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Abstract. This paper reviews features in critical behavior of far-
from-equilibrium macroscopic systems and presents current
methods of describing them by referring to some model statis-
tical systems such as the three-dimensional Ising model and the
two-dimensional XY model. The paper examines the critical
relaxation of homogeneous and structurally disordered sys-
tems subjected to abnormally strong fluctuation effects in-
volved in ordering processes in solids at second-order phase
transitions. Interest in such systems is due to the aging proper-
ties and fluctuation—dissipation theorem violations predicted
for and observed in systems slowly evolving from a nonequili-
brium initial state. It is shown that these features of nonequili-
brium behavior show up in the magnetic properties of magnetic
superstructures consisting of alternating nanoscale-thick mag-
netic and nonmagnetic layers and can be observed not only near
the film’s critical ferromagnetic ordering temperature 7., but
also over the wide temperature range 7 < T..
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1. Introduction

Systems with slow dynamics have recently evoked heightened
interest on the part of both theorists and experimentalists [1—
4] by virtue of aging properties characterized by fluctuation—
dissipation theorem violations predicted for and observed in
systems slowly evolving from a nonequilibrium initial state.
Well-known examples of such systems with slow dynamics
and manifestations of aging effects are such complex
disordered systems as spin glasses [5-7]. Figure 1 demon-
strates aging effects for Agpo73Mng g7 spin glass revealed in
experiments. However, a number of analytical and numerical
studies [8§—11] have shown that such nonequilibrium behavior
features can just as well occur in systems undergoing second-
order phase transitions, because their critical dynamics are
characterized by abnormally large relaxation times. To recall,
the fluctuation—dissipation relation introduced earlier for
spin glasses and linking the two-time spin response function
with the two-time correlation function and generalizing the
fluctuation—dissipation theorem for the case of nonequili-
brium behavior is a new universal characteristic of critical
behavior in various systems [8].

Importantly, specific features of nonequilibrium critical
dynamics discovered thus far provide a basis for an adequate
interpretation of experimental data obtained for multilayer
Fe/Cr[12]and Co/Cr [13] structures. Suffice it to mention the
recent paper [12] reporting the nonergodic behavior of a
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Figure 1. (a) Aging effects identified in the two-time dependence of thermoremanent magnetization Mgy on observation time 7 — 7, and waiting time 7
in Agoo73Mng 7 spin glass at 7= 0.87 T, during evolution from a high-temperature initial state. Times are measured in seconds. Mgc is the
magnetization measured as the system moved from the paramagnetic to spin-glass state upon cooling in a weak magnetic field, T, is the temperature of
phase transition into the spin-glass phase. Verification results of the realization of two possible scaling forms: canonical aging (b) and subaging (c) for the
Mtrm/Mrc (f — ty, ty) function demonstrating characteristic ‘collapse’ of the values in the universal curve for different #,,. (Data according to M Ocio,

J Hammann, E Vincent, borrowed from Ref. [2].)

multilayer Fe/Cr structure based on a periodic combination
of ultrathin ferromagnetic iron films with nonmagnetic
chromium films characterized by the dependence of magne-
tization of the sample on its magnetic prehistory.

As shown in Ref. [13], investigations into the relaxation
of magnetization revealed magnetic aging effects in a
Co/Cr-based magnetic superstructure. The nanoscale peri-
odicity produces in such magnetic multilayer structures
mesoscopic effects of spatial spin correlation with slow
relaxation dynamics of magnetization upon quenching the
system in a nonequilibrium state. Unlike bulk magnetic
systems where slow dynamics and aging effects manifest
themselves near the critical point, magnetic superstructures
with nanoscale periodicity allow increasing the relaxation
time owing to the effects related to the larger characteristic
spin—spin correlation length. Due to this, aging and non-
ergodicity effects are possible to observe in multilayer
magnetic structures within a wider temperature range than
in bulk magnetic systems.

The present review considers the results of theoretical
renormalization group and numerical studies reported
recently for such universal quantities as the fluctuation—
dissipation relation and critical parameters characterizing
nonequilibrium critical dynamics of various statistical mod-
els. Particular emphasis is laid on the original data obtained
by the authors in computer simulation of the three-dimen-
sional Ising model and the two-dimensional XY model.
Special attention is given to the results of numerical Monte
Carlo (MC) simulations of the influence of structural defects
on characteristics of the nonequilibrium critical behavior of
spin systems. On the one hand, the relaxation dynamics of
such systems are much easier to study than those of complex
disordered systems, e.g., spin glasses; on the other hand, at the
nonequilibrium stage of critical evolution these systems

demonstrate aging effects analogous to those in spin glasses
and deviation from unity of the limiting fluctuation—dissipa-
tion relation (FDR) as an indicator of the system departure
from equilibrium.

The renormalization group [14, 15], numerical [16-19],
and experimental [20] methods for investigations into critical
dynamics of structurally disordered systems have made it
possible to unambiguously establish that both uncorrelated
structural defects and defects with long-range correlation
effects present in a system are responsible for emerging new
types of critical behavior and marked strengthening of critical
slow-down effects, as opposed to those in ‘pure’ systems. Due
to this, specific features of nonequilibrium behavior, such as
aging effects, must certainly be much more pronounced in
structurally disordered systems with new universal values of
the fluctuation—dissipation relation.

Renormalization group calculations of FDR carried out
in Refs [21, 22] in the framework of the ¢-expansion method
for dissipative models with the nonconserved order para-
meter in the lower orders of the theory showed that
difficulties encountered in distinguishing fluctuation correc-
tions in two-time dependences for the correlation function
and the response function have thus far prevented any
convincing characteristic of the influence of defects on the
relative correspondence between the limiting FDR values for
structurally disordered and ‘pure’ Ising models. Numerical
studies by the inherently nonperturbative Monte Carlo
method permitted clarifying this issue and distinguishing
the influence of structural defects on aging effects and FDR
contribution to the nonequilibrium critical behavior of the
three-dimensional Ising model and the two-dimensional
XY model.

The review presents, in addition, results of our numerical
studies [23] on the nonequilibrium behavior and aging effects
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in multilayer magnetic structures composed of ferromagnetic
films separated by an interlayer of a nonmagnetic metal.
Specific behavioral features of these structures revealed by the
MC methods permit us not only to account for magnetic
aging effects manifested as relaxation of thermoremanent
magnetization in experiments with Co/Cr magnetic super-
structures [13] but also to identify aging effects in the
autocorrelation function nonequilibrium behavior during
evolution of the system from different initial states. It has
been shown that aging effects in multilayer magnetic
structures are apparent within a wide temperature range and
not only near the critical temperature, as in bulk systems.
Certainly, these aging effects should be taken into considera-
tion in practical applications of such multilayer magnetic
nanostructures as spintronic devices with a giant magnetic
resistance effect.

2. Basic concepts and model representations
of the nonequilibrium behavior theory

Aging effects manifested at the nonequilibrium stage of
relaxation of a slow-dynamics system are characterized by
the presence of two-time dependences of such functions as
correlation and response functions on waiting f, and
observation ¢ — t,, times; t,, is the time between a specimen
preparation and the beginning of measurement of its
characteristics. During the time period 7 — t,, < t., Where
tre1 18 the system’s relaxation time, the temporal behavior of
the system is influenced by its initial state and aging effects
characterized by both translation symmetry breaking in time
and a slow-down of relaxation and correlation processes with
increasing ‘age’ t, of the specimen.

It is supposed that the nonequilibrium behavior of a
system is realized via its transition at the starting instant
t = 0 from the initial state at temperature T to the state with
temperature T differing from 7j. The accompanying equili-
bration process is characterized by relaxation time f(75),
and equilibrium corresponding to temperature 7y is reached
in times ¢ > t.(7s), while the system dynamics prove
stationary and invariant with respect to time reversal.
However, in times 0 < ¢ < t,(Ts), the evolution of the
system depends on its initial state. In this connection, the
nonequilibrium behavior of the system depends on whether it
evolves from a high-temperature (7, > T5) or a low-tempera-
ture (Tp < Ty) initial state.

At temperatures close to the temperature 7, of the second-
order phase transition, the system’s relaxation time #, is a
diverging quantity: tye ~ |T — Tc|™", where z and v are the
dynamic critical exponent and correlation length exponent,
respectively. Therefore, the system does not reach equilibrium
at a critical point throughout the entire relaxation process; at
Ts ~ T, and for times ¢ < t,, aging effects in the two-time
dependence can be expected for the correlation function
C(t,ty) and the external perturbation response function
R(t,ty).

For a spin system with the spin density S(x,¢), the
temporal correlation function is given by the expression

Ct,1y) = %/J(S(x, 0)S(x, ty)) dx

_ Il/ [(S(x, 0)(S(x, 1)) dx, (1)

and the response function for a weak external magnetic field
h(x,t) applied to the system at instant ¢, by the relation

8(S(x,1))
d% Sh(x, tw)

R(t,ty) :%/J

In formulas (1), (2), d is the space dimension, and x is the
d-dimensional radius vector. In accordance with the causality
principle, R(t,tw > t)= 0.

According to the general picture of a relaxation process,
one expects that for 1 > ty > t,(7Ts) C(t,ty) = C4(t — ty)
and R(t,ty) = R*Y(t —ty), where C® and R are the
corresponding equilibrium quantities. The fluctuation—dis-
sipation theorem (FDT) relates the fluctuation spectrum of
physical quantities in an equilibrium dissipative medium to its
generalized susceptibilities, i.e., parameters characterizing its
reaction to an external action.

The main feature of the nonequilibrium behavior of a
slow-dynamics system is the breakdown of translational
invariance in time due to the long-time influence of non-
equilibrium initial states. It manifests itself first and foremost
as two-time characteristics of the system, such as the
correlation functions and response functions.

The nonequilibrium behavior of slow-dynamics systems is
characterized not only by aging effects but also by violation of
the FDT [1-4, 8], the consequences of which provide
theoretical grounds of various experimental methods for the
measurement of radiation scattering and absorption by
matter. Under equilibrium conditions, the FDT should
relate the correlation function with the linear response
function conjugate to it:

1.dC(r — ty)
T dt,, '

(2)

h=0

Rt — 1) = 3)
In the case of nonequilibrium behavior of systems for
t,ty < e, the generalized FDT assumes the form

X(1,ty) 0C(t, ty)

R(t,tw) = . on, 4)

with the introduced quantity X(z, t) being the fluctuation—
dissipation ratio (FDR):

TsR(1, ty)
Xt ty) = ————=, 5

( I W) at“ C(t, tw) ( )
with ¢ > t,, asameasure of FDT violation. In equilibrium, the
FDT states that X(¢ > ty > tre1) = 1. The asymptotic value of
the FDR, viz.

X* = lim lim X(z,ty), (6)
ly—00 [—00

can be used as a universal characteristic of the nonequilibrium
behavior of a slow-dynamics system. Moreover, the value of
X # 1 may provide an indication of the nonequilibrium
behavior of the system. Also, X*° can be used to define
effective nonequilibrium temperature Ter = 7/X > exhibit-
ing certain properties of the equilibrium system temperature,
i.e., characterizing the direction of thermal flows in the system
and serving as a criterion for its thermalization [24].

Let us turn to the general properties of X and its
dependence on the system’s quenching temperature 7. For
those states of the system with temperature T > T, it follows
from the FDT that X*°(7, > T,) = 1. On the other hand, the
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Table 1. Limiting FDR values X for systems with a high-temperature initial state with my < 1.

Model Solution X References
T, < T, T, =T, T, > T,

Free Gaussian field Exact — 1/2 1 [28]

d-dimensional spherical model Exact 0 1-2/d 1 [27]

One-dimensional Ising model Exact — 1/2 1 [29]

Two-dimensional Ising model MC 0.26(1) [27]
MC 0.340(5) [30]
MC 0.330(5) [31,32]

Two-dimensional Potts model MC 0.406(1) [31, 32]

with ¢ = 3 spin states

Two-dimensional Potts model MC 0.459(8) [31, 32]

with ¢ = 4 spin states

Three-dimensional Ising model MC 0 ~ 0.40%* [27]

Three-dimensional XY model MC 0 0.43 [33]

* X value of =~ 0.40 is reported in Ref. [27] as a result of preliminary numerical investigations of three-dimensional Ising model without

demonstrations of the data obtained in Ref. [27] itself and in subsequent publications.

general scaling arguments in Ref. [25] suggest that for a low-
temperature ordered phase with 75 < Tc, X*(Ts < T,) = 0.
It is believed that these results are unrelated to specific
properties of individual systems. In the case of Ty = T,
however, there are no general arguments defining the value
of X°°(T.), which necessitates its derivation for each
individual statistical model. Table 1 contains X > values for
some statistical models, which were found either by exact
solutions or in numerical studies by the MC methods
(Ref. [26] presents a more comprehensive table for X°).

It follows from Table 1 that X*°(7s = T,) depends on
specific properties of the model and its spatial dimension d. At
the same time, the authors of Refs [25, 27] argue, based on
scaling arguments, that the limiting FDR X*°(T = T,) at the
critical temperature must be a universal quantity associated
with the universality class of the model’s critical dynamics.

2.1 Nonequilibrium critical dynamics of systems evolving
from a high-temperature initial state

2.1.1 Scaling forms for two-time dependences of the autocorre-
lation function and response function. It is presently well
known that the two-time autocorrelation function and
response function for system relaxation from a high-tempera-
ture initial state with my = 0 (or my < 1) satisfy the following
scaling forms:

0—1
C(t, tw) _ Ac(t _ tw)nJrlfd/: (L) fC (I_W) ,

tw t

0

where functions fc(#y/t) and fr(ty/t) are finite for t,, — 0,
a=2-n—-2)/z, 0=0"-2—z—n)/z, and 0' is the
critical exponent characterizing the initial growth of
magnetization [34]. A4g and A¢ are nonuniversal ampli-
tudes, the values of which are given by conditions
Jfr c(0) =1. Under these normalizing conditions, func-
tions fr ¢ acquire universal properties. The given scaling
forms suggest the universality of X expressed as the
amplitude ratio: X = Ag/[(1 — 0)A] [25-27].

(7)

One of the unusual properties of the nonequilibrium
critical behavior of systems relaxing from a high temperature
initial state with my < 1 is a rise in magnetization with
growing observation time in accordance with the power-law
function M(z) ~ 7" for times ¢ < ter ~my ") (an
example of such magnetization behavior M(t) for the three-
dimensional Ising model with different spin concentrations is
presented in Fig. 2).

Indeed, the singular part of the Gibbs potential
Diing (2,7, h,my) determining the system’s state in the critical
region is characterized, in accordance with the scaling theory,
by generalized uniformity with respect to the main thermo-
dynamic variables:

(psing([; T, h, m()) = b(psing(ba' t,b%1,b%h, b“mmO) , (8)
time 7, reduced temperature 7, field 4, and initial magnetiza-
tion my; here, b is the similarity factor, and g; are the similarity
exponents. As a result, magnetization M = —3®/8h at the

M(t)
: - /1) 1.0

L - /-’.f.p_o'8

" o /p()b
. o
1l [N ERT| Ll Ll Lol L1
10° 10! 10 10° 10*

t, MCS/s

Figure 2. Time dependence of magnetization M(z) at the nonequilibrium
stage of evolution of the three-dimensional Ising model for different spin
concentrations p at respective critical temperatures. MCS/s (Monte Carlo
steps per spin).
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critical point (tr = 0, 2 = 0) is characterized by the following
time dependence:

M(t,mg) = t7(ali+1)/aan1(m0t7ar71/”)‘) , (9)

where Fm(mot*a"'/ @) is the scaling magnetization function.
The expansion of the right-hand side of formula (9) in powers
of small parameter migz %/ leads to the power-law depen-
dence

M(t) ~ ¢~ @t D/ar 40" o

All g; but a,, can be related to the known critical exponents
describing the system’s behavior regardless of effects of the
influence of nonequilibrium initial states. Therefore, the
authors of Ref. [34] introduced a new independent dynamic
critical exponent 0’ that assumes a positive value, as shown in
the renormalization group description of the nonequilibrium
critical behavior of the system [34].

The nonequilibrium stage of the initial magnetization
growth is followed for times 7 > ¢, by ordinary long-time
dynamics of magnetization reduction with time according to
the power-law M(t) ~ t~F/(>*) The critical exponents 0 and 0’
depending on the system’s dynamic universality class of the
critical behavior [35] were calculated by renormalization
group methods for certain dynamic models, e.g., the model
with a nonconserved order parameter [14, 16, 34, 36] (model
A according to the Hohenberg—Halperin classification [35]),
the model with the order parameter coupled to the conserved
field (model C) [37], and the models with the order parameter
coupled to hydrodynamic excitations having the character of
precessional motion in magnets (models E, F, G, and J) [38].

The analysis of two-time dependences for autocorrelation
and response functions [7] in the nonequilibrium process of
system’s relaxation allows three stages (regimes) of its
execution to be distinguished. First is the quasiequilibrium
stage of evolution for small waiting times, ¢ — t, < ty, with
tw > 1, when the dependence of the autocorrelation and
response functions on waiting time is still unapparent and
their changes have a stationary character: C = C t—ty)
(l— tw) (d=2+n)/z and R — R(l— tw) ([— 2+n+A
The second stage with manifestations of dglng effects is
realized for times ¢ — ty ~ ty, > 1. At this stage, the two-
time dependence is quite apparent for autocorrelation and
response functions characterized by the relations

— vz) 1 t
1209 <7>
w

_ ~ t
R(1, 1) ~ 1529097 (z_> ’
w

in which Fc(t/tw) and FR(t/tW) are the scaling functions,
and the relationship between critical exponents 2f3/(vz) =
d/z —a — 1is used. As a result, the curves for these functions
on the observation timescale 7 — ¢, do not coincide for
different waiting times ¢, and have, in accordance with
Eqn (11), different slopes for each ¢, value. For the third
stage, with an essential nonequilibrium evolution of the
system for observation times ¢ — t, > t, > 1, scaling func-
tions Fe(t/ty) and Fr(t/ty) in Eqn (11) are characterized by
the decreasing power-law dependences

t t\ t t\
F ~ = P ~ [
()~ () B~ ()

C(t, ty) ~
(11)

(12)

with the exponent ¢, = d/z — 0’ coincident with the exponent
defining the time dependence of the autocorrelation function
in the short-time regime (fy — 0, 7> 1) of the system’s
nonequilibrium critical behavior [16, 18, 39]. At this stage of
short-time dynamics, aging effects are unapparent. The
scaling analysis of the behavior of the response function
R(t, 1) in this regime predicts that ¢, = ¢,.

2.1.2 Renormalization group description of the nonequilibrium
critical behavior. Relaxation times of the order parameter
S(x,t) (spin density) near the critical point are very long;
therefore, the nonequilibrium dynamics of the order para-
meter under these conditions are a random slow process. The
nonequilibrium distribution function P[S] of such processes
must satisfy the Fokker—Planck equation

¢ 8(fx(x,1)P)
o.P= ;Jddx oS D) 0

3*P
o [ s "

%, B

The dynamics of the order parameter is given by the
Langevin equation

atSzx(xa t) :ﬁx(xv t)+£a(xa[)7 (14)
where S,(x,?) is the n-component order parameter. The
random force ¢ characterizing short-lived excitations in the
system reflects the action of local microscopic degrees of
freedom on the order parameter dynamics. Let the random
force be white noise, namely

<e:a<x, 1) =0,
(Eulx' 1) Eplx, 1)), = 2Cup0(x — x")o(1" —1).

(15)

The description of critical dynamics is not as universal as
that of the equilibrium critical properties. We shall consider
below the purely relaxation dynamics of the order parameter.
This case is one of especially important, because it is realized
in anisotropic spin systems and extensively studied in
experiment. Moreover, it is this case of relaxation dynamics
that is most successfully investigated numerically by MC
methods with the use of the Metropolis algorithm generating
single-spin flip dynamics [40].

Because the stationary solution of equation (13) must
have the following limiting form

lim P[S(1)] = Peq < exp (—H),

1—00

(16)

there appear limitations on the choice of C,g and f;, namely

Caﬂ = ;Laﬁ = /181/37
(17)
SH]S]
88, (x, 1)’

where H[S] is a Hamiltonian describing the critical behavior
of the system. For example, the behavior of a structurally
disordered system near the second-order phase transition
temperature can be described by the effective model Ginz-
burg-Landau—Wilson Hamiltonian [41]

Julx, 1) = =4 so——~

Hy|S] :Jddx{%(VS)2+%[r+ V(x )]52+4| S } (18)
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where 7 oc (T — T¢)/T. is the reduced temperature, and V(x)
is the potential of the random field of defects. The spatial
distribution of the system of quenched uncorrelated point
defects actually the Gaussian distribution P[V] wholly
determined by the first and second moments for random
quantities V(x):

((V(x))) =0, ((Vx)V))) =vd(x—y), (19)
where v is the positive constant proportional to the concen-
tration of defects and the square of their potential. For ‘pure’
systems, one has V(x) = 0.

Equations (14) and (15) with C,g and f, from formulas
(17) and with the constant kinetic coefficient 4 > 0 give the
dynamic relaxation model A (according to the classification
in Ref. [35]) defined by the equation

SHy[S]

atSzx(xy l) =4 m + éz(xv [) .

(20)

Let the realization of any order parameter configuration
in a system at instant ¢ be determined by the condition that,
for a system with the initial magnetization mi at the starting
moment ¢ =0, the distribution for the field of order
parameter S(x,0) = So(x) be characterized by the distribu-
tion function P[Sy] ~ exp (—H[So]), with

T 2
Hy[So] = Jddx 70 (So(x) —mo)~, (21)
where r(;l/z is the width of the initial magnetization

distribution. This Gaussian distribution for the order
parameter field can be realized for temperatures 7' > T, at
which there are no long-range correlations for order
parameter fluctuations yet.

In the framework of the field-theoretical description of
critical phenomenon dynamics [41], an auxiliary field S(x)
is introduced that allows averaging over random forces
&(x,1) and describing critical dynamics equivalent to
Langevin dynamics with the help of the generating
functional W[h,h] for dynamic correlation functions and
response functions:

Wih,i] = In UD(S, i$)PV] exp (— L[S, 5, V] — HolSo])

X exp (J d?x LOC dr (hS + hS))} ,

in which action functional L£y[S,S, V] of the system is
expressed as

LIS, S, V] = LOC dzjddx S(aS (a); D1 s;l(i[*j]) - ).S) ‘

(22)

(23)

The expression for the generating functional (22) can be
averaged over random fields V(x) induced by structural
defects, viz.

JP[V} exp (—Ly[S, 5, 7)) = exp (~£[S.5)) . (24)

to obtain the action functional L[S,S] (translationally
invariant and independent of random V(x) fields) in the

following form

L[S, S] = Ls[S,S]+ L[S, S], (25)

(26)

Lo = J dtJd‘lx $,00:8, + Az — A)S, — 25,]
0

00 12 00 2

Ling = gijd"xj dr8,8,84Sp —v = Jd”xJ drs,S, ) .
3! ) 2 0

(27)

The Gaussian part L describes free fields for which the
problem of calculating the correlation functions is solved
exactly. The constituent of the action functional Ly, with the
nonzero interaction constant g characterizes interaction
effects of order parameter fluctuations, while the constituent
with constant v characterizes fluctuation interaction via the
defect-induced field.

Magnetization, correlation and response functions can be
obtained from the generating functional as derivatives taken
over conjugate fields 4 and /:

SWIh, i
dh(x, 1)

M(x,t) = <S(x, t)> =

)

h=0,h=0

C(x1,1, X2, 1) = (S(x1,0)S(x2, 1w) )
8 Wh
o 6/’!()61, l) 6h(x2, lw)

h=0, =0
R(x1,1, X3, ty) = (S(x1,0)8(x2, 1))

Wk
dh(xy, 1) 8h(xa, 1)

h=0, h=0

Let us consider the Gaussian (only quadratic) part of the
generating functional and define correlation and response
functions in the Gaussian approximation (bare functions).
Next, the renormgroup perturbation theory is built up on the
results of the Gaussian theory.

A convenient method for obtaining correlation and
response functions in the Gaussian approximation is based
on the solution of variational equations

[0+ At —A)]S—228 =1, (29)

[0, +A(t—A)]S=h (30)
under conditions

S(t=00)=0, S(t=0)—my=1,"'S(t=0). (31)

Performing the Fourier transform and moving to the
dependences of the functions on wave vectors q yield
expressions for S and S as functions of /4 and / from
equations (29) and (30):

S,(0) = rc exp [2(¢* +1)(t — t")|hy(1")0(r — ¢")dt", (32)

Sy(t) = LOC dt" exp [—A(q* +1)(t —1")]0(r — 1)

x [hg(t") +228,(t") + (mo + 151 S,(0))8(¢")] . (33)

Substituting expression (32) for §q(t) into (33) and
varying S,(f) with respect to 4 and 4 in accordance with
formulas (28) lead, for a high-temperature initial state with
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my =0 (mp < 1), to expressions for the free propagator
Ro(q,t,ty) and correlator Cy(q,t,ty) as the bare response
function and correlation function:

Ro(g,t,tw) = 0(t = ty)exp [~A(¢> + 1) (1 = )], (34)
Colg, 1, tw) = +qz{exp [—A(q® + 1)l = 1]
T 2
+ ( toq - 1) exp [—A(¢> +1)(t + rw)]} . (35)

In Cy(q,t,ty), the so-called equilibrium correlator
Cs(q,t — ty) and the correlator characterizing the influence
of the starting conditions, C;(g, t + ty), can be distinguished:

CO("L [7 lW) = Ce(q7 r— [W) + Ci(qal+ lW)v

1
Cilg 1t —ty) = e exp [—/1(1]2 + 1))t —tw], (36)
i 1 T+ q2 1 2
1
w) — —1 - w)| -
Colg, 1+ ty) r+q2< - )exp[ Mg+ 1) (1+ tw)]

In formula (34) for Ry(q,¢,ty), the O-function reflects the
property of causality, i.e., the requirement that a change in
magnetization at the instant of time ¢ be determined by a
change in the external field at the preceding instant ¢, for
> ty.

Because 19 is finite (i.e., 79 # 0), the term r(;' (t+4¢?) in
formula (35) is much smaller than unity in the 7 limit, ¢ — 0.
Therefore, this item can be disregarded in the principal order
of perturbation theory:

CO(q7 t7 IW) = C()D(qv tv tw) + TO_IRO(qv tu O)Ro(q, tW: 0) ) (37)
where CP (g, 1, ty) is the Dirichlet correlator:
1
D __ (2 _
P lartst) =z {ep [4la” + 0l = w]
—exp [~A(g> + 1)+ 1)} (38)

The condition 79 = oo is called the Dirichlet boundary
condition. A Dirichlet correlator constituent equaling
Ci(g,t + t) is responsible for the breakdown of transla-
tional invariance in time.

The FDR in momentum space is given by the expression

TSR(qa t’ tW)

X(g, t,ty) =———<.
(q’ ’ ) atw C(qa t? lw)

(39)

In the Gaussian approximation, one obtains

TSRO(q7 l7 [W)

X tity) = 4——F+——<
0(q7 ’ W) alw Co(q7 t7 tW)
(40)

When a system does not reside in a critical point with
1~T—T,#0, the limiting FDR value is X =
limy, o0 lim, . Xo(g, 2, 2w) = 1 for all values of wave vec-
tors ¢, in agreement with the opinion that all the high-
temperature phase modes have a finite equilibration time.
The exponentially fast equilibration accounts for the
fulfilment of the FDT. In a critical point and 7 = 0, the
limiting FDR value is unity as before for the order
parameter modes with ¢ # 0, whereas for the mode with
g =01itis X*° = lim,, o lim,,oc Xo(¢ = 0,¢,ty) = 1/2. This
means that only the zero order-parameter mode with ¢ = 0 is
characterized by aging effects at the critical point; in other

= {1 +exp [—224(g% + 1)t] }71 .

words, it does not relax to equilibrium state and the FDT for
this mode is violated.

In the Gaussian approximation, the main characteristic
quantities of the nonequilibrium critical behavior for model A
with relaxation dynamics and a nonconserved order para-
meter are the dynamic critical exponent z = 2 and the critical
exponent 0’ =0 of the nonequilibrium initial increase in
magnetization, with the limiting FDR equal to X =1/2.
Strong fluctuation effects accompanying second-order phase
transitions result in fluctuation corrections to these values.
Following standard methods [41, 42], fluctuation corrections
to expressions for correlation and response functions can be
obtained by perturbative expansion of the functional weight
exp [~ (L[S, S] + Ho[So])] in powers of coupling constant g
being present at vertex g(4/3!)S,S,SSp in the action
functional £;y[S, S] (27), and describing fluctuation interac-
tion in a pure system, as well as in powers of coupling
constants g and v in the respective vertices of the action
functional Lin[S, S ] in expression (27), which describe
fluctuation interaction in a system containing defects.

It was shown for the first time in Ref. [34] that the critical
evolution of a system from an initial high-temperature
nonequilibrium state with low magnetization ny = m(0) < 1
results in the universal scaling behavior for magnetization
M(1) at the short-time stage of its critical evolution and is
characterized by the power-law increase in magnetization
with time: M(¢) ~ ¢%". The authors proposed the renormgroup
description of nonequilibrium critical relaxation and pre-
sented scaling forms for magnetization, the correlation
function, and dynamic susceptibility. They also computed
the exponent 0’ using e-expansion technique in the two-loop
approximation.

To recall, the short-time stage of the nonequilibrium
evolution of a system corresponds to the limit t — z,, > ¢, in
scaling two-time forms (7) for correlation and response
functions. Further computer simulation studies [39] of none-
quilibrium critical relaxation of the three-dimensional Ising
model in the short-time regime confirmed theoretical predic-
tions of the power-law evolution of magnetization in
ferromagnetic systems, but the value of 0" = 0.108(2) found
in this study proved to be at variance with the theoretical
value of 0’ = 0.130 [34] obtained by direct substitution of
parameter ¢ = 1 in the case of three-dimensional systems or
with 0’ = 0.138 obtained by the Padé-Borel method for
summation of a very short series of the perturbation theory
ine.

The authors of Ref. [14] were the first to calculate the
critical exponent 0’ of short-time evolution in the following
three-loop approximation of the renormalization group
theory in the framework of the e-expansion method:

+2 6¢e 3

I s{lJr (n+3+ n+81nf>

a9 sy (n+8)In 3
7.2985

L e*(n® +17.3118n°
(n+8)

+ 153.2670n + 383.5519)} +0(eY), (41)

and to demonstrate excellent agreement with the results of
computer simulation applying the Padé—Borel method to sum
up a three-term series of the theory at ¢=1 with
6" =0.1078(22) for the Ising model with n=1, and
0' = 0.1289(23) for the XY model with n = 2. Reference [14]
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also reports the calculation of the dynamic critical exponent z:

2
z:zﬁ—(élnil) nt2
2 3 (n+8)

X {1 + P(W - 0.4384812)} .

The authors of Ref. [14] pointed out that the additional vertex
function I'7% governing fluctuation corrections to the
dynamic response function, which are associated with the
influence of initial nonequilibrium states, and localized at the
‘surface’ of initial states with time ¢ = 0 emerges in pure
systems only starting from the three-loop approximation in
the theory of nonequilibrium critical processes. These
fluctuation corrections reflect the influence of initial non-
equilibrium states and must be taken into consideration in
order to adequately describe relaxation processes and obtain
by applying the e-expansion method values consistent with
the results of computer simulation for the critical exponent 6’
determining evolution of the system in the short-time regime.

Reference [15] reports on evaluating the influence of
nonequilibrium initial states on the critical evolution of
structurally disordered systems with quenched uncorrelated
defects. The field-theoretical description of the nonequili-
brium critical behavior of three-dimensional systems was
realized for the first time and the critical exponent 0’ of
short-time evolution was calculated in the two-loop approx-
imation without e-expansion. It was shown that the additional
vertex function I') localized at the initial state ‘surface’ and
conditioning fluctuation corrections in the dynamic response
function due to the influence of initial nonequilibrium states
emerges already starting from the two-loop approximation.
Numerical values of dynamic critical exponents obtained by
summation of asymptotic series were compared with results of
computer simulation of the nonequilibrium critical behavior
of the three-dimensional disordered Ising model in the short-
time regime [15]. It was demonstrated that the values of critical
exponents z = 2.198(2), 8’ = 0.120(8) calculated on a basis of
the renormalization group description better agree with the
results z = 2.191(42), 0’ = 0.127(16) of computer simula-
tion than those obtained by applying e-expansion method
with 0’ = 0.0867 [36].

Renormalization group investigations into aging effects in
the nonequilibrium critical behavior of both ‘pure’ and
structurally disordered systems with purely dissipative
dynamics described by model A [35] were conducted in
Refs [21, 22], respectively, applying the e-expansion method.
In these studies, the asymptotic FDR values X were
calculated for ‘pure’ systems with the n-component order
parameter [21], which gave in the two-loop approximation the
following expression:

(42)

(x>)! |2
= &
2 4(n+8)
, n+2 [n—i—Z 3(3n+ 14) 3
€ + +c¢| +0(e 43
8Pl 8 4n+s) &) @3
with the numerical parameter ¢ = —0.0415 ... (the analytical

expression for ¢ is reported in paper [21]). For the diluted
Ising model, the following expression was derived in the one-
loop approximation [22]:

1 1 /6¢

X" =3"1V=

+0(e) . (44)

The following fluctuation—dissipation ratios were found
based on relation (43): X355, = 0.429(6) for the three-
dimensional Ising model (6 =1, n=1); X35, = 0.416(8)
for the XY model (¢ = 1, n = 2), and X55;, = 0.30(5) for the
two-dimensional Ising model (¢ = 2, n = 1). These values are
in excellent agreement with the results of MC research
presented in Table 1. The value of X3ppv =~ 0.416 was
obtained for the disordered three-dimensional Ising model.
The authors of Ref. [22] emphasize that the comparison of
these X values calculated in the first-order perturbation
theory with the results for the ‘pure’ model does not allow the
character and peculiarities of the influence of defects on the
FDR to be elucidated; calculations in higher orders are
needed for this purpose. Moreover, Refs [43-45] showed
that expansion series in powers of /¢ are not well suited for
d =3 substitution in real three-dimensional systems. The
results of MC research on nonequilibrium critical dynamics
in ‘pure’ and structurally disordered three-dimensional Ising
models are presented in Sections 3 and 4.

2.2 Nonequilibrium critical dynamics of systems evolving
from a low-temperature initial state

2.2.1 Scaling forms for the autocorrelation function and the
response function. Given that the initial state of a system is
characterized by magnetization myy # 0 (a low-temperature
initial state) with its subsequent quenching at Ty = T, the
renormalization group analysis of nonequilibrium critical
dynamics for the systems described by the totally dissipative
model A predicts that magnetization, the correlation func-
tion, and the response function exhibit the following scaling
behaviors [34, 46]:

M(t, twm) = Ayt P/ Fy <i> ;

Im

a+1-d/z 4 ot ty 1
C(t, ty, tm) = Ac(t — ty) — Fc ) (45)

ty t Im

AN
R(t, by, tm) = Ar(t — tw)“’d/“' (—) Fr <l7 *) .
tw t tm

Modification of these relationships in comparison with
scaling forms (7) is conditioned by the introduction of a new
timescale f,, determined by initial magnetization my and
related to myg by the universal dependence

Im = Bmmo_K 5 (46)
in which B,, is the nonuniversal amplitude, and exponent
Kk > 0 is expressed via static and dynamic critical exponents:
k=1/(0+a+p/(vz)) =1/(0"+ B/ (vz)).

As a result, functions C(z, ty, ty) and R(¢, ty, 1) become
the homogeneous in the extended sense functions of three
timescales: ¢ — ty, ty, and ty,. Specifically, when t, < t < ty
(which is always fulfilled in the case of initial magnetization
my = 0), the scaling relations (45) for C and R reduce to those
in formulas (7) with F¢ g(x,0) = fc r(x). Otherwise, for
Im < ty < t, the scaling relations (45) assume the following
form [46]:

C(t, 1) = ac(t — ty) " <i>01FC (l—w) ;

twy t

t 0 — [t
Ritu) = axlt =)~ (L) ().

(47)
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where the new exponent 0 = —5/(vz) = —(1 4+ a+ f/(vz)),
while F¢ g are universal scaling functions related to Fc. R(r »)
behavior at large values of argument y. In the aging regime
realized for times ¢ — ty, ~ ty > 1, the two-time dependence
of the correlation function and the response function is
described by the relations

-y
122109 <t_> ,
w

_ [t
R(t, 1) ~ 1/ 01 fp (—) :

tw

C(t, ty) ~
(48)

with scaling functions F¢, g(t/ty) that decay at long observa-
tion times, t — ty > ty > tn, following the power-law time
dependence

i)~ ()

characterized by exponent ¢ = d/z — a+ 6/ (vz).

(49)

2.2.2 Renormalization group description. In the renormaliza-
tion group description of nonequilibrium behavior of systems
evolving from an initial low-temperature state with a nonzero
average value of the order parameter (S(x,)) = M(t), it is
convenient to write the action functional given by relations
(25)—-(27) in terms of fluctuations with respect to
S(x,t) — M(¢) values. To conserve the former notations for
variables S(x, 7) and S(x, ¢) in relations (25)~(27) and assign
to them the same sense of mean zero-value fields, we perform
S(x,1),S(x,1) — S(x,1) + M(t), S(x, 1) transformation in
expressions (25)-(27). By redefining m?(t) = gM?(¢)/2, the
Gaussian constituent of the action functional (26) can be
represented as

EG—J J %8, {GS + At — A+m?)S,
0

— 1S, +\/7 ,m+/1\/im ‘[+ (50)
where the set of items
2 2
—Om+ | -m|zt = Negr (51)
g g

has the sense of an effective magnetic field acting on the order
parameter S(x, 7). Notice that the effect of the nonzero mean
value of the order parameter m(z) is equivalent to the time-
dependent shift of the phase transition temperature:
© — t 4+ m?>(t). Therefore, when the system asymptotically
approaches the critical point 7 =0 for large times, it
effectively passes in the short-time regime into the high-
temperature magnetically disordered phase.

The introduction of the bare response function and
correlation function to the Gaussian approximation by the
method described in Section 2.1.2 yields the following
expressions for them in the momentum space:

R()(({, Z ZW) = O(Z - IW)

X exp {— Mg> + 1)1 —ty) +J

t

dt'mz(t')} . (52)
L
di’ Ro(q £,1")Ro(q, tw, ') .

Colg, 1, 1) = zrrc (53)

0

The law of magnetization evolution m(¢) needed to find Ry
and Cj is derived from the equation of motion (6L /8S) = 0,
which leads at (S(x, 7)) = 0 and (S(x, 7)) = 0 to the equation

3, m(1) + im() (r + ’"2(’)) _o0. (54)

3

As a result, the influence of the effective magnetic field /i
(51) on the order parameter in the Gaussian component of
the action functional (50) disappears due to relevant
equation (54) for the time-dependent behavior of magneti-
zation m(t).

At the critical point with 7 = 0, equation of motion (54)
takes the form

3
0 m(1) + 7 m3(’) —0 (55)
having the solution
2me\ "
m?(1) :m§<1 n “;’“) . (56)

The last expression is consistent with the scaling behavior of
magnetization M(¢) in relation (45). A comparison of
formulas (45), (46), and (56) taking into account that
= /g/2M(t) leads in the Gaussian approximation to
tm = 3/(2Am0) BmmO”C with k=2 and Ay =1, B, =
v/2/3. For t> t,, one has m(t) ~ (2¢/3)” 172, therefore
nonzero initial values of magnetization my prove unessen-
tial at the long-time stage of system’s evolution; in the best
case, they can serve as corrections to the leading terms in
the scaling behavior of thermodynamic and correlation
functions.
Substituting relation (56) into (52) and (53) yields the
following expressions for the bare response function and the
correlation function at the critical point (t = 0):

32
— ty) <tw + tm) exp [—/lq2(t —tw)],

RO((L t7 tW7 tm) = 0(t

t+ tm
(57)
2)exp [—Aq3(t + 1)
Co(([,l, lWatm) = [ 3/1
[(t+ tm) (tw + tm)]
tw
« J dt’ (¢ + 1)’ exp (23q21") . (58)
0
At g = 0, relations (57) and (58) assume the form
3/2
tw + Im
R = wylm) = — lw B}
0(g=0,1,ty,tm) = 0(¢ t)(z+tm) (59)
). w m 4 —td
Co(q:()vtv thtm) =3 ([ R ) tm 32 (60)
2 [(1+ tm)(tw + t)]

By comparing expressions (59) and (60) at 7, = 0 with the
scaling forms (47) for the response and correlation functions,
it is easy to find that in the Gaussian approximation the
exponents z =2, a =2, = —3/2 correspond to the mean-
field values of critical exponents 6 =3, v=f =1/2, and
n =0and that ag = 1, ac = /2, Fr(x) = 1, and Fc(x) = 1.

Now, let us determine the FDR in the Gaussian approx-
imation. To this effect, we differentiate (58) with respect to t
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and represent the results in the form

01, Co(q, 1, tw, tm) = 2AR0(q, t, tw, tm)

— (¢ +m*(t)) Colg, 1, 1wy tm) . (61)
The FDR at the critical point is then expressed as
RO(qvtv thm)
X tty,lm) = 5———F——~
O(q7 o m) awaO(q> f ZW>tm)
1 Co(q, 1, tyr tm) 17"
=—|1- ([12 +n12(zw)) M . (62)

2 24Ro(q, t, ty, tm)

It follows from formulas (57), (58), and (62) that
Xo(q,t,tw,tm) actually depends on two variables,
X = ty/tm = 2tym/3 and y = ¢*ty, and is unrelated to 7,
ie., Xo(q,t, ty, tm) = Xo(tw/tm, q*tw), Which is a distinctive
feature of the FDR in the Gaussian approximation. Function
Xo(x =0,y) corresponds to the critical evolution of the
system from a high-temperature initial state and
Xo(x =0,y =0) = 1/2, and with an increase in y=g¢°t,
Xo(x =0,y) tends toward unity: Xo(x =0,y — o0) =1,
which suggests FDT violation for the zero mode with ¢ =0
in the large waiting time limit of ¢, — oo, whereas the
remaining modes of spin density S(q # 0,7) arrive in this
limit at the equilibrium state with X3° = 1.

For the zero mode with ¢ =0 (y =0), the FDR as a
function of variable x = t,/tm = 2t,m¢ /3 is characterized by
the relation

4aro 3 1 1!

Xo(x,y=0) 5 {1 + 5 +x)4] . (63)
Its value grows monotonically from Xy(x =0,y =0) =1/2
at x=0 to Xyp(x — oo,y =0) =4/5 as x — co. Thus, the
FDR for the global order parameter (complete magnetiza-
tion) in the long-time limit reaches the value of X° = 4/5 if
initial magnetization my # 0 in the case of evolution from a
magnetized low-temperature state, and X§° = 1/2 if initial
magnetization my = 0 in the case of evolution from a high-
temperature state. The value of X§° = 4/5 invariably remains
independent of a concrete myy # 0 value.

It should be also noted that for time intervals with
ty > t—ty > 1 the quasiequilibrium regime is realized
in which Co(g = 0,1, 1) ~ (1 — 1,) """ 2/? = Co(1 — 1y) and
Ro(q =0,1t,ty) = Ro(t — ty) behave as equilibrium functions.

Characteristics of nonequilibrium critical behavior
considered in preceding paragraphs in the Gaussian
approximation acquire fluctuation corrections in real
systems. The respective fluctuation corrections to expres-
sions for correlation functions and response functions can
be obtained by perturbative expansion of the functional
weight exp {—(L[S,S] + Hy[So])} in powers of coupling
constant g describing the interaction of fluctuations in a
pure system, and in powers of coupling constants g and v in
expression (27) describing fluctuation interaction in a system
containing defects.

Reference [46] reports a renormalization group study of
the nonequilibrium critical behavior of a d-dimensional Ising
model with purely dissipative dynamics undergoing relaxa-
tion from a magnetized initial state. The correlation function
and the response function were calculated using the first-
order e-expansion in the framework of the field-theoretical
approach. Aging effects were revealed for these functions and

the universal limiting FDR was calculated:

4073w
o = (BTN o),
5(6()0 100)”0(6 )

Expression (64) gives X33, ~ 0.78 for the three-dimensional
Ising model (e =1, n=1), and X33, ~ 0.75 for the two-
dimensional Ising model (¢ = 2, n = 1). These findings were
confirmed in part in Ref. [46] reporting numerical MC
research on the nonequilibrium critical behavior for a two-
dimensional Ising model that yielded X35~ = 0.73(1).

In Section 3, we present results of our numerical MC
simulations of the nonequilibrium critical behavior of a ‘pure’
three-dimensional Ising model described by dissipative model
A for its evolution from both a high-temperature initial state
with low magnetization my < 1 and a low-temperature initial
state with my = 0, laying emphasis on aging effects and their
characteristics. Moreover, we calculated the limiting FDR
and evaluated the influence of structural defects on aging
effects and FDT violations in the nonequilibrium critical
behavior of the three-dimensional Ising model undergoing
relaxation from the high-temperature initial state.

(64)

3. Investigations into aging effects

and fluctuation—dissipation theorem violation
in the behavior of the ‘pure’
three-dimensional Ising model

A simple but not trivial model whose nonequilibrium critical
behavior exhibits aging effects is the three-dimensional Ising
model. Its dynamics determined in simulations by the
Metropolis single-spin flip and thermal bath [47] algorithms
are purely dissipative and correspond to relaxation model A
[35]. The Hamiltonian of the model given on a cubic lattice
and taking into account the influence of a local magnetic field
h; has the form

H= *JZ SiSf - ZhiSiv
(i,J) i

(65)

where J > 0 is the integral of the short-range exchange
interaction between S; spins fixed at crystal lattice sites and
assuming the values of S; = +1.

The nonequilibrium evolution of a macroscopic grid
system of N spins is simulated by the statistical MC method.
For example, the dynamic single-spin flip process examined
using the thermal bath algorithm [47] is characterized by the
probability of ith spin transition into a new state, S; — S/:

. exp(—pH(S)))
TS TS e ()

where summation over S in the denominator is performed for
all possible states of spin S; before the spin flip. The time unit
of the dynamic process is one Monte Carlo step per spin
(MCS/s), which designates the sequence of N different spin
flips at lattice sites. For an Ising model with two possible spin
states S; = %1, the probability of a spin flip can be
represented in the form

(66)

C ew ()
exp (BH(S:)) +exp (—BH(S)))

W (Si — S})

1

(67)

with realization of the so-called Glauber dynamics.
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References [48—50] report simulations of the nonequili-
brium critical behavior of a system with Ising spins on a cubic
lattice having the linear dimension L = 128 with imposed
periodic boundary conditions at T, = 4.5114(1) [51]. The
authors calculated the magnetization

1 &
M0 = (53 50) (68)
i=1
and two-time autocorrelation function
Ct, 1) = <L3Zs > M()M(1y), (69)

where angular brackets denote statistical averaging over
different realizations of initial spin configurations and MC
runs. To calculate C(z, ty,), averaging was done over 3000 runs
for each ¢, value.

In a study of critical relaxation of systems from the initial
high-temperature state with magnetization my = 0.02, the
response function and FDR were calculated using relations
as follows [32, 52, 53]:

L;Z

where S = tanh (Y, ; S,/ T), and

Sl l<S )[Si(tw + 1) =S¥ (1w + 1)])
SV S0 [Siltw + 1) = Si(tw)])

In simulation of system’s dynamics with the use of the
thermal bath algorithm, these relations make it possible to
obtain the response function and then FDR without the
introduction of a magnetic field. A detailed method for
derivation of these expressions is described in Ref. [54].
When calculating R(z, t,,) and X(t, t,,), the values obtained
were averaged over 90,000 MC runs for each ¢, because
R(t,1y) and X(t,ty), unlike the autocorrelation function,
are characterized by greater fluctuation effects and their
determination and averaging require much more extensive
statistics.

When modeling critical relaxation of the system from an
initial low-temperature state with magnetization my = 1, an
integral characteristic (dynamic susceptibility) [46, 52] was

R(1,1y) = +1) = 8" (tw+1)]), (70)

X(1,ty) = (71)

calculated:

ly N

dr’ R(1,1") Z

i=1

x(r,zw):J DAS(t)), (72)

0 TCN

with the response function defined by relation (2) and the
AS;(ty) function calculated during simulation within a time
interval from ¢t = 0 to ¢ = ty:

Iy

AS(ty) = Z [Si(s) — S7(s)] . (73)
5=0
In the limit of large observation times, one has
c
Tey(C) = JO X(q)dgq.
Then, the limiting FDR can be defined as
OTcx(t, ty
X — x(: tw) (74)

oy oC(t,tw)

Reference [55] reports a study of nonequilibrium critical
relaxation of magnetization M(¢) in the ‘pure’ Ising model for
different initial states mg (Fig. 3a) that demonstrated essential
qualitative and numerical differences in magnetization
relaxation from the initial high-temperature state with
my < 1 and the perfectly ordered low-temperature state with
mg = 1, the intermediate cases possessing niy = 0.2—0.6.

Thus, in the case of a high-temperature initial state with
my = 0.02 < 1, the stage of nonequilibrium evolution was
characterized by a rise in magnetization described by the
power- -law dependence M(z) ~ t*" with 0’ = 0.111(4), where
0’ is the 1ndependent dynamlc critical exponent [14, 17, 34].
For times ¢ > t, ~m, L/O"+B/ (=) ], this evolution stage is
replaced by a regime characterlzed by the power-law time
dependence of magnetization M(z) ~ ¢ ~#/(=).

If a system evolves from the initial ordered state with
my = 1, the time dependence of magnetization at a critical
point is directly determined by the power-law dependence
M(t) ~ t =P/ with exponent /(zv) = 0.241(8). Intermedi-
ate cases with my = 0.2—0.5 are characterized by the short
stage of magnetization growth following the M(t) ~ t?' law
with the subsequent transition into a longer relaxation
stage, M(t) ~ t~P/?*) whereas magnetization behavior for
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Figure 4. Dependences of the correlation function C(¢, ) (a) and the response function R(z,t,) (b) on observation time ¢ — ¢, for different initial

nonequilibrium states.

0.5 < my < 1.0 at short observation times is associated with
the onset of the transient regime with #., at the very first steps
of modeling that passes into the relaxation stage described as
M([) ~ [*ﬁ/(ﬂ’).

Figure 3a also demonstrates that relaxation curves for the
systems evolving from initial states with m < 1 asymptoti-
cally tend toward the relaxation curve of a system evolving
from the low-temperature initial state with my = 1. In this
case, the process of critical relaxation of magnetization M(r)
from the high-temperature initial state with my = 0.02 < 1 is
faster than relaxation from other initial states with mg # 0.

Figure 3b shows results of numerical verification of the
prediction of the scaling time dependence of M(¢) as a
function of initial values of magnetization my specified by
relation (45). The presented tm{ dependences of /") M (1) at
the critical exponents /v = 0.516(2) [56], z = 2.024(6) [57],
and 0’ = 0.106(4) [39] for the three-dimensional Ising model
suggest a ‘collapse’ of the data at x ~ 2.77 for M(z) obtained
for different myy in a single curve with universal scaling
dependence Fy(tm{). In this case, the section of the curve
corresponding to the increase in the scaling function (linear
on the double logarithmic scale) and described by the power-
law dependence Fj(x) ~ x!/* corresponds to the stage of
growing magnetization M(t) ~ 7, whereas the horizontal
section of scaling function Fj,(x) corresponds to the stage of a
critical decay of magnetization as M(t) ~ ¢ ~#/().

The results of MC simulations of two-time dependences
of the autocorrelation function C(z,¢,) and the response
function R(t,ty) on observation time 7 — f, at different
waiting times fy and initial nonequilibrium states (mg < 1
and my = 1) are presented in Fig. 4. Dependences C(t, ty,)
and R(t,ty) graphically demonstrate manifestations of
aging effects at times ¢ —ty ~ ty characterized by the
slowing down of correlation time and the weakening of
the system’s response to the external field with increasing
its ‘age’ ty.

In the aging regime, the two-time dependences for the
autocorrelation function C(t,ty) and the response function
R(1,ty) are defined by the scaling relations (11) and (12) (see
Section 2.1.1). These relations fairly well describe the results
of simulations as viewed in Fig. 5. S e01ﬁcally, (t —ty)/ty
dependences of 12/ C(t,1,) and 2@ R(1, 1) demon-
strate a collapse of the data obtamed for different ¢, in the
universal curves corresponding to the scaling functions
Fe(t/ty) and Fgr(1/ty) in relations (11). According to
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Figure 5. Scaling collapse of the correlation function C(1, #,) (a), response
function R(t,1ty) (b) in the case of a high-temperature initial state with
my < 1, and the correlation function C(1,#y) (c) for a low-temperature
initial state with my = 1.

formulas (12), these scaling functions in time intervals
(t—tw)/tw > 1 are characterized by a power-law depen-
dence on t/ty. The computed exponents ¢, = 1.333(40) and
¢, = 1.357(18) are in excellent agreement with each other
within the calculation accuracy and with exponent
¢, = 1.362(19) obtained by the short-time dynamics method
in Ref. [39].

The short-time dynamics regime for an initial perfectly
ordered state with my = 1 for the autocorrelation function
C(t,ty) is characterized, according to dependence (49), by
exggonent qS The analysis of the two-time dependence of

on (t — ty)/tw (Fig. 5¢) for the time interval
(t - tw)/lw > 1 gave the exponent ¢ = 2.742(32), in excellent
agreement with the theoretically predicted value of ¢ =
1+d/z+ B/(vz) =2.737(8) calculated with the use of criti-
cal exponents f=0.325(1), v=0.630(1) [56], and z=
2.024(6) [57].

In the aging regime, taking account of the influence of
different initial states with 0 < myy < 1, the time dependence
of the autocorrelation function is characterized by the scaling

relation
e F (L LY
ty I

C(t, ty, tm) ~ (75)
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A similar scaling form for the time dependence of dynamic
susceptibility can be obtained applying the integral relation
(72) and the scaling time dependence (48) for the response
function. This approach leads to the result:

e (11
X(lv Ly, tm) ~ thﬂ/(‘ )Fy” <l‘_’ t_> .
w m

To reveal the dependence of the autocorrelation function
and dynamic susceptibility on the initial magnetization m
predicted by relations (75) and (76), it is convenient to choose
as the waiting time a quantity proportional to the observation
time, e.g., ty = t/3. Then, the scaling forms predicted for
these functions by relations (75) and (76) will look like

(76)

C(t, ly = é,tm> =1 Ge(tmf),
(77)

t
X<[7 tW = g ) tm) = Ziz/i/(ZV)GZ(tm(’)C) .

The dependences of functions C(t,t, =1/3,tn) and
x(t,ty = t/3,1,) on observation time 7 obtained in our
studies for different initial magnetizations my are plotted in
Figs 6a,b. Figures 6¢c,d illustrate dependences of scaling
function Ge(tmf) = t?#/)C(t, ty = t/3, tw) and G, (tm{) =
2Py (t, ty= /3, tm) on variable x= tm{ at x ~2.77. All
these figures demonstrate a collapse of the data on C and y at
different myp in the universal curves corresponding to the
scaling functions G¢(tm() and G,(tm({). These results thus
confirm the complex generalized homogeneous dependence
of the correlation function and the response function (45) on
time-related variables ¢, fy, and fp,.

Let us turn to determining the FDR for different initial
states. For the high-temperature initial state with myy < 1,
Fig. 7 presents the FDR calculated by formula (71) in the
form of the functional dependence of X(z, ty,) on ty /(1 — tw)
for t—ty > ty. The linear approximation of dependence
X(t,ty) as ty/(t — ty) — 0 yielded X(#y) values for each ty.
Extrapolation of X(z, — oo) was applied to the X(z) values
obtained for different waiting times, which allowed deter-
mining the sought limiting FDR value X (see Fig. 16 in
Section 4.1.2.). These procedures brought forth the value of
X =0.380(13), which agrees poorly with the field-theore-
tical value of X353, = 0.429(6) calculated in Ref. [21], but
satisfactorily corresponds to X = 0.40 reported in Ref. [27]
as a result of preliminary numerical assessment of the three-
dimensional Ising model.
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=
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0.03 0.06 0.09 0.12
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Figure 7. Fluctuation—dissipation relation X(z,#,) as a function of
tw/(t — ty) for t —ty >t for the high-temperature initial state with
my < 1.

For the initial totally ordered state with magnetization
my =1, the FDR limiting value is X* = 0.784(7) calcu-
lated from the limiting dependence T¢x(C) (Fig. 8a) on the
basis of relation (74). This X value is in excellent
agreement with the field-theoretical value of X ~ (.78
computed in Ref. [46).

Itis shown in Section 2.2.2 that the renormalization group
description of the nonequilibrium critical behavior of systems
in the Gaussian approximation for dissipative model A
predicts a change in the FDR as a function of x = ¢, /1, for
initial states with my # 0 from 1/2 at x = 0 to 4/5 at x — oo,
with the limiting FDR value X* = 4/5 being independent of
my # 0. To evaluate fluctuation effects on the FDR as
my #0, time dependences of dynamic susceptibility
7(t, tw, tm) and autocorrelation function C(1,ty,ty,) were
calculated at t,, = /3 for the initial states with my = 0.1 and
mgy = 0.4.

The calculated parametric dependence of 7.y on C
presented in Fig. 8b gives the limiting FDR value X as
C — 0 in accordance with relation (74). Thus, for the initial
state with mg = 0.1, the result for X*° = 0.402(12) is con-
sistent with the high-temperature X = 0.380(13), while
X =0.788(5) obtained for the initial state with my = 0.4
agrees with the low-temperature value of X = 0.784(7).
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relaxation from initial states with ny = 0.4, 0.1 (b).

It can be concluded that the nonequilibrium critical
behavior of the three-dimensional Ising model with arbitrary
initial values of magnetization m can be categorized into two
universality classes corresponding to high-temperature and
low-temperature initial states with the limiting FDR values
X =X(my =0)=0.380(13) for my <0.1 and X> =
X>°(my=1) =0.784(7) for my = 0.4.

The above results of numerical research give evidence of
FDT violation in the case of nonequilibrium critical behavior
of the three-dimensional Ising model. The limiting FDR
values X differ from unity and depend on their belonging
to one of the two universality classes of nonequilibrium
critical behavior corresponding to the high-temperature and
low-temperature initial states of the system, respectively. The
threshold value of initial magnetization m{ separating these
two classes lies in the range of 0.1 < mih < 0.4.

4. Influence of structural defects on
characteristics of the nonequilibrium critical
behavior of the three-dimensional Ising model

In carrying out studies on the influence of structural disorder
on second-order phase transitions, researchers face two
problems, namely: do the critical exponents of a ‘pure’
magnet change upon dilution with nonmagnetic impurities
and, if so, are the new critical exponents universal, i.e.,
independent of defect concentration up to the percolation
threshold? The answer to the first question was given in
Ref. [58] showing that critical exponents of systems with
quenched structural defects are altered in comparison with
those of their defect-free analogs, given that the critical
exponent of the heat capacity of the ‘pure’ system is positive.
This criterion is met only by three-dimensional systems whose
critical behavior is described by the Ising model.

Investigations into the critical behavior of diluted Ising
type magnets with the use of renormalization group methods,
MC numerical simulations, and experimental techniques are
reported in numerous publications [41, 43, 45, 59-64]. They
confirm the existence of a new universality class of critical
behavior exhibited by diluted Ising type magnets, but the
dependence of asymptotic values of critical exponents on the
degree of their dilution and the influence of crossover effects
in weakly and strongly disordered systems await elucidation
and remain subjects of ardent discussion.

It is worthwhile to note that analytical renormaliza-
tion group methods applied to study the critical behavior
of impurity systems are suitable only for weakly diluted
magnetic materials with concentration of defects
(I — p) < 1, where p is the spin concentration. As a system
becomes increasingly more diluted with nonmagnetic impur-
ity atoms at spin concentrations ps < p < plmP =1 —ps,
where p$ and pi™P are the spin and impurity percolation
thresholds, respectively (for cubic lattices with nearest
neighbor interactions one has p$ ~ 0.31, pi™ ~ 0.69), the
impurities aggregate into a binding cluster coexisting for
T < T, with the spin binding cluster at spin concentrations
up to p¢ and form a fractal-like structure with effective long-
range spatial correlation in impurity distribution [65].

A change in effects of order parameter fluctuation
scattering from impurity atoms must give rise to new fixed
points for the vertices of interaction between order parameter
fluctuations. Therefore, the region with p¢ < p < pl™P is
characterized by a new type of critical behavior of three-
dimensional Ising models, corresponding to the region of the
strong structural disorder.

Such universal characteristics of the critical behavior as
critical exponents obtained for the structurally disordered
Ising model with the use of the renormalization group
description at a fixed system dimension d = 3 and various
methods for summation of series in the theory are defined
by the values of exponents v =0.678(10), f = 0.349(5),
y =1.330(17), @ =0.25(10) [68], z=2.179(1) [57], 0' =
0.120 [17] (the values for static and dynamic exponents
were obtained with the highest currently attainable accu-
racy) and fairly well agree with experimental findings for
Ising type magnets Fe,Zn;_,F, at a spin concentration
p=0.9: v=0.70(2), y=1.34(6) [64], f=0.35009), z=
2.18(10) [20, 63]. Experimental studies of strongly disordered
magnetic materials yielded v = 0.73(3), y = 1.44(6) [61] for
Fe,Zn;_,F,atp = 0.6, and v = 0.75(5), y = 1.57(16) [62] for
Mn,Zn;_,F> atp = 0.5.

Results of numerical MC research on the critical
behavior of the structurally disordered three-dimensional
Ising model are rather contradictory: some of them confirm
the independence of critical exponents on defect concentra-
tion up to the percolation threshold with v = 0.684(5),
B =0.355(3), y = 1.342(10) [69], z = 2.62(7) [70], z= 2.35(2)
[71], 6'= 0.10(2) [72, 73] obtained by adjusting intermediate
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values and amplitudes in the scaling dependence of thermo-
dynamic characteristics calculated for different spin concentra-
tions with the use of the fitted exponent of the correction to the
scaling @ = 0.370(63) [69], w = 0.50(13) [70], w, = 0.82(8)
[71], while others suggest the existence of two universal classes
of critical behavior for weakly disordered systems with
v=0.68(2), f =0.34(2) [74], z = 2.38(1) [75], v = 0.682(3),
f = 0.344(3)[76,77),v = 0.683(4), f = 0.310(3),y = 1.299(3)
[60], v=0.696(3),y = 1.345(4), w = 0.23(13) [16], z = 2.20(7)
[66,67],z = 2.191(21), ® = 0.256(55), 0’ = 0.127(16) [17] and
strongly disordered systems with v=10.72(2), f=0.33(2),
y = 1.51(3) [74], z = 2.53(3) [75], v = 0.717(7), f = 0.313(12)
[76, 77], v =0.725(6),  =0.349(4), y = 1.446(4) [60], v =
0.725(4), y = 1.415(11), o = 0.28(15) [16], z = 2.58(9) [66,
67], z = 2.663(30), » = 0.286(10), 0’ = 0.167(18) [41, 78, 79].
The essentially nonperturbative numerical MC studies of
two-time characteristics of nonequilibrium critical behavior
of the structurally disordered three-dimensional Ising model
reviewed below give a more definite answer concerning the
relative correspondence between limiting FDR values X for
structurally disordered and ‘pure’ Ising models and make it
possible to evaluate the influence of structural defects on
aging effects and X*° values in the nonequilibrium critical
behavior of the three-dimensional Ising model with spin
concentrations in both weak and strong disorder regions.

4.1 Evolution from a high-temperature initial state

This section presents results of research on aging effects in the
nonequilibrium critical behavior of the structurally disor-
dered Ising model evolving from a high-temperature initial
state [48-50, 54, 80, 81]. Two strategies were employed to
determine the response function and FDR.

One concerns the introduction of the influence from an
infinitesimally small random magnetic field, the calculation
of the two-time dependence of magnetic susceptibility of the
system as its response to the random magnetic field induced at
the instant of time ¢, and the FDR determination through
the relationship between dynamic susceptibility and the
autocorrelation function [48, 50, 80]. This strategy for
modeling the evolution of a macroscopic spin system uses
the Metropolis algorithm.

The other approach [48-50, 54, 81] does not require the
introduction of an external magnetic field but makes use of a
computation method based on applying the thermal bath
algorithm to express the response function to the external
field via the special two-time correlation function (70). Details
of this approach were highlighted in Section 3.

The Hamiltonian of a structurally disordered Ising model
is given by the expression

H==JY pipSiS;,
)

(78)

where summation is taken over the nearest neighbors, and
S; = +£1, p; are occupation numbers indicating the presence of
quenched structurally uncorrelated disorder in the system:
pi = 1 for the i site with a spin, and p; = 0 for the site with a
nonmagnetic impurity atom.

4.1.1 Simulation with a test magnetic field. Results of numerical
studies. The autocorrelation function

Clt, ty) = Kl%ji::pi S,-(t)Si(tw)ﬂ (79)

and magnetic susceptibility

Atty) = [<Wlﬁﬁpih,~<zw>&<z>>]

(80)

were calculated, where p is the spin concentration in the cubic
lattice with linear dimension L, angular brackets denote
statistical averaging over realizations of the initial state,
square brackets stand for averaging over various configura-
tions of the defect distribution in the lattice, and the macron
indicates averaging over realizations of a random magnetic
field. Notice that dynamic susceptibility is an integral
characteristic related to the response function by the expres-
sion

1t 1) = J’ di' R(1,1"). (81)

ty

To calculate dynamic susceptibility y(7,#y) at the instant
tw, the Hamiltonian is supplemented by perturbation
OH = — ), h;S;, where the random magnetic field is given
by bimodal distribution £/ at the sites of the crystal lattice [9].
Field amplitude /2 was chosen to be small enough (4 = 0.01)
to avoid the nonlinear effects of the field.

The system was modelled on a spin lattice with a linear size
L =128 at spin concentrations p = 0.8 and 0.6 and the
respective critical temperatures kp7./J = 3.4995(2) and
2.4241(1) [16, 17]). The initial high-temperature state,
T> T., of the system with low magnetization myy < 1
(my =0.01 for p=0.8, and my = 0.005 for p =0.6) was
formed to be essentially nonequilibrium for the critical
regime of interest at 7 = T,. The system’s behavior was
examined at times up to 10,000 MCS/s for waiting times
tw = 50, 250, 500, and 1000 MCS/s. The resulting depen-
dences were computed by averaging over 1000 impurity
configurations; for each of them, averaging was performed
over 20 realizations of the initial state, and 10 realizations of a
random magnetic field.

Figure 9 shows on the double logarithmic scale the
plots of calculated temporal evolution of the autocorrela-
tion function for systems with p=0.8 and 0.6 and
different waiting times. The graphs clearly demonstrate
the possibility of distinguishing a few regimes in the two-
time behavior of the autocorrelation function. For exam-
ple, the behavior for ¢ —t, <ty does not exhibit any
dependence on the waiting time, in which case C(t,ty) =
C(t — ty), thus suggesting realization of the quasiequili-
brium regime with the power-law time dependence
Ct — 1) ~ (1 — 1) @2/=

For observation (¢ —1,) and waiting (ty) times long
enough but comparable (# — t, ~ t, > 1), the behavior of
C(t,ty) exhibits an essential dependence of waiting time #,
that characterizes aging effects, i.e., the slowing down of the
temporal correlation decline with an increase in the system’s
‘age’ ty. An approximation of the autocorrelation function
at this stage with 7= T, by the power-law dependence
C(t, 1) ~ (1 — t,) " yielded 4 values for different #,. The /
values presented in Table 2 give evidence of the slowing
down of system evolution with growing fy, and simulta-
neous enhancement of aging effects with increasing con-
centration of defects.

For the stage with ¢ — ¢, ~ t, > 1, two-time dynamic
functions can be characterized by the following depen-
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Figure 9. Dependence of autocorrelation function C(z, t,) on observation time 7 — ¢, on the double logarithmic scale at spin concentrations (a) p = 0.8
and (b) p = 0.6 for different waiting times #,,. Demonstration of realization of the scaling dependence for autocorrelation function (82) at different times

t, for spin concentrations (¢) p = 0.8 and (d) p = 0.6.

Table 2. Critical A values for systems with spin concentrations p = 0.8
and 0.6.

A
Ly
p=028 p=0.6
t — ty = 160—1600 t — ty = 300—1200
50 0.938(34) 0.746(32)
250 0.739(40) 0.604(45)
500 0.644(25) 0.531(40)
1000 0.569(30) 0.467(36)

dences [27]:

- t
Clt, 1) ~ 1, Fe (z_) |

w

(82)

- t
R(l‘7 tw) ~ [‘;1*<d*2+'7)/AFR (—) .

lw

The behavior of scaling functions F¢(¢/ty) and Fg(t/ty) is
well known for the stage of essentially nonequilibrium
evolution of the system, realized for times ¢ > t,, > 1. At this
stage, the scaling functions are expressed as

t t\ t t\ 7
Fel— | =~ Ac| — Frl— ) =~ Ar| — 83
() =ae(n) o om()=a(r)

with exponent ¢, = ¢, = d/z — 0'. Here, the critical exponent
0’ defines growing magnetization M(¢) ~ ¢’ during non-
equilibrium critical evolution of the system from the initial
state with my < 1 (see inserts to Figs 9a, b).

To confirm the scaling dependence of the autocorrelation
function (82), the 1/t, dependence of t\'"™"/*C(t,1,) was
constructed. The result is presented in Figs 9¢, d demonstrat-
ing the collapse of the data obtained for different z, in the
universal curves corresponding to p = 0.8 and p = 0.6 and
fitting the scaling function F¢(#/ty) in formulas (82). The
critical exponents z=2.191(21) and 1+4#n=28/v=
1.016(32) were used in the case of a weakly disordered system
with p = 0.8 [17], and z = 2.663(30) and 1 + 1 = 0.924(80)
for a strongly disordered system with p = 0.6 [41, 78].

An analysis of the /1, dependence of #\ ™"/*C(t, t,) was
employed to calculate the ¢, exponent for scaling function
(83): cu(p =0.8) =1.237(22) and c,(p = 0.6) = 0.982(30).
The ¢, value for the weakly disordered system with p = 0.8
is in excellent agreement (within the calculation accuracy)
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Figure 10. Dependence of generalized susceptibility y(z, #y) on /1, at spin
concentrations p = 0.8 and p = 0.6 for different waiting times #,.

with ¢, = 1.242(10) obtained in Ref. [17] applying the short-
time dynamics method and taking advantage of leading
scaling corrections, but poorly agrees with ¢, = 1.05(3)
found in studies on the nonequilibrium critical dynamics in
the disordered Ising model [72, 73]. We discussed the causes of
such a discrepancy in Ref. [17].

Figure 10 plots the #/t,, two-time dependence of general-
ized susceptibility y(¢,ty) for systems with spin concentra-
tions p = 0.8 and p = 0.6 for different waiting times #. It can
be seen that at the stage of evolution with  — ¢, ~ 1, > 1, as
for the autocorrelation function, the #,, dependence of y(z, ty,)
characteristic of aging effects (slow-down of system’s relaxa-
tion with age ty) is manifested, whereas at the stage with
t > ty > 1 the universal scaling dependence in the form of
F,(t/ty) ~ (t/tw)™ takes place.

The scaling behavior of dynamic functions C(z, t,) and
R(t,ty) in the t — t,, > t, > 1 regime defined by relation (82)
leads to the functional dependence of FDR X(¢, ty) only on
t/ty [31, 32]:

TR(t/ty)
(0/01)C(1/1w)
Fr(t/tw)
(2B/vz)Fe(t/ty) + (t/tw)FL(t/ty)

X(t, ty) =

~

(84)
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Such behavior of X(t,1,) is confirmed by renormalization
group calculations [21].

Representation (84) allowed limiting FDR values to be
obtained in Refs [31, 32] by means of linear approximation by
tw/t — 0 of the set of data obtained for certain two-
dimensional spin systems (Ising model, Potts model with the
number of states ¢ = 4, and clock-models with ¢ = 3) taking
advantage of their weak dependence on ¢,,. In the case of the
three-dimensional Ising model, our data demonstrate the
well-apparent #,, dependence; therefore, we first applied the
procedure for obtaining X*°(#y) = lim,_, X(z, #y) and then
found the sought limiting FDR value X =1lim,, o X (ty).

Belonging to the universality class of both ‘pure’ and
disordered systems is manifested as the universality of the
values of critical exponents and critical amplitude ratios.
According to formulas (82) and (83), the limiting FDR value
assumes the form

A 28\ !
X = lim lim X(1,1,) = A—R (ca - —ﬁ> (85)
C

ty—00 [—00

and becomes a new universal characteristic of the critical
behavior.

FDR values can be obtained on the basis of time
dependences we calculated for the autocorrelation function
C(t,tw) and susceptibility x(¢,ty) (see Fig. 10), if quantity
Tey(t, ty) is expressed in accordance with Eqns (2) and (81) as
a function of C(¢, ty):

oC(t,t") dt,:r X(C)dcC. (86)

t
Tey(t,t :J X(t,t) ———~
wA{ts ) t &0 o’ ()

To accomplish this, the C(¢, t,,) dependence of Tcx(t, ty) is
represented in the form of a certain curve (Fig. 11) with the
asymptotic curvature determining X *°(t,,):

. . d(Tey
X7 (tw) = — lim (dC)'

(87)

The sought limiting FDR value X is obtained by finding
X®°(ty) for different waiting times, then carrying out linear
approximation, and finally extrapolating the result:
X®(ty — o0).

Table 3. Limiting FDR values X for systems with spin concentrations
p=1.0,0.8, and 0.6.

tw X tw X
p=10 p=08 p=20.6
10 0.586(24) 250 0.708(15) 0.726(13)
25 0.460(52) 500 0.544(23) 0.583(14)
50 0.437(63) 1000 0.494(17) 0.519(29)
— 00 0.390(12) — 00 0.415(18) 0.443(6)

Figure 11 shows parametric dependences of Tcy(¢,ty)
on C(t,t) at t, = 1000 MCS/s for spin concentrations
p = 1.0, 0.8, and 0.6. The solid straight line corresponds to
the quasi-equilibrium behavior of the system satisfying the
FDT and X(z, 1) = 1. Dependences of Tcy(t,ty) on C(¢, ty)
demonstrate FDT violation for the nonequilibrium critical
behavior of both ‘pure’ and disordered Ising models. These
dependences and FDRs were calculated at waiting times
tw = 250, 500, and 1000 MCS/s for structurally disordered
systems, and f, = 10, 25, and 50 MCS/s for the ‘pure’
system. Table 3 presents X°°(#,) values obtained for
different waiting times.

X(ty) values are calculated according to procedure (87)
in the C(t,ty) — 0 limit corresponding to the stage with
t >ty > 1. Therefore, the inset to Fig. 11 shows those
portions of C(t,1,) dependences of Ty(,ty) that meet these
criteria and on which X (z,,) values were determined.

Importantly, in numerical research on nonequilibrium
critical behavior, the duration of the nonequilibrium stage
of'evolution for three-dimensional lattices even of such a large
size as L =128 in pure systems reaches 1000 MCS/s
compared with 10,000 MCS/s in structurally disordered
systems with L = 128 (as confirmed in the insets to Fig. 9).
This allows studies to be carried out for the analysis of aging
effects and limiting FDR values in structurally disordered
systems at much longer waiting times #, than in ‘pure’
systems, enhancing the significance of the characteristics
thus obtained for the critical state of a system with
abnormally large amplitudes and long-lived order parameter
fluctuations.

Figure 12 plots the calculated X*°(1/¢y) dependence and
its extrapolation to the X*° value as #, — oco. The limiting
FDR values X* = 0.415(18) and X*° = 0.443(6) obtained
for the system with spin concentrations p = 0.8 and p = 0.6,
respectively, suggest FDT violation in the nonequilibrium
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Figure 12. Finding the FDR by approximation of limiting X*°(#,) values
ast;! — 0 for p = 0.8 and 0.6.
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critical behavior of structurally disordered systems described
by the three-dimensional Ising model. They also indicate that
the presence of defects in strongly disordered systems with
p = 0.6 is associated with a higher X* value than in weakly
disordered systems with p = 0.8.

It can be concluded based on the tentative limiting X
value ~ 0.4 found in numerical studies on the nonequili-
brium critical behavior of a ‘pure’ three-dimensional Ising
model [27] and our examination of this model yielding
X =0.390(12) that the presence of structural defects is
responsible for a new universality class of the critical
behavior for the three-dimensional Ising model character-
ized, inter alia, by limiting FDR values X .. > X .-

It is worthwhile to mention that Ref. [21] presents the
renormalization group description of the nonequilibrium
critical behavior of dissipative systems with the noncon-
served order parameter, for which the FDR was calculated
making use of the ¢-expansion in the second order of the
theory. The FDR obtained as a series in ¢ looked like
expression (43). For the three-dimensional Ising model with
¢=1 and n =1, summation of Padé approximants gave
X =0.429(6) (the series is unsummable by Padé—Borel or
Padé-Borel-Leroy method). In Ref. [22], X*° was calculated
in the one-loop approximation for a weakly diluted Ising
model that led, in accordance with expression (44) ate = 1, to
X =0.416.

The authors of Ref. [22] pointed out that these results
obtained in the first order of the theory for the disordered
Ising model do not allow deducing peculiarities of the
influence of defects on FDR by comparing them with the
results for a pure model; calculations in higher orders are
needed for this purpose. Nevertheless, the value of
X = 0.422(14) we obtained for a weakly disordered system
with spin concentration p = 0.8 agrees with the results of the
renormalization group description to within statistical accu-
racy.

The reported numerical studies demonstrate through the
behavior of two-time functions striking peculiarities of the
nonequilibrium behavior of slow-dynamics systems, such as
the influence of initial states for times shorter than the
system’s relaxation time, manifestations of aging effects at
observation times close to the waiting time, and identification
of the FDR, the introduction of which generalizes the FDT
for the case of nonequilibrium behavior with the possibility of
introducing the effective system’s temperature as Ter =
T/X(t,ty) [24]. These peculiarities need to be taken into
consideration when setting conditions for an experimental
study on the behavior of slow-dynamics systems and the
analysis of the results obtained.

4.1.2 Simulation by the thermal bath method. Results and
their analysis. In this section, FDT violations in a
structurally disordered Ising model were investigated by
the thermal bath method, allowing the response function
to be obtained in the course of simulating the system’s
dynamics without introducing a magnetic field by expres-
sing it via a special two-time correlation function given by
expression (70) and the FDR in accordance with expres-
sion (71). For structurally disordered systems, expressions
(70) and (71) are modified taking into account the
introduction of randomly distributed nonmagnetic impur-
ity atoms and the necessity of additional averaging over
different configurations of quenched defect distribution
over the lattice. As a result, the following expressions are

used in calculating these quantities:

R(1, 1) = T}vg . (s (0 + 1)~ 87+ 1))
o (88)
TR(t, ty)
(1) = 0., C(t, )
SN S (St 1) - CallRAL)
Zﬁ\il [<p,' Si(t) (Sf(tw +1 S,(ZW))>] 7

where SV = tanh (J},, 4iPmSm/ T), Ny = pL? is the number
of spins in the lattice.

We undertook simulation of the nonequilibrium critical
behavior of both ‘pure’ and structurally disordered Ising
models with spin concentrations p = 1.0, 0.95, 0.8, 0.6, and
0.5 on a 3D cubic lattice with the linear size L = 128 [81].

The study was designed to elucidate the evolution of the
system from a specially formed high-temperature initial state
for Ty > T, with low magnetization my <1 (my(p =1) =
0.02, my(p = 0.95;0.8)=0.01, and my(p = 0.6;0.5) = 0.005).
The system’s dynamics was realized after preparing the initial
configuration at the following critical temperatures:

T.(p=1)=4.5114(1),
T.(p = 0.8) = 3.4995(2)
T.(p = 0.5) = 1.84509(6)

T.(p = 0.95) = 4.26267(4),
T.(p = 0.6) = 2.4241(1),

corresponding to the spin concentrations being considered
[16, 17]. The behavior of the systems was examined for times
up to 10,000 MCS/s. The ‘pure’ system was modelled with
statistical averaging over 94,000 runs. For modeling the
structurally disordered Ising model, the calculated values
were averaged over 6,200 impurity configurations and
15 runs for each configuration.

Figures 13a,b illustrate on the double logarithmic scale
the resulting dependences of the autocorrelation function
C(t,ty) and the response function R(t,ty) on observation
time ¢ — t,, for a set of different waiting times ¢,,. Manifesta-
tion of aging effects via dependences of functions C(¢, t,) and
R(1, 1) on the system’s ‘age’ t,, is quite apparent (correlation
effects slow down with age and the response of the system to
external perturbations decreases); in addition, relaxation of
the system slows down with a rise in defect concentration (and
decrease in spin concentration p), while aging effects become
stronger.

In the aging regime realized at observation times
t — ty~1y, in which the two-time dependence of functions
C(t,ty) and R(t,ty) is most pronounced, the scaling
dependence of these functions on waiting times ¢y, and 7 is
given by relations (11) and characterized only by scaling
functions F(t/ty) and Fg(t/1,) that depend only on the ratio
between these times. To confirm the scaling dependence of the
autocorrelation function and the response function (11), we
constructed /¢, dependences of 2/ C(t,1,) and
1P R(1, 1) with values of the critical exponents z =
2.191(21), 2p/v =1.016(32) for p=0.95 0.8 [17] and
z =2.663(30), 2f/v =0.924(80) for p =0.6, 0.5 [41, 78].
The result is shown in Fig. 14, demonstrating the collapse of
the data obtained for various #, in universal curves corre-
sponding to spin concentrations p = 1.0, 0.95, 0.8, 0.6, and
0.5 characterized by the scaling functions F¢(t/t,) and
Fgr(1/ty) in relations (11).



780

V V Prudnikov, P V Prudnikov, M V Mamonova

Physics— Uspekhi 60 (8)

100 £
E a
10! E
JC
= B p=0.5
&) tw = 150
1072 | ty = 100
E p=06
C ty = 500
B ty = 250
B = 1007 =0.95"p=08
103 L P =581, =150 1, = 500
E fy = 10 tw =100 7, =250
m 1T T B A N 111 B B B 111 BT B W RN 11| B A A N A1 AT
10° 10! 10? 103 104
t — ty, MCS/s

T T TTTI] LI 0 SR B Y A

t — ty, MCS/s

Figure 13. Dependences of correlation function C(1, #y) (a) and response function R(1, ty,) (b) on observation times ¢ — t,, for various spin concentrations p

and waiting times fy.

0k a
R T
b 107! E
C L:‘*““&%%ip:OSS
B p=10
102 | 1 1 1 1 T T |
10° t/ty 10!

10" E
3 b
: {h‘”' R, p=05
E %;fw"“‘%m: —08
n Sl p=9
- SR —
. 2 %?7/7:0.95
10 wp=1.0
1 1 1 1 T B |

_.
< —fm
=

t/ty 10!

Figure 14. Scaling dependences of the correlation function C(z, #y) (a) and the response function R(z, 7,) (b) for different spin concentrations with a

characteristic collapse of the data for various ¢, in universal curves.

It should be noted that systems with different spin
concentrations p are characterized by various scaling func-
tions F¢ g(t, ty,p). For times ¢ > 1, these functions exhibit
the power-law dependence: Fe r(t/ty) ~ Ac r(t/ty) . At
this stage of system’s evolution, the influence of aging effects
is unapparent and exponents ¢, , are related to the known
dynamic critical exponents z and 0’ [17]: ¢, = ¢, = d/z — 0.

Table 4 collates the values of ¢, and ¢, computed in
Ref. [81] for different spin concentrations p. The values of ¢,
and ¢, are in excellent agreement with one another for each
fixed spin concentration p and separately for weakly
disordered spin systems with p =0.95, 0.8 and strongly
disordered systems with p = 0.6, 0.5, but differences between
the values for the weakly and strongly disordered systems and
for the ‘pure’ Ising model are much greater than statistical
errors of their determination. The data in Table 4 agree with
the values of ¢, =1.362(19) for a ‘pure’ Ising model,
¢, = 1.242(10) for a weakly disordered system with p = 0.8,
and ¢, = 0.941(21) for a strongly disordered system with
p = 0.6 obtained in Refs [17, 39, 78] by the short-time
dynamics method.

Figure 15 demonstrates FDR values calculated based on
relation (89) as the dependence of X(z, #y) on ty /(¢ — t) for
t —ty > ty for systems with different spin concentrations.
The linear approximation of X(¢,¢y) dependence as
tyw/(t — ty) — 0 gave the X(ty,p) value for each ¢, and the
respective spin concentration p. The linear approximation of
X(tw,p) values thus obtained for different waiting times

Table 4. Values of scaling function exponents ¢,, ¢, and limiting FDR
values X for different spin concentrations.

4 Ca cr X
1.0 1.333(40) 1.357(18) 0.380(13)
0.95 1.230(28) 1.264(40) 0.413(7)
0.8 1.237(22) 1.251(22) 0.413(11)
0.6 0.982(30) 0.950(8) 0.446(8)
0.5 0.896(64) 0.955(33) 0.441(13)

followed by their extrapolation as ty — oo yielded the
sought limiting FDR value X*°. Approximation and extra-
polation procedures are illustrated by Fig. 16. They permitted
obtaining X*°(p) values collated in Table 4 for different spin
concentrations p.

The values of X # 1 suggest FDT violation in the
nonequilibrium critical behavior of ‘pure’ and structurally
disordered systems described by the three-dimensional
Ising model and the influence of a defect presence for
increased X *°(p). Similar to exponents ¢, and c,, these
X (p) values can be regarded as universal characteristics
of three classes of nonequilibrium critical behavior for
‘pure’, weakly, and strongly disordered three-dimensional
Ising systems [66, 67].

Analyzing the results of numerical studies gives evidence
that structural defects are responsible for new universal FDR
values, with X*°(p) for strongly disordered systems being
higher than X*°(p) for weakly disordered systems, and even
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Figure 15. Functional dependence of FDR X(7,¢,) on /(1 — ty) for
t — ty > ty, and different spin concentrations.
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Figure 16. Functional dependences of limiting FDR values X(z,p) on
1/t for different spin concentrations. X*°(p) values are derived in the
1/tw — 0 limit by linear approximation.

higher than X*°(p = 1) for the ‘pure’ three-dimensional Ising
model.

X>(p) values found for the weakly disordered three-
dimensional Ising model with p = 0.95 and 0.8 fairly well
agree with X35 =~ 0.416 [see formula (44)] obtained by
renormalization group computations with the use of e&-
expansion in Ref. [22]. However, X*°(p) values (see Table 4)
for the strongly disordered Ising model with p = 0.6 and 0.5
are at variance with X5 =~ 0.416 within the calculation
accuracy. Also noticeable is the fact that X*(p=1)=
0.380(13) obtained for the ‘pure’ Ising model differs from
X555 = 0.429(6) calculated with the use of s-expansion in
Ref. [21] [see formula (43) and the discussion at the end of
Section 2.1.2] but is close to X*(p = 1) ~ 0.40 reported in
paper [27] as a result of preliminary calculations for the ‘pure’
three-dimensional Ising model.

An important feature of numerical studies of the none-
quilibrium critical behavior applying the MC methods is the
duration of the nonequilibrium evolution stage of the ‘pure’
Ising model for three-dimensional lattices of even such a large
size as L = 128 does not exceed 1000 MCS/s, in contrast to
10,000 MCS/s (i.e., an order of magnitude longer) for diluted
systems with p = 0.8 and L = 128. For this reason, aging
effects and FDT violations are possible to examine in
structurally disordered systems at considerably longer wait-

ing times than ¢, in ‘pure’ systems, which increases the
significance of the resultant characteristics of the critical
behavior of systems with intrinsically high amplitudes and
long-lived order parameter fluctuations.

Importantly, the choice of experimental conditions and
analysis of critical behavior data for different systems require
that not only the influence of critical slow-down effects but
also that of aging effects be taken into consideration, bearing
in mind that the latter markedly strengthen the former with
increasing specimen ‘age’ and are responsible for the influence
of the system’s initial states on the values of thermodynamic
and correlation functions. Both the presence of structural
defects in the system and the elevation of their concentration
lead to an appreciable increase in aging effects.

4.2 Evolution from a low-temperature initial state.
Superaging effects

To elucidate peculiarities of nonequilibrium critical behavior
in a three-dimensional Ising spin system evolving from a low-
temperature initial state with my =1 and to evaluate the
influence of structural defects on these features, we applied a
method (see Refs [55, 82]) allowing us to calculate the
response function without the application of an external
magnetic field by computing generalized susceptibility in the
form of the integral response function (thermostatic suscept-
ibility):

tw N,

X(I’tW):J dr’ R(t,t)
0 —

NAS;(1y))] ., (90)

with the response function given by relation (2) and function
AS;(ty) found by modeling the system’s states from the
starting instant ¢ = 0 till waiting time #,. This function is
defined by the relation

tw

AS(ty) = Z[S,—(S) - SiW(S)] )

s=0

)

where S = tanh (JY2,,; puSn/T).
On the other hand, taking the response function in
expression (90) in the form (4) yields
ty oC(t. ¢! C(t,ty)
( ? ) dt/ — l

Ty(t, ty) = [ X(¢,1)

], ¥ o X(C)dC. (92)

Jo

As a result, the FDR will be defined by the relationship

Oy (t, ty)

X(t,ty) = hm TaC(z e

(93)

which can be used to find the limiting FDR value (6).

In Refs [55, 82], the three-dimensional Ising model was
modelled with spin concentrations p = 1.0, 0.95, 0.8, 0.6, 0.5
on a cubic lattice of linear size L = 128 at respective critical
temperatures T.(p): T.(1.0) =4.5114(1) [51], T.(0.95) =
4.26267(4), T.(0.8)=3.4995(2), T.(0.6)=2.4241(1), T.(0.5)=
1.84509(6) [16]. At the early stage of system’s evolution, the
correlation length is still rather small and the finiteness of the
size of the model being simulated turns out unessential.
Therefore, the employment of the lattice with a large enough
linear size L = 128 allows finite-dimensional effects to be
disregarded in view of their smallness in comparison to effects
associated with the simulation of equilibrium critical phe-
nomena [16].
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The two-time dependences of the autocorrelation func-

tion
Ct,ty) = KNLs,i: Psz(l)Si(lw)ﬂ
1 &

> piSi(D)

1 &

(v rso) (5 2 )] 09
and susceptibility x(z, t) (90) on observation time ¢ — #,, were
calculated for the time set #z, at the above-given spin
concentrations p. The behavior of the systems was examined
for times up to 10,000 MCS/s. The ‘pure’ system with p = 1.0
was modelled by statistical averaging over 90,000 runs, and
the structurally disordered Ising model by averaging the
calculated values over 6000 impurity configurations and
15 runs for each configuration.

The calculated results are presented in Fig. 17. Aging
effects manifested themselves via dependences of C(z, ¢,,) and
7(t, ty,) on the system’s age t,, at observation times  — ty, ~ ty,
and were characterized by the slowing down of age-driven
correlation and relaxation processes. Figure 17 also indicates
that aging effects grow as defect concentration increases and
spin concentration p decreases. The influence of defects is
most developed through a strong slowing down of correlation
effects in structurally disordered systems, as opposed to those
in a ‘pure’ system.

N

We attribute these marked changes in the behavior of the
autocorrelation function to the pinning of domain walls on
structural defects, which is associated with a nonequilibrium
alteration of the system’s domain structure during transition
from a single-domain state at 7, = 0 to the multidomain
fluctuation structure arising at critical temperature 7. This
inference follows from the plots for two [Cy(t,ty) and
Cpum(t, ty)] constituents of the correlation function (94)
represented in Fig. 18 for a ‘pure’ system and a system with
spin concentration p = 0.5. Evidently, the values of Cy(t, ty,)
and C,,(1,ty) constituents in the ‘pure’ system begin to
coincide for observation times ¢ — f,, = f,,, which leads to
their cancellation in the complete autocorrelation function. In
contrast, the plots of these constituents in structurally
disordered systems tend to draw together for times
t — ty = ty and undergo parallel changes, but full cancella-
tion fails to be achieved; moreover, the difference increases
with time ¢, and defect concentration cjmp = 1 — p.

In the aging regime, the time dependence of the auto-
correlation function and dynamic susceptibility is character-
ized by scaling relations (48) and (62) with scaling functions
Fe (1/ty) demonstrating an Fe ,(t/ty)~ (1/ty)"? power-
law behavior at the long-time stage of system relaxation
with t — ty, > ty > tyand ¢ = 1 +d/z + f/(zv). To confirm
the scaling forms for the autocorrelation function and
susceptibility, the dependences of 2¥C(t,1,) and
1P/ 52, 1) on ( — 1)/t were constructed with following
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the data obtained for different ¢,.

, tw) () and susceptibility #y

1 2

21020y (1, 1) (b) on t/ 1y demonstrating a collapse of

critical exponents: 2f3/v = 1.032(5) [56], z = 2.024(6) [57] for
p=10; 2p/v=1.016(32), z=2.191(21) [17] for p =0.95
and 0.8; 2f/v =0.924(80), z = 2.663(30) [41] for p=0.6
and 0.5. The result is presented in Fig. 19 demonstrating
‘collapse’ of the data obtained for different #,, at the respective
spin concentrations p in universal curves characterized by
scaling functions Fe(/ty) and F,(t/ty).

The exponents ¢, = 2.742(32) and ¢, = 2.756(56) were
found for time intervals with (¢ —ty)/ty > 1 for a ‘pure’
system at p = 1.0; within calculation errors, they agree with
each other and with the theoretically predicted exponent
¢=1+d/z+ p/(vz) =2.737(8). However, the exponents
for the autocorrelation function and susceptibility deter-
mined in the (r—1,)/ty > 1 interval for structurally dis-
ordered systems with p < 1 are significantly different due to
the strong influence of structural defects on the system’s
correlation properties at the nonequilibrium stage of evolu-
tion. Therefore, exponent ¢, = f3/(zv) entering the depen-
dence

~ t ¢ —Ca
Fo[—) ~(—
()~ )

and characterizing long-time relaxation of magnetization
M(t) ~ =P/ at T = T, should be taken for structurally
disordered systems to describe the power-law behavior of the
scaling function F¢(t/ty). Indeed, the following c, values
were found: ¢, = 0.232(7) at p =0.95, ¢, = 0.229(10) at
p=038, ¢, =0.175(6) at p=0.6, and ¢, = 0.175(10) at
p = 0.5; they are consistent, within the calculation errors,
with f/(zv) values at the respective spin concentrations. At
the same time, the calculated values of ¢, =2.63(4) for
p=095,¢,=2.61(4) for p=0.8, ¢, = 2.33(3) for p = 0.6,
and ¢, = 2.31(3) for p = 0.5 for the scaling function F, (¢/ty)
prove to fairly well agree with the ¢ values for the respective
spin concentrations.

Nevertheless, structurally disordered systems in the aging
regime at times ¢ — ty, ~ t,, exhibit a sharp decrease in the
autocorrelation function C(z,t,) (Fig. 17a), and its scaling
function Fc(t/t,) (Fig. 19a) in the region of decline can be
approximated by the power-law dependence with exponent
¢, assuming the values: ¢, =2.59(8) for p =0.95, ¢.=
2.61(9) for p=0.8, ¢,=2.37(10) for p=0.6, and
¢, =2.35(10) for p = 0.5, consistent within the calculation
accuracy with the calculated ¢, values for dynamic suscept-

7
ibility and exponent ¢. This means that the scaling behavior
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Figure 20. ‘Superaging’ phenomenon in the scaling behavior of autocorre-
lation function 12/ C(1, 1,,) depending on ¢/1!.

predicted by the renormalization group theory for the
correlation function in accordance with relations (47) is
manifested as the nonequilibrium behavior of structurally
disordered systems up to the aging regime with ¢ — f, ~
tw > 1; in the long-time regime with ¢ — ¢, > t,, > 1, pinning
of the domain walls on defects accounts for the considerable
slowing down of correlation effects, while the autocorrelation
function decays with time as a power-law of critical
magnetization relaxation.

A subtle analysis of the behavior of the autocorrelation
function for structurally disordered systems in the long-time
regime with 7 — ¢, > t, > | revealed violation of its simple
scaling dependence given by F¢(1/t,) apparent from the
absence of complete coincidence between the data for
different r,, (see Fig. 19a). Representation of the scaling
dependence for the autocorrelation function in the form
Fe(t/t!) provides good coincidence of the data for different
ty at u = 2.30(6) for systems with p = 0.95 and 0.80 and at
u=2.80(7) for systems with p = 0.6 and 0.5 (see Fig. 20).
Such a case of scaling dependence characterized by exponent
u > lisclassified in the theory of nonequilibrium processes as
‘superaging’ phenomenon [2].

Figure 20 demonstrates that the recovery of data collapse
for the autocorrelation function in the long-time regime with
{ — ty > ty > 1 by introducing the scaling function F¢(z/%)
destroys the collapse of the same data for ¢ — ¢, < ¢, times,
suggesting the necessity to use for structurally disordered
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Figure 21. Dependences of susceptibility on the autocorrelation function
determining, in accordance with formula (94), the FDR for various spin
concentrations p.

1, MCS/s

Figure 22. Dependences of autocorrelation function C(¢,t, = t/3, ty) on
observation time ¢ at various initial values of magnetization my for the
system with spin concentration p = 0.8.

systems a more complicated form of scaling dependence of
the autocorrelation function for ¢, < t, < ¢ than in relations
(47), such as

Ct, ty) = Ac(t — 1) " K;)HlFC (i)

)

with the functions
F L 1 —(¢+0-1) i —28/(zv)
N\t tw tw ’
; i i —B/(zv)
Ak o

fort—ty >ty > land Be(p=1) =0.

At the next stage of research, the authors of Refs [55, 82]
calculated the FDR based on relation (93). It follows from
Fig. 21 that the C-dependences of Ty were linear for a ‘pure’
system over the time range ¢ —t, =t > | in which the
autocorrelation function C(t, ty,) varied and were character-
ized by the limiting FDR value X*° = 0.784(5) obtained by
determining X(#y) from relationship (93) for each ¢, value.
Then, these X(#y) values underwent linear approximation
and extrapolation X(#, — oo0) to find the sought limiting
FDR value X*. The limiting value X> = 0.784(5) is in
excellent agreement with the field-theoretical value
X ~ (.78 obtained in Ref. [46] based on the renormaliza-
tion group description of nonequilibrium critical dynamics of
dissipative model A with the use of ¢-expansion. In the case of
evolution from a high-temperature initial state, the none-
quilibrium critical behavior of the three-dimensional Ising
model is characterized by a significantly different limiting
FDR value X = 0.380(13) [54].

However, in structurally disordered systems with strong
slowing down of correlation effects for times ¢ — #, > t, > 1
due to pinning of domain walls on defects, the C-dependences
of Ty exhibit two linear sections (see Fig. 21): one correspond-
ing to a change in autocorrelation function C(t, t,,) for times
t — ty ~ ty > 1, the other corresponding to C(t, t,) values for
the long-time stage of evolution with 7 — t, > fy, > 1. Clearly,

(96)

the length of the latter section increases with increasing
concentration of defects. The limiting FDR values X =0
correspond to the second sections for all spin concentrations
with p < 1. At the same time, the analysis of C-dependences
of Ty in the former sections with the use of relation (93)
without considering the C — 0 limit shows that application of
the linear X(t, — oo) extrapolation procedure to certain
X(ty,) leads to X(p=0.95)= 0.740(6), X(p= 0.8) = 0.736(6),
X(p=0.6) =0.726(8), and X(p = 0.5) = 0.726(4), close to
the mean-field limiting FDR value X* = 0.8 [46]. Deviations
are due to the influence of fluctuation effects and structural
defects.

To evaluate the influence of different initial states on the
nonequilibrium critical behavior of the structurally disor-
dered Ising model, we constructed the initial states of a system
with magnetizations my = 0.02, 0.05, 0.10, 0.25, 0.4, 0.7, and
1.0. The behavior of the autocorrelation function and
dynamic susceptibility for a system with spin concentration
p = 0.8 was considered for times ¢, depending on observation
time ¢.

By way of example, Fig. 22 presents time dependences of
the autocorrelation function for #, = t/3. Aging effects are
quite apparent due to the departure of the C(¢, 1y, = /3, t)
dependence from the power-law dependence in the form of a
straight line on the double logarithmic scale characterized by
the slowing down of correlation and relaxation with the
system’s age. Figure 22 also demonstrates the enhancement
of aging effects with increasing initial magnetization m.

For ‘pure’ systems (p = 1) when ¢, = /3, the correlation
function and susceptibility are described by relations (77). To
verify the validity of these scaling forms for disordered
systems as well, the scaling functions

. t
Gc(tm(;‘) _ t\%}ﬁ/(ﬂ’)C([) ty = §’ [m) ,

) : t
Gl(lm(;) = [\»2«[;/(20)(([’ ly = 37 tm)

were built from variable x = rm§ at x ~ 2.79. The graphs
demonstrate the collapse of y susceptibility data at various my
in the universal curve corresponding to the scaling function
G, (tm{) (see Fig. 23a). However, no such data collapse in the
Gc(tmf) curve is apparent for the autocorrelation function
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Figure 24. Dependences of scaling function ¢%/¢=)C(¢t,¢'/* 1) on
variable t#mg for different initial magnetizations mq for a system with
spin concentration p = 0.8.

(Fig. 23b), because the behavior of the autocorrelation
function and susceptibility in structurally disordered systems
with p <1 is significantly different owing to the strong
influence of structural defects on the correlation properties
of system [82] at the nonequilibrium stage of evolution
responsible for ‘superaging’ phenomenon. Due to this,
representation of the autocorrelation function for various
my in the form of #*m§ dependence of the function
21w (1, 111 1) for a system with p = 0.8 [82] and the
superaging exponent u = 2.30(6) leads to coincidence of the
mp > 0.25 data in the universal curve (see Fig. 24). Thus, a
more complicated scaling dependence

(ot
C(t, by, tm) ~ 152/ Fe (— —) (97)

th’ lnl1/ I

is realized for the autocorrelation function in the superaging
regime with ¢ > % in the case of structurally disordered
systems.

To study the influence of initial states with m # 0 on
limiting FDR values for the system with p = 0.8, the time
dependence of dynamic susceptibility y(z, ¢y, t,) and auto-
correlation function C(z, ty, 1) at t, = t/3 were calculated
for initial states with my = 0.1 and 0.4. The calculated
parametric C-dependence of 7,y shown in Fig. 25 makes it
possible to compute the limiting FDR value X*° as C — 0
using relation (59). Thus, for the initial state with my = 0.1
(Fig. 25a), it was found that X* = 0.418(29), in agreement
with the high-temperature X > value 0.413(11); for the initial
state with my = 0.4, X = 0.05(18), in agreement, within the
calculation accuracy, with low-temperature value X*° = 0.

Thus, it can be concluded that the nonequilibrium critical
behavior of the structurally disordered three-dimensional
Ising model with arbitrary initial magnetization n, can be
divided into two universality subclasses corresponding to
high-temperature and low-temperature initial states, each
with a characteristic limiting fluctuation—dissipation rela-
tion: X*°(mp =0) = 0.413(11) for weakly disordered sys-
tems and X*°(my = 0) = 0.443(15) for strongly disordered
systems for my < 0.25,and X (my = 1) = 0 for systems with
spin concentration p < 1 for my = 0.25.

To conclude this section, it is worthwhile to note that
numerical studies have revealed the strong influence of defects
on nonequilibrium critical dynamics of the three-dimensional
Ising model evolving from a low-temperature initial state. It
was shown that aging effects heighten with increasing defect
concentration. The influence of defects is especially apparent
as the marked slowing down of correlation effects in
structurally disordered systems, as opposed to ‘pure’ sys-
tems. As a result, the autocorrelation function for times
t—ty > ty > 1 decays as a power-law of critical magnetiza-
tion relaxation due to domain wall pinning on defects, while
the limiting FDR values determined by domain dynamics in
the long-time regime equal zero.

The nonequilibrium critical dynamics of the three-
dimensional Ising model undergoes a strong influence of
initial states. It was shown that aging effects heighten with
increasing initial magnetization my and for my > 0.25 turn
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X =0.05(18) at my = 0.4.

into ‘superaging’ effects in the nonequilibrium behavior of
the autocorrelation function.

The critical exponents determining the asymptotic behav-
ior of the autocorrelation function and dynamic susceptibility
belong to different universality classes of critical behavior,
namely, the critical behavior of ‘pure’, weakly disordered
(p = 0.95 and 0.8), and strongly disordered (p = 0.6 and 0.5)
systems [55, 80—83]. Each of the universality classes of critical
behavior may comprise two universality subclasses of none-
quilibrium critical behavior corresponding to evolution from
high-temperature and low-temperature initial states with
characteristic values of the limiting fluctuation—dissipation
relation.

5. Observation of memory effects

in the nonequilibrium behavior

of the three-dimensional Ising model

References [55, 82] were designed to study memory effects

made themselves evident in the two-time critical behavior of
the autocorrelation function (Fig. 26) at cyclic temperature

changes when a system is cooled (quenched) at a certain time
of observation t; — t,, ~ ty from the critical temperature T,
to a temperature 7 < T, (with a temperature difference
AT =T, — T, > 0), after which it remains at 7| during a
time interval A7 = t, — t; = ty + 4ty,. Thereafter, the tem-
perature goes back to 7.

The results of calculations for systems with spin concen-
trations p = 0.8 and 0.5 (see Fig. 26) at AT = 1 and different
times ¢, = 20, 40 MCS/s indicate that the reaction of the
system to ‘quenching’ is characterized by an initial rise in
C(t, tw) compared with its value at T, followed by decay of
the autocorrelation function determined by ‘quenching’
temperature 77 < Tg; thereafter, C(t,1,) tends back to its
initial value at the instant of ‘quenching’ #; as the system’s
temperature returns to critical.

In the case of earlier instant of quenching 7, — ¢, = t, and
a rather long time interval of quenching, At = 4t,, (Fig. 26a),
domain wall pinning on defects prevents the complete recovery
of the system’s ‘memory’ about its state at the instant of
quenching. An increase in the initial quenching instant,
t] — ty = 2ty and a decrease in the quenching interval to

AT=1.0 a
p=05 , ty = 40
- ‘Hﬂ&rju’-”"ﬂﬂmmm
%Wm% 1w = 20
p=08 ty =40
. ty = 20
I N N B | T O R T (R O T M

20 40 60 80 100 120 140 160 180 200 220 240 260 280
t— ty, MCS/s
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Figure 26. Memory effects in the nonequilibrium critical behavior of autocorrelation function C(t,t,) for disordered systems with p = 0.8 and 0.5
quenched to AT =1 at different stages of evolution with #, = 20 and ¢, = 40: (a) ‘quenching time’ #; — ty, = t, quenching time interval At = 4t,;

(b) 1) — ty = 2ty, and At = ty.
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At = t,, promote memory return (Fig. 26b). The removal of
data on autocorrelation function values during the period of
quenching at 7 demonstrates the absence of difference
between autocorrelation function values at the instant of
quenching and upon return to 7. This correspondence is
referred to as the ‘memory’ effect, being related in our case to
both the slower dynamics of the system in the ‘aging’ regime
with #, — ty, >ty and the smallness of the quenching time
interval interfering with manifestations of irreversible effects
in domain wall dynamics.

Moreover, the amplitude of changes in the autocorrela-
tion function regarded as a response to cooling increases with
increasing defect concentration (decreasing spin concentra-
tion p) at fixed AT and time ¢, because a rise in the
concentration of defects in the aging regime leads to
heightening the aging effects, i.e., further slowing down of
the correlation function with growing z,, (see above).

To explain this phenomenon, it should be borne in mind
that a system passing after cooling from the nonmagnetic
state at T, into the magnetized state with T} < T, finds itself
in a far-from-equilibrium state. The system’s domain struc-
ture in this state consists of domains with positive and
negative projections of magnetization separated by domain
walls. The domain structure of the system changes during
equilibration, with the interface component of the domain
walls growing with time [84]. The bulk domain fraction
rapidly reaches equilibrium state corresponding, while the
interface component needs much more time to be equili-
brated. The presence of structural defects slows down
equilibration, especially that of the interface component of
the domain walls.

To sum up, research on the nonequilibrium critical
behavior of the three-dimensional Ising model at cyclic
temperature changes revealed in the time-dependent behav-
ior of the autocorrelation function in the aging regime the
effects of memory about the state of the system at the instant
of quenching responsible for restoration of this state after
return of the temperature to the critical value at the close of a
certain quenching time interval. It was shown that domain
wall pinning on defects prevents complete recovery of the
system’s ‘memory’ about its state at the instant of quenching.

6. Investigations into aging effects
in the two-dimensional XY model

The two-dimensional XY model is one more model demon-
strating abnormally slow dynamics. However, unlike the
three-dimensional Ising model exhibiting nonequilibrium
critical behavior considered in Section 5, it demonstrates
abnormally slow behavior not only near the Berezinskii—
Kosterlitz—Thouless (BKT) phase transition temperature
but throughout the entire low-temperature phase: any
temperature in this model is critical, i.e., a continuous
cascade of phase transitions takes place [85-88]. The
topological Berezinskii—Kosterlitz—Thouless phase transi-
tion in the two-dimensional XY model, physically related to
the dissociation of coupled vortex—antivortex pairs at the
transition point, manifests itself in the form of altered spatial
dependence of the correlation function: the exponential decay
at high temperatures is replaced by ‘long-range’ power-law
decay in the low-temperature phase. A peculiar feature of
XY model behavior is the appearance of rigidity in the low-
temperature phase with respect to transverse fluctuations of
spin density [85].
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Figure 27. (a) Nonequilibrium process of annihilation of a vortex (o)—
antivortex (e) pair at times 300, 400, 500 MCS/s. (b) The nonequilibrium
process of vortex excitation pinning on structural defects (m): 250, 400,
2000 MCS/s.

The relevance of two-dimensional XY model research
arises from a large number of physical systems whose
behavior it describes, including ultrathin magnetic films
from transition metal atoms (Co and Ni) deposited onto a
nonmagnetic substrate (e.g., from Cu[89]), an important class
of planar magnets [85, 89, 90], two-dimensional crystals,
superconductor surfaces, superconducting thin films [85,
90], two-dimensional Bose liquids, superfluid helium films
[85, 87, 90], Josephson junction arrays, and superconductor—
ferromagnetic—superconductor junctions [90-93].

The static properties of the two-dimensional XY model
are known fairly well, but the nonequilibrium critical
behavior of such systems and the influence of structural
disorder on its characteristics remains to be explored. The
nonequilibrium critical behavior is expected to exhibit
certain specific features described by the two-dimensional
XY model of planar magnetic systems related to pinning
of vortices and antivortices, as well as vortex/antivortex
pairs on structural defects in the low-temperature phase
(Fig. 27).

Investigations into aging effects in the two-dimensional
XY model are carried out on the assumption of two essentially
different initial nonequilibrium states: high-temperature one
with Ty > Tgkr(p), and low-temperature one with T = 0.
The system for Ty > Txr(p) contains a high concentration
of free vortex excitations, which allows such a state to be
regarded as the initial vortical state in research on non-
equilibrium dynamics of the model at quenching tempera-
ture Ty < Tpkr. In the evolution from a low-temperature
initial state with 7' = 0, the key role in dynamics is played by
spin-wave excitations. Such a choice of initial states permits
the influence of vortex excitations and spin-wave effects on
nonequilibrium critical dynamics of the system to be thor-
oughly investigated.

According to Ref. [9], in the course of the evolution of the
two-dimensional XY model from a low-temperature initial
state with my = 1, the two-time dependence of the autocorre-
lation function for T < Tgxr can be represented in the
following scaling form:

C(t, ty) ~

1 (
(t _ IW)W(T)/2 4,
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for times ¢ — t,, > @, where a is the UV cutoff parameter of a
microscopic nature, and A =t/t,, n(T) is the critical
exponent related to transverse rigidity p, of the system by
the following expression:

n(T)=—"

2np(T)"

Two time regimes are distinguished in the nonequilibrium
behavior of the autocorrelation function. For times
t — ty < ty, this function behaves as

(99)

C(t,ty) ~ (1 — 1) "2 (100)
in correspondence with the quasiequilibrium regime of the
system’s nonequilibrium behavior. For larger times
t —ty > ty, a power-law decay of the autocorrelation func-
tion is observed:

C(t,ty) ~ t71T/4 (101)
Transition between the two regimes occurs at t — fy ~ ty.
Evidently, time dependences of the autocorrelation function
at different waiting times do not coincide. This phenomenon,
called the aging effect [9], is a manifestation of system’s age
for t > t.

The two-time dependence of the autocorrelation function
C(t,ty) can be characterized by the generalized scaling form

_ M}

C(t,ty) =1, 45{ ) |
where &(7) is the correlation length of the system, and
DIE(t — tyw)/E(tw)] is the scaling function. In the course of
evolution from a low-temperature initial state with my = 1,
the time dependence of the correlation length &(7) ~ t'/2,
whereas in the evolution from a high-temperature initial state
with my < 1, this dependence is modified by vortex interac-
tion effects and takes the form &2(7) ~ 7/ 1n ¢ [9, 94].

Results of a numerical study of aging effects in the two-
dimensional XY model evolving from different initial states
and of the influence of quenched structural defects on them
are discussed in Sections 6.1 and 6.2.

(102)

6.1 Evolution from a high-temperature initial state
Numerical studies of aging effects and FDT violation in a
‘pure’ two-dimensional XY model and in a structurally

disordered model are reported in Refs [9, 95-97] and [97,
98], respectively.

The Hamiltonian of a structurally disordered model can
be given as

H=—-JY pipiSiS;,
(i, /)

(103)

where J > 0 is the exchange integral, S; is a flat classical spin
related to the ith site of the two-dimensional lattice, and p; are
occupation numbers: p; = 1 if the ith site contains a spin, and
p: = 0if the site contains a defect.

Systems with spin concentrations p = 1.0, 0.9, and 0.8 on
alattice of linear size L = 256 were considered. Temperatures
Tkt for these spin concentrations were Tpxr(p =1.0) =
0.893(2)J [97, 99], Tekr(p=0.9)=0.679(7)J, Texr(p=0.8) =
0.485(4)J [97]. To obtain the two-time dependences of the
autocorrelation function

1
) = | (5 oS08 ) | (104
and generalized susceptibility
1
i) = | (G rhs0)]. (109)

simulations were undertaken at 16 different waiting times:
tw = 10, 20, 30, 40, 50, 100, 250, 500, 1000, 1500, 2000, 3500,
4000, 4500, 5000, and 10,000 MCS/s, and observation times
t — ty = 50,000 MCS/s. Studies of the two-time dependence
of generalized susceptibility were carried out by the small-
scale random magnetic field method [9] with the addition of
the vap,- S; h; item to Hamiltonian (103) at the instant of time
tw, choosing the amplitude % of the bimodal random field
h; = £h to be equal to 0.04. The application of this method
implies separate calculations for each waiting time ft.
Modeling a ‘pure’ system with p =1 required statistical
averaging over 6000 runs, while simulation of a structurally
disordered XY model involved averaging over 3000 impurity
configurations and 15 statistical runs for each configuration.

The resulting two-time dependences for the autocorrela-
tion function (Fig. 28) explicitly demonstrate the slowing
down of relaxation processes with system’s ‘age’ t,. These
aging effects, manifesting themselves at times ¢ — ty = ty,
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Figure 28. Two-time dependence of the autocorrelation function of a system with p = 0.9, T=0.4 (a) and p = 0.8, T = 0.1 (b) evolving from a high-
temperature initial state. The insets show dependences of Z\Z/ZC(I, ty) on (t—ty)Inty/tyIn (¢ —ty) to demonstrate the scaling form (102) of the

autocorrelation function.
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Figure 29. Temperature dependences of the Fisher critical exponent # for
different spin concentrations p. Errors are smaller than symbol sizes.

become increasingly more pronounced with increasing con-
centration of structural defects. For longer observation times,
t—ty > ty > 1, the behavior of the autocorrelation function
is characterized by a faster power-law decay, C(¢,ty) ~
(t/ty)”“, than in the aging regime. It was revealed that a
rise in defect concentration shifts the onset of the power-law
regime to the region of longer observation times.

To characterize the scaling behavior of the autocorrela-
tion function (102), the Fisher critical exponents were
calculated for all spin concentrations p and temperatures
being considered. To this end, the dimensional dependence
(m?) ~ L™1T:P) was employed. The linear size of the system
was chosen to lie in the 4-128 range. The temperature
dependences of the calculated Fisher exponents for different
p concentrations are presented in Fig. 29, showing that a rise
in defect concentration causes an increase in n(7, p) values,
although the influence of concentrations is much weaker than
that of temperature.

To confirm the scaling dependence of autocorrelation
function (102), the dependence of t‘;’,/zC(t, tw) on
(t—tw)Inty/twIn(t —tw) was constructed. The results
shown in the insets to Fig. 28 demonstrate the ‘collapse’ of
the data obtained at the long-time stage of evolution with
t—ty >ty > 1 for different ¢, in the respective p = 0.9,
T=04, and p =0.8, T=0.1 universal curves correspond-
ing to the scaling function @(&(1 — tw)/E(tw)).

To determine the FDR X(z,¢,) in accordance with
relations (86) and (87), generalized susceptibility y(¢, ty)
(105) was calculated using the data on y(z, t,) and C(t, ty) to

Figure 30. Parametric dependence of susceptibility on the autocorrelation
function for the system with spin concentration p = 0.9 and temperature
T=0.1.

determine their parametric dependence for each fixed ¢,
(Fig. 30). The limiting FDR value as a universal character-
istic of nonequilibrium critical behavior was found based on
parametric dependences of Ty(t, ty) on C(t,1ty) (Fig. 31) in
the C — 0 limit at time sections with ¢ — ¢, > t, > 1, where
the scaling dependence for the autocorrelation function (102)
is fulfilled. In Figs 30 and 31, these sections are shaded in grey
color. X(ty) values obtained for different waiting times #y
(Fig. 32) were then extrapolated as t, — oo, i.e.,as 1/t, — 0,
to find the limiting FDR value X . Figure 32 illustrates, by
way of example, the use of this procedure for obtaining X *°
values for various temperatures in the low-temperature phase
of a system with p = 0.8. The resulting temperature depen-
dences of the limiting FDR X for different spin concentra-
tions are presented in Fig. 33.

The analysis of X*(p, T < Tpkr(p)) values thus
obtained leads to the conclusion that the influence of
structural disorder results in a rise in X*° with increasing
defect concentration for equal ‘quenching’ temperatures
T < Tkt (p).

If the temperature dependence of the limiting FDR is
given in the form X ~ T*, the exponent A for different
impurity concentrations assumes the following values:
A(p=1.0)=1.988(23), A(p=0.9)=1.848(22), and A(p=0.8)=
1.838(31). Extrapolation of temperature dependences for
X®(p, T < Tpkr(p)) as T — 0 gives limz_o X = 0 for all
impurity concentrations being considered.
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Figure 31. Parametric dependence of susceptibility on the autocorrelation function of the system for different temperatures and spin concentrations in the
evolution from the high-temperature initial state. Grey color shades sections with scaling dependence for C(, t,).
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Figure 33. Temperature dependences of the limiting FDR X for systems
with spin concentrations p = 1.0, 0.9, and 0.8 evolving from a high-
temperature initial state. The inset shows the dependence of effective
temperature T of the system on temperature for the same spin
concentrations p.

The difference between X (p = 1.0, Tpxt) = 0.444(26)
at the BKT transition point obtained in Ref. [98] for a ‘pure’
system and the analytical value X*°(p = 1.0, Tgkr) = 0.5
calculated in the vortex-less approximation in Ref. [26]
allows the contribution of the vortex dynamics to the FDR
to be estimated. The resultant X values for structurally
disordered systems, X*(p = 0.9, Tgxr) = 0.357(29), and
X°°(p = 0.8, Tgkt) = 0.284(20); they suggest a strong influ-
ence of structural defects on nonequilibrium critical behavior
of the system.

Reference [100] reports a study of the temperature
dependence of FDR for a ‘pure’ system and X°°(7) in
which the linear dependence X*°(T) = 0.5T/Tpkr Wwas
obtained. However, only three time values ¢, = 100, 300,
and 1000 MCS/s were used to find X*(7') when extrapolat-
ing to ty, — oo in Ref. [100]. We used more than ten ¢, values
ranging from 10 to 10,000 MCS/s for such extrapolation to
control the passage of X(z, t,,) to the universal scaling regime
and to correctly perform the limiting transition to determin-
ing X°°(T). Crossover effects in the behavior of C depen-
dence of Ty (hence, the X(z,ty) dependence) manifest

themselves in the high-temperature region close to Tgkt(p),
as clearly demonstrated in Fig. 31.

It follows from the above that the two-dimensional
XY model for the effective temperature To(7T < Tprr) =
T/X*®(p) predicts the power-law Tey(p) ~ T'-*P) type
dependences presented in the inset to Fig. 33.

It can also be concluded that the relaxation dynamics of
the system in the BKT phase markedly slow down with
decreasing temperature, which facilitates strengthening of
aging effects. The presence of structural defects in the system
also leads to further heightening of the aging effects.

6.2 Evolution from a low-temperature initial state.
Superaging effects

Spin-wave excitations exert the most pronounced influence
on aging effects in the two-dimensional XY model evolving
from a low-temperature initial state with my = 1. These
excitations manifest themselves first and foremost as peculia-
rities of the two-time dependence of the autocorrelation
function

Ct,ty) = K[%Zp,-si(t)si(zw)ﬂ
_ |:<1%ZPISi(t)><p%2pisi(tw)>:| , (106)

in which, in contrast to that in the case of evolution from a
high-temperature initial state, the important role is played by
the second constituent C,,,(¢,ty) of the autocorrelation
function.

Functions C(t,t,) for the two-dimensional XY model
with spin concentrations p = 1.0, 0.9, and 0.8 were calculated
for different quenching temperatures in the low-temperature
phase with Ty < Tggr(p). Figure 34 demonstrates, as an
example, the autocorrelation functions for p=1.0 and
p=0.8 at temperatures 7 = Tgr(p) and T =0.1. The
aging effects, manifested through the dependence of the
autocorrelation function on the system’s ‘age’ t,, at observa-
tion times ¢—ty ~ ty, are characterized by correlation
slowing down with age. It also follows from Fig. 34 that a
rise in defect concentration (decrease in spin concentration p)
strengthens aging effects. To recall, for a high-temperature
initial state, correlation slows down to the same extent as in
the case of a low-temperature initial state at one order of
magnitude longer observation times.

The influence of defects is especially apparent as the
strong slowing down of correlation effects in structurally
disordered systems, compared with those in a ‘pure’ system.
We attribute these marked changes in the behavior of the
autocorrelation function to cluster fragmentation coming
about in the course of evolution of the two-dimensional X'Y-
model from a low-temperature initial state in which one large
cluster at my = 1 breaks down into smaller ones. Introducing
defects into the system results in abnormal slowing down of
cluster fragmentation [101], as illustrated by the plots for two
constituents of the autocorrelation function in formula (106),
Cy(t, ty) and Cpyp (1, ty,), presented in Figs 35a, b for a ‘pure’
system and a system with spin concentration p = 0.9,
respectively. The graphs show that, for ‘pure’ and structu-
rally disordered systems, the values of Cy(t,¢,) and
Coum(t, ty) constituents begin to coincide for observation
times ¢ — ty = ty, which leads to their cancellation in the
complete autocorrelation function, even if cancellation in the
structurally disordered systems occurs at longer observation
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times than in the ‘pure’ system. These effects reflect marked
differences in the nonequilibrium behaviors between the two-
dimensional XY model and the three-dimensional Ising
model, arising from the absence of spontaneous magnetiza-
tion in the former that is inherent in the latter.

To confirm the generalized scaling dependence of the
autocorrelation function given by expression (102), (1—ty)/ty
dependences of l\'],/ 2c (1, tw) were derived. Figure 36 showing

results for the ‘pure’ system (p = 1.0) demonstrates the
‘collapse’ of the data for different 7, in the universal curves
corresponding to the temperatures indicated in the figure
panels and fitted by the scaling function @[&(r — ty)/E(ty)]
(102) and the absence of a similar ‘collapse’ for the
structurally disordered system with p = 0.8. A more compli-
cated form of scaling dependence of the autocorrelation
function than that in Eqn (102) was supposed to be realized
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for the structurally disordered two-dimensional XY model.
Based on this assumption, the scaling function ®[(7 — t) /1]
was proposed with exponent u to be found from the
requirement of data ‘collapse’ for the (¢ — 1) /¥ dependence
of 4V 2C(t, ty) at various t,. Figure 37 illustrates the
realization of this procedure for a system with p = 0.8 at
various temperatures. It was revealed that the exponent
w=~14n(T,p) is associated with the ‘collapse’ of the data
for structurally disordered systems. This case of scaling
dependence on waiting time with exponent p > 1 is regarded
as ‘superaging’ phenomenon.

To conclude this section, it is worthwhile to note that
numerical studies of nonequilibrium behavior of the two-
dimensional XY model revealed significant differences in the
behaviors of systems evolving from different initial states.
These differences are attributable to the small role of high-
energy vortex excitations in system’s dynamics during
relaxation from the low-temperature initial state with
mgy = 1; indeed, its dynamics are governed only by low-
energy spin-wave excitations. Vortex excitations and their
interactions play the key role in systems evolving from a high-
temperature initial state with my < 1. The nonequilibrium
behavior of the two-dimensional XY model exhibits aging
effects and FDT violations at quenching temperatures
corresponding to the entire low-temperature phase of the
XY model. It was shown that the presence of structural
defects enhances manifestations of aging effects and pro-
duces superaging effects in the case of evolution from a low-
temperature initial state.

7. Aging effects in the nonequilibrium behavior
of multilayer structures

The currently known peculiarities of nonequilibrium critical
dynamics provide a basis for the adequate interpretation of
experimental data obtained for Co/Cr-based multilayer
structures [13]. Reference [13], designed to investigate the
relaxation of magnetization, revealed magnetic aging effects
in a Co(0.6 nm)/Cr(0.78 nm) magnetic superstructure. The
nanoscale periodicity in these magnetic multilayer structures
produces mesoscopic effects of spatial spin correlation with
slow relaxation dynamics of magnetization upon quenching
the system in the nonequilibrium state. Unlike bulk magnetic
systems, where slow dynamics and aging effects manifest
themselves near the critical point, magnetic superstructures
with nanoscale periodicity make it possible to prolong the

relaxation time by virtue of effects associated with an
increased characteristic correlation length of spin—spin
correlations. Due to this, aging and nonergodicity effects
can be observed in multilayer magnetic structures within a
wider temperature range than in bulk systems.

Reference [102] reports a numerical MC study of the
specific features of nonequilibrium behavior of a multilayer
magnetic structure made from ferromagnetic films separated
by a nonmagnetic metal layer. The magnetic films had linear
sizes L x L x N and imposed periodic boundary conditions
in the film plane. A structure with the magnetic film thickness
N = 3 was considered. The value of the exchange integral J;
determining interactions between the neighboring spins inside
a ferromagnetic film was chosen to be J;/(kgT) =1, and
film—film interactions were defined by the quantity J, =
—0.3J,. The negativeness of J, reflects the fact that the
thickness of the nonmagnetic interlayer in multilayer struc-
tures with giant magnetic resistance is chosen such that
the long-range and oscillating Ruderman—Kittel-Kasuya—
Yosida (RKKY) interactions between the spins of ferromag-
netic layers had an effective antiferromagnetic character
[103]. This interaction aligned magnetizations of the neigh-
boring ferromagnetic layers oppositely to each other.

The magnetic properties of Fe, Co, and Ni-based ultrathin
films in contact with a nonmagnetic metal substrate are most
adequately described by the Heisenberg anisotropic model
[104, 105] specified by the Hamiltonian

H==> J,[SiS— AN)S;S;] —h>_ S},

(i.J) i

(107)

where S; = (S, S7,S7) is the three-dimensional unit vector
in the ith site, 4 = 0.7 is the anisotropy parameter for Co
ferromagnetic films with monolayer thickness N = 3, and & is
an external magnetic field. The form and parameters of the
Hamiltonian are chosen such that it corresponds to a multi-
layer Co(0.6 nm/Cr) structure in which ultrathin Co films
undergo spontaneous magnetization m in the film plane xy at
subcritical temperatures.

At the first stage of the study, equilibrium character-
istics of the multilayer structure were calculated to
determine ferromagnetic phase transition temperature 7
in magnetic films, and T characterizing realization of the
antiferromagnetic configuration of film magnetizations in
the structure due to J, negativeness (Fig. 38). To determine
critical temperatures more precisely, structures with differ-
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Figure 38. Model of a three-layer structure, N = 3, J, = —0.3J;.
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ent linear sizes of the films (L =16, 24, 32, 64) were
considered. Such characteristics as ‘staggered’ magnetization
Mg, = m; —my, where m;, m; are the film magnetizations;
‘staggered’  susceptibility  jq, = [(msztg> - <mstg)2]/(TNS),
where N‘ is the number of spins in the film; heat capacity
C, = E? /(T?N), and Binder cumulant U =
(3- )7)/2 were calculated

The dnalyms of the temperature dependence of these
thermodynamic quantities in films of different linear size L
makes it possible to unambiguously characterize the type of
phase transformations in a multilayer structure and deter-
mine critical temperatures 7. and Tn [40, 41]. To enhance
the physical correspondence of the temperature dependences
of the above characteristics to the Co/Cr system, the
temperature scale was set through the exchange interaction
integral J, = 4.4 x 10~'* erg corresponding to cobalt. By
way of example, Fig. 39 presents the temperature depen-
dence of heat capacity with two characteristic peaks
corresponding to T = 60 K (kgTn/J, =0.19) and T, =
249.6 K (kgT./J; = 0.78). To recall, these critical tempera-
tures for the model multilayer structure are in excellent
agreement with Ty =53 K and T, = 225 K measured in
experiment [13] for the Co/Cr structure.

The next stage of the study was designed to examine the
nonequilibrium behavior of the multilayer structure at
quenching temperatures 7y equaling critical temperature

T. =249.6 K and temperatures 75 = 96 and 160 K being
within the Ty < T < T, range. The autocorrelation function
was calculated for the evolution of the system from a high-
temperature initial state created for 7y, > T. with reduced
‘staggered’ magnetization m)® =0.05 and from a low-
temperature initial state with mSté = 1. Characteristics were
averaged over 1000 runs.

The plots in Fig. 40 demonstrate the presence of aging
effects in the system, i.e., the abatement of correlation effects
over time ty. Aging effects arise in multilayer structures not
only at Ty = T, as in bulk systems but also at quenching
temperatures T < T.. Evidently, evolution from both low-
temperature and high-temperature initial states is associated
with a time-related correlation slowing down corresponding
to the sense of aging. It should also be noted that, correlation
times in the course of system’s evolution from a high-
temperature initial state are two—three orders of magnitude
more than those in the evolution from a low-temperature
initial state at the same ¢,, values.

In the aging regime for ¢—ty ~ ty > 1, the two-time
dependence of the autocorrelation function is characterized
by the scaling form

Clt, 1) ~ 15" Fe (ti> : (108)

w
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where exponent » at quenching temperature 75 = T, is
expressed via critical exponents: b = 2f/(zv). The scaling
function Fc(/ty) in formula (108) is the homogeneous
function of argument ¢/1,, being characterized at the long-
time stage of evolution with ¢t — t, > t,, > 1 by the power-law
decay:

t t\
Fol—)~(—
(i)~ ()

with exponent ¢, = d/z — 0" in the course of evolution from a
high-temperature initial state at 7y,=7. and ¢, =
l+d/z+ B/(zv) in the case of evolution from a low-
temperature initial state at 75 = 7,. At quenching tempera-
tures Ts # T¢, exponents b and ¢, in formulas (108) and (109)
are already unrelated to critical exponents of the system of
interest.

To verify the validity of the scaling form (108) for the data
on the autocorrelation function, ¢/t, dependences of
t2C(t,ty) = Fc(t/ty) were constructed with the choice of b
values such that the data for different ¢, fall, if possible, into a
single curve for #/t,, > 1. By the example of the autocorrela-
tion function obtained for evolution from a high-temperature
initial state, the collapse of the data on t2 C(#, #,,) and different
tw 1s seen in the universal curve (see Fig. 40) corresponding to
the scaling function F¢(7/ty) at Ty = T = 249.6 K with the
exponent b, = 2f/(zv) = 0.318(8), at Ts =96 K with b =
0.04(1), and at Ty = 160 K with b = 0.055(10).

The evaluation of aging effects in the behavior of the
autocorrelation function was supplemented by modeling
conditions under which aging effects in the relaxation proper-
ties of magnetization were revealed for the Co/Cr structure
[13]. To this effect, a rather strong magnetic field was applied
in the film plane (4 = 100J;) at instant ¢, for a short time
during relaxation of ‘staggered’ magnetization of the struc-
ture evolving from a low-temperature initial state at quench-
ing temperature 75. Removal of the field gave rise to
isothermal relaxation of ‘staggered’ magnetization and its
slow return to the relaxation curve characterizing the non-
equilibrium behavior of the structure in the absence of the
magnetic field (4 = 0). The regions within which magnetiza-
tion first relaxed and thereafter recovered following magnetic
field withdrawal to its unperturbed value at 7 =0 were
analyzed at waiting times ¢, = 10, 50, 100, and 1000 MCS/s
and quenching temperatures 73 =96 and 160 K, and
Ts=T.=249.6 K. Figure 41 graphically demonstrates
manifestations of aging effects in the relaxation of film
magnetization in a multilayer structure, i.e., relaxation
slowing down with growing .

The theory of nonequilibrium processes predicts the
following scaling dependence for the magnetization behavior
(in our case ‘staggered’ magnetization):

_ t
mstg([a [w) ~ tWaFm <l—) s

w

(109)

(110)

where exponent a at quenching temperature 75 = T, is
expressed via critical exponents: a = f§/(zv).

The proposed ¢/t dependences of timg,(t,ty) (see
Fig. 41) confirmed the scaling form (110) and distin-
guished the 7y-independent function Fj,(#/ty) where there
is an adequate choice of exponent a for each quenching
temperature 7. The figure shows that the ‘collapse’ of the
data in the curve common for all ¢, takes place not only at
the critical temperature with Ty = T, but also for T < T..
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Figure 41. Relaxation of ‘staggered” magnetization m*¢(¢, 1) from the
low-temperature initial state with mg‘g =1 (a) and the dependence of its
scaling function t&m™¢(z, 1) on (f — t)/ty (b) for quenching tempera-

tures Ts, = 96 and 160 K, and Ts, = T, = 249.6 K.

The following values for the exponent a were obtained:
a. = B/(zv) =0.159(5) at Ty = T, = 249.6 K, a = 0.022(7) at
Ty =96 K, and a = 0.025(7) at T, = 160 K. It follows from
the comparison of @ and b values that equality b = 2a,
consistent with the ratio of these exponents at the critical
temperature, holds within the calculation accuracy. More-
over, aging effects in the relaxation behavior of magnetization
in our model multilayer structure are in excellent agreement
with those observed in the Co/Cr experiment [13].

To sum up, investigations and calculations of two-time
dependences of the autocorrelation function and ‘staggered’
magnetization by Monte Carlo methods revealed aging
effects in the nonequilibrium critical behavior of multilayer
magnetic structures not only at 75 = T, but also in a wide
quenching temperature range 75 < 7. Clearly, such none-
quilibrium effects should be taken into consideration in
practical applications of multilayer magnetic structures as
components of spintronic devices with a giant magnetic
resistance effect.

8. Conclusions

This review deals with characteristic features of the non-
equilibrium critical behavior of far-from-equilibrium macro-
scopic systems. Special emphasis is laid on the methods for
renormalization group and numerical descriptions of model
statistical systems, such as the three-dimensional Ising model
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and two-dimensional XY model. Processes of the critical
relaxation of pure and structurally disordered systems
exposed to the influence of abnormally strong fluctuation
effects accompanying ordering processes in solids during
second-order phase transitions are considered. The current
upsurge of interest in such systems comes from predicted and
observed aging effects associated with their slow evolution
from a nonequilibrium initial state and violations of the
fluctuation—dissipation theorem.

Results of numerical studies of the nonequilibrium critical
behavior of the three-dimensional Ising model presented in
this review give evidence of FDT violations and strong aging
effects in the two-time behavior of the correlation and
response functions. They show that limiting FDR values
characterizing the degree of system departure from equili-
brium and FDT violation satisfy inequality X*° < 1 and
depend on the universality class of nonequilibrium critical
behavior to which they belong: one of these classes corre-
sponds to the high-temperature, and the other to the low-
temperature initial state of the system. The concept of
threshold initial magnetization m{" separating these two
universality classes falling in the 0.1 < m{" < 0.4 range was
introduced.

Numerical research revealed the strong influence of
structural defects on nonequilibrium critical behavior of the
three-dimensional Ising model. Specifically, a rise in defect
concentration results in the strengthening of aging effects
manifested as the slowing down of correlation and relaxation
processes in structurally disordered systems, in contrast to
‘pure’ systems. Nonequilibrium initial states begin to increas-
ingly more strongly influence peculiar features and character-
istics of the system’s evolution. For example, in the case of
evolution from a high-temperature initial state with magneti-
zation myg < 1, the influence of defects is manifested in
quantitative changes to universal characteristics of none-
quilibrium critical behavior, such as critical exponents and
the limiting FDR X*°(p).

It was shown that the presence of structural defects results
in setting new X*(p) values, with X*°(p) for strongly
structurally disordered systems being higher than X°(p) for
weakly disordered systems, which, in turn, is higher than
X>(p=1) for a ‘pure’ three-dimensional Ising model. For
evolution from a low-temperature initial state with my = 1,
the autocorrelation function for times ¢ —ty >ty > 1
decreases as a power-law of critical magnetization relaxation
due to domain wall pinning on structural defects, while
limiting FDR values determined by the domain dynamics in
the long-time regime become equal to zero. In this case, the
two-time scaling dependence of the autocorrelation function
was found to obey relations of the ‘superaging’ theory
suggesting enhanced influence of the system’s ‘age’ (the time
of onset of #, measurement) determined by the power-law
dependence ¢ with exponent u > 1. The values of this
exponent were shown to differ for weakly (u = 2.3(1)) and
strongly (u = 2.8(1)) disordered Ising models. Investigations
into the influence of initial magnetization mz, on peculiarities
of the nonequilibrium critical behavior of the disordered
three-dimensional Ising model demonstrated an enhance-
ment of aging effects with increasing my that turn into
‘superaging’ effects in the autocorrelation function behavior
for my > 0.25.

A comprehensive analysis of the nonequilibrium critical
dynamics of the three-dimensional Ising model revealed that
critical parameters determining the asymptotic behavior of

the autocorrelation function and response function belong to
different universality classes of critical behavior, namely the
critical behavior of ‘pure’, weakly disordered, and strongly
disordered systems. Each of these classes can be subdivided
into two universality subclasses of nonequilibrium critical
behavior corresponding to the system’s evolution from high-
temperature and low-temperature initial states with limiting
FDR values characteristic for each of them.

Research on the nonequilibrium critical behavior of the
three-dimensional Ising model at cyclic temperature varia-
tions demonstrated that the time-related behavior of the
autocorrelation function in the aging regime exhibits effects
of memory about the state of the system at the instant of
quenching responsible for the recovery of this state following
the return of the temperature to the critical value after the
system resides for some time in the ‘frozen’ state. Domain wall
pining on structural defects was shown to prevent the
complete recovery of ‘memory’ about the system’s state at
the instant of ‘quenching’.

When preparing conditions of experiments for the study
of critical behavior of different systems and analysis of the
experimental data, it is important to take into consideration
not only critical slowing down effects but also aging effects
that markedly strengthen the critical slowing down effects as
the ‘sample’ age t,, increases and underlie the influence of the
system’s initial states. The presence of structural defects and
the increase in their concentration enhance the influence of
aging effects.

The review includes results of descriptions of nonequili-
brium behavior of one more important statistical system, the
two-dimensional XY model providing a basis for research on
phase transitions and critical events in such physical systems
as ultrathin magnetic films, planar magnets, superfluid thin
films, and two-dimensional crystals.

A specific feature of the XY model is the abnormally
strong spatial and temporal correlation between the system’s
states throughout the entire low-temperature phase for
T < Tgxr characterized by power-law decline. It allows the
slow dynamics of the two-dimensional XY model to be
observed not only near the critical point but also over the
entire low-temperature 7 < Tggxr range. The numerical
description of the nonequilibrium behavior of the two-
dimensional XY model as opposed to that of the three-
dimensional Ising model is complicated by correlation and
relaxation times one or two orders of magnitude longer than
those inherent in the latter system, even taking into account
the finite-dimensional effect.

Peculiarities of the influence of initial states and structural
defects on characteristics of the two-time behavior of
response and autocorrelation functions for the two-dimen-
sional XY model were considered and the FDR calculated.
One of the factors underlying the influence of initial states is
the different time dependence of the correlation length (7). In
the course of evolution from a low-temperature initial state,
the correlation length &(f) ~ t'/2, whereas in the case of a
high-temperature initial state, this dependence is modified by
vortex interaction effects and assumes the form &%(¢) ~¢/In .
In the latter case, the key role is played by high-energy vortex
excitations and their interaction. This type of initial state was
shown to be associated with the enhancement of aging effects
parallel to the increase in structural defect concentration. The
behavior of the autocorrelation function for long observation
times ¢ — ty > ty > 1 was shown to be characterized by a
faster decline in the power-law regime than in the aging
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regime. The onset of the power-law regime was shown to be
shifted toward the longer observation time region with
increasing defect concentrations.

Calculations of limiting FDR values X*°(p, T < Tgkr(p))
for the two-dimensional XY model gave evidence that the
influence of structural disorder is responsible for their
increase with growing defect concentrations. The tempera-
ture dependence of the limiting FDR can be given in the
form X ~ T*, with the exponent /(p) taking the following
values for different impurity concentrations: A(p = 1.0) =
1.988(23), A(p=0.9)=1.848(22), and A(p = 0.8) = 1.838(31).
Extrapolation of the temperature dependences obtained for
X*(p, T <Tpxr(p)) as T — 0 gives limy_o X =0 for all
impurity concentrations.

In the evolution of the two-dimensional XY model from a
low-temperature initial state, the key role in the influence on
model dynamics is played by low-energy spin-wave excita-
tions. The strong influence of structural defects on the
nonequilibrium behavior of the autocorrelation function
manifests itself in the considerable slowing down of correla-
tion effects in structurally disordered systems in comparison
with those in a ‘pure’ XY model. These pronounced changes
are related to cluster fragmentation, i.e., the breakdown of a
single large cluster into a few smaller ones. The introduction
of defects into the system leads to the abnormal slowing down
of cluster fragmentation as confirmed by results of detailed
studies on autocorrelation function behavior. In this case, the
two-time scaling dependence of the autocorrelation function
obeys relations of the ‘superaging’ theory, and the power-law
increase in the influence of the system’s age t,, is characterized
by the exponent u = 1 +5(7,p) > 1, where (T, p) stands for
the temperature- and spin concentration-dependent critical
exponent related to transverse rigidity of the system.

The review provides evidence that the intriguing features
of nonequilibrium behavior manifest themselves in the
properties of magnetic superstructures composed of alternat-
ing Co/Cr nanoscale magnetic and nonmagnetic layers not
only near the critical temperature 7. of ferromagnetic
ordering in films, but also within a wide temperature range
with T < T.. The nanoscale periodicity stipulates the appear-
ance in these multilayer magnetic structures mesoscopic
effects of the spatial spin correlation with slow magnetiza-
tion relaxation dynamics during quenching of the system in
the nonequilibrium state.

It is worthy of note that critical properties of an
ultrathin cobalt film on the chromium substrate in a
Co(0.6 nm)/Cr(0.78 nm) magnetic superstructure showing
experimentally observable aging effects [13] are adequately
described by the two-dimensional XY model taking account
of finite-dimensional effects [89]. The influence of non-
equilibrium aging effects should be taken into consideration
in practical applications of multilayer magnetic structures as
components of spintronic devices with the giant magnetic
resistance effect.
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