface by the vertical electric field
produced by a capacitor with the positive plate under the
liquid helium surface and the forces of repulsion between the
electrons and the helium surface. The electron density is
rather low, re � 108ÿ109 cmÿ2, and therefore the system is
classical. For the Coulomb potential, all properties of the
system are functions of a single parameter: G �
e 2�pre�1=2=�kBT �. For low values of G, the electrons form a
liquid; with increasing G, they form an electron Wigner
crystal. The observations involved studies of the behavior of
coupled longitudinal oscillations of the Wigner crystal and
capillary waves on the liquid helium surface (ripplons) [111,
189±195]. The Wigner crystal melts at GM�137�15, and the
experimental data confirm the BKTHNY theory in this case.
Unfortunately, these experiments do not provide information
about the orientational order of the bonds, i.e., do not permit
verifying the predictions about the existence of the hexatic
phase.

The results of computer simulations of a two-dimensional
system with a Coulomb potential performed by the molecular
dynamics [196, 197] and Monte Carlo methods also confirm
the BKTHNY theory and agree nicely with experimental
data.

Another experimental system used widely for studying the
melting of two-dimensional systems is rare gases adsorbed on
various substrates, mostly on graphite. The rare-gas mono-
layer structure is incommensurable with the substrate lattice,
because carbon atoms are much smaller than rare-gas atoms,
and hence the orientational effect of the substrate can be
ignored in some cases [111, 112]. X-ray scattering experiments
suggest that the system melts via a continuous transition, at a
density of more than one monolayer in the case of argon [199,
200] and krypton [201] on graphite and at a density of more
than 0.9 monolayer for xenon [202±204].

X-ray scattering experiments show the existence of a
continuous transition to the hexatic phase in the xenon
monolayer [205, 206] on graphite with hexagonal substrate
symmetry as well as on a weakly interacting silver surface [207].
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Figure 9. Phase diagram of a two-dimensional system in the presence of

disorder (see Ref. [184]). K � � Ka 2
0 =�kBT � [see Eqn (65)].

874 V N Ryzhov, E E Tareyeva, Yu D Fomin, E N Tsiok Physics ±Uspekhi 60 (9)



In the last-mentioned experiment [207], the low-temperature
phase was interpreted as hexatic glass produced due to the
pinning by grain boundaries and substrate steps.

However, some of these experiments came into conflict
with computer simulations and with more recent measure-
ments of heat capacity. To interpret the experiments on
studying the behavior of xenon with a density of
1.1 monolayer, computer simulations were performed using
the molecular dynamics method [208±210]. It was shown that
the observed transition [208±210] was a first-order transition
and that the apparently continuous behavior was the result of
atomic exchange between the first and second layers.
Furthermore, several parameters of the BKTHNY theory
obtained in these experiments did not coincide with theore-
tical predictions [203, 211]. A heat capacity peak typical of a
first-order transition was discovered for xenon densities
above and below 1 monolayer [212].

Continuous melting of argon on graphite at a density
below 1 monolayer was ascertained using X-ray scattering
[199] and heat capacity measurements [200]. However, more
precise measurements with the use of a higher-homogeneity
substrate showed the behavior of heat capacity typical of a
first-order transition [213]. Therefore, the experimental data
on the behavior of the system of adsorbed rare-gas atoms are
apparently an indication that the interpretation in terms of
the BKTHNY theory is impossible and suggest a weak first-
order transition [212, 213].

Results important for the explanation of two-dimensional
melting were obtained in the study of a model system
consisting of polysterene spheres in a liquid between two
glass plates. The plates were arranged at a small angle to each
other, which permits the density of the system to be
continuously changed in space [214, 215]. The behavior of
the system could be observed in real time and real space,
which offered significant advantages over computer experi-
ments.

The system of equigranular charged polysterene spheres
in water, interacting via a screened Coulomb potential, was
studied in [214±218] Videomicroscopy was used to study the
behavior of the system depending on its density, which
increased upon increasing the plate separation. Discovered
in these papers was a two-stagemelting, which agreedwith the
BKTHNY theory.

Two systems of polysterene spheres on the surface of
water were considered in [219]. The system with 2.88 mm
spheres exhibited features of melting in accordance with the
BKTHNY scenario, including the existence of the hexatic
phase. At the same time, in the system of 1.01 mm spheres, the
hexatic phase was absent and the structure of defects in the
melting was different from the simple pattern of two-stage
melting. The free expansion of the system of water-dispersed
1.01 mm spheres confined between two glass plates was
considered in [220, 221]. Although a two-stage melting was
observed, the structure of defects was more consistent with a
first-order transition, because dislocations clearly formed the
grain boundaries. So far, it is unclear whether the differences
observed in the melting resulted from problems with equili-
brium relaxation in different systems or the reason lies with
the difference between the interaction potentials.

In [222], the behavior of 1.9 mm polysterene spheres was
studied in a ferromagnetic liquid confined between two glass
plates in a magnetic field that was perpendicular to the plates.
The thus produced `voids' in the ferro-medium interacted via
the magnetic dipole±dipole potential. On lowering the field,

the systemmelted via a first-order transitionwith the constant
valueG � V�rs�=�kBTm� � 62� 3, whereV�r� is the potential
and rs is the Wigner±Zeits radius. These results are consistent
with the data of molecular dynamics simulations [223]. In the
experiment in Ref. [222], as well as in the experiment in
Ref. [227], the disorder in the system was due to the
boundaries of grains inherent in the initial crystal.

The melting in systems of 1.6 and 2.0 mm polysterene
spheres interacting via the dipole±dipole potential induced by
an external electric field perpendicular to the plane of the
system was considered in [228, 229]. In a high field, the system
crystallizes. The translational and orientational correlation
functions, as well as the critical parameters of the power-law
decay of these correlators, agree with the BKTHNY theory.
The observed defects correspond to predictions for the
crystalline, hexatic, and isotropic phases, but no grain
boundary formation was observed. The orientational correla-
tion function exhibits a clear hexatic-to-isotropic phase
transition. It is noteworthy that the G � 61� 3 parameter
value, at which melting was observed, is in good agreement
with the result of computer simulations mentioned above
[223], but the transition type does not coincide with the first-
order transition obtained by the molecular dynamics method
[197, 223].

Interesting results were obtained by Marcus and Reis,
who considered the system of colloidal particles covered by a
`brush' of oligomers. The effective interaction potential is a
hard sphere 0:928 mm in diameter with a 300 �Awide repulsive
step added to it. Two first-order transitions were discovered:
crystal±hexatic and hexatic±isotropic-liquid transitions.
These results are a qualitative confirmation of the results
obtained in [225] (see also Ref. [226]).

The most convincing experimental confirmation of the
BKTHNY theory was obtained in the series of papers [185,
186, 230±236], which comprised the results of real experi-
ments and of Monte Carlo simulations for particles interact-
ing via a dipole±dipole potential V�r�. The authors of these
papers considered the system of spherical paramagnetic
colloidal particles with the diameter d � 4:5 mm, which were
pressed to the water±air interface by the force of gravity. The
interface was formed in a drop 8 mm in diameter, which was
formed by the surface tension force in a glass pore closed from
above. The magnetic field directed perpendicular to the
surface produced a dipole moment in the colloidal particles.
The dimensionless interparticle interaction has the form [232]

V�r� � G
r 3
; �87�

G � m0
4p

w 2H 2�pr�3
kBT

/ 1

Teff
; �88�

where r is the density of the system.We can see from Eqn (88)
that increasing themagnetic field is equivalent to lowering the
temperature. On the drop surface, there are of the order of
100,000 particles, whose coordinates and velocities are
determined by videomicroscopy. About 3000 particles fall
within the field of view of the objective lens. The information
thus obtained allowed calculating the correlation and
thermodynamic functions of the system, which were com-
pared with the BKTHNY theory predictions. Remarkable
agreement was reached between the theoretical and experi-
mental results. Figure 10 shows the structural factors
corresponding to crystalline and hexatic phases and to an
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isotropic liquid, which were obtained by processing experi-
mental data [232].

We also mention Ref. [237], which considered the
behavior of a dilute two-component two-dimensional system
consisting of � 99% polysterene spheres 2:2 mm in diameter
and� 1%of spheres 3:0 mm in diameter, which interacted via
a dipole±dipole potential. The system is in the state of hexatic
glass, in which dislocations are pinned by larger particles. The
transition to the isotropic phase due to melting is consistent
with the mechanism of disclination pair dissociation.

Similar results were obtained in the investigation of a
system of cylindrical magnetic domains of opposite orienta-
tion in a thin film [238±240]. These domains interact via a
dipole±dipole potential. The magnetization perpendicular to
the film is aligned with the applied magnetic field (is opposite
to it in the case of a domain). The system is a hexatic glass at a
high magnetic-domain density (large G) owing to domain
pinning. With decreasing G (with increasing the field
strength), a continuous transition to an isotropic liquid was
observed.

We note that the existence of hexatic glass is consistent
with the theoretical analysis in [241], where the author shows
that in two-dimensional systems with a microscopic disorder,
the crystal±hexatic phase transition is nonexistent and the
most-ordered state is hexatic glass (i.e., a hexatic phase whose
shear modulus can be nonzero).

The above analysis of experimental data allows conclud-
ing that there hardly exists a single scenario of melting in two
directions. It is likely that the melting mechanism depends on
the specific kind of interparticle interaction, and first-order
transitions and a scenario corresponding to the BKTHNY
theory are possible in this case. Moreover, it can be inferred
with a certain degree of confidence that in the case of long-
range (Coulomb and dipole±dipole) potentials, melting
occurs by two continuous transitions with an intermediate
hexatic phase (the BKTHNY theory). This conclusion was
further confirmed by computer simulations. At the same time,
it was shown that a more complicated scenario is also
possible.

A number of two-dimensional system simulations were
performed to verify the theories of two-dimensional melting.
These papers are reviewed, for instance, in Refs [4, 41, 110,
112±114, 188, 230, 242]. As stated above, experimental data
lead to the conclusion that there is most likely no single
scenario of two-dimensional melting. A similar situation also

takes place in work involving computer simulations. For
example, we mention several papers that confirmed the two-
stage melting scenario [243±248]. At the same time, the
traditional first-order transition was found in the majority
of studies [223, 249±258]. Furthermore, one more scenario
was proposed in the framework of computer simulations: it
was shown that melting can occur via two transitions with an
intermediate hexatic phase. In this case, the crystal trans-
forms into the hexatic phase by a continuous BKT transition
and the hexatic phase transforms into the isotropic liquid by a
first-order transition [141, 142, 187, 270, 271, 279±282].

It is noteworthy that two-dimensional system simulations
encounter serious difficulties due to strong fluctuations. This
has the effect that the characteristic correlation lengths and
relaxation times become very long as the melting line is
approached, which requires considering systems consisting
of a large number of particles, which then have to be
thermalized for a very long time to obtain trustworthy data.
That is why similar simulation techniques sometimes lead to
opposite results even when they are applied to systems with
the same potentials.

Different methods are used to determine the transition
scenario and its parameters. As follows from Landau
expansion (84), determining the melting scenario requires
comparing the first-order transition temperature TMF and
the temperature Tm of instability with respect to free
dislocation production. To determine TMF, use is made of
either the method of constructing common tangents to the
Helmholtz free energy [259] or Maxwell's construction for the
van derWaals (Mayer±Wood [260]) loops in isotherms. As the
number of particles increases, the loops become smoother but
do not vanish even for a very large number of particles [266].

A detailed analysis of the behavior ofMayer±Wood loops
under variation of the number of particles was performed in
Refs [271, 272]. In principle, as shown by the Monte Carlo
method using the example of hard disks and the two-
dimensional Ising model [272], the Mayer±Wood loops are
observed in isotherms for a finite number of particles both for
systems that exhibit a first-order transition and for systems
with a continuous transition. However, these loops behave
differently upon increasing the number of particles. For the
first-order transition, the loop is present in the two-phase
domain and is defined by the surface free energy DF of the
interface [260]. For a fixed density, the energy per disk
D f � DF=N, which can be calculated from the equation of
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Figure 10. Structural factors of a colloidal system that correspond to (a) crystalline and (b) hexatic phases and to (c) isotropic liquid (borrowed from

Ref. [232]).

876 V N Ryzhov, E E Tareyeva, Yu D Fomin, E N Tsiok Physics ±Uspekhi 60 (9)



state [270], behaves as D f / Nÿ1=2. At the same time, for a
continuous transition, the asymptotic form is D f / Nÿ1, and
the loops in isotherms rapidly smooth out as the number of
particles in the system increases.

A similar scaling is illustrated in Ref. [261] by the example
of two Potts models with 8 and 10 states, which demonstrate a
first-order phase transition. In [271], the behavior of Mayer±
Wood loops was analyzed for hard disks withN � 2562, 5122,
and 10242, which showed that the position of the loops hardly
changed, despite the lowering of the height of their maxima.
Applying these methods gives the phase diagram that actually
represents the thermodynamic stability lines. At temperatures
above TMF, the crystal phase cannot exist.

We note that when melting occurs in accordance with the
BKTHNY scenario, the isotherms also exhibit a nonmono-
tonic behavior due to the presence of the hexatic phase.
However, the Mayer±Wood loops are hardly present for a
large number of particles [265].

At the same time, as discussed in relation to Landau
expansion (84), there is a temperature Tm at which free
topological defects (dislocations) appear in the system and
the shear modulus vanishes, i.e., the crystal lattice melts.
When Tm < TMF, the system melts via a continuous BKT
transition. To determine Tm, the orientational and transla-
tional order parameters, as well as the correlation functions of
these parameters are used (see Eqns (91)±(94) in Section 3.7).
In this case, the use of the order parameters yields an
approximate estimate of the crystal±hexatic transition tem-
perature Tm and the hexatic±isotropic-liquid transition
temperature Ti, especially if the dependence of the order
parameters on the number of particles in the system is taken
into account (strictly speaking, in the limit of an infinitely
large system, the translational order parameter is equal to
zero in the crystalline phase with a quasi-long-range order,
while the orientational order parameter is equal to zero in the
hexatic phase with an infinitely large number of particles). To
obtain information about the system behavior in this case, we
should resort to a scaling of the behavior of these parameters
by using a sequence of ensembles of increasing size (see, e.g.,
Ref. [258]).When the system is sufficiently large, however, the
use of the order parameters yields reasonable qualitative
estimates of Tm and Ti.

To correctly determine the instability points of the crystal
and hexatic phases, in our view, it is worth analyzing the
asymptotic behavior of the correlation functions of transla-
tional and orientational order parameters, while the transi-
tion points are to be determined from the conditions that the
exponents reach their critical values, ZT�Tm� � 1=3 and
Z6�Ti� � 1=4. With the scale invariance of these correlation
functions in the corresponding phases with quasi-long-range
order taken into account, this approach permits obtaining
results that are independent of the number of particles in the
system, if it is large enough for obtaining correct asymptotic
behavior of the correlation functions. A detailed description
of the application of this approach to a specific system is given
in Section 3.7.

It is pertinent to note that the hexatic phase, as a rule,
turns out to be very narrow. In some cases, when there is a
first-order hexatic±isotropic-liquid phase transition and a
continuous crystal±hexatic phase transition, this can lead to
an incorrect determination of the melting scenario. In this
connection, promise is shown by the study of melting in the
presence of random disorder, which broadens the hexatic
phase without changing themelting scenario, while in the case

of melting by the first-order transition, it can change the
melting scenario as well, as shown in Section 3.7.

The simplest system that exhibits a solid±liquid transition
in two dimensions is a system of hard disks, which was
studied by computer simulations beginning with the classic
papers by Alder and Wainwright [22±25]. By considering the
Van der Waals loop in the pressure±density curve, which is
often referred to as the Mayer±Wood loop [26], Alder and
Wainwright drew a conclusion that melting occurs as a first-
order transition. The reduced densities rs 2, where s is the
hard-disk diameter, of the coexisting liquid and solid phases
were rfs

2 � 0:880 and rss
2 � 0:912. These results were

confirmed by Hoover and Ree [262], who obtained rfs
2 �

0:878 and rss
2 � 0:922. In these early studies, the system

size did not exceed 870 particles and the dependence of the
transition on the system size was not explored.

As shown in Ref. [245], the main system parameters,
including the shear modulus and the order parameter for
orientational bond order, depend heavily on the system size in
the vicinity of the melting line. In connection with these
dimensional effects, a system of a much greater size,
consisting of 16,384 particles, was considered in [241], and
the values rfs

2 � 0:887 and rss
2 � 0:904 were obtained in

this case. In [250], the size dependence of melting for a
constant-pressure ensemble was analyzed with the use of the
Lee±Kosterlitz scaling method [263] in the framework of the
Monte Carlo technique. The results were interpreted as a
`rigorous' proof of the existence of the first-order transition.
It is likely that true hydrodynamic equilibriumwas reached in
the system, but the degree of rigor in the treatment in
Ref. [263] was quite illusory, because the system size was
much shorter than the correlation length.

A scaling analysis of the orientational order parameter,
the susceptibility with respect to this parameter, and the
compressibility for large systems (up to 16,384 particles)
was performed in [251] and [258]. A first-order transition
was obtained in this case and the transition parameter
values coincided with the data in Ref. [249]. However, we
mention the recent Monte Carlo simulations in [264], with
the conclusion that the system melted via one continuous
transition, without a hexatic phase, for rs 2 � 0:794. The
cause of disagreement supposedly lies in the difficulty of
attaining true thermodynamic equilibrium. A good illus-
tration of this point is provided by the computer simula-
tion classic Kurt Binder [258, 265]. In the first study, a
first-order transition in hard disks was discovered, while
the melting of this system in the second paper was
described by molecular simulations and the renormaliza-
tion group method as a continuous transition without a
hexatic phase.

The melting of a system of hard disks with the number of
particles in the Monte Carlo simulations N � 5122, 10242,
20482 was considered in [266]. It turned out that the Mayer±
Wood loop becomes less pronounced with an increasing
number of particles, although even for the greatest values of
N, the transition remained a weak first-order one. The
transition density was estimated as r � 0:920 (also see
Refs [267±269]). At the same time, a scaling analysis of the
orientational correlation function showed that the immediate
vicinity of the transition density exhibited a behavior typical
of the hexatic phase, although no two-stage transition was
found. In recent papers [270, 271], an entirely new view on the
melting of hard disks was proposed. We discuss these papers
below.
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The situation with continuous potential systems turns out
to be even more complicated. As shown analytically in [273],
for 1=r n potentials, there cannot be a volume jump in the
melting for n < d, where d is the spatial dimension. Therefore,
in the two-dimensional case, the melting of a system with the
Coulomb potential 1=rmust occur without a jump in volume.
This is consistent with the conclusion in [197], where a system
with the 1=r potential was shown to melt via two continuous
transitions, and a system with the dipole potential 1=r 3, via a
first-order transition. Studying the systems with 1=r n poten-
tials, 34 n4 6, leads to the same conclusion [223, 252, 253].
Lastly, we mention Ref. [224] as regards the results of
molecular dynamics studies of a system of 780 particles
interacting via a soft-sphere potential 1=r 12. In this case,
considering the Mayer±Wood loop and comparing the free
energies shows that the system melts via a weak first-order
transition.

The bulk of early computer simulation results (also see
Ref. [112]) led the majority of researchers to the conclusion
that systems with a long-range (for instance, Coulomb)
potential melt in accordance with the BKTHNY theory
scenario, while a short-range potential results in melting by
a first-order transition. At the same time, Bagchi et al. [247,
248] showed rather convincingly (with an analysis of scaling
effects with even larger systems, up to 65,536 particles) that a
system with the 1=r 12 potential melts via two continuous
transitions with an intermediate hexatic phase in accordance
with the BKTHNY theory. By Monte Carlo simulations of a
system with the Lennard-Jones potential and a very large
number of particles (over 100,000), the authors of a more
recent paper [274] also concluded that melting occurs by two
continuous transitions, in accordance with the BKTHNY
theory.

As mentioned above, all these discrepancies can be a
natural consequence of errors emerging in the simulations of
phase transitions. In the vicinity of the phase boundary, the
correlation length of the order parameter can be long enough
to exceed the system size and thereby lead to false results. In
addition, thermodynamic equilibrium is hardly attainable
because of long relaxation times, which requires a significant
increase in the simulation time for decreasing statistical
errors. In the study of a system with the 1=rÿ12 potential
performed in Ref. [275], it was shown that the result is highly
sensitive to the choice of boundary and initial conditions. The
scaling dimensional analysis, which was invented for over-
coming some of these difficulties [263], is also difficult to
apply because of the two diverging correlation lengths
corresponding to the orientational bond order and the
translational order.

We also note the research on the behavior of Yukawa
potential systems, which can be applied, in particular, to dust
plasmas [276±278].

In this situation, the appearance of papers byKrauth et al.
[270, 271] turned out to be a sensation. Recently, one more
melting scenario was proposed in [179, 270, 272] (see also
Refs [280, 281, 283]) based on the application of three
computer simulation techniques (two versions of the Monte
Carlo method and the molecular dynamics method) to large
systems (up to 10242 particles) with a subsequent thorough
data analysis, which included consideration of the scaling
behavior of Mayer±Wood loops in isotherms as well as of the
orientational and translational order parameters. It turned
out that melting can occur via two transitions. In this case,
however, contrary to the BKTHNY theory, the solid±hexatic

phase transition is a continuous BKT type and the hexatic±
isotropic-liquid phase transition is first order.��

Special mention should be made of Ref. [279], which
considered the melting of a system of soft disks described by
a 1=r n potential. It was shown that the system melts in
accordance with the BKTHNY theory for n4 6 and in
accordance with the scenario described above for n > 6 [187,
270, 271, 279±281]. This melting scenario is described in the
Conclusions (Section 4).

As shown in Ref. [282], a system with the Hertz potential
also melts via two transitions: a continuous crystal±hexatic
phase transition and a first-order hexatic±isotropic-liquid
transition. It is pertinent to note that the hexatic phase
domain in the phase diagram is usually very narrow, which
might well be interpreted in computer and real experiments as
a simple first-order crystal±isotropic-liquid transition. Quite
beneficial in this case is the use of random pinning to broaden
the hexatic phase domain and study its properties in greater
detail (see Refs [141, 142] as well as Section 3.7).

Shortly after the advent of the BKTHNY theory, it was
applied to the melting of a vortex system in thin super-
conducting films in Refs [284, 285]. The authors of Refs [284,
285] estimated themelting curves of the vortex systemby using
the previously obtained expressions for the shear moduli of
the vortex lattice [286] and BKT melting criterion (65).
However, no estimates were made for the hexatic±isotropic-
liquid phase transition. The existence of melting of the vortex
lattice in thin superconducting films was confirmed experi-
mentally in [166, 287±289], with the data interpreted in the
framework of the BKTHNY theory.

In Ref. [290], a high-temperature decomposition was used
to calculate the free energies of a vortex lattice and a vortex
liquid. These energies were shown to be very close, and
therefore the lattice melting cannot be a strongly pronounced
first-order transition.

Many papers are dedicated to computer simulations of
vortex latticemelting. In the analysis of these papers, it should
be borne in mind that one more strongly fluctuating order
parameter, which is absent from the ordinary two-dimen-
sional lattice, exists in this system: the superconducting
electron density (in the Ginzburg±Landau theory). This has
the effect that the above-mentioned problem of attaining
equilibrium is aggravated in the case of superconducting
films, making the resultant findings rather contradictory.

In Ref. [291], the authors proceeded from the Ginzburg±
Landau Hamiltonian and showed that lattice melting exists, but
did not determine the transition order. In Refs [292±295], the
vortex lattice melting was shown to occur via a weak first-order
transition. In Ref. [296], lattice melting was found, with the
numerical transition parameters being consistent with the
BKTHNY theory and the theoretical estimates in Ref. [285]. But
no indicationsof ahexatic phasewere found, anda conclusionwas
eventually drawn that the vortex latticemeltingoccurred as aweak
first-order transition.

** After the preparation of this review, Ref. [313] appeared, reporting on

an ingenious experimental confirmation of the findings of Refs [270, 271].

The authors of [313] considered the behavior of a monolayer of 2.79 mm
colloidal particles in a water±ethanol mixture in tilted geometry and

determined the equation of state and the existence domains of the liquid,

hexatic, and crystal phases. It turned out that the crystal±hexatic phase

transition is a continuous BKT transition and the hexatic phase trans-

forms into an isotropic liquid by a first-order transition. It is noteworthy

that quantitative agreement with simulation results [270, 271] was

obtained in [313].
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At the same, we note Refs [297±300], where the authors
carried outMonte Carlo simulations of a vortex system in the
high-temperature domain and arrived at the conclusion that
vortex lattice melting does not occur. It is therefore not only
the transition order but also the very existence of vortex
lattice melting that remains to be clarified.

We also note experimental papers [301, 302], where a
vortex lattice was shown to melt to an isotropic liquid via
three transitions, through hexatic and smectic-like phases.

In general, analyzing the results of computer and real
experiments allows concluding that a two-dimensional
system can melt in accordance with three scenarios, depend-
ing on the form of the potential. An ordinary first-order
transition can be observed. However, it is most likely that the
BKTHNY scenario is realized for long-range potentials.
Recently, a new melting scenario has been proposed,
according to which the system can melt via two transitions,
the crystal±hexatic transition being of a continuous
BKTHNY type, and the hexatic±isotropic-liquid transition,
which is of the first order.

3.7 Melting of two-dimensional systems
with core-softened potentials
We briefly discuss the results of molecular dynamics simula-
tions of a system described by a potential with a negative
curvature in the repulsive domain (a core-softened potential).
This potential, which has two characteristic lengths [138, 139],
is given by

U�r� � e
�
s
r

�n

� 1

2
e
�
1ÿ tanh

�
k1�rÿ s1�

�	
; �89�

where s is the potential core diameter, n � 14, and
k1s1=s � 10:0. We consider systems with two diameters:
s1=s � 1:15 and 1.35 (Fig. 11).

Potential (89) was earlier proposed to qualitatively
describe the properties of phase diagrams of water-like
liquids, including the well-known anomalies observed in
water [138±142, 303±311]. In the three-dimensional case, the
phase diagram of the system described by potential (89)
exhibits maxima and minima in the melting curve, structural
polymorphism, anomalies of diffusion, structure, and the
thermal expansion coefficient observed in water, and a
domain with a glass state [303±311]. In the case of two

dimensions, for s � 1:35, polymorphism and anomalous
behavior also exist, but the anomalies sequence order
corresponds to liquid silica rather than water [132±142]. In
what follows, we briefly discuss the phase diagrams and
nontrivial melting scenarios for potential (89) in the two-
dimensional case without random disorder and in the
presence of random pinning.

The following dimensionless quantities are used in this
section: ~r � r=s, ~P � Ps 2=e, ~V � V=Ns 2 � 1=~r, ~T � kBT=e,
and ~s � s1=s. (The tildes are omitted in what follows.)

Systems with the number of particles ranging from 20,000
to 100,000 were investigated by the molecular dynamics
technique (Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) package) [312] in NVT (N � const,
V � const, T � const) and NVE (N � const, V � const,
E � const) ensembles. We considered systems with a defect
density of 0.1%; simulations were carried out for 10 pinning
particle configurations, over which we performed averaging.

Several methods were used to determine the boundaries of
phase transitions. The primary estimate was made on the
basis of an analysis of the equations of state. In the case of
first-order transitions, isotherms should exhibit Mayer±
Wood loops, which are hardly present for continuous
transitions for such numbers of particles. The equations of
state are reliable in reflecting the transition domains, i.e., the
existence domains of two phases, but provide no information
about the transition scenario. To determine the exact
boundaries of the hexatic phase and the crystal in our
calculations, we used the approach proposed for the first
time in Ref. [141], dealing with the long-range behavior of the
orientational and translational correlation functions of order
parameters.

As discussed in Section 3.2 (also see Ref. [38]), the hexatic
phase stability boundary can be determined from the
condition that the exponent of the orientational correlation
function (OCF) is Z6 � 1=4, while the translational correla-
tion function (TCF) in the crystal±hexatic transition also
shows a power-law decay with the exponent ZT � 1=3. In the
presence of pinning, as discovered in our study [141], the TCF
envelope as a function of the range exhibits a kink in
logarithmic coordinates. After this kink, the criterion of
power-law TCF decay applies with the exponent ZT � 1=3,
which is used for determining the crystal stability boundary in
the transition to the hexatic phase.

The presence of orientational and translational ordering
in the system was estimated by studying the behavior of the
corresponding order parameters and their correlation func-
tions.

To estimate the degree of orientational ordering, we used
the order parameter

C6�ri� � 1

n�i�
Xn�i�
j�1

exp �i6yi j� ; �90�

where yi j is the angle between the vector ri j that connects the
ith and jth particles and an arbitrary axis. The summation is
performed over all nearest neighbors n�i� of the ith particle.
The neighbors are determined by the Voronoi construction.

Apart from the local order parameterC6�ri�, it is useful to
introduce a global parameter c6, which is the system-average
of C6�ri�:

c6 �
1

N
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Figure 11. Potential (89) for two core diameters: s1=s � 1:15 and 1.35.
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The outer angular brackets h. . .irp denote averaging over the
configurations that correspond to different pinning center
distributions.

Translational ordering in the systemwas determined from
the order parameter

cT �
1

N

������X
i

exp �iGri�
������

rp

; �92�

where ri is the radius vector of the ith particle and G is the
reciprocal lattice vector.

The translational correlation function has the form

GT�r� �
�


exp
ÿ
iG�ri ÿ rj�

��
g�r�

�
rp

; �93�

where r � jri ÿ rjj and g�r� � hd�ri� d�rj�i is the radial dis-
tribution function. In the crystal phase without frozen-in
disorder, in the limit r!1,GT�r� / rÿZT with ZT 4 1=3 [38].

The OCF G6�r� is defined similarly:

G6�r� �
�


C6�r�C �6 �0�
�

g�r�
�

rp

; �94�

whereC6�r� is the local orientational order parameter (90). In
the hexatic phase, theOCFdecays in accordance with a power
law:G6�r� / rÿZ6 , where 04Z6 4 1=4 [38]. The hexatic phase
loses stability on reaching the condition Z6�Ti� � 1=4.

The situation for s � 1:15 is rather simple. As is evident
from Fig. 11, the potential is then close to the soft-sphere
potential 1=r 14 and the melting scenario is consistent with the
scenario proposed in Ref. [279]: the system melts via two
transitions, the crystal±hexatic transition being of the con-
tinuous BKTHNY type, and the hexatic±isotropic-liquid
transition, which is of the first order. The presence of random
pinning lowers the crystal±hexatic phase transition tempera-
ture but has practically no effect on the hexatic±isotropic-
liquid transition, thereby broadening the hexatic phase
domain [142].

The s � 1:35 case is by far more interesting. By plotting a
common tangent to the Helmholtz free energy of the crystal
and liquid phases [259] and by applying the Maxwell
construction to the Mayer±Wood loop, it is possible to
calculate the phase diagram corresponding to the assump-
tion that all transitions are of the first order. As discussed
above, this phase diagram is the domain of absolute crystal
stability. At the same time, the instability to dislocation pair
dissociation can emerge at a lower temperature Tm, which
results in melting via a continuous BKT transition. Applying
the criteria based on the behavior of the correlation functions
of orientational and translational order parameters permits
elaborating the melting scenario. Figure 12 shows the phase
diagram of the system whose details are explained below.

Figure 13 depicts the equation of state corresponding to
Fig. 12a. As is clear from Fig. 13, the equation of state hardly
changes in the presence of pinning. The correlation functions
of orientational, G6, and translational, GT, order parameters
without and with pinning are depicted in Figs 14a, 14b and
14c, 14d. We can see, first, that random pinning has little
effect on the behavior of G6, while the translational correla-
tion function GT changes significantly. In particular, in
Fig. 14d we see a kink that corresponds to an additional
increase in the exponent ZT caused by disorder [see expres-
sion (86)]. As is seen in Fig. 13, in the absence of random

0.6

T, K

0.4

0.2

0.7 0.8 0.9 1.0 1.1

r, arb. units

Hexatic

Liquid

Liquidësolid phase transition
without pinning
Liquidëhexatic
stability
Hexaticësolid phase
transition with
pinning (0.1%) Crystal

with triangular
lattice

T

S

a

T, K

0.30

0.25

0.20

0.15

0.10

r, arb. units
0.44 0.48 0.52 0.56 0.60

G6 instability

van der Waals line

GT instability without pinning

GT instability with pinning

b

s � 1.35

Figure 12. (Color online.) Phase diagram of the system with s � 1:35.
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melting occurs via a first-order transition. On the introduction of random

pinning (density: 0.1%), the crystal±hexatic phase transition line shifts to

the higher density side, thereby changing the melting scenario and making

the crystal±hexatic transition continuous, and the hexatic±isotropic-liquid

transition remains a first-order one. (b) Phase diagrams at low densities.

From Maxwell's construction and the correlation function behavior, it

follows that in the absence of pinning, the melting in the left branch of the

phase diagram occurs via a first-order transition and in the right branch,

via a continuous crystal±hexatic transition and a hexatic±isotropic-liquid

first-order transition. In the presence of pinning, the last-mentioned

scenario is realized in both branches.
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pinning, the instability points corresponding to the condi-
tions Z6 � 1=4 and ZT � 1=3 are inside the two-phase domain,
which testifies to the realization of a first-order transition. At
the same time, in the presence of pinning, the crystal becomes
unstable at densities that markedly exceed the one at which
the two-phase domain is observed, while the density that
corresponds to hexatic phase instability remains inside the
Mayer±Wood loop. Therefore, random pinning changes the
melting scenario in the first-order transition case such that
this transition is converted into two: a continuous crystal±
hexatic BKTHNY transition and a first-order hexatic±
isotropic-liquid transition.

A similar analysis for the low-density domain in the phase
diagram (Fig. 12b) shows that in the absence of pinning,
melting in the left branch of the phase diagram occurs via a

first-order transition and in the right one, via a continuous
crystal±hexatic transition and a first-order hexatic±isotropic-
liquid transition. In the presence of pinning, the last-described
scenario is realized in both branches [141, 142].

Figure 15 shows the behavior of the diffusion coefficient
depending on the temperature, which corresponds toFig. 12b.
As we see from the figure, the presence of pinning results in
the crystal transformation into a hexatic phase with a
diffusion coefficient different from that for either a solid or
an isotropic liquid.

We also note that for potential (89), a domain with a
nontrivial square symmetry of the crystal lattice was found in
the phase diagram. Recently, a structure of this kind was
discovered in the experimental investigation of the properties
of water confined between two graphene sheets [147].

4. Conclusions

The Berezinskii±Kosterlitz±Thouless theory was developed
more than 45 years ago and was at that time a rather unusual
approach to the description of phase transitions in systems
where no phase transitions could occur according to the
theory accepted at the time. Since then, the theory has
become a powerful method widely used in the investigation
of not only plane magnets and superfluid 4He films, which
were the primary concern of the pioneering studies [1±3, 30],
but also of a broad spectrum of diverse low-dimensional
systems. These include superconductors and Josephson
junction systems, quasi-two-dimensional systems of ultra-
cold atoms in magnetooptical traps, liquid crystal films,
two-dimensional colloids, electrons on the surface of liquid
helium, rare-gas atoms on substrates (in particular, xenon on
graphite), two-dimensional granular systems, cylindrical
magnetic domains in thin films, vortex systems in HTSCs
and thin superconducting films in a magnetic field, dust

10ÿ1

G6

G6

GT

GT

10ÿ2

10ÿ3

10ÿ2

100 101 r 100 101 r

100 101 r100 101 r

10ÿ1

10ÿ2

100

10ÿ1

10ÿ1

100
100

a b

c d

T � 0.3, without pinning
s � 1.35

s � 1.35, T � 0.3, pinning, 0.1%

r � 1.10
r � 1.05
r � 1.00
r � 0.97
Z � 1=4
r � 0.96
r � 0.95
r � 0.94

r � 1.10
r � 1.05
Z1 � ÿ0.045
Z2 � ÿ1=3
r � 1.00
r � 0.97
r � 0.96
r � 0.95

s � 1.35, T � 0.3, pinning, 0.1%

T � 0.3, without pinning
s � 1.35

Z � 1=4
r � 0.92
r � 0.94
r � 0.95
r � 0.96
r � 0.97
r � 0.98

Z � 1=3
r � 0.92
r � 0.94
r � 0.95
r � 0.96
r � 0.97
r � 0.98

Figure 14. (Color online.) Correlation functions G6 and GT (a, b) without pinning and (c, d) with pinning.
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plasmas, and thin films of liquids (including water) (see, e.g.,
Refs [4, 41]).

Special mention should be made of two-dimensional
melting theories, which received a strong impetus from these
studies. Among these theories, we select the Berezinskii±
Kosterlitz±Thouless±Halperin±Nelson±Young theory [38,
39], which proposes an unconventional scenario of two-
dimensional crystal melting via two continuous transitions
with an intermediate hexatic phase. This theory spawned a
wealth of experimental and theoretical papers, which were
partly described above. Today, it can be stated with a high
degree of confidence, which relies on experimental (see, e.g.,
Refs [111, 185, 186, 189±195, 230±236]) and computer
simulation [279] data, that systems with a long-range
interaction (for instance, Coulomb or dipole±dipole interac-
tion, and soft spheres 1=r n with n4 6) melt in accordance
with the BKTHNY theory.

At the same time, the situation with the description of
two-dimensional melting remains rather contradictory. As
discussed in this review, melting can also occur via a
conventional first-order transition or in accordance with a
recently proposed scenario according to which the crystal±
hexatic phase transition is a continuous BKTHNY transition,
while the hexatic-phase±isotropic-liquid transition is a first-
order transition. This scenario is supposedly true for some
systems with short-range potentials (for instance, for a
potential of the form 1=r n, it was shown to take place for
n > 6).

At present, there are no precise theoretical criteria that
permit determining the melting scenario based on the form of
the potential. As discussed above, the dominant standpoint in
early papers was that systems with a short-range potential
melt by a first-order transition, while systems with long-range
potentials melt by two continuous transitions with an
intermediate hexatic phase in accordance with the
BKTHNY theory. However, after the publication of
Refs [141, 142, 270, 271, 279, 280], it became clear that the
hexatic phase can also exist for short-range potentials,
including the case of hard disks. Moreover, as discussed in
Section 3.7 (see also Refs [141, 142]), random pinning is
capable of changing the melting scenario and transforming
the first-order transition into two-stage melting with a
continuous crystal±hexatic phase transition and a first-order
hexatic±isotropic-liquid phase transition. Therefore, studying
the relation between the form of the interparticle potential
and the existence of the hexatic phase is an interesting task,
which remains to be unambiguously solved.

The first-order hexatic±isotropic-liquid phase transition
can be explained by the fact that the core energy of
topological defects (disclinations) is rather low (see Fig. 3
and the discussion in Sections 2.1 and 2.2), but it is not clear
how this energy and the Frank modulus of the hexatic phase
are related to the interparticle potential. Furthermore, it
would appear natural to proceed from the universal Landau
theory when discussing phase transitions. While a qualitative
explanation of the transition from the crystal phase to the
hexatic phase or to the isotropic liquid can be obtained from
expansion (84), a similar theory for the first-order hexatic±
isotropic-liquid phase transition is nonexistent. It is still
unclear how it can be constructed, considering the symmetry
of the corresponding order parameter. In general, the
problem of calculating the core energy of a topological defect
from the interparticle potential is still a long way from being
completely solved.

As already mentioned, the BKTHNY theory was based
on the assumption that the crystal structure is triangular.
Since then, a wealth of different versions of two-dimensional
crystal lattices have been found, which correspond to
different, sometimes quite exotic potentials. Adapting the
BKTHNY theory to these structures and deriving the
corresponding stability criteria for crystal phases are also
important problems.

To summarize, there is good reason to emphasize once
again that the theory developed by Berezinskii, Kosterlitz,
and Thouless more than 45 years ago, which deservedly
brought Kosterlitz and Thouless the 2016 Nobel Prize, has
thus far been a powerful incentive to study two-dimensional
systems of highly diverse natures.
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