
Abstract. This paper reviews features in critical behavior of far-
from-equilibrium macroscopic systems and presents current
methods of describing them by referring to some model statis-
tical systems such as the three-dimensional Ising model and the
two-dimensional XY model. The paper examines the critical
relaxation of homogeneous and structurally disordered sys-
tems subjected to abnormally strong fluctuation effects in-
volved in ordering processes in solids at second-order phase
transitions. Interest in such systems is due to the aging proper-
ties and fluctuation±dissipation theorem violations predicted
for and observed in systems slowly evolving from a nonequili-
brium initial state. It is shown that these features of nonequili-
brium behavior show up in the magnetic properties of magnetic
superstructures consisting of alternating nanoscale-thick mag-
netic and nonmagnetic layers and can be observed not only near
the film's critical ferromagnetic ordering temperature Tc, but
also over the wide temperature range T4Tc.

Keywords: phase transitions and critical phenomena, nonequili-
brium behavior, systems with slow dynamics, disordered systems,

aging effects, fluctuation±dissipation relation, multilayer magnetic
structures, Monte Carlo simulations

1. Introduction

Systems with slow dynamics have recently evoked heightened
interest on the part of both theorists and experimentalists [1±
4] by virtue of aging properties characterized by fluctuation±
dissipation theorem violations predicted for and observed in
systems slowly evolving from a nonequilibrium initial state.
Well-known examples of such systems with slow dynamics
and manifestations of aging effects are such complex
disordered systems as spin glasses [5±7]. Figure 1 demon-
strates aging effects for Ag0:973Mn0:027 spin glass revealed in
experiments. However, a number of analytical and numerical
studies [8±11] have shown that such nonequilibrium behavior
features can just as well occur in systems undergoing second-
order phase transitions, because their critical dynamics are
characterized by abnormally large relaxation times. To recall,
the fluctuation±dissipation relation introduced earlier for
spin glasses and linking the two-time spin response function
with the two-time correlation function and generalizing the
fluctuation±dissipation theorem for the case of nonequili-
brium behavior is a new universal characteristic of critical
behavior in various systems [8].

Importantly, specific features of nonequilibrium critical
dynamics discovered thus far provide a basis for an adequate
interpretation of experimental data obtained for multilayer
Fe=Cr [12] andCo=Cr [13] structures. Suffice it tomention the
recent paper [12] reporting the nonergodic behavior of a
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multilayer Fe=Cr structure based on a periodic combination
of ultrathin ferromagnetic iron films with nonmagnetic
chromium films characterized by the dependence of magne-
tization of the sample on its magnetic prehistory.

As shown in Ref. [13], investigations into the relaxation
of magnetization revealed magnetic aging effects in a
Co=Cr-based magnetic superstructure. The nanoscale peri-
odicity produces in such magnetic multilayer structures
mesoscopic effects of spatial spin correlation with slow
relaxation dynamics of magnetization upon quenching the
system in a nonequilibrium state. Unlike bulk magnetic
systems where slow dynamics and aging effects manifest
themselves near the critical point, magnetic superstructures
with nanoscale periodicity allow increasing the relaxation
time owing to the effects related to the larger characteristic
spin±spin correlation length. Due to this, aging and non-
ergodicity effects are possible to observe in multilayer
magnetic structures within a wider temperature range than
in bulk magnetic systems.

The present review considers the results of theoretical
renormalization group and numerical studies reported
recently for such universal quantities as the fluctuation±
dissipation relation and critical parameters characterizing
nonequilibrium critical dynamics of various statistical mod-
els. Particular emphasis is laid on the original data obtained
by the authors in computer simulation of the three-dimen-
sional Ising model and the two-dimensional XY model.
Special attention is given to the results of numerical Monte
Carlo (MC) simulations of the influence of structural defects
on characteristics of the nonequilibrium critical behavior of
spin systems. On the one hand, the relaxation dynamics of
such systems are much easier to study than those of complex
disordered systems, e.g., spin glasses; on the other hand, at the
nonequilibrium stage of critical evolution these systems

demonstrate aging effects analogous to those in spin glasses
and deviation from unity of the limiting fluctuation±dissipa-
tion relation (FDR) as an indicator of the system departure
from equilibrium.

The renormalization group [14, 15], numerical [16±19],
and experimental [20] methods for investigations into critical
dynamics of structurally disordered systems have made it
possible to unambiguously establish that both uncorrelated
structural defects and defects with long-range correlation
effects present in a system are responsible for emerging new
types of critical behavior andmarked strengthening of critical
slow-down effects, as opposed to those in `pure' systems. Due
to this, specific features of nonequilibrium behavior, such as
aging effects, must certainly be much more pronounced in
structurally disordered systems with new universal values of
the fluctuation±dissipation relation.

Renormalization group calculations of FDR carried out
in Refs [21, 22] in the framework of the e-expansion method
for dissipative models with the nonconserved order para-
meter in the lower orders of the theory showed that
difficulties encountered in distinguishing fluctuation correc-
tions in two-time dependences for the correlation function
and the response function have thus far prevented any
convincing characteristic of the influence of defects on the
relative correspondence between the limiting FDR values for
structurally disordered and `pure' Ising models. Numerical
studies by the inherently nonperturbative Monte Carlo
method permitted clarifying this issue and distinguishing
the influence of structural defects on aging effects and FDR
contribution to the nonequilibrium critical behavior of the
three-dimensional Ising model and the two-dimensional
XY model.

The review presents, in addition, results of our numerical
studies [23] on the nonequilibrium behavior and aging effects
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Figure 1. (a) Aging effects identified in the two-time dependence of thermoremanent magnetizationMTRM on observation time tÿ tw and waiting time tw
in Ag0:973Mn0:027 spin glass at T � 0:87Tc during evolution from a high-temperature initial state. Times are measured in seconds. MFC is the

magnetization measured as the system moved from the paramagnetic to spin-glass state upon cooling in a weak magnetic field, Tc is the temperature of

phase transition into the spin-glass phase. Verification results of the realization of two possible scaling forms: canonical aging (b) and subaging (c) for the

MTRM=MFC �tÿ tw; tw� function demonstrating characteristic `collapse' of the values in the universal curve for different tw. (Data according to MOcio,

J Hammann, E Vincent, borrowed from Ref. [2].)
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in multilayer magnetic structures composed of ferromagnetic
films separated by an interlayer of a nonmagnetic metal.
Specific behavioral features of these structures revealed by the
MC methods permit us not only to account for magnetic
aging effects manifested as relaxation of thermoremanent
magnetization in experiments with Co=Cr magnetic super-
structures [13] but also to identify aging effects in the
autocorrelation function nonequilibrium behavior during
evolution of the system from different initial states. It has
been shown that aging effects in multilayer magnetic
structures are apparent within a wide temperature range and
not only near the critical temperature, as in bulk systems.
Certainly, these aging effects should be taken into considera-
tion in practical applications of such multilayer magnetic
nanostructures as spintronic devices with a giant magnetic
resistance effect.

2. Basic concepts and model representations
of the nonequilibrium behavior theory

Aging effects manifested at the nonequilibrium stage of
relaxation of a slow-dynamics system are characterized by
the presence of two-time dependences of such functions as
correlation and response functions on waiting tw and
observation tÿ tw times; tw is the time between a specimen
preparation and the beginning of measurement of its
characteristics. During the time period tÿ tw 5 trel, where
trel is the system's relaxation time, the temporal behavior of
the system is influenced by its initial state and aging effects
characterized by both translation symmetry breaking in time
and a slow-down of relaxation and correlation processes with
increasing `age' tw of the specimen.

It is supposed that the nonequilibrium behavior of a
system is realized via its transition at the starting instant
t � 0 from the initial state at temperature T0 to the state with
temperature Ts differing from T0. The accompanying equili-
bration process is characterized by relaxation time trel�Ts�,
and equilibrium corresponding to temperature Ts is reached
in times t4 trel�Ts�, while the system dynamics prove
stationary and invariant with respect to time reversal.
However, in times 0 < t5 trel�Ts�, the evolution of the
system depends on its initial state. In this connection, the
nonequilibrium behavior of the system depends on whether it
evolves from a high-temperature �T0 > Ts� or a low-tempera-
ture �T0 < Ts� initial state.

At temperatures close to the temperatureTc of the second-
order phase transition, the system's relaxation time trel is a
diverging quantity: trel � jTÿ Tcjÿzn, where z and n are the
dynamic critical exponent and correlation length exponent,
respectively. Therefore, the system does not reach equilibrium
at a critical point throughout the entire relaxation process; at
Ts ' Tc and for times t5 trel, aging effects in the two-time
dependence can be expected for the correlation function
C�t; tw� and the external perturbation response function
R�t; tw�.

For a spin system with the spin density S�x; t�, the
temporal correlation function is given by the expression

C�t; tw� � 1

V

�

S�x; t�S�x; tw�

�
ddx

ÿ 1

V

�

S�x; t��
S�x; tw�� ddx ; �1�

and the response function for a weak external magnetic field
h�x; t� applied to the system at instant tw by the relation

R�t; tw� � 1

V

�
ddx

d


S�x; t��

dh�x; tw�
����
h�0

: �2�

In formulas (1), (2), d is the space dimension, and x is the
d-dimensional radius vector. In accordance with the causality
principle, R�t; tw> t�� 0.

According to the general picture of a relaxation process,
one expects that for t > tw 4 trel�Ts� C�t; tw� � C eq�tÿ tw�
and R�t; tw� � R eq�tÿ tw�, where C eq and R eq are the
corresponding equilibrium quantities. The fluctuation±dis-
sipation theorem (FDT) relates the fluctuation spectrum of
physical quantities in an equilibriumdissipativemedium to its
generalized susceptibilities, i.e., parameters characterizing its
reaction to an external action.

The main feature of the nonequilibrium behavior of a
slow-dynamics system is the breakdown of translational
invariance in time due to the long-time influence of non-
equilibrium initial states. It manifests itself first and foremost
as two-time characteristics of the system, such as the
correlation functions and response functions.

The nonequilibrium behavior of slow-dynamics systems is
characterized not only by aging effects but also by violation of
the FDT [1±4, 8], the consequences of which provide
theoretical grounds of various experimental methods for the
measurement of radiation scattering and absorption by
matter. Under equilibrium conditions, the FDT should
relate the correlation function with the linear response
function conjugate to it:

Req�tÿ tw� � 1

Ts

dC eq�tÿ tw�
dtw

: �3�

In the case of nonequilibrium behavior of systems for
t; tw 5 trel, the generalized FDT assumes the form

R�t; tw� � X�t; tw�
Ts

qC�t; tw�
qtw

; �4�

with the introduced quantity X�t; tw� being the fluctuation±
dissipation ratio (FDR):

X�t; tw� � TsR�t; tw�
qtwC�t; tw�

; �5�

with t > tw as ameasure of FDT violation. In equilibrium, the
FDT states thatX�t > tw 4 trel� � 1. The asymptotic value of
the FDR, viz.

X1 � lim
tw!1

lim
t!1X�t; tw� ; �6�

can be used as a universal characteristic of the nonequilibrium
behavior of a slow-dynamics system. Moreover, the value of
X1 6� 1 may provide an indication of the nonequilibrium
behavior of the system. Also, X1 can be used to define
effective nonequilibrium temperature Teff � T=X1 exhibit-
ing certain properties of the equilibrium system temperature,
i.e., characterizing the direction of thermal flows in the system
and serving as a criterion for its thermalization [24].

Let us turn to the general properties of X1 and its
dependence on the system's quenching temperature Ts. For
those states of the systemwith temperatureTs > Tc, it follows
from the FDT that X1�Ts > Tc� � 1. On the other hand, the
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general scaling arguments in Ref. [25] suggest that for a low-
temperature ordered phase with Ts < Tc, X

1�Ts < Tc� � 0.
It is believed that these results are unrelated to specific
properties of individual systems. In the case of Ts � Tc,
however, there are no general arguments defining the value
of X1�Tc�, which necessitates its derivation for each
individual statistical model. Table 1 contains X1 values for
some statistical models, which were found either by exact
solutions or in numerical studies by the MC methods
(Ref. [26] presents a more comprehensive table for X1).

It follows from Table 1 that X1�Ts � Tc� depends on
specific properties of themodel and its spatial dimension d. At
the same time, the authors of Refs [25, 27] argue, based on
scaling arguments, that the limiting FDRX1�Ts � Tc� at the
critical temperature must be a universal quantity associated
with the universality class of the model's critical dynamics.

2.1 Nonequilibrium critical dynamics of systems evolving
from a high-temperature initial state
2.1.1 Scaling forms for two-time dependences of the autocorre-
lation function and response function. It is presently well
known that the two-time autocorrelation function and
response function for system relaxation from a high-tempera-
ture initial state withm0 � 0 (orm0 5 1) satisfy the following
scaling forms:

C�t; tw� � AC�tÿ tw�a�1ÿd=z
�

t

tw

�yÿ1
fC

�
tw
t

�
;

�7�

R�t; tw� � AR�tÿ tw�aÿd=z
�

t

tw

�y

fR

�
tw
t

�
;

where functions fC�tw=t� and fR�tw=t� are finite for tw ! 0,
a � �2ÿ Zÿ z�=z, y � y 0 ÿ �2ÿ zÿ Z�=z, and y 0 is the
critical exponent characterizing the initial growth of
magnetization [34]. AR and AC are nonuniversal ampli-
tudes, the values of which are given by conditions
fR;C�0� � 1. Under these normalizing conditions, func-
tions fR;C acquire universal properties. The given scaling
forms suggest the universality of X1 expressed as the
amplitude ratio: X1 � AR=��1ÿ y�AC� [25±27].

One of the unusual properties of the nonequilibrium
critical behavior of systems relaxing from a high temperature
initial state with m0 5 1 is a rise in magnetization with
growing observation time in accordance with the power-law
function M�t� � t y

0
for times t < tcr � m

ÿ1=�y 0�b=�zn��
0 (an

example of such magnetization behavior M�t� for the three-
dimensional Ising model with different spin concentrations is
presented in Fig. 2).

Indeed, the singular part of the Gibbs potential
Fsing�t; t; h;m0� determining the system's state in the critical
region is characterized, in accordance with the scaling theory,
by generalized uniformity with respect to the main thermo-
dynamic variables:

Fsing�t; t; h;m0� � bFsing�bat t; bat t; bahh; bamm0� ; �8�

time t, reduced temperature t, field h, and initial magnetiza-
tionm0; here, b is the similarity factor, and ai are the similarity
exponents. As a result, magnetization M � ÿdF=dh at the

Table 1. Limiting FDR values X1 for systems with a high-temperature initial state with m0 5 1.

Model Solution X1 References

Ts < Tc Ts � Tc Ts > Tc

Free Gaussian éeld Exact ì 1=2 1 [28]

d-dimensional spherical model Exact 0 1ÿ 2=d 1 [27]

One-dimensional Ising model Exact ì 1=2 1 [29]

Two-dimensional Ising model MC
MC
MC

0.26(1)
0.340(5)
0.330(5)

[27]
[30]

[31, 32]

Two-dimensional Potts model
with q � 3 spin states

MC 0.406(1) [31, 32]

Two-dimensional Potts model
with q � 4 spin states

MC 0.459(8) [31, 32]

Three-dimensional Ising model MC 0 � 0:40 * [27]

Three-dimensional XYmodel MC 0 0.43 [33]

* X1 value of � 0:40 is reported in Ref. [27] as a result of preliminary numerical investigations of three-dimensional Ising model without
demonstrations of the data obtained in Ref. [27] itself and in subsequent publications.

10ÿ2

100 101 102 103 104

t, MCS/s

M�t�
p � 1.0

p � 0.8

p � 0.6

Figure 2. Time dependence of magnetization M�t� at the nonequilibrium
stage of evolution of the three-dimensional Ising model for different spin

concentrations p at respective critical temperatures. MCS/s (Monte Carlo

steps per spin).
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critical point �t � 0, h � 0� is characterized by the following
time dependence:

M�t;m0� � tÿ�ah�1�=atFm�m0t
ÿam=at� ; �9�

where Fm�m0t
ÿam=at� is the scaling magnetization function.

The expansion of the right-hand side of formula (9) in powers
of small parameter m0t

ÿam=at leads to the power-law depen-
dence

M�t� � tÿ�ah�am�1�=at � t y
0
: �10�

All ai but am can be related to the known critical exponents
describing the system's behavior regardless of effects of the
influence of nonequilibrium initial states. Therefore, the
authors of Ref. [34] introduced a new independent dynamic
critical exponent y 0 that assumes a positive value, as shown in
the renormalization group description of the nonequilibrium
critical behavior of the system [34].

The nonequilibrium stage of the initial magnetization
growth is followed for times t4 tcr by ordinary long-time
dynamics of magnetization reduction with time according to
the power-lawM�t� � tÿb=�zn�. The critical exponents y and y 0

depending on the system's dynamic universality class of the
critical behavior [35] were calculated by renormalization
group methods for certain dynamic models, e.g., the model
with a nonconserved order parameter [14, 16, 34, 36] (model
A according to the Hohenberg±Halperin classification [35]),
the model with the order parameter coupled to the conserved
field (model C) [37], and the models with the order parameter
coupled to hydrodynamic excitations having the character of
precessional motion in magnets (models E, F, G, and J) [38].

The analysis of two-time dependences for autocorrelation
and response functions [7] in the nonequilibrium process of
system's relaxation allows three stages (regimes) of its
execution to be distinguished. First is the quasiequilibrium
stage of evolution for small waiting times, tÿ tw 5 tw with
tw 4 1, when the dependence of the autocorrelation and
response functions on waiting time is still unapparent and
their changes have a stationary character: C � C�tÿ tw� �
�tÿ tw�ÿ�dÿ2�Z�=z and R � R�tÿ tw� � �tÿ tw�ÿ�dÿ2�Z�z�=z.
The second stage with manifestations of aging effects is
realized for times tÿ tw � tw 4 1. At this stage, the two-
time dependence is quite apparent for autocorrelation and
response functions characterized by the relations

C�t; tw� � tÿ2b=�nz�w F̂C

�
t

tw

�
;

�11�
R�t; tw� � tÿ2b=�nz�ÿ1w F̂R

�
t

tw

�
;

in which F̂C�t=tw� and F̂R�t=tw� are the scaling functions,
and the relationship between critical exponents 2b=�nz� �
d=zÿ aÿ 1 is used. As a result, the curves for these functions
on the observation timescale tÿ tw do not coincide for
different waiting times tw and have, in accordance with
Eqn (11), different slopes for each tw value. For the third
stage, with an essential nonequilibrium evolution of the
system for observation times tÿ tw 4 tw 4 1, scaling func-
tions F̂C�t=tw� and F̂R�t=tw� in Eqn (11) are characterized by
the decreasing power-law dependences

F̂C

�
t

tw

�
�
�

t

tw

�ÿca
; F̂R

�
t

tw

�
�
�

t

tw

�ÿcr
; �12�

with the exponent ca � d=zÿ y 0 coincident with the exponent
defining the time dependence of the autocorrelation function
in the short-time regime �tw ! 0, t4 1� of the system's
nonequilibrium critical behavior [16, 18, 39]. At this stage of
short-time dynamics, aging effects are unapparent. The
scaling analysis of the behavior of the response function
R�t; tw� in this regime predicts that cr � ca.

2.1.2 Renormalization group description of the nonequilibrium
critical behavior. Relaxation times of the order parameter
S�x; t� (spin density) near the critical point are very long;
therefore, the nonequilibrium dynamics of the order para-
meter under these conditions are a random slow process. The
nonequilibrium distribution function P�S� of such processes
must satisfy the Fokker±Planck equation

qtP � ÿ
Xn
a�1

�
ddx

d
ÿ
fa�x; t�P

�
dSa�x; t�

�
Xn
a;b

Cab

�
ddx

d2P
dSa�x; t� dSb�x; t� : �13�

The dynamics of the order parameter is given by the
Langevin equation

qtSa�x; t� � fa�x; t� � xa�x; t� ; �14�

where Sa�x; t� is the n-component order parameter. The
random force x characterizing short-lived excitations in the
system reflects the action of local microscopic degrees of
freedom on the order parameter dynamics. Let the random
force be white noise, namely


xa�x; t�
�
x � 0 ; �15�


xa�x 0; t 0� xb�x; t�
�
x � 2Cabd�xÿ x 0�d�t 0 ÿ t� :

The description of critical dynamics is not as universal as
that of the equilibrium critical properties. We shall consider
below the purely relaxation dynamics of the order parameter.
This case is one of especially important, because it is realized
in anisotropic spin systems and extensively studied in
experiment. Moreover, it is this case of relaxation dynamics
that is most successfully investigated numerically by MC
methods with the use of the Metropolis algorithm generating
single-spin flip dynamics [40].

Because the stationary solution of equation (13) must
have the following limiting form

lim
t!1P

�
S�t�� � Peq / exp �ÿH� ; �16�

there appear limitations on the choice of Cab and fa, namely

Cab � lab � ldab ;
�17�

fa�x; t� � ÿl dH�S�
dSa�x; t� ;

where H�S� is a Hamiltonian describing the critical behavior
of the system. For example, the behavior of a structurally
disordered system near the second-order phase transition
temperature can be described by the effective model Ginz-
burg±Landau±Wilson Hamiltonian [41]

HV�S� �
�
ddx

�
1

2
�HS�2 � 1

2

�
t� V�x��S 2 � g

4!
S 4

�
; �18�
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where t /�Tÿ Tc�=Tc is the reduced temperature, and V�x�
is the potential of the random field of defects. The spatial
distribution of the system of quenched uncorrelated point
defects actually the Gaussian distribution P�V� wholly
determined by the first and second moments for random
quantities V�x�:



V�x��� � 0 ;



V�x�V�y��� � vd�xÿ y� ; �19�

where v is the positive constant proportional to the concen-
tration of defects and the square of their potential. For `pure'
systems, one has V�x� � 0.

Equations (14) and (15) with Cab and fa from formulas
(17) and with the constant kinetic coefficient l > 0 give the
dynamic relaxation model A (according to the classification
in Ref. [35]) defined by the equation

qtSa�x; t� � ÿl dHV�S�
dSa�x; t� � xa�x; t� : �20�

Let the realization of any order parameter configuration
in a system at instant t be determined by the condition that,
for a system with the initial magnetization m0 at the starting
moment t � 0, the distribution for the field of order
parameter S�x; 0� � S0�x� be characterized by the distribu-
tion function P�S0� � exp �ÿH0�S0��, with

H0�S0� �
�
ddx

t0
2

ÿ
S0�x� ÿm0

�2
; �21�

where tÿ1=20 is the width of the initial magnetization
distribution. This Gaussian distribution for the order
parameter field can be realized for temperatures T4Tc at
which there are no long-range correlations for order
parameter fluctuations yet.

In the framework of the field-theoretical description of
critical phenomenon dynamics [41], an auxiliary field ~S�x�
is introduced that allows averaging over random forces
x�x; t� and describing critical dynamics equivalent to
Langevin dynamics with the help of the generating
functional W�h; ~h� for dynamic correlation functions and
response functions:

W�h; ~h� � ln

��
D�S; i ~S�P�V � exp ÿÿLV�S; ~S;V � ÿH0�S0�

�
� exp

��
ddx

�1
0

dt �~h ~S� hS�
��

; �22�

in which action functional LV�S; ~S;V � of the system is
expressed as

LV�S; ~S;V � �
�1
0

dt

�
ddx ~S

�
qS�x; t�

qt
� l

dHV�S�
dS�x; t� ÿ l ~S

�
:

�23�

The expression for the generating functional (22) can be
averaged over random fields V�x� induced by structural
defects, viz.�

P�V � exp ÿÿLV�S; ~S;V �� � exp
ÿÿL�S; ~S �� ; �24�

to obtain the action functional L�S; ~S � (translationally
invariant and independent of random V�x� fields) in the

following form

L�S; ~S � � LG�S; ~S � � Lint�S; ~S � ; �25�

LG �
�1
0

dt

�
ddx ~Sa�qtSa � l�tÿ D�Sa ÿ l ~Sa

�
; �26�

Lint � g
l
3!

�
ddx

�1
0

dt ~SaSaSbSb ÿ v l2

2

��
ddx

�1
0

dt Sa ~Sa

�2

:

�27�

The Gaussian part LG describes free fields for which the
problem of calculating the correlation functions is solved
exactly. The constituent of the action functional Lint with the
nonzero interaction constant g characterizes interaction
effects of order parameter fluctuations, while the constituent
with constant v characterizes fluctuation interaction via the
defect-induced field.

Magnetization, correlation and response functions can be
obtained from the generating functional as derivatives taken
over conjugate fields h and ~h:

M�x; t� � 
S�x; t�� � dW�h; ~h�
dh�x; t�

����
h�0; ~h�0

;

C�x1; t; x2; tw� �


S�x1; t�S�x2; tw�

�
� d2W�h; ~h�

dh�x1; t� dh�x2; tw�
����
h�0; ~h�0

; �28�

R�x1; t; x2; tw� �


S�x1; t� ~S�x2; tw�

�
� d2W�h; ~h�

dh�x1; t� d~h�x2; tw�

����
h�0; ~h�0

:

Let us consider the Gaussian (only quadratic) part of the
generating functional and define correlation and response
functions in the Gaussian approximation (bare functions).
Next, the renormgroup perturbation theory is built up on the
results of the Gaussian theory.

A convenient method for obtaining correlation and
response functions in the Gaussian approximation is based
on the solution of variational equations�

qt � l�tÿ D��Sÿ 2l ~S � ~h ; �29��ÿqt � l�tÿ D�� ~S � h �30�
under conditions

~S�t � 1� � 0 ; S�t � 0� ÿm0 � tÿ10
~S�t � 0� : �31�

Performing the Fourier transform and moving to the
dependences of the functions on wave vectors q yield
expressions for ~S and S as functions of ~h and h from
equations (29) and (30):

~Sq�t� �
�1
0

exp
�
l�q 2 � t��tÿ t 0��hq�t 0�y�tÿ t 0� dt 0 ; �32�

Sq�t� �
�1
0

dt 0 exp
�ÿl�q 2 � t��tÿ t 0��y�tÿ t 0�

� �~hq�t 0� � 2l ~Sq�t 0� �
ÿ
m0 � tÿ10

~Sq�0�
�
d�t 0�� : �33�

Substituting expression (32) for ~Sq�t� into (33) and
varying Sq�t� with respect to ~h and h in accordance with
formulas (28) lead, for a high-temperature initial state with
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m0 � 0 �m0 5 1�, to expressions for the free propagator
R0�q; t; tw� and correlator C0�q; t; tw� as the bare response
function and correlation function:

R0�q; t; tw� � y�tÿ tw� exp
�ÿl�q 2 � t��tÿ tw�

�
; �34�

C0�q; t; tw� � 1

t� q 2

�
exp

�ÿl�q 2 � t�jtÿ twj
�

�
�
t� q 2

t0
ÿ 1

�
exp

�ÿl�q 2 � t��t� tw�
��

: �35�

In C0�q; t; tw�, the so-called equilibrium correlator
C e

0 �q; tÿ tw� and the correlator characterizing the influence
of the starting conditions, C i

0�q; t� tw�, can be distinguished:

C0�q; t; tw� � C e�q; tÿ tw� � C i�q; t� tw� ;

C e
0 �q; tÿ tw� � 1

t� q 2
exp

�ÿl�q 2 � t�jtÿ twj
�
; �36�

C i
0�q; t� tw� � 1

t� q 2

�
t� q 2

t0
ÿ 1

�
exp

�ÿl�q 2� t��t� tw�
�
:

In formula (34) for R0�q; t; tw�, the y-function reflects the
property of causality, i.e., the requirement that a change in
magnetization at the instant of time t be determined by a
change in the external field at the preceding instant tw for
t > tw.

Because t0 is finite (i.e., t0 6� 0), the term tÿ10 �t� q 2� in
formula (35) is much smaller than unity in the t limit, q! 0.
Therefore, this item can be disregarded in the principal order
of perturbation theory:

C0�q; t; tw� � CD
0 �q; t; tw� � tÿ10 R0�q; t; 0�R0�q; tw; 0� ; �37�

where CD
0 �q; t; tw� is the Dirichlet correlator:

CD
0 �q; t; tw� �

1

t� q 2

n
exp

�ÿl�q 2 � t�jtÿ twj
�

ÿ exp
�ÿl�q 2 � t��t� tw�

�o
: �38�

The condition t0 � 1 is called the Dirichlet boundary
condition. A Dirichlet correlator constituent equaling
C i

0�q; t� tw� is responsible for the breakdown of transla-
tional invariance in time.

The FDR in momentum space is given by the expression

X�q; t; tw� � TsR�q; t; tw�
qtwC�q; t; tw�

: �39�

In the Gaussian approximation, one obtains

X0�q; t; tw� � TsR0�q; t; tw�
qtwC0�q; t; tw� �

n
1� exp

�ÿ2l�q 2 � t�tw
�oÿ1

:

�40�
When a system does not reside in a critical point with
t � Tÿ Tc 6� 0, the limiting FDR value is X1 �
limtw!1 limt!1 X0�q; t; tw� � 1 for all values of wave vec-
tors q, in agreement with the opinion that all the high-
temperature phase modes have a finite equilibration time.
The exponentially fast equilibration accounts for the
fulfilment of the FDT. In a critical point and t � 0, the
limiting FDR value is unity as before for the order
parameter modes with q 6� 0, whereas for the mode with
q � 0 it is X1 � limtw!1 limt!1 X0�q � 0; t; tw� � 1=2. This
means that only the zero order-parameter mode with q � 0 is
characterized by aging effects at the critical point; in other

words, it does not relax to equilibrium state and the FDT for
this mode is violated.

In the Gaussian approximation, the main characteristic
quantities of the nonequilibrium critical behavior formodel A
with relaxation dynamics and a nonconserved order para-
meter are the dynamic critical exponent z � 2 and the critical
exponent y 0 � 0 of the nonequilibrium initial increase in
magnetization, with the limiting FDR equal to X1 � 1=2.
Strong fluctuation effects accompanying second-order phase
transitions result in fluctuation corrections to these values.
Following standard methods [41, 42], fluctuation corrections
to expressions for correlation and response functions can be
obtained by perturbative expansion of the functional weight
exp �ÿ�L�S; ~S � �H0�S0��� in powers of coupling constant g
being present at vertex g�l=3!� ~SaSaSbSb in the action
functional Lint�S; ~S � (27), and describing fluctuation interac-
tion in a pure system, as well as in powers of coupling
constants g and v in the respective vertices of the action
functional Lint�S; ~S � in expression (27), which describe
fluctuation interaction in a system containing defects.

It was shown for the first time in Ref. [34] that the critical
evolution of a system from an initial high-temperature
nonequilibrium state with low magnetization m0 � m�0�5 1
results in the universal scaling behavior for magnetization
M�t� at the short-time stage of its critical evolution and is
characterized by the power-law increase in magnetization
with time:M�t�� t y

0
. The authors proposed the renormgroup

description of nonequilibrium critical relaxation and pre-
sented scaling forms for magnetization, the correlation
function, and dynamic susceptibility. They also computed
the exponent y 0 using e-expansion technique in the two-loop
approximation.

To recall, the short-time stage of the nonequilibrium
evolution of a system corresponds to the limit tÿ tw 4 tw in
scaling two-time forms (7) for correlation and response
functions. Further computer simulation studies [39] of none-
quilibrium critical relaxation of the three-dimensional Ising
model in the short-time regime confirmed theoretical predic-
tions of the power-law evolution of magnetization in
ferromagnetic systems, but the value of y 0 � 0:108�2� found
in this study proved to be at variance with the theoretical
value of y 0 � 0:130 [34] obtained by direct substitution of
parameter e � 1 in the case of three-dimensional systems or
with y 0 � 0:138 obtained by the PadeÂ ±Borel method for
summation of a very short series of the perturbation theory
in e.

The authors of Ref. [14] were the first to calculate the
critical exponent y 0 of short-time evolution in the following
three-loop approximation of the renormalization group
theory in the framework of the e-expansion method:

y 0 � n� 2

4�n� 8� e
�
1� 6e

�n� 8�2
�
n� 3� �n� 8� ln 3

2

�
ÿ 7:2985

�n� 8�4 e 2�n 3 � 17:3118n 2

� 153:2670n� 383:5519�
�
�O�e 4� ; �41�

and to demonstrate excellent agreement with the results of
computer simulation applying the PadeÂ ±Borel method to sum
up a three-term series of the theory at e � 1 with
y 0 � 0:1078�22� for the Ising model with n � 1, and
y 0 � 0:1289�23� for the XY model with n � 2. Reference [14]
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also reports the calculation of the dynamic critical exponent z:

z � 2� e 2

2

�
6 ln

4

3
ÿ 1

�
n� 2

�n� 8�2

�
�
1� e

�
6�3n� 14�
�n� 8�2 ÿ 0:4384812

��
: �42�

The authors of Ref. [14] pointed out that the additional vertex
function G eq

1; 0 governing fluctuation corrections to the
dynamic response function, which are associated with the
influence of initial nonequilibrium states, and localized at the
`surface' of initial states with time t � 0 emerges in pure
systems only starting from the three-loop approximation in
the theory of nonequilibrium critical processes. These
fluctuation corrections reflect the influence of initial non-
equilibrium states and must be taken into consideration in
order to adequately describe relaxation processes and obtain
by applying the e-expansion method values consistent with
the results of computer simulation for the critical exponent y 0

determining evolution of the system in the short-time regime.
Reference [15] reports on evaluating the influence of

nonequilibrium initial states on the critical evolution of
structurally disordered systems with quenched uncorrelated
defects. The field-theoretical description of the nonequili-
brium critical behavior of three-dimensional systems was
realized for the first time and the critical exponent y 0 of
short-time evolution was calculated in the two-loop approx-
imation without e-expansion. It was shown that the additional
vertex function G eq

1; 0 localized at the initial state `surface' and
conditioning fluctuation corrections in the dynamic response
function due to the influence of initial nonequilibrium states
emerges already starting from the two-loop approximation.
Numerical values of dynamic critical exponents obtained by
summation of asymptotic series were compared with results of
computer simulation of the nonequilibrium critical behavior
of the three-dimensional disordered Ising model in the short-
time regime [15]. It was demonstrated that the values of critical
exponents z � 2:198�2�, y 0 � 0:120�8� calculated on a basis of
the renormalization group description better agree with the
results z � 2:191�42�, y 0 � 0:127�16� of computer simula-
tion than those obtained by applying e-expansion method
with y 0 � 0:0867 [36].

Renormalization group investigations into aging effects in
the nonequilibrium critical behavior of both `pure' and
structurally disordered systems with purely dissipative
dynamics described by model A [35] were conducted in
Refs [21, 22], respectively, applying the e-expansion method.
In these studies, the asymptotic FDR values X1 were
calculated for `pure' systems with the n-component order
parameter [21], which gave in the two-loop approximation the
following expression:

�X1�ÿ1
2

� 1� n� 2

4�n� 8� e

� e 2
n� 2

�n� 8�2
�
n� 2

8
� 3�3n� 14�

4�n� 8� � c

�
�O�e3� �43�

with the numerical parameter c � ÿ0:0415 . . . (the analytical
expression for c is reported in paper [21]). For the diluted
Ising model, the following expression was derived in the one-
loop approximation [22]:

X1 � 1

2
ÿ 1

4

������
6e
53

r
�O�e� : �44�

The following fluctuation±dissipation ratios were found
based on relation (43): X13DIs � 0:429�6� for the three-
dimensional Ising model �e � 1, n � 1�; X13DXY � 0:416�8�
for the XY model �e � 1, n � 2�, and X12DIs � 0:30�5� for the
two-dimensional Ising model �e � 2, n � 1�. These values are
in excellent agreement with the results of MC research
presented in Table 1. The value of X13DRIM ' 0:416 was
obtained for the disordered three-dimensional Ising model.
The authors of Ref. [22] emphasize that the comparison of
these X1 values calculated in the first-order perturbation
theory with the results for the `pure' model does not allow the
character and peculiarities of the influence of defects on the
FDR to be elucidated; calculations in higher orders are
needed for this purpose. Moreover, Refs [43±45] showed
that expansion series in powers of

��
e
p

are not well suited for
d � 3 substitution in real three-dimensional systems. The
results of MC research on nonequilibrium critical dynamics
in `pure' and structurally disordered three-dimensional Ising
models are presented in Sections 3 and 4.

2.2 Nonequilibrium critical dynamics of systems evolving
from a low-temperature initial state
2.2.1 Scaling forms for the autocorrelation function and the
response function. Given that the initial state of a system is
characterized by magnetization m0 6� 0 (a low-temperature
initial state) with its subsequent quenching at Ts � Tc, the
renormalization group analysis of nonequilibrium critical
dynamics for the systems described by the totally dissipative
model A predicts that magnetization, the correlation func-
tion, and the response function exhibit the following scaling
behaviors [34, 46]:

M�t; tm� � AMtÿb=�zn�FM

�
t

tm

�
;

C�t; tw; tm� � AC�tÿ tw�a�1ÿd=z
�

t

tw

�yÿ1
FC

�
tw
t
;
t

tm

�
; �45�

R�t; tw; tm� � AR�tÿ tw�aÿd=z
�

t

tw

�y

FR

�
tw
t
;
t

tm

�
:

Modification of these relationships in comparison with
scaling forms (7) is conditioned by the introduction of a new
timescale tm determined by initial magnetization m0 and
related to m0 by the universal dependence

tm � Bmm
ÿk
0 ; �46�

in which Bm is the nonuniversal amplitude, and exponent
k > 0 is expressed via static and dynamic critical exponents:
k � 1=�y� a� b=�nz�� � 1=�y 0 � b=�nz��.

As a result, functions C�t; tw; tm� and R�t; tw; tm� become
the homogeneous in the extended sense functions of three
timescales: tÿ tw, tw, and tm. Specifically, when tw < t5 tm
(which is always fulfilled in the case of initial magnetization
m0 � 0), the scaling relations (45) forC andR reduce to those
in formulas (7) with FC;R�x; 0� � fC;R�x�. Otherwise, for
tm 5 tw < t, the scaling relations (45) assume the following
form [46]:

C�t; tw� � �aC�tÿ tw�a�1ÿd=z
�

t

tw

��yÿ1
�FC

�
tw
t

�
;

�47�

R�t; tw� � �aR�tÿ tw�aÿd=z
�

t

tw

��y
�FR

�
tw
t

�
;
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where the new exponent �y � ÿbd=�nz� � ÿ�1� a� b=�nz��,
while �FC;R are universal scaling functions related toFC;R�x; y�
behavior at large values of argument y. In the aging regime
realized for times tÿ tw � tw 4 tm, the two-time dependence
of the correlation function and the response function is
described by the relations

C�t; tw� � tÿ2b=�nz�w
~FC

�
t

tw

�
;

�48�
R�t; tw� � tÿ2b=�nz�ÿ1w

~FR

�
t

tw

�
;

with scaling functions ~FC;R�t=tw� that decay at long observa-
tion times, tÿ tw 4 tw 4 tm, following the power-law time
dependence

~FC;R

�
t

tw

�
�
�

t

tw

�ÿf
�49�

characterized by exponent f � d=zÿ a� bd=�nz�.

2.2.2 Renormalization group description. In the renormaliza-
tion group description of nonequilibrium behavior of systems
evolving from an initial low-temperature state with a nonzero
average value of the order parameter hS�x; t�i �M�t�, it is
convenient to write the action functional given by relations
(25)±(27) in terms of fluctuations with respect to
S�x; t� ÿM�t� values. To conserve the former notations for
variables S�x; t� and ~S�x; t� in relations (25)±(27) and assign
to them the same sense of mean zero-value fields, we perform
S�x; t�; ~S�x; t� ! S�x; t� �M�t�; ~S�x; t� transformation in
expressions (25)±(27). By redefining m 2�t� � gM 2�t�=2, the
Gaussian constituent of the action functional (26) can be
represented as

LG �
�1
0

dt

�
ddx ~Sa

�
qtSa � l�tÿ D�m 2�Sa

ÿ l ~Sa �
����
2

g

s
qtm� l

����
2

g

s
m

�
t�m 2

3

��
; �50�

where the set of items����
2

g

s
qtm� l

����
2

g

s
m

�
t�m 2

3

�
� heff �51�

has the sense of an effective magnetic field acting on the order
parameter S�x; t�. Notice that the effect of the nonzero mean
value of the order parameter m�t� is equivalent to the time-
dependent shift of the phase transition temperature:
t! t�m 2�t�. Therefore, when the system asymptotically
approaches the critical point t � 0 for large times, it
effectively passes in the short-time regime into the high-
temperature magnetically disordered phase.

The introduction of the bare response function and
correlation function to the Gaussian approximation by the
method described in Section 2.1.2 yields the following
expressions for them in the momentum space:

R0�q; t; tw� � y�tÿ tw�

� exp

�
ÿ l�q 2 � t��tÿ tw� �

� t

tw

dt 0m 2�t 0�
�
; �52�

C0�q; t; tw� � 2l
�1
0

dt 0 R0�q; t; t 0�R0�q; tw; t 0� : �53�

The law of magnetization evolution m�t� needed to find R0

andC0 is derived from the equation of motion hdLG=d ~Si � 0,
which leads at hS�x; t�i � 0 and h ~S�x; t�i � 0 to the equation

qt m�t� � lm�t�
�
t�m 2�t�

3

�
� 0 : �54�

As a result, the influence of the effective magnetic field heff
(51) on the order parameter in the Gaussian component of
the action functional (50) disappears due to relevant
equation (54) for the time-dependent behavior of magneti-
zation m�t�.

At the critical point with t � 0, equation of motion (54)
takes the form

qt m�t� � l
m 3�t�
3
� 0 �55�

having the solution

m 2�t� � m 2
0

�
1� 2lm 2

0 t

3

�ÿ1
: �56�

The last expression is consistent with the scaling behavior of
magnetization M�t� in relation (45). A comparison of
formulas (45), (46), and (56) taking into account that
m�t� � ��������

g=2
p

M�t� leads in the Gaussian approximation to
tm � 3=�2lm 2

0 � � Bmm
ÿk
0 with k � 2 and AM � 1, Bm ���������

2=3
p

. For t4 tm, one has m�t� � �2t=3�ÿ1=2; therefore,
nonzero initial values of magnetization m0 prove unessen-
tial at the long-time stage of system's evolution; in the best
case, they can serve as corrections to the leading terms in
the scaling behavior of thermodynamic and correlation
functions.

Substituting relation (56) into (52) and (53) yields the
following expressions for the bare response function and the
correlation function at the critical point �t � 0�:

R0�q; t; tw; tm� � y�tÿ tw�
�
tw � tm
t� tm

�3=2

exp
�ÿlq 2�tÿ tw�

�
;

�57�

C0�q; t; tw; tm� �
2l exp

�ÿlq 2�t� tw�
���t� tm��tw � tm�

�3=2
�
� tw

0

dt 0 �t 0 � tm�3 exp �2lq 2t 0� : �58�

At q � 0, relations (57) and (58) assume the form

R0�q � 0; t; tw; tm� � y�tÿ tw�
�
tw � tm
t� tm

�3=2

; �59�

C0�q � 0; t; tw; tm� � l
2

�tw � tm�4 ÿ t 4m��t� tm��tw � tm�
�3=2 : �60�

By comparing expressions (59) and (60) at tm � 0 with the
scaling forms (47) for the response and correlation functions,
it is easy to find that in the Gaussian approximation the
exponents z � 2, a � 2, �y � ÿ3=2 correspond to the mean-
field values of critical exponents d � 3, n � b � 1=2, and
Z � 0 and that �aR � 1, �aC � l=2, �FR�x� � 1, and �FC�x� � 1.

Now, let us determine the FDR in the Gaussian approx-
imation. To this effect, we differentiate (58) with respect to tw
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and represent the results in the form

qtwC0�q; t; tw; tm� � 2lR0�q; t; tw; tm�
ÿ ÿq 2 �m 2�tw�

�
C0�q; t; tw; tm� : �61�

The FDR at the critical point is then expressed as

X0�q; t; tw; tm� � R0�q; t; tw; tm�
qtwC0�q; t; tw; tm�

� 1

2l

�
1ÿ ÿq 2 �m 2�tw�

� C0�q; t; tw; tm�
2lR0�q; t; tw; tm�

�ÿ1
: �62�

It follows from formulas (57), (58), and (62) that
X0�q; t; tw; tm� actually depends on two variables,
x � tw=tm � 2twm

2
0 =3 and y � q 2tw, and is unrelated to t,

i.e., X0�q; t; tw; tm� � X0�tw=tm; q 2tw�, which is a distinctive
feature of the FDR in the Gaussian approximation. Function
X0�x � 0; y� corresponds to the critical evolution of the
system from a high-temperature initial state and
X0�x � 0; y � 0� � 1=2, and with an increase in y�q 2tw
X0�x � 0; y� tends toward unity: X0�x � 0; y!1� � 1,
which suggests FDT violation for the zero mode with q � 0
in the large waiting time limit of tw !1, whereas the
remaining modes of spin density S�q 6� 0; t� arrive in this
limit at the equilibrium state with X10 � 1.

For the zero mode with q � 0 �y � 0�, the FDR as a
function of variable x � tw=tm � 2twm

2
0 =3 is characterized by

the relation

X0�x; y � 0� � 4

5

�
1� 3

5

1

�1� x�4
�ÿ1

: �63�

Its value grows monotonically from X0�x � 0; y � 0� � 1=2
at x � 0 to X0�x!1; y � 0� � 4=5 as x!1. Thus, the
FDR for the global order parameter (complete magnetiza-
tion) in the long-time limit reaches the value of X10 � 4=5 if
initial magnetization m0 6� 0 in the case of evolution from a
magnetized low-temperature state, and X10 � 1=2 if initial
magnetization m0 � 0 in the case of evolution from a high-
temperature state. The value ofX10 � 4=5 invariably remains
independent of a concrete m0 6� 0 value.

It should be also noted that for time intervals with
tw 4 tÿ tw 4 1 the quasiequilibrium regime is realized
in which C0�q � 0; t; tw� � �tÿ tw�ÿ�dÿ2�=2 � C0�tÿ tw� and
R0�q � 0; t; tw� � R0�tÿ tw� behave as equilibrium functions.

Characteristics of nonequilibrium critical behavior
considered in preceding paragraphs in the Gaussian
approximation acquire fluctuation corrections in real
systems. The respective fluctuation corrections to expres-
sions for correlation functions and response functions can
be obtained by perturbative expansion of the functional
weight exp fÿ�L�S; ~S� �H0�S0��g in powers of coupling
constant g describing the interaction of fluctuations in a
pure system, and in powers of coupling constants g and v in
expression (27) describing fluctuation interaction in a system
containing defects.

Reference [46] reports a renormalization group study of
the nonequilibrium critical behavior of a d-dimensional Ising
model with purely dissipative dynamics undergoing relaxa-
tion from a magnetized initial state. The correlation function
and the response function were calculated using the first-
order e-expansion in the framework of the field-theoretical
approach. Aging effects were revealed for these functions and

the universal limiting FDR was calculated:

X1 � 4

5

�
73

600
ÿ p2

100

�
e�O�e 2� : �64�

Expression (64) gives X13DIs ' 0:78 for the three-dimensional
Ising model �e � 1, n � 1�, and X12DIs ' 0:75 for the two-
dimensional Ising model �e � 2, n � 1�. These findings were
confirmed in part in Ref. [46] reporting numerical MC
research on the nonequilibrium critical behavior for a two-
dimensional Ising model that yielded X1MC � 0:73�1�.

In Section 3, we present results of our numerical MC
simulations of the nonequilibrium critical behavior of a `pure'
three-dimensional Ising model described by dissipative model
A for its evolution from both a high-temperature initial state
with low magnetization m0 5 1 and a low-temperature initial
state with m0 � 0, laying emphasis on aging effects and their
characteristics. Moreover, we calculated the limiting FDR
and evaluated the influence of structural defects on aging
effects and FDT violations in the nonequilibrium critical
behavior of the three-dimensional Ising model undergoing
relaxation from the high-temperature initial state.

3. Investigations into aging effects
and fluctuation±dissipation theorem violation
in the behavior of the `pure'
three-dimensional Ising model

A simple but not trivial model whose nonequilibrium critical
behavior exhibits aging effects is the three-dimensional Ising
model. Its dynamics determined in simulations by the
Metropolis single-spin flip and thermal bath [47] algorithms
are purely dissipative and correspond to relaxation model A
[35]. The Hamiltonian of the model given on a cubic lattice
and taking into account the influence of a local magnetic field
hi has the form

H � ÿJ
X
hi; ji

SiSj ÿ
X
i

hiSi ; �65�

where J > 0 is the integral of the short-range exchange
interaction between Si spins fixed at crystal lattice sites and
assuming the values of Si � �1.

The nonequilibrium evolution of a macroscopic grid
system of N spins is simulated by the statistical MC method.
For example, the dynamic single-spin flip process examined
using the thermal bath algorithm [47] is characterized by the
probability of ith spin transition into a new state, Si ! S 0i :

Wsp�Si ! S 0i � �
exp

ÿÿbH�S 0i ��P
Sj
exp

ÿÿbH�Sj�
� ; �66�

where summation over Sj in the denominator is performed for
all possible states of spin Si before the spin flip. The time unit
of the dynamic process is one Monte Carlo step per spin
(MCS/s), which designates the sequence of N different spin
flips at lattice sites. For an Ising model with two possible spin
states Sj � �1, the probability of a spin flip can be
represented in the form

Wsp�Si ! S 0i � �
exp

ÿÿbH�S 0i ��
exp

ÿ
bH�Si�

�� exp
ÿÿbH�Si�

� ; �67�

with realization of the so-called Glauber dynamics.
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References [48±50] report simulations of the nonequili-
brium critical behavior of a system with Ising spins on a cubic
lattice having the linear dimension L � 128 with imposed
periodic boundary conditions at Tc � 4:5114�1� [51]. The
authors calculated the magnetization

M�t� �
�

1

L3

XL3

i�1
Si�t�

�
�68�

and two-time autocorrelation function

C�t; tw� �
�

1

L3

XL3

i�1
Si�t�Si�tw�

�
ÿM�t�M�tw� ; �69�

where angular brackets denote statistical averaging over
different realizations of initial spin configurations and MC
runs. To calculateC�t; tw�, averagingwas done over 3000 runs
for each tw value.

In a study of critical relaxation of systems from the initial
high-temperature state with magnetization m0 � 0:02, the
response function and FDR were calculated using relations
as follows [32, 52, 53]:

R�t; tw� � 1

TL3

XL3

i�1



Si�t�

�
Si�tw � 1� ÿ SW

i �tw � 1��� ; �70�
where SW

i � tanh �JPm 6�i Sm=T �, and

X�t; tw� �
PN

i�1


Si�t�

�
Si�tw � 1� ÿ SW

i �tw � 1���PN
i�1


Si�t�

�
Si�tw � 1� ÿ Si�tw�

�� : �71�

In simulation of system's dynamics with the use of the
thermal bath algorithm, these relations make it possible to
obtain the response function and then FDR without the
introduction of a magnetic field. A detailed method for
derivation of these expressions is described in Ref. [54].
When calculating R�t; tw� and X�t; tw�, the values obtained
were averaged over 90,000 MC runs for each tw, because
R�t; tw� and X�t; tw�, unlike the autocorrelation function,
are characterized by greater fluctuation effects and their
determination and averaging require much more extensive
statistics.

When modeling critical relaxation of the system from an
initial low-temperature state with magnetization m0 � 1, an
integral characteristic (dynamic susceptibility) [46, 52] was

calculated:

w�t; tw� �
� tw

0

dt 0 R�t; t 0� � 1

TcN

XN
i�1



Si�t�DSi�tw�

�
; �72�

with the response function defined by relation (2) and the
DSi�tw� function calculated during simulation within a time
interval from t � 0 to t � tw:

DSi�tw� �
Xtw
s�0

�
Si�s� ÿ SW

i �s�
�
: �73�

In the limit of large observation times, one has

Tcw�C � �
� C

0

X�q� dq :

Then, the limiting FDR can be defined as

X1 � lim
C!0

qTcw�t; tw�
qC�t; tw� : �74�

Reference [55] reports a study of nonequilibrium critical
relaxation of magnetizationM�t� in the `pure' Ising model for
different initial statesm0 (Fig. 3a) that demonstrated essential
qualitative and numerical differences in magnetization
relaxation from the initial high-temperature state with
m0 5 1 and the perfectly ordered low-temperature state with
m0 � 1, the intermediate cases possessing m0 � 0:2ÿ0:6.

Thus, in the case of a high-temperature initial state with
m0 � 0:025 1, the stage of nonequilibrium evolution was
characterized by a rise in magnetization described by the
power-law dependence M�t� � t y

0
with y 0 � 0:111�4�, where

y 0 is the independent dynamic critical exponent [14, 17, 34].
For times t > tcr � m

ÿ1=�y 0�b=�zn��
0 , this evolution stage is

replaced by a regime characterized by the power-law time
dependence of magnetizationM�t� � tÿb=�zn�.

If a system evolves from the initial ordered state with
m0 � 1, the time dependence of magnetization at a critical
point is directly determined by the power-law dependence
M�t� � tÿb=�zn� with exponent b=�zn� � 0:241�8�. Intermedi-
ate cases with m0 � 0:2ÿ0:5 are characterized by the short
stage of magnetization growth following theM�t� � t y

0
law

with the subsequent transition into a longer relaxation
stage, M�t� � tÿb=�zn�, whereas magnetization behavior for

100
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ty
0
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M
�t�

tb
=
�nz
�
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Figure 3. Time dependence of magnetization M�t� (a) and its scaling functions FM�t=tm� �M�t�t b=�zn� (b) for different initial states of m0 shown in the

panels.
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0:5 < m0 < 1:0 at short observation times is associated with
the onset of the transient regime with tcr at the very first steps
of modeling that passes into the relaxation stage described as
M�t� � tÿb=�zn�.

Figure 3a also demonstrates that relaxation curves for the
systems evolving from initial states with m0 < 1 asymptoti-
cally tend toward the relaxation curve of a system evolving
from the low-temperature initial state with m0 � 1. In this
case, the process of critical relaxation of magnetization M�t�
from the high-temperature initial state with m0 � 0:025 1 is
faster than relaxation from other initial states with m0 6� 0.

Figure 3b shows results of numerical verification of the
prediction of the scaling time dependence of M�t� as a
function of initial values of magnetization m0 specified by
relation (45). The presented tm k

0 dependences of tb=�zn�M�t� at
the critical exponents b=n � 0:516�2� [56], z � 2:024�6� [57],
and y 0 � 0:106�4� [39] for the three-dimensional Ising model
suggest a `collapse' of the data at k ' 2:77 forM�t� obtained
for different m0 in a single curve with universal scaling
dependence FM�tm k

0 �. In this case, the section of the curve
corresponding to the increase in the scaling function (linear
on the double logarithmic scale) and described by the power-
law dependence FM�x� � x 1=k corresponds to the stage of
growing magnetization M�t� � t y

0
, whereas the horizontal

section of scaling functionFM�x� corresponds to the stage of a
critical decay of magnetization asM�t� � tÿb=�zn�.

The results of MC simulations of two-time dependences
of the autocorrelation function C�t; tw� and the response
function R�t; tw� on observation time tÿ tw at different
waiting times tw and initial nonequilibrium states �m0 5 1
and m0 � 1� are presented in Fig. 4. Dependences C�t; tw�
and R�t; tw� graphically demonstrate manifestations of
aging effects at times tÿ tw ' tw characterized by the
slowing down of correlation time and the weakening of
the system's response to the external field with increasing
its `age' tw.

In the aging regime, the two-time dependences for the
autocorrelation function C�t; tw� and the response function
R�t; tw� are defined by the scaling relations (11) and (12) (see
Section 2.1.1). These relations fairly well describe the results
of simulations as viewed in Fig. 5. Specifically, �tÿ tw�=tw
dependences of t

2b=�zn�
w C�t; tw� and t

2b=�zn��1
w R�t; tw� demon-

strate a collapse of the data obtained for different tw in the
universal curves corresponding to the scaling functions
F̂C�t=tw� and F̂R�t=tw� in relations (11). According to

formulas (12), these scaling functions in time intervals
�tÿ tw�=tw 4 1 are characterized by a power-law depen-
dence on t=tw. The computed exponents ca � 1:333�40� and
cr � 1:357�18� are in excellent agreement with each other
within the calculation accuracy and with exponent
ca � 1:362�19� obtained by the short-time dynamics method
in Ref. [39].

The short-time dynamics regime for an initial perfectly
ordered state with m0 � 1 for the autocorrelation function
C�t; tw� is characterized, according to dependence (49), by
exponent f. The analysis of the two-time dependence of
t
2b=�zn�
w C�t; tw� on �tÿ tw�=tw (Fig. 5c) for the time interval
�tÿ tw�=tw 4 1 gave the exponent f � 2:742�32�, in excellent
agreement with the theoretically predicted value of f �
1� d=z� b=�nz� � 2:737�8� calculated with the use of criti-
cal exponents b � 0:325�1�, n � 0:630�1� [56], and z �
2:024�6� [57].

In the aging regime, taking account of the influence of
different initial states with 04m0 4 1, the time dependence
of the autocorrelation function is characterized by the scaling
relation

C�t; tw; tm� � tÿ2b=�zn�w
~FC

�
t

tw
;
t

tm

�
: �75�
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A similar scaling form for the time dependence of dynamic
susceptibility can be obtained applying the integral relation
(72) and the scaling time dependence (48) for the response
function. This approach leads to the result:

w�t; tw; tm� � tÿ2b=�zn�w
~Fw

�
t

tw
;
t

tm

�
: �76�

To reveal the dependence of the autocorrelation function
and dynamic susceptibility on the initial magnetization m0

predicted by relations (75) and (76), it is convenient to choose
as the waiting time a quantity proportional to the observation
time, e.g., tw � t=3. Then, the scaling forms predicted for
these functions by relations (75) and (76) will look like

C

�
t; tw � t

3
; tm

�
� tÿ2b=�zn�GC�tm k

0 � ; �77�
w
�
t; tw � t

3
; tm

�
� tÿ2b=�zn�Gw�tm k

0 � :

The dependences of functions C�t; tw � t=3; tm� and
w�t; tw � t=3; tm� on observation time t obtained in our
studies for different initial magnetizations m0 are plotted in
Figs 6a, b. Figures 6c, d illustrate dependences of scaling
function GC�tm k

0 � � t 2b=�zn�C�t; tw � t=3; tm� and Gw�tm k
0 � �

t 2b=�zn�w�t; tw� t=3; tm� on variable x� tmk
0 at k ' 2:77. All

these figures demonstrate a collapse of the data on C and w at
different m0 in the universal curves corresponding to the
scaling functions GC�tm k

0 � and Gw�tm k
0 �. These results thus

confirm the complex generalized homogeneous dependence
of the correlation function and the response function (45) on
time-related variables t, tw, and tm.

Let us turn to determining the FDR for different initial
states. For the high-temperature initial state with m0 5 1,
Fig. 7 presents the FDR calculated by formula (71) in the
form of the functional dependence of X�t; tw� on tw=�tÿ tw�
for tÿ tw 4 tw. The linear approximation of dependence
X�t; tw� as tw=�tÿ tw� ! 0 yielded X�tw� values for each tw.
Extrapolation of X�tw !1� was applied to the X�tw� values
obtained for different waiting times, which allowed deter-
mining the sought limiting FDR value X1 (see Fig. 16 in
Section 4.1.2.). These procedures brought forth the value of
X1 � 0:380�13�, which agrees poorly with the field-theore-
tical value of X13DIs � 0:429�6� calculated in Ref. [21], but
satisfactorily corresponds to X1 � 0:40 reported in Ref. [27]
as a result of preliminary numerical assessment of the three-
dimensional Ising model.

For the initial totally ordered state with magnetization
m0 � 1, the FDR limiting value is X1 � 0:784�7� calcu-
lated from the limiting dependence Tcw�C� (Fig. 8a) on the
basis of relation (74). This X1 value is in excellent
agreement with the field-theoretical value of X1 ' 0:78
computed in Ref. [46).

It is shown in Section 2.2.2 that the renormalization group
description of the nonequilibrium critical behavior of systems
in the Gaussian approximation for dissipative model A
predicts a change in the FDR as a function of x � tw=tm for
initial states with m0 6� 0 from 1=2 at x � 0 to 4=5 at x!1,
with the limiting FDR value X1 � 4=5 being independent of
m0 6� 0. To evaluate fluctuation effects on the FDR as
m0 6� 0, time dependences of dynamic susceptibility
w�t; tw; tm� and autocorrelation function C�t; tw; tm� were
calculated at tw � t=3 for the initial states with m0 � 0:1 and
m0 � 0:4.

The calculated parametric dependence of Tcw on C
presented in Fig. 8b gives the limiting FDR value X1 as
C! 0 in accordance with relation (74). Thus, for the initial
state with m0 � 0:1, the result for X1 � 0:402�12� is con-
sistent with the high-temperature X1 � 0:380�13�, while
X1 � 0:788�5� obtained for the initial state with m0 � 0:4
agrees with the low-temperature value of X1 � 0:784�7�.
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It can be concluded that the nonequilibrium critical
behavior of the three-dimensional Ising model with arbitrary
initial values of magnetizationm0 can be categorized into two
universality classes corresponding to high-temperature and
low-temperature initial states with the limiting FDR values
X1 � X1�m0 � 0� � 0:380�13� for m0 9 0:1 and X1 �
X1�m0 � 1� � 0:784�7� for m0 0 0:4.

The above results of numerical research give evidence of
FDT violation in the case of nonequilibrium critical behavior
of the three-dimensional Ising model. The limiting FDR
values X1 differ from unity and depend on their belonging
to one of the two universality classes of nonequilibrium
critical behavior corresponding to the high-temperature and
low-temperature initial states of the system, respectively. The
threshold value of initial magnetization m th

0 separating these
two classes lies in the range of 0:1 < m th

0 < 0:4.

4. Influence of structural defects on
characteristics of the nonequilibrium critical
behavior of the three-dimensional Ising model

In carrying out studies on the influence of structural disorder
on second-order phase transitions, researchers face two
problems, namely: do the critical exponents of a `pure'
magnet change upon dilution with nonmagnetic impurities
and, if so, are the new critical exponents universal, i.e.,
independent of defect concentration up to the percolation
threshold? The answer to the first question was given in
Ref. [58] showing that critical exponents of systems with
quenched structural defects are altered in comparison with
those of their defect-free analogs, given that the critical
exponent of the heat capacity of the `pure' system is positive.
This criterion is met only by three-dimensional systems whose
critical behavior is described by the Ising model.

Investigations into the critical behavior of diluted Ising
type magnets with the use of renormalization group methods,
MC numerical simulations, and experimental techniques are
reported in numerous publications [41, 43, 45, 59±64]. They
confirm the existence of a new universality class of critical
behavior exhibited by diluted Ising type magnets, but the
dependence of asymptotic values of critical exponents on the
degree of their dilution and the influence of crossover effects
in weakly and strongly disordered systems await elucidation
and remain subjects of ardent discussion.

It is worthwhile to note that analytical renormaliza-
tion group methods applied to study the critical behavior
of impurity systems are suitable only for weakly diluted
magnetic materials with concentration of defects
�1ÿ p�5 1, where p is the spin concentration. As a system
becomes increasingly more diluted with nonmagnetic impur-
ity atoms at spin concentrations p s

c < p < p imp
c � 1ÿ p s

c ,
where p s

c and p imp
c are the spin and impurity percolation

thresholds, respectively (for cubic lattices with nearest
neighbor interactions one has p s

c ' 0:31, p imp
c ' 0:69), the

impurities aggregate into a binding cluster coexisting for
T4Tc with the spin binding cluster at spin concentrations
up to p s

c and form a fractal-like structure with effective long-
range spatial correlation in impurity distribution [65].

A change in effects of order parameter fluctuation
scattering from impurity atoms must give rise to new fixed
points for the vertices of interaction between order parameter
fluctuations. Therefore, the region with p s

c < p < p imp
c is

characterized by a new type of critical behavior of three-
dimensional Ising models, corresponding to the region of the
strong structural disorder.

Such universal characteristics of the critical behavior as
critical exponents obtained for the structurally disordered
Ising model with the use of the renormalization group
description at a fixed system dimension d � 3 and various
methods for summation of series in the theory are defined
by the values of exponents n � 0:678�10�, b � 0:349�5�,
g � 1:330�17�, o � 0:25�10� [68], z � 2:179�1� [57], y 0 �
0:120 [17] (the values for static and dynamic exponents
were obtained with the highest currently attainable accu-
racy) and fairly well agree with experimental findings for
Ising type magnets FepZn1ÿpF2 at a spin concentration
p � 0:9: n � 0:70�2�, g � 1:34�6� [64], b � 0:350�9�, z �
2:18�10� [20, 63]. Experimental studies of strongly disordered
magnetic materials yielded n � 0:73�3�, g � 1:44�6� [61] for
FepZn1ÿpF2 at p � 0:6, and n � 0:75�5�, g � 1:57�16� [62] for
MnpZn1ÿpF2 at p � 0:5.

Results of numerical MC research on the critical
behavior of the structurally disordered three-dimensional
Ising model are rather contradictory: some of them confirm
the independence of critical exponents on defect concentra-
tion up to the percolation threshold with n � 0:684�5�,
b � 0:355�3�, g � 1:342�10� [69], z � 2:62�7� [70], z� 2:35�2�
[71], y 0 � 0:10�2� [72, 73] obtained by adjusting intermediate
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values and amplitudes in the scaling dependence of thermo-
dynamic characteristics calculated for different spin concentra-
tions with the use of the fitted exponent of the correction to the
scaling o � 0:370�63� [69], o � 0:50�13� [70], o2 � 0:82�8�
[71], while others suggest the existence of two universal classes
of critical behavior for weakly disordered systems with
n � 0:68�2�, b � 0:34�2� [74], z � 2:38�1� [75], n � 0:682�3�,
b � 0:344�3� [76, 77], n � 0:683�4�, b � 0:310�3�, g � 1:299�3�
[60], n� 0:696�3�, g � 1:345�4�,o � 0:23�13� [16], z � 2:20�7�
[66, 67], z � 2:191�21�,o � 0:256�55�, y 0 � 0:127�16� [17] and
strongly disordered systems with n� 0:72�2�, b� 0:33�2�,
g � 1:51�3� [74], z � 2:53�3� [75], n � 0:717�7�, b � 0:313�12�
[76, 77], n � 0:725�6�, b � 0:349�4�, g � 1:446�4� [60], n �
0:725�4�, g � 1:415�11�, o � 0:28�15� [16], z � 2:58�9� [66,
67], z � 2:663�30�, o � 0:286�10�, y 0 � 0:167�18� [41, 78, 79].

The essentially nonperturbative numerical MC studies of
two-time characteristics of nonequilibrium critical behavior
of the structurally disordered three-dimensional Ising model
reviewed below give a more definite answer concerning the
relative correspondence between limiting FDR valuesX1 for
structurally disordered and `pure' Ising models and make it
possible to evaluate the influence of structural defects on
aging effects and X1 values in the nonequilibrium critical
behavior of the three-dimensional Ising model with spin
concentrations in both weak and strong disorder regions.

4.1 Evolution from a high-temperature initial state
This section presents results of research on aging effects in the
nonequilibrium critical behavior of the structurally disor-
dered Ising model evolving from a high-temperature initial
state [48±50, 54, 80, 81]. Two strategies were employed to
determine the response function and FDR.

One concerns the introduction of the influence from an
infinitesimally small random magnetic field, the calculation
of the two-time dependence of magnetic susceptibility of the
system as its response to the randommagnetic field induced at
the instant of time tw, and the FDR determination through
the relationship between dynamic susceptibility and the
autocorrelation function [48, 50, 80]. This strategy for
modeling the evolution of a macroscopic spin system uses
the Metropolis algorithm.

The other approach [48±50, 54, 81] does not require the
introduction of an external magnetic field but makes use of a
computation method based on applying the thermal bath
algorithm to express the response function to the external
field via the special two-time correlation function (70).Details
of this approach were highlighted in Section 3.

The Hamiltonian of a structurally disordered Ising model
is given by the expression

H � ÿJ
X
hi; ji

pi pjSiSj ; �78�

where summation is taken over the nearest neighbors, and
Si � �1, pi are occupation numbers indicating the presence of
quenched structurally uncorrelated disorder in the system:
pi � 1 for the i site with a spin, and pi � 0 for the site with a
nonmagnetic impurity atom.

4.1.1 Simulation with a test magnetic field. Results of numerical
studies. The autocorrelation function

C�t; tw� �
��

1

pL3

XpL3

i�1
pi Si�t�Si�tw�

��
�79�

and magnetic susceptibility

w�t; tw� �
��

1

h 2pL3

XpL3

i�1
pi hi�tw�Si�t�

��
�80�

were calculated, where p is the spin concentration in the cubic
lattice with linear dimension L, angular brackets denote
statistical averaging over realizations of the initial state,
square brackets stand for averaging over various configura-
tions of the defect distribution in the lattice, and the macron
indicates averaging over realizations of a random magnetic
field. Notice that dynamic susceptibility is an integral
characteristic related to the response function by the expres-
sion

w�t; tw� �
� t

tw

dt 0 R�t; t 0� : �81�

To calculate dynamic susceptibility w�t; tw� at the instant
tw, the Hamiltonian is supplemented by perturbation
dH � ÿPi hiSi, where the random magnetic field is given
by bimodal distribution�h at the sites of the crystal lattice [9].
Field amplitude h was chosen to be small enough �h � 0:01�
to avoid the nonlinear effects of the field.

The systemwasmodelled on a spin lattice with a linear size
L � 128 at spin concentrations p � 0:8 and 0.6 and the
respective critical temperatures kBTc=J � 3:4995�2� and
2:4241�1� [16, 17]. The initial high-temperature state,
T4Tc, of the system with low magnetization m0 5 1
(m0 � 0:01 for p � 0:8, and m0 � 0:005 for p � 0:6) was
formed to be essentially nonequilibrium for the critical
regime of interest at T � Tc. The system's behavior was
examined at times up to 10,000 MCS/s for waiting times
tw � 50, 250, 500, and 1000 MCS/s. The resulting depen-
dences were computed by averaging over 1000 impurity
configurations; for each of them, averaging was performed
over 20 realizations of the initial state, and 10 realizations of a
random magnetic field.

Figure 9 shows on the double logarithmic scale the
plots of calculated temporal evolution of the autocorrela-
tion function for systems with p � 0:8 and 0.6 and
different waiting times. The graphs clearly demonstrate
the possibility of distinguishing a few regimes in the two-
time behavior of the autocorrelation function. For exam-
ple, the behavior for tÿ tw 5 tw does not exhibit any
dependence on the waiting time, in which case C�t; tw� �
C�tÿ tw�, thus suggesting realization of the quasiequili-
brium regime with the power-law time dependence
C�tÿ tw� � �tÿ tw�ÿ�dÿ2�Z�=z.

For observation �tÿ tw� and waiting �tw� times long
enough but comparable �tÿ tw � tw 4 1�, the behavior of
C�t; tw� exhibits an essential dependence of waiting time tw
that characterizes aging effects, i.e., the slowing down of the
temporal correlation decline with an increase in the system's
`age' tw. An approximation of the autocorrelation function
at this stage with T � Tc by the power-law dependence
C�t; tw� � �tÿ tw�ÿl yielded l values for different tw. The l
values presented in Table 2 give evidence of the slowing
down of system evolution with growing tw, and simulta-
neous enhancement of aging effects with increasing con-
centration of defects.

For the stage with tÿ tw � tw 4 1, two-time dynamic
functions can be characterized by the following depen-
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dences [27]:

C�t; tw� � tÿ�dÿ2�Z�=zw FC

�
t

tw

�
;

�82�
R�t; tw� � tÿ1ÿ�dÿ2�Z�=zw FR

�
t

tw

�
:

The behavior of scaling functions FC�t=tw� and FR�t=tw� is
well known for the stage of essentially nonequilibrium
evolution of the system, realized for times t4 tw 4 1. At this
stage, the scaling functions are expressed as

FC

�
t

tw

�
� AC

�
t

tw

�ÿca
; FR

�
t

tw

�
� AR

�
t

tw

�ÿcr
�83�

with exponent ca � cr � d=zÿ y 0. Here, the critical exponent
y 0 defines growing magnetization M�t� � t y

0
during non-

equilibrium critical evolution of the system from the initial
state with m0 5 1 (see inserts to Figs 9a, b).

To confirm the scaling dependence of the autocorrelation
function (82), the t=tw dependence of t

�1�Z�=z
w C�t; tw� was

constructed. The result is presented in Figs 9c, d demonstrat-
ing the collapse of the data obtained for different tw in the
universal curves corresponding to p � 0:8 and p � 0:6 and
fitting the scaling function FC�t=tw� in formulas (82). The
critical exponents z � 2:191�21� and 1� Z � 2b=n �
1:016�32�were used in the case of a weakly disordered system
with p � 0:8 [17], and z � 2:663�30� and 1� Z � 0:924�80�
for a strongly disordered system with p � 0:6 [41, 78].

An analysis of the t=tw dependence of t
�1�Z�=z
w C�t; tw� was

employed to calculate the ca exponent for scaling function
(83): ca�p � 0:8� � 1:237�22� and ca�p � 0:6� � 0:982�30�.
The ca value for the weakly disordered system with p � 0:8
is in excellent agreement (within the calculation accuracy)

with ca � 1:242�10� obtained in Ref. [17] applying the short-
time dynamics method and taking advantage of leading
scaling corrections, but poorly agrees with ca � 1:05�3�
found in studies on the nonequilibrium critical dynamics in
the disordered Isingmodel [72, 73].We discussed the causes of
such a discrepancy in Ref. [17].

Figure 10 plots the t=tw two-time dependence of general-
ized susceptibility w�t; tw� for systems with spin concentra-
tions p � 0:8 and p � 0:6 for different waiting times tw. It can
be seen that at the stage of evolution with tÿ tw � tw 4 1, as
for the autocorrelation function, the tw dependence of w�t; tw�
characteristic of aging effects (slow-down of system's relaxa-
tion with age tw) is manifested, whereas at the stage with
t4 tw 4 1 the universal scaling dependence in the form of
Fw�t=tw� � �t=tw�cw takes place.

The scaling behavior of dynamic functions C�t; tw� and
R�t; tw� in the tÿ tw 4 tw 4 1 regime defined by relation (82)
leads to the functional dependence of FDR X�t; tw� only on
t=tw [31, 32]:

X�t; tw� � TR�t=tw�
�q=qtw�C�t=tw�

� FR�t=tw�
�2b=nz�FC�t=tw� � �t=tw�F 0C�t=tw�

: �84�

Table 2. Critical l values for systems with spin concentrations p � 0:8
and 0.6.

tw

l

p � 0:8
tÿ tw � 160ÿ1600

p � 0:6
tÿ tw � 300ÿ1200

50
250
500
1000

0.938(34)
0.739(40)
0.644(25)
0.569(30)

0.746(32)
0.604(45)
0.531(40)
0.467(36)

0.30

0.25

0.20

w�
t;
t w
�

100 101 �tÿ tw�=tw

tw � 1000

tw � 250

p � 0.8

p � 0.6

tw � 500

Figure 10.Dependence of generalized susceptibility w�t; tw� on t=tw at spin

concentrations p � 0:8 and p � 0:6 for different waiting times tw.
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Figure 9. Dependence of autocorrelation function C�t; tw� on observation time tÿ tw on the double logarithmic scale at spin concentrations (a) p � 0:8
and (b) p � 0:6 for different waiting times tw. Demonstration of realization of the scaling dependence for autocorrelation function (82) at different times

tw for spin concentrations (c) p � 0:8 and (d) p � 0:6.
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Such behavior of X�t; tw� is confirmed by renormalization
group calculations [21].

Representation (84) allowed limiting FDR values to be
obtained in Refs [31, 32] bymeans of linear approximation by
tw=t! 0 of the set of data obtained for certain two-
dimensional spin systems (Ising model, Potts model with the
number of states q � 4, and clock-models with q � 3) taking
advantage of their weak dependence on tw. In the case of the
three-dimensional Ising model, our data demonstrate the
well-apparent tw dependence; therefore, we first applied the
procedure for obtaining X1�tw� � limt!1 X�t; tw� and then
found the sought limiting FDR valueX1 � limtw!1 X1�tw�.

Belonging to the universality class of both `pure' and
disordered systems is manifested as the universality of the
values of critical exponents and critical amplitude ratios.
According to formulas (82) and (83), the limiting FDR value
assumes the form

X1 � lim
tw!1

lim
t!1X�t; tw� � AR

AC

�
ca ÿ 2b

nz

�ÿ1
�85�

and becomes a new universal characteristic of the critical
behavior.

FDR values can be obtained on the basis of time
dependences we calculated for the autocorrelation function
C�t; tw� and susceptibility w�t; tw� (see Fig. 10), if quantity
Tcw�t; tw� is expressed in accordance with Eqns (2) and (81) as
a function of C�t; tw�:

Tcw�t; tw� �
� t

tw

X�t; t 0� qC�t; t
0�

qt 0
dt 0 �

� 1

C�t;tw�
X�C� dC : �86�

To accomplish this, theC�t; tw� dependence ofTcw�t; tw� is
represented in the form of a certain curve (Fig. 11) with the
asymptotic curvature determining X1�tw�:

X1�tw� � ÿ lim
C!0

d�Tcw�
dC

: �87�

The sought limiting FDR value X1 is obtained by finding
X1�tw� for different waiting times, then carrying out linear
approximation, and finally extrapolating the result:
X1�tw !1�.

Figure 11 shows parametric dependences of Tcw�t; tw�
on C�t; tw� at tw � 1000 MCS/s for spin concentrations
p � 1:0, 0.8, and 0.6. The solid straight line corresponds to
the quasi-equilibrium behavior of the system satisfying the
FDT and X�t; tw� � 1. Dependences of Tcw�t; tw� on C�t; tw�
demonstrate FDT violation for the nonequilibrium critical
behavior of both `pure' and disordered Ising models. These
dependences and FDRs were calculated at waiting times
tw � 250, 500, and 1000 MCS/s for structurally disordered
systems, and tw � 10, 25, and 50 MCS/s for the `pure'
system. Table 3 presents X1�tw� values obtained for
different waiting times.

X1�tw� values are calculated according to procedure (87)
in the C�t; tw� ! 0 limit corresponding to the stage with
t4 tw 4 1. Therefore, the inset to Fig. 11 shows those
portions of C�t; tw� dependences of Tw�t; tw� that meet these
criteria and on which X1�tw� values were determined.

Importantly, in numerical research on nonequilibrium
critical behavior, the duration of the nonequilibrium stage
of evolution for three-dimensional lattices even of such a large
size as L � 128 in pure systems reaches 1000 MCS/s
compared with 10,000 MCS/s in structurally disordered
systems with L � 128 (as confirmed in the insets to Fig. 9).
This allows studies to be carried out for the analysis of aging
effects and limiting FDR values in structurally disordered
systems at much longer waiting times tw than in `pure'
systems, enhancing the significance of the characteristics
thus obtained for the critical state of a system with
abnormally large amplitudes and long-lived order parameter
fluctuations.

Figure 12 plots the calculated X1�1=tw� dependence and
its extrapolation to the X1 value as tw !1. The limiting
FDR values X1 � 0:415�18� and X1 � 0:443�6� obtained
for the system with spin concentrations p � 0:8 and p � 0:6,
respectively, suggest FDT violation in the nonequilibrium
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�
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Figure 11. Parametric dependences of Tcw�t; tw� on C�t; tw� at tw �
1000 MCS/s for spin concentrations of p � 1:0, 0.8, and 0.6 in compar-

ison with the dependence in the case of fulfillment of the FDT.

Table 3. Limiting FDR values X1 for systems with spin concentrations
p � 1:0, 0.8, and 0.6.

tw X1 tw X1

p � 1:0 p � 0:8 p � 0:6

10
25
50
!1

0.586(24)
0.460(52)
0.437(63)
0.390(12)

250
500

1000
!1

0.708(15)
0.544(23)
0.494(17)
0.415(18)

0.726(13)
0.583(14)
0.519(29)
0.443(6)

1=tw

X
1
�t w
�

0.72

0.64

0.56

0.48

0.40

0 0.001 0.002 0.003 0.004

p � 0.8

p � 0.6

Figure 12. Finding the FDR by approximation of limiting X1�tw� values
as tÿ1w ! 0 for p � 0:8 and 0.6.
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critical behavior of structurally disordered systems described
by the three-dimensional Ising model. They also indicate that
the presence of defects in strongly disordered systems with
p � 0:6 is associated with a higher X1 value than in weakly
disordered systems with p � 0:8.

It can be concluded based on the tentative limiting X1

value ' 0:4 found in numerical studies on the nonequili-
brium critical behavior of a `pure' three-dimensional Ising
model [27] and our examination of this model yielding
X1 � 0:390�12� that the presence of structural defects is
responsible for a new universality class of the critical
behavior for the three-dimensional Ising model character-
ized, inter alia, by limiting FDR values X1disorder > X1pure.

It is worthwhile to mention that Ref. [21] presents the
renormalization group description of the nonequilibrium
critical behavior of dissipative systems with the noncon-
served order parameter, for which the FDR was calculated
making use of the e-expansion in the second order of the
theory. The FDR obtained as a series in e looked like
expression (43). For the three-dimensional Ising model with
e � 1 and n � 1, summation of PadeÂ approximants gave
X1 � 0:429�6� (the series is unsummable by PadeÂ ±Borel or
PadeÂ ±Borel±Leroy method). In Ref. [22], X1 was calculated
in the one-loop approximation for a weakly diluted Ising
model that led, in accordance with expression (44) at e � 1, to
X1 � 0:416.

The authors of Ref. [22] pointed out that these results
obtained in the first order of the theory for the disordered
Ising model do not allow deducing peculiarities of the
influence of defects on FDR by comparing them with the
results for a pure model; calculations in higher orders are
needed for this purpose. Nevertheless, the value of
X1 � 0:422�14� we obtained for a weakly disordered system
with spin concentration p � 0:8 agrees with the results of the
renormalization group description to within statistical accu-
racy.

The reported numerical studies demonstrate through the
behavior of two-time functions striking peculiarities of the
nonequilibrium behavior of slow-dynamics systems, such as
the influence of initial states for times shorter than the
system's relaxation time, manifestations of aging effects at
observation times close to the waiting time, and identification
of the FDR, the introduction of which generalizes the FDT
for the case of nonequilibrium behavior with the possibility of
introducing the effective system's temperature as Teff �
T=X�t; tw� [24]. These peculiarities need to be taken into
consideration when setting conditions for an experimental
study on the behavior of slow-dynamics systems and the
analysis of the results obtained.

4.1.2 Simulation by the thermal bath method. Results and
their analysis. In this section, FDT violations in a
structurally disordered Ising model were investigated by
the thermal bath method, allowing the response function
to be obtained in the course of simulating the system's
dynamics without introducing a magnetic field by expres-
sing it via a special two-time correlation function given by
expression (70) and the FDR in accordance with expres-
sion (71). For structurally disordered systems, expressions
(70) and (71) are modified taking into account the
introduction of randomly distributed nonmagnetic impur-
ity atoms and the necessity of additional averaging over
different configurations of quenched defect distribution
over the lattice. As a result, the following expressions are

used in calculating these quantities:

R�t; tw� � 1

TNs

XNs

i�1

h

piSi�t�

ÿ
Si�tw � 1� ÿ SW

i �tw � 1���i ;
�88�

X�t; tw� � TR�t; tw�
qtwC�t; tw�

�
PNs

i�1
�


pi Si�t�
ÿ
Si�tw � 1� ÿ SW

i �tw � 1����PNs

i�1
�


pi Si�t�
ÿ
Si�tw � 1� ÿ Si�tw�

��� ; �89�

where SW
i � tanh

ÿ
J
P

m6�i pmSm=T
�
,Ns � pL3 is the number

of spins in the lattice.
We undertook simulation of the nonequilibrium critical

behavior of both `pure' and structurally disordered Ising
models with spin concentrations p � 1:0, 0.95, 0.8, 0.6, and
0.5 on a 3D cubic lattice with the linear size L � 128 [81].

The study was designed to elucidate the evolution of the
system from a specially formed high-temperature initial state
for T0 4Tc with low magnetization m0 5 1 �m0�p � 1� �
0:02, m0�p � 0:95; 0:8�� 0:01, and m0�p � 0:6; 0:5�� 0:005�.
The system's dynamics was realized after preparing the initial
configuration at the following critical temperatures:

Tc�p � 1� � 4:5114�1� ; Tc�p � 0:95� � 4:26267�4� ;
Tc�p � 0:8� � 3:4995�2� ; Tc�p � 0:6� � 2:4241�1� ;
Tc�p � 0:5� � 1:84509�6� ;

corresponding to the spin concentrations being considered
[16, 17]. The behavior of the systems was examined for times
up to 10,000 MCS/s. The `pure' system was modelled with
statistical averaging over 94,000 runs. For modeling the
structurally disordered Ising model, the calculated values
were averaged over 6,200 impurity configurations and
15 runs for each configuration.

Figures 13a, b illustrate on the double logarithmic scale
the resulting dependences of the autocorrelation function
C�t; tw� and the response function R�t; tw� on observation
time tÿ tw for a set of different waiting times tw. Manifesta-
tion of aging effects via dependences of functionsC�t; tw� and
R�t; tw� on the system's `age' tw is quite apparent (correlation
effects slow down with age and the response of the system to
external perturbations decreases); in addition, relaxation of
the system slows downwith a rise in defect concentration (and
decrease in spin concentration p), while aging effects become
stronger.

In the aging regime realized at observation times
tÿ tw� tw, in which the two-time dependence of functions
C�t; tw� and R�t; tw� is most pronounced, the scaling
dependence of these functions on waiting times tw and t is
given by relations (11) and characterized only by scaling
functions F̂C�t=tw� and F̂R�t=tw� that depend only on the ratio
between these times. To confirm the scaling dependence of the
autocorrelation function and the response function (11), we
constructed t=tw dependences of t

2b=�zn�
w C�t; tw� and

t
1�2b=�zn�
w R�t; tw� with values of the critical exponents z �
2:191�21�, 2b=n � 1:016�32� for p � 0:95, 0.8 [17] and
z � 2:663�30�, 2b=n � 0:924�80� for p � 0:6, 0.5 [41, 78].
The result is shown in Fig. 14, demonstrating the collapse of
the data obtained for various tw in universal curves corre-
sponding to spin concentrations p � 1:0, 0.95, 0.8, 0.6, and
0.5 characterized by the scaling functions F̂C�t=tw� and
F̂R�t=tw� in relations (11).
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It should be noted that systems with different spin
concentrations p are characterized by various scaling func-
tions F̂C;R�t; tw; p�. For times t4 tw, these functions exhibit
the power-law dependence: F̂C;R�t=tw� � AC;R�t=tw�ÿca; r . At
this stage of system's evolution, the influence of aging effects
is unapparent and exponents ca; r are related to the known
dynamic critical exponents z and y 0 [17]: ca � cr � d=zÿ y 0.

Table 4 collates the values of ca and cr computed in
Ref. [81] for different spin concentrations p. The values of ca
and cr are in excellent agreement with one another for each
fixed spin concentration p and separately for weakly
disordered spin systems with p � 0:95, 0.8 and strongly
disordered systems with p � 0:6, 0.5, but differences between
the values for the weakly and strongly disordered systems and
for the `pure' Ising model are much greater than statistical
errors of their determination. The data in Table 4 agree with
the values of ca � 1:362�19� for a `pure' Ising model,
ca � 1:242�10� for a weakly disordered system with p � 0:8,
and ca � 0:941�21� for a strongly disordered system with
p � 0:6 obtained in Refs [17, 39, 78] by the short-time
dynamics method.

Figure 15 demonstrates FDR values calculated based on
relation (89) as the dependence of X�t; tw� on tw=�tÿ tw� for
tÿ tw 4 tw for systems with different spin concentrations.
The linear approximation of X�t; tw� dependence as
tw=�tÿ tw� ! 0 gave the X�tw; p� value for each tw and the
respective spin concentration p. The linear approximation of
X�tw; p� values thus obtained for different waiting times

followed by their extrapolation as tw !1 yielded the
sought limiting FDR value X1. Approximation and extra-
polation procedures are illustrated by Fig. 16. They permitted
obtaining X1�p� values collated in Table 4 for different spin
concentrations p.

The values of X1 6� 1 suggest FDT violation in the
nonequilibrium critical behavior of `pure' and structurally
disordered systems described by the three-dimensional
Ising model and the influence of a defect presence for
increased X1�p�. Similar to exponents ca and cr, these
X1�p� values can be regarded as universal characteristics
of three classes of nonequilibrium critical behavior for
`pure', weakly, and strongly disordered three-dimensional
Ising systems [66, 67].

Analyzing the results of numerical studies gives evidence
that structural defects are responsible for new universal FDR
values, with X1�p� for strongly disordered systems being
higher than X1�p� for weakly disordered systems, and even
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Figure 14. Scaling dependences of the correlation function C�t; tw� (a) and the response function R�t; tw� (b) for different spin concentrations with a

characteristic collapse of the data for various tw in universal curves.

Table 4. Values of scaling function exponents ca, cr and limiting FDR
values X1 for different spin concentrations.

p ca cr X1

1.0
0.95
0.8
0.6
0.5

1.333(40)
1.230(28)
1.237(22)
0.982(30)
0.896(64)

1.357(18)
1.264(40)
1.251(22)
0.950(8)
0.955(33)

0.380(13)
0.413(7)
0.413(11)
0.446(8)
0.441(13)
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higher than X1�p � 1� for the `pure' three-dimensional Ising
model.

X1�p� values found for the weakly disordered three-
dimensional Ising model with p � 0:95 and 0.8 fairly well
agree with X13DRIM ' 0:416 [see formula (44)] obtained by
renormalization group computations with the use of e-
expansion in Ref. [22]. However, X1�p� values (see Table 4)
for the strongly disordered Ising model with p � 0:6 and 0.5
are at variance with X13DRIM ' 0:416 within the calculation
accuracy. Also noticeable is the fact that X1�p � 1� �
0:380�13� obtained for the `pure' Ising model differs from
X13DIS � 0:429�6� calculated with the use of e-expansion in
Ref. [21] [see formula (43) and the discussion at the end of
Section 2.1.2] but is close to X1�p � 1� ' 0:40 reported in
paper [27] as a result of preliminary calculations for the `pure'
three-dimensional Ising model.

An important feature of numerical studies of the none-
quilibrium critical behavior applying the MC methods is the
duration of the nonequilibrium evolution stage of the `pure'
Ising model for three-dimensional lattices of even such a large
size as L � 128 does not exceed 1000 MCS/s, in contrast to
10,000 MCS/s (i.e., an order of magnitude longer) for diluted
systems with p � 0:8 and L � 128. For this reason, aging
effects and FDT violations are possible to examine in
structurally disordered systems at considerably longer wait-

ing times than tw in `pure' systems, which increases the
significance of the resultant characteristics of the critical
behavior of systems with intrinsically high amplitudes and
long-lived order parameter fluctuations.

Importantly, the choice of experimental conditions and
analysis of critical behavior data for different systems require
that not only the influence of critical slow-down effects but
also that of aging effects be taken into consideration, bearing
in mind that the latter markedly strengthen the former with
increasing specimen `age' and are responsible for the influence
of the system's initial states on the values of thermodynamic
and correlation functions. Both the presence of structural
defects in the system and the elevation of their concentration
lead to an appreciable increase in aging effects.

4.2 Evolution from a low-temperature initial state.
Superaging effects
To elucidate peculiarities of nonequilibrium critical behavior
in a three-dimensional Ising spin system evolving from a low-
temperature initial state with m0 � 1 and to evaluate the
influence of structural defects on these features, we applied a
method (see Refs [55, 82]) allowing us to calculate the
response function without the application of an external
magnetic field by computing generalized susceptibility in the
form of the integral response function (thermostatic suscept-
ibility):

w�t; tw� �
� tw

0

dt 0 R�t; t 0� � 1

TNs

XNs

i�1

�

piSi�t�DSi�tw�

��
; �90�

with the response function given by relation (2) and function
DSi�tw� found by modeling the system's states from the
starting instant t � 0 till waiting time tw. This function is
defined by the relation

DSi�tw� �
Xtw
s�0

�
Si�s� ÿ SW

i �s�
�
; �91�

where SW
i � tanh

ÿ
J
P

m6�i pmSm=T
�
.

On the other hand, taking the response function in
expression (90) in the form (4) yields

Tw�t; tw� �
� tw

0

X�t; t 0� qC�t; t
0�

qt 0
dt 0 �

� C�t;tw�

0

X�C� dC : �92�

As a result, the FDR will be defined by the relationship

X�t; tw� � lim
C!0

T
qw�t; tw�
qC�t; tw� ; �93�

which can be used to find the limiting FDR value (6).
In Refs [55, 82], the three-dimensional Ising model was

modelled with spin concentrations p � 1:0, 0.95, 0.8, 0.6, 0.5
on a cubic lattice of linear size L � 128 at respective critical
temperatures Tc�p�: Tc�1:0� � 4:5114�1� [51], Tc�0:95� �
4:26267�4�, Tc�0:8��3:4995�2�, Tc�0:6��2:4241�1�, Tc�0:5��
1:84509�6� [16]. At the early stage of system's evolution, the
correlation length is still rather small and the finiteness of the
size of the model being simulated turns out unessential.
Therefore, the employment of the lattice with a large enough
linear size L � 128 allows finite-dimensional effects to be
disregarded in view of their smallness in comparison to effects
associated with the simulation of equilibrium critical phe-
nomena [16].
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Figure 15. Functional dependence of FDR X�t; tw� on tw=�tÿ tw� for
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The two-time dependences of the autocorrelation func-
tion

C�t; tw� �
��

1

Ns

XNs

i�1
piSi�t�Si�tw�

��

ÿ
��

1

Ns

XNs

i�1
piSi�t�

��
1

Ns

XNs

i�1
piSi�tw�

��
�94�

and susceptibility w�t; tw� (90) on observation time tÿ tw were
calculated for the time set tw at the above-given spin
concentrations p. The behavior of the systems was examined
for times up to 10,000 MCS/s. The `pure' system with p � 1:0
was modelled by statistical averaging over 90,000 runs, and
the structurally disordered Ising model by averaging the
calculated values over 6000 impurity configurations and
15 runs for each configuration.

The calculated results are presented in Fig. 17. Aging
effects manifested themselves via dependences of C�t; tw� and
w�t; tw� on the system's age tw at observation times tÿ tw � tw
and were characterized by the slowing down of age-driven
correlation and relaxation processes. Figure 17 also indicates
that aging effects grow as defect concentration increases and
spin concentration p decreases. The influence of defects is
most developed through a strong slowing down of correlation
effects in structurally disordered systems, as opposed to those
in a `pure' system.

We attribute these marked changes in the behavior of the
autocorrelation function to the pinning of domain walls on
structural defects, which is associated with a nonequilibrium
alteration of the system's domain structure during transition
from a single-domain state at T0 � 0 to the multidomain
fluctuation structure arising at critical temperature Tc. This
inference follows from the plots for two [Css�t; tw� and
Cmm�t; tw�] constituents of the correlation function (94)
represented in Fig. 18 for a `pure' system and a system with
spin concentration p � 0:5. Evidently, the values of Css�t; tw�
and Cmm�t; tw� constituents in the `pure' system begin to
coincide for observation times tÿ tw 5 tw, which leads to
their cancellation in the complete autocorrelation function. In
contrast, the plots of these constituents in structurally
disordered systems tend to draw together for times
tÿ tw 5 tw and undergo parallel changes, but full cancella-
tion fails to be achieved; moreover, the difference increases
with time tw and defect concentration cimp � 1ÿ p.

In the aging regime, the time dependence of the auto-
correlation function and dynamic susceptibility is character-
ized by scaling relations (48) and (62) with scaling functions
~FC; w�t=tw� demonstrating an ~FC; w�t=tw�� �t=tw�ÿf power-
law behavior at the long-time stage of system relaxation
with tÿ tw 4 tw 4 tm and f � 1� d=z� b=�zn�. To confirm
the scaling forms for the autocorrelation function and
susceptibility, the dependences of t

2b=�zn�
w C�t; tw� and

t
2b=�zn�
w w�t; tw� on �tÿ tw�=tw were constructed with following
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Figure 17. Nonequilibrium dependences of autocorrelation function C�t; tw� (a) and dynamic susceptibility w�t; tw� (b) on observation time tÿ tw for
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critical exponents: 2b=n � 1:032�5� [56], z � 2:024�6� [57] for
p � 1:0; 2b=n � 1:016�32�, z � 2:191�21� [17] for p � 0:95
and 0.8; 2b=n � 0:924�80�, z � 2:663�30� [41] for p � 0:6
and 0.5. The result is presented in Fig. 19 demonstrating
`collapse' of the data obtained for different tw at the respective
spin concentrations p in universal curves characterized by
scaling functions ~FC�t=tw� and ~Fw�t=tw�.

The exponents fc � 2:742�32� and fw � 2:756�56� were
found for time intervals with �tÿ tw�=tw 4 1 for a `pure'
system at p � 1:0; within calculation errors, they agree with
each other and with the theoretically predicted exponent
f � 1� d=z� b=�nz� � 2:737�8�. However, the exponents
for the autocorrelation function and susceptibility deter-
mined in the �tÿ tw�=tw 4 1 interval for structurally dis-
ordered systems with p < 1 are significantly different due to
the strong influence of structural defects on the system's
correlation properties at the nonequilibrium stage of evolu-
tion. Therefore, exponent ca � b=�zn� entering the depen-
dence

~FC

�
t

tw

�
�
�

t

tw

�ÿca
�95�

and characterizing long-time relaxation of magnetization
M�t� � tÿb=�zn� at T � Tc should be taken for structurally
disordered systems to describe the power-law behavior of the
scaling function ~FC�t=tw�. Indeed, the following ca values
were found: ca � 0:232�7� at p � 0:95, ca � 0:229�10� at
p � 0:8, ca � 0:175�6� at p � 0:6, and ca � 0:175�10� at
p � 0:5; they are consistent, within the calculation errors,
with b=�zn� values at the respective spin concentrations. At
the same time, the calculated values of fw � 2:63�4� for
p � 0:95, fw � 2:61�4� for p � 0:8, fw � 2:33�3� for p � 0:6,
and fw � 2:31�3� for p � 0:5 for the scaling function ~Fw�t=tw�
prove to fairly well agree with the f values for the respective
spin concentrations.

Nevertheless, structurally disordered systems in the aging
regime at times tÿ tw � tw exhibit a sharp decrease in the
autocorrelation function C�t; tw� (Fig. 17a), and its scaling
function ~FC�t=tw� (Fig. 19a) in the region of decline can be
approximated by the power-law dependence with exponent
fc assuming the values: fc � 2:59�8� for p � 0:95, fc �
2:61�9� for p � 0:8, fc � 2:37�10� for p � 0:6, and
fc � 2:35�10� for p � 0:5, consistent within the calculation
accuracy with the calculated fw values for dynamic suscept-
ibility and exponent f. This means that the scaling behavior

predicted by the renormalization group theory for the
correlation function in accordance with relations (47) is
manifested as the nonequilibrium behavior of structurally
disordered systems up to the aging regime with tÿ tw �
tw 4 1; in the long-time regime with tÿ tw 4 tw 4 1, pinning
of the domain walls on defects accounts for the considerable
slowing down of correlation effects, while the autocorrelation
function decays with time as a power-law of critical
magnetization relaxation.

A subtle analysis of the behavior of the autocorrelation
function for structurally disordered systems in the long-time
regime with tÿ tw 4 tw 4 1 revealed violation of its simple
scaling dependence given by ~FC�t=tw� apparent from the
absence of complete coincidence between the data for
different tw (see Fig. 19a). Representation of the scaling
dependence for the autocorrelation function in the form
~FC�t=tmw� provides good coincidence of the data for different
tw at m � 2:30�6� for systems with p � 0:95 and 0.80 and at
m � 2:80�7� for systems with p � 0:6 and 0.5 (see Fig. 20).
Such a case of scaling dependence characterized by exponent
m > 1 is classified in the theory of nonequilibrium processes as
`superaging' phenomenon [2].

Figure 20 demonstrates that the recovery of data collapse
for the autocorrelation function in the long-time regime with
tÿ tw 4 tw 4 1 by introducing the scaling function ~FC�t=t mw�
destroys the collapse of the same data for tÿ tw 4 tw times,
suggesting the necessity to use for structurally disordered
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systems a more complicated form of scaling dependence of
the autocorrelation function for tm 5 tw < t than in relations
(47), such as

C�t; tw� � AC�tÿ tw�a�1ÿd=z
��

t

tw

��yÿ1
�FC

�
t

tw

�
� BC�p� ~FC

�
t

tmw

��
�96�

with the functions

�FC

�
t

tw

�
�
�

t

tw

�ÿ�f��yÿ1�
�
�

t

tw

�ÿ2b=�zn�
;

~FC

�
t

tmw

�
�
�

t

t mw

�ÿb=�zn�
for tÿ tw 4 tw 4 1 and BC�p � 1� � 0.

At the next stage of research, the authors of Refs [55, 82]
calculated the FDR based on relation (93). It follows from
Fig. 21 that the C-dependences of Tw were linear for a `pure'
system over the time range tÿ tw 5 tw 4 1 in which the
autocorrelation function C�t; tw� varied and were character-
ized by the limiting FDR value X1 � 0:784�5� obtained by
determining X�tw� from relationship (93) for each tw value.
Then, these X�tw� values underwent linear approximation
and extrapolation X�tw !1� to find the sought limiting
FDR value X1. The limiting value X1 � 0:784�5� is in
excellent agreement with the field-theoretical value
X1 ' 0:78 obtained in Ref. [46] based on the renormaliza-
tion group description of nonequilibrium critical dynamics of
dissipative model A with the use of e-expansion. In the case of
evolution from a high-temperature initial state, the none-
quilibrium critical behavior of the three-dimensional Ising
model is characterized by a significantly different limiting
FDR value X1 � 0:380�13� [54].

However, in structurally disordered systems with strong
slowing down of correlation effects for times tÿ tw 4 tw 4 1
due to pinning of domain walls on defects, theC-dependences
ofTw exhibit two linear sections (see Fig. 21): one correspond-
ing to a change in autocorrelation function C�t; tw� for times
tÿ tw � tw 4 1, the other corresponding toC�t; tw� values for
the long-time stage of evolutionwith tÿ tw 4 tw 4 1. Clearly,

the length of the latter section increases with increasing
concentration of defects. The limiting FDR values X1 � 0
correspond to the second sections for all spin concentrations
with p < 1. At the same time, the analysis of C-dependences
of Tw in the former sections with the use of relation (93)
without considering theC! 0 limit shows that application of
the linear X�tw !1� extrapolation procedure to certain
X�tw� leads to X�p� 0:95�� 0:740�6�, X�p� 0:8�� 0:736�6�,
X�p � 0:6� � 0:726�8�, and X�p � 0:5� � 0:726�4�, close to
the mean-field limiting FDR valueX1 � 0:8 [46]. Deviations
are due to the influence of fluctuation effects and structural
defects.

To evaluate the influence of different initial states on the
nonequilibrium critical behavior of the structurally disor-
dered Isingmodel, we constructed the initial states of a system
with magnetizations m0 � 0:02, 0.05, 0.10, 0.25, 0.4, 0.7, and
1.0. The behavior of the autocorrelation function and
dynamic susceptibility for a system with spin concentration
p � 0:8 was considered for times tw depending on observation
time t.

By way of example, Fig. 22 presents time dependences of
the autocorrelation function for tw � t=3. Aging effects are
quite apparent due to the departure of the C�t; tw � t=3; tm�
dependence from the power-law dependence in the form of a
straight line on the double logarithmic scale characterized by
the slowing down of correlation and relaxation with the
system's age. Figure 22 also demonstrates the enhancement
of aging effects with increasing initial magnetization m0.

For `pure' systems �p � 1� when tw � t=3, the correlation
function and susceptibility are described by relations (77). To
verify the validity of these scaling forms for disordered
systems as well, the scaling functions
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�
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demonstrate the collapse of w susceptibility data at variousm0
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(Fig. 23b), because the behavior of the autocorrelation
function and susceptibility in structurally disordered systems
with p < 1 is significantly different owing to the strong
influence of structural defects on the correlation properties
of system [82] at the nonequilibrium stage of evolution
responsible for `superaging' phenomenon. Due to this,
representation of the autocorrelation function for various
m0 in the form of t mmk

0 dependence of the function
t 2b=�mzn�C�t; t 1=m; tm� for a system with p � 0:8 [82] and the
superaging exponent m � 2:30�6� leads to coincidence of the
m0 > 0:25 data in the universal curve (see Fig. 24). Thus, a
more complicated scaling dependence

C�t; tw; tm� � tÿ2b=�zn�w
~FC

�
t

tmw
;

t

t
1=m
m

�
�97�

is realized for the autocorrelation function in the superaging
regime with t5 t mw in the case of structurally disordered
systems.

To study the influence of initial states with m0 6� 0 on
limiting FDR values for the system with p � 0:8, the time
dependence of dynamic susceptibility w�t; tw; tm� and auto-
correlation function C�t; tw; tm� at tw � t=3 were calculated
for initial states with m0 � 0:1 and 0.4. The calculated
parametric C-dependence of Tcw shown in Fig. 25 makes it
possible to compute the limiting FDR value X1 as C! 0
using relation (59). Thus, for the initial state with m0 � 0:1
(Fig. 25a), it was found that X1 � 0:418�29�, in agreement
with the high-temperature X1 value 0.413(11); for the initial
state withm0 � 0:4, X1 � 0:05�18�, in agreement, within the
calculation accuracy, with low-temperature value X1 � 0.

Thus, it can be concluded that the nonequilibrium critical
behavior of the structurally disordered three-dimensional
Ising model with arbitrary initial magnetization m0 can be
divided into two universality subclasses corresponding to
high-temperature and low-temperature initial states, each
with a characteristic limiting fluctuation±dissipation rela-
tion: X1�m0 � 0� � 0:413�11� for weakly disordered sys-
tems and X1�m0 � 0� � 0:443�15� for strongly disordered
systems form0 < 0:25, andX1�m0 � 1� � 0 for systems with
spin concentration p < 1 for m0 5 0:25.

To conclude this section, it is worthwhile to note that
numerical studies have revealed the strong influence of defects
on nonequilibrium critical dynamics of the three-dimensional
Ising model evolving from a low-temperature initial state. It
was shown that aging effects heighten with increasing defect
concentration. The influence of defects is especially apparent
as the marked slowing down of correlation effects in
structurally disordered systems, as opposed to `pure' sys-
tems. As a result, the autocorrelation function for times
tÿ tw 4 tw 4 1 decays as a power-law of critical magnetiza-
tion relaxation due to domain wall pinning on defects, while
the limiting FDR values determined by domain dynamics in
the long-time regime equal zero.

The nonequilibrium critical dynamics of the three-
dimensional Ising model undergoes a strong influence of
initial states. It was shown that aging effects heighten with
increasing initial magnetization m0 and for m0 5 0:25 turn
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into `superaging' effects in the nonequilibrium behavior of
the autocorrelation function.

The critical exponents determining the asymptotic behav-
ior of the autocorrelation function and dynamic susceptibility
belong to different universality classes of critical behavior,
namely, the critical behavior of `pure', weakly disordered
(p � 0:95 and 0.8), and strongly disordered (p � 0:6 and 0.5)
systems [55, 80±83]. Each of the universality classes of critical
behavior may comprise two universality subclasses of none-
quilibrium critical behavior corresponding to evolution from
high-temperature and low-temperature initial states with
characteristic values of the limiting fluctuation±dissipation
relation.

5. Observation of memory effects
in the nonequilibrium behavior
of the three-dimensional Ising model

References [55, 82] were designed to study memory effects
made themselves evident in the two-time critical behavior of
the autocorrelation function (Fig. 26) at cyclic temperature

changes when a system is cooled (quenched) at a certain time
of observation t1 ÿ tw � tw from the critical temperature Tc

to a temperature T1 < Tc (with a temperature difference
DT � Tc ÿ T1 > 0), after which it remains at T1 during a
time interval Dt � t2 ÿ t1 � tw � 4tw. Thereafter, the tem-
perature goes back to Tc.

The results of calculations for systems with spin concen-
trations p � 0:8 and 0.5 (see Fig. 26) at DT � 1 and different
times tw � 20, 40 MCS/s indicate that the reaction of the
system to `quenching' is characterized by an initial rise in
C�t; tw� compared with its value at Tc, followed by decay of
the autocorrelation function determined by `quenching'
temperature T1 < Tc; thereafter, C�t; tw� tends back to its
initial value at the instant of `quenching' t1 as the system's
temperature returns to critical.

In the case of earlier instant of quenching t1 ÿ tw � tw, and
a rather long time interval of quenching, Dt � 4tw (Fig. 26a),
domain wall pinning on defects prevents the complete recovery
of the system's `memory' about its state at the instant of
quenching. An increase in the initial quenching instant,
t1 ÿ tw � 2tw and a decrease in the quenching interval to
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Figure 25. FDR found from C�t; t=3� dependence of Tw�t; t=3� for initial states with m0 � 0:1 (a) and m0 � 0:4 (b). X1 � 0:418�29� at m0 � 0:1, and
X1 � 0:05�18� at m0 � 0:4.
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Dt � tw promote memory return (Fig. 26b). The removal of
data on autocorrelation function values during the period of
quenching at T1 demonstrates the absence of difference
between autocorrelation function values at the instant of
quenching and upon return to Tc. This correspondence is
referred to as the `memory' effect, being related in our case to
both the slower dynamics of the system in the `aging' regime
with t1 ÿ tw > tw and the smallness of the quenching time
interval interfering with manifestations of irreversible effects
in domain wall dynamics.

Moreover, the amplitude of changes in the autocorrela-
tion function regarded as a response to cooling increases with
increasing defect concentration (decreasing spin concentra-
tion p) at fixed DT and time tw, because a rise in the
concentration of defects in the aging regime leads to
heightening the aging effects, i.e., further slowing down of
the correlation function with growing tw (see above).

To explain this phenomenon, it should be borne in mind
that a system passing after cooling from the nonmagnetic
state at Tc into the magnetized state with T1 < Tc finds itself
in a far-from-equilibrium state. The system's domain struc-
ture in this state consists of domains with positive and
negative projections of magnetization separated by domain
walls. The domain structure of the system changes during
equilibration, with the interface component of the domain
walls growing with time [84]. The bulk domain fraction
rapidly reaches equilibrium state corresponding, while the
interface component needs much more time to be equili-
brated. The presence of structural defects slows down
equilibration, especially that of the interface component of
the domain walls.

To sum up, research on the nonequilibrium critical
behavior of the three-dimensional Ising model at cyclic
temperature changes revealed in the time-dependent behav-
ior of the autocorrelation function in the aging regime the
effects of memory about the state of the system at the instant
of quenching responsible for restoration of this state after
return of the temperature to the critical value at the close of a
certain quenching time interval. It was shown that domain
wall pinning on defects prevents complete recovery of the
system's `memory' about its state at the instant of quenching.

6. Investigations into aging effects
in the two-dimensional XY model

The two-dimensional XY model is one more model demon-
strating abnormally slow dynamics. However, unlike the
three-dimensional Ising model exhibiting nonequilibrium
critical behavior considered in Section 5, it demonstrates
abnormally slow behavior not only near the Berezinskii±
Kosterlitz±Thouless (BKT) phase transition temperature
but throughout the entire low-temperature phase: any
temperature in this model is critical, i.e., a continuous
cascade of phase transitions takes place [85±88]. The
topological Berezinskii±Kosterlitz±Thouless phase transi-
tion in the two-dimensional XY model, physically related to
the dissociation of coupled vortex±antivortex pairs at the
transition point, manifests itself in the form of altered spatial
dependence of the correlation function: the exponential decay
at high temperatures is replaced by `long-range' power-law
decay in the low-temperature phase. A peculiar feature of
XY model behavior is the appearance of rigidity in the low-
temperature phase with respect to transverse fluctuations of
spin density [85].

The relevance of two-dimensional XY model research
arises from a large number of physical systems whose
behavior it describes, including ultrathin magnetic films
from transition metal atoms (Co and Ni) deposited onto a
nonmagnetic substrate (e.g., fromCu [89]), an important class
of planar magnets [85, 89, 90], two-dimensional crystals,
superconductor surfaces, superconducting thin films [85,
90], two-dimensional Bose liquids, superfluid helium films
[85, 87, 90], Josephson junction arrays, and superconductor±
ferromagnetic±superconductor junctions [90±93].

The static properties of the two-dimensional XY model
are known fairly well, but the nonequilibrium critical
behavior of such systems and the influence of structural
disorder on its characteristics remains to be explored. The
nonequilibrium critical behavior is expected to exhibit
certain specific features described by the two-dimensional
XY model of planar magnetic systems related to pinning
of vortices and antivortices, as well as vortex/antivortex
pairs on structural defects in the low-temperature phase
(Fig. 27).

Investigations into aging effects in the two-dimensional
XYmodel are carried out on the assumption of two essentially
different initial nonequilibrium states: high-temperature one
with T0 4TBKT�p�, and low-temperature one with T0 � 0.
The system for T0 4TBKT�p� contains a high concentration
of free vortex excitations, which allows such a state to be
regarded as the initial vortical state in research on non-
equilibrium dynamics of the model at quenching tempera-
ture Ts 4TBKT. In the evolution from a low-temperature
initial state with T � 0, the key role in dynamics is played by
spin-wave excitations. Such a choice of initial states permits
the influence of vortex excitations and spin-wave effects on
nonequilibrium critical dynamics of the system to be thor-
oughly investigated.

According to Ref. [9], in the course of the evolution of the
two-dimensional XY model from a low-temperature initial
state withm0 � 1, the two-time dependence of the autocorre-
lation function for Ts 4TBKT can be represented in the
following scaling form:

C�t; tw� � 1

�tÿ tw�Z�T �=2
� �1� l�2

4l

�Z�T �=4
�98�

a

b

Figure 27. (a) Nonequilibrium process of annihilation of a vortex (�)±
antivortex (�) pair at times 300, 400, 500 MCS/s. (b) The nonequilibrium

process of vortex excitation pinning on structural defects (&): 250, 400,

2000 MCS/s.
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for times tÿ tw 4 a2, where a is the UV cutoff parameter of a
microscopic nature, and l � t=tw, Z�T � is the critical
exponent related to transverse rigidity rs of the system by
the following expression:

Z�T � � T

2prs�T �
: �99�

Two time regimes are distinguished in the nonequilibrium
behavior of the autocorrelation function. For times
tÿ tw 5 tw, this function behaves as

C�t; tw� � �tÿ tw�ÿZ�T �=2 ; �100�

in correspondence with the quasiequilibrium regime of the
system's nonequilibrium behavior. For larger times
tÿ tw 4 tw, a power-law decay of the autocorrelation func-
tion is observed:

C�t; tw� � tÿZ�T �=4 : �101�

Transition between the two regimes occurs at tÿ tw � tw.
Evidently, time dependences of the autocorrelation function
at different waiting times do not coincide. This phenomenon,
called the aging effect [9], is a manifestation of system's age
for t > tw.

The two-time dependence of the autocorrelation function
C�t; tw� can be characterized by the generalized scaling form

C�t; tw� � tÿZ�T �=2w F
�
x�tÿ tw�
x�tw�

�
; �102�

where x�t� is the correlation length of the system, and
F�x�tÿ tw�=x�tw�� is the scaling function. In the course of
evolution from a low-temperature initial state with m0 � 1,
the time dependence of the correlation length x�t� � t 1=2,
whereas in the evolution from a high-temperature initial state
with m0 5 1, this dependence is modified by vortex interac-
tion effects and takes the form x 2�t� � t= ln t [9, 94].

Results of a numerical study of aging effects in the two-
dimensional XY model evolving from different initial states
and of the influence of quenched structural defects on them
are discussed in Sections 6.1 and 6.2.

6.1 Evolution from a high-temperature initial state
Numerical studies of aging effects and FDT violation in a
`pure' two-dimensional XY model and in a structurally

disordered model are reported in Refs [9, 95±97] and [97,
98], respectively.

The Hamiltonian of a structurally disordered model can
be given as

H � ÿJ
X
hi; j i

pi pj Si Sj ; �103�

where J > 0 is the exchange integral, Si is a flat classical spin
related to the ith site of the two-dimensional lattice, and pi are
occupation numbers: pi � 1 if the ith site contains a spin, and
pi � 0 if the site contains a defect.

Systems with spin concentrations p � 1:0, 0.9, and 0.8 on
a lattice of linear size L � 256 were considered. Temperatures
TBKT for these spin concentrations were TBKT�p � 1:0� �
0:893�2�J [97, 99], TBKT�p�0:9�� 0:679�7�J, TBKT�p�0:8� �
0:485�4�J [97]. To obtain the two-time dependences of the
autocorrelation function

C�t; tw� �
��

1

pL2

X
i

pi Si�t�Si�tw�
��

�104�

and generalized susceptibility

w�t; tw� �
��

1

pL2h 2

X
i

pi hiSi�t�
��

; �105�

simulations were undertaken at 16 different waiting times:
tw � 10, 20, 30, 40, 50, 100, 250, 500, 1000, 1500, 2000, 3500,
4000, 4500, 5000, and 10,000 MCS/s, and observation times
tÿ tw � 50;000 MCS/s. Studies of the two-time dependence
of generalized susceptibility were carried out by the small-
scale random magnetic field method [9] with the addition of
the
PN

i pi Si hi item toHamiltonian (103) at the instant of time
tw, choosing the amplitude h of the bimodal random field
hi � �h to be equal to 0.04. The application of this method
implies separate calculations for each waiting time tw.
Modeling a `pure' system with p � 1 required statistical
averaging over 6000 runs, while simulation of a structurally
disordered XY model involved averaging over 3000 impurity
configurations and 15 statistical runs for each configuration.

The resulting two-time dependences for the autocorrela-
tion function (Fig. 28) explicitly demonstrate the slowing
down of relaxation processes with system's `age' tw. These
aging effects, manifesting themselves at times tÿ tw ' tw,

tÿ tw, MCS/s

102 103 104 105100 101

102 103100 10110ÿ210ÿ1

10ÿ1

100

10ÿ2

�tÿ tw� ln�tw�=tw ln�tÿ tw�

a

p � 0.9, T � 0.4

p � 0.8, T � 0.1

C
�t;

t w
�

tZ
=2

w
C
�t;

t w
�

tÿ tw, MCS/s

101100 102 103 104 105

b

C
�t;

t w
�

100100

10ÿ1

10ÿ2

10ÿ1

tw

10,000
3500
1500
1000
500

100
50
20
10

250

tw
10,000
3500
1500
1000
500

100

50
20
10

250

102100 10110ÿ210ÿ1 103

10ÿ1

100

�tÿ tw� ln�tw�=tw ln�tÿ tw�

tZ
=2

w
C
�t;

t w
�

Figure 28. Two-time dependence of the autocorrelation function of a system with p � 0:9, T � 0:4 (a) and p � 0:8, T � 0:1 (b) evolving from a high-

temperature initial state. The insets show dependences of t
Z=2
w C�t; tw� on �tÿ tw� ln tw=tw ln �tÿ tw� to demonstrate the scaling form (102) of the

autocorrelation function.
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become increasingly more pronounced with increasing con-
centration of structural defects. For longer observation times,
tÿ tw 4 tw 4 1, the behavior of the autocorrelation function
is characterized by a faster power-law decay, C�t; tw� �
�t=tw�ÿca , than in the aging regime. It was revealed that a
rise in defect concentration shifts the onset of the power-law
regime to the region of longer observation times.

To characterize the scaling behavior of the autocorrela-
tion function (102), the Fisher critical exponents were
calculated for all spin concentrations p and temperatures
being considered. To this end, the dimensional dependence
hm 2i � LÿZ�T; p� was employed. The linear size of the system
was chosen to lie in the 4±128 range. The temperature
dependences of the calculated Fisher exponents for different
p concentrations are presented in Fig. 29, showing that a rise
in defect concentration causes an increase in Z�T; p� values,
although the influence of concentrations is much weaker than
that of temperature.

To confirm the scaling dependence of autocorrelation
function (102), the dependence of t

Z=2
w C�t; tw� on

�tÿ tw� ln tw=tw ln �tÿ tw� was constructed. The results
shown in the insets to Fig. 28 demonstrate the `collapse' of
the data obtained at the long-time stage of evolution with
tÿ tw 4 tw 4 1 for different tw in the respective p � 0:9,
T � 0:4, and p � 0:8, T � 0:1 universal curves correspond-
ing to the scaling function F�x�tÿ tw�=x�tw��.

To determine the FDR X�t; tw� in accordance with
relations (86) and (87), generalized susceptibility w�t; tw�
(105) was calculated using the data on w�t; tw� and C�t; tw� to

determine their parametric dependence for each fixed tw
(Fig. 30). The limiting FDR value as a universal character-
istic of nonequilibrium critical behavior was found based on
parametric dependences of Tw�t; tw� on C�t; tw� (Fig. 31) in
the C! 0 limit at time sections with tÿ tw 4 tw 4 1, where
the scaling dependence for the autocorrelation function (102)
is fulfilled. In Figs 30 and 31, these sections are shaded in grey
color. X�tw� values obtained for different waiting times tw
(Fig. 32) were then extrapolated as tw !1, i.e., as 1=tw ! 0,
to find the limiting FDR value X1. Figure 32 illustrates, by
way of example, the use of this procedure for obtaining X1

values for various temperatures in the low-temperature phase
of a system with p � 0:8. The resulting temperature depen-
dences of the limiting FDR X1 for different spin concentra-
tions are presented in Fig. 33.

The analysis of X1�p;T4TBKT�p�� values thus
obtained leads to the conclusion that the influence of
structural disorder results in a rise in X1 with increasing
defect concentration for equal `quenching' temperatures
T4TBKT�p�.

If the temperature dependence of the limiting FDR is
given in the form X1 � T l, the exponent l for different
impurity concentrations assumes the following values:
l�p�1:0��1:988�23�, l�p�0:9��1:848�22�, and l�p�0:8��
1:838�31�. Extrapolation of temperature dependences for
X1�p;T4TBKT�p�� as T! 0 gives limT!0 X

1 � 0 for all
impurity concentrations being considered.
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The difference between X1�p � 1:0;TBKT� � 0:444�26�
at the BKT transition point obtained in Ref. [98] for a `pure'
system and the analytical value X1�p � 1:0;TBKT� � 0:5
calculated in the vortex-less approximation in Ref. [26]
allows the contribution of the vortex dynamics to the FDR
to be estimated. The resultant X1 values for structurally
disordered systems, X1�p � 0:9;TBKT� � 0:357�29�, and
X1�p � 0:8;TBKT� � 0:284�20�; they suggest a strong influ-
ence of structural defects on nonequilibrium critical behavior
of the system.

Reference [100] reports a study of the temperature
dependence of FDR for a `pure' system and X1�T � in
which the linear dependence X1�T � � 0:5T=TBKT was
obtained. However, only three time values tw � 100, 300,
and 1000 MCS/s were used to find X1�T � when extrapolat-
ing to tw !1 in Ref. [100]. We used more than ten tw values
ranging from 10 to 10,000 MCS/s for such extrapolation to
control the passage of X�t; tw� to the universal scaling regime
and to correctly perform the limiting transition to determin-
ing X1�T �. Crossover effects in the behavior of C depen-
dence of Tw (hence, the X�t; tw� dependence) manifest

themselves in the high-temperature region close to TBKT�p�,
as clearly demonstrated in Fig. 31.

It follows from the above that the two-dimensional
XY model for the effective temperature Teff�T4TBKT� �
T=X1�p� predicts the power-law Teff�p� � T 1ÿl�p� type
dependences presented in the inset to Fig. 33.

It can also be concluded that the relaxation dynamics of
the system in the BKT phase markedly slow down with
decreasing temperature, which facilitates strengthening of
aging effects. The presence of structural defects in the system
also leads to further heightening of the aging effects.

6.2 Evolution from a low-temperature initial state.
Superaging effects
Spin-wave excitations exert the most pronounced influence
on aging effects in the two-dimensional XY model evolving
from a low-temperature initial state with m0 � 1. These
excitations manifest themselves first and foremost as peculia-
rities of the two-time dependence of the autocorrelation
function

C�t; tw� �
��

1

pL2

X
i

pi Si�t�Si�tw�
��

ÿ
��

1

pL2

X
i

pi Si�t�
��

1

pL2

X
i

pi Si�tw�
��

; �106�

in which, in contrast to that in the case of evolution from a
high-temperature initial state, the important role is played by
the second constituent Cmm�t; tw� of the autocorrelation
function.

Functions C�t; tw� for the two-dimensional XY model
with spin concentrations p � 1:0, 0.9, and 0.8 were calculated
for different quenching temperatures in the low-temperature
phase with Ts 4TBKT�p�. Figure 34 demonstrates, as an
example, the autocorrelation functions for p � 1:0 and
p � 0:8 at temperatures T � TBKT�p� and T � 0:1. The
aging effects, manifested through the dependence of the
autocorrelation function on the system's `age' tw at observa-
tion times tÿ tw � tw, are characterized by correlation
slowing down with age. It also follows from Fig. 34 that a
rise in defect concentration (decrease in spin concentration p)
strengthens aging effects. To recall, for a high-temperature
initial state, correlation slows down to the same extent as in
the case of a low-temperature initial state at one order of
magnitude longer observation times.

The influence of defects is especially apparent as the
strong slowing down of correlation effects in structurally
disordered systems, compared with those in a `pure' system.
We attribute these marked changes in the behavior of the
autocorrelation function to cluster fragmentation coming
about in the course of evolution of the two-dimensional XY-
model from a low-temperature initial state in which one large
cluster at m0 � 1 breaks down into smaller ones. Introducing
defects into the system results in abnormal slowing down of
cluster fragmentation [101], as illustrated by the plots for two
constituents of the autocorrelation function in formula (106),
Css�t; tw� and Cmm�t; tw�, presented in Figs 35a, b for a `pure'
system and a system with spin concentration p � 0:9,
respectively. The graphs show that, for `pure' and structu-
rally disordered systems, the values of Css�t; tw� and
Cmm�t; tw� constituents begin to coincide for observation
times tÿ tw 5 tw, which leads to their cancellation in the
complete autocorrelation function, even if cancellation in the
structurally disordered systems occurs at longer observation
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times than in the `pure' system. These effects reflect marked
differences in the nonequilibrium behaviors between the two-
dimensional XY model and the three-dimensional Ising
model, arising from the absence of spontaneous magnetiza-
tion in the former that is inherent in the latter.

To confirm the generalized scaling dependence of the
autocorrelation function given by expression (102), �tÿtw�=tw
dependences of t

Z=2
w C�t; tw� were derived. Figure 36 showing

results for the `pure' system �p � 1:0� demonstrates the
`collapse' of the data for different tw in the universal curves
corresponding to the temperatures indicated in the figure
panels and fitted by the scaling function F�x�tÿ tw�=x�tw��
(102) and the absence of a similar `collapse' for the
structurally disordered system with p � 0:8. A more compli-
cated form of scaling dependence of the autocorrelation
function than that in Eqn (102) was supposed to be realized
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for the structurally disordered two-dimensional XY model.
Based on this assumption, the scaling function F��tÿ tw�=tmw�
was proposed with exponent m to be found from the
requirement of data `collapse' for the �tÿ tw�=tmw dependence
of t

Z=2
w C�t; tw� at various tw. Figure 37 illustrates the

realization of this procedure for a system with p � 0:8 at
various temperatures. It was revealed that the exponent
m ' 1� Z�T; p� is associated with the `collapse' of the data
for structurally disordered systems. This case of scaling
dependence on waiting time with exponent m > 1 is regarded
as `superaging' phenomenon.

To conclude this section, it is worthwhile to note that
numerical studies of nonequilibrium behavior of the two-
dimensional XY model revealed significant differences in the
behaviors of systems evolving from different initial states.
These differences are attributable to the small role of high-
energy vortex excitations in system's dynamics during
relaxation from the low-temperature initial state with
m0 � 1; indeed, its dynamics are governed only by low-
energy spin-wave excitations. Vortex excitations and their
interactions play the key role in systems evolving from a high-
temperature initial state with m0 5 1. The nonequilibrium
behavior of the two-dimensional XY model exhibits aging
effects and FDT violations at quenching temperatures
corresponding to the entire low-temperature phase of the
XY model. It was shown that the presence of structural
defects enhances manifestations of aging effects and pro-
duces superaging effects in the case of evolution from a low-
temperature initial state.

7. Aging effects in the nonequilibrium behavior
of multilayer structures

The currently known peculiarities of nonequilibrium critical
dynamics provide a basis for the adequate interpretation of
experimental data obtained for Co=Cr-based multilayer
structures [13]. Reference [13], designed to investigate the
relaxation of magnetization, revealed magnetic aging effects
in a Co(0.6 nm)=Cr(0.78 nm) magnetic superstructure. The
nanoscale periodicity in these magnetic multilayer structures
produces mesoscopic effects of spatial spin correlation with
slow relaxation dynamics of magnetization upon quenching
the system in the nonequilibrium state. Unlike bulk magnetic
systems, where slow dynamics and aging effects manifest
themselves near the critical point, magnetic superstructures
with nanoscale periodicity make it possible to prolong the

relaxation time by virtue of effects associated with an
increased characteristic correlation length of spin±spin
correlations. Due to this, aging and nonergodicity effects
can be observed in multilayer magnetic structures within a
wider temperature range than in bulk systems.

Reference [102] reports a numerical MC study of the
specific features of nonequilibrium behavior of a multilayer
magnetic structure made from ferromagnetic films separated
by a nonmagnetic metal layer. The magnetic films had linear
sizes L� L�N and imposed periodic boundary conditions
in the film plane. A structure with the magnetic film thickness
N � 3 was considered. The value of the exchange integral J1
determining interactions between the neighboring spins inside
a ferromagnetic film was chosen to be J1=�kBT � � 1, and
film±film interactions were defined by the quantity J2 �
ÿ0:3J1. The negativeness of J2 reflects the fact that the
thickness of the nonmagnetic interlayer in multilayer struc-
tures with giant magnetic resistance is chosen such that
the long-range and oscillating Ruderman±Kittel±Kasuya±
Yosida (RKKY) interactions between the spins of ferromag-
netic layers had an effective antiferromagnetic character
[103]. This interaction aligned magnetizations of the neigh-
boring ferromagnetic layers oppositely to each other.

Themagnetic properties of Fe, Co, andNi-based ultrathin
films in contact with a nonmagnetic metal substrate are most
adequately described by the Heisenberg anisotropic model
[104, 105] specified by the Hamiltonian

H � ÿ
X
hi; j i

Ji j
�
Si Sj ÿ D�N�Sz

i S
z
j

�ÿ h
X
i

S x
i ; �107�

where Si � �Sx
i ;S

y
i ;S

z
i � is the three-dimensional unit vector

in the ith site, D � 0:7 is the anisotropy parameter for Co
ferromagnetic films with monolayer thicknessN � 3, and h is
an external magnetic field. The form and parameters of the
Hamiltonian are chosen such that it corresponds to a multi-
layer Co(0.6 nm=Cr) structure in which ultrathin Co films
undergo spontaneous magnetizationm in the film plane xy at
subcritical temperatures.

At the first stage of the study, equilibrium character-
istics of the multilayer structure were calculated to
determine ferromagnetic phase transition temperature Tc

in magnetic films, and TN characterizing realization of the
antiferromagnetic configuration of film magnetizations in
the structure due to J2 negativeness (Fig. 38). To determine
critical temperatures more precisely, structures with differ-
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ent linear sizes of the films (L � 16, 24, 32, 64) were
considered. Such characteristics as `staggered' magnetization
mstg � m1 ÿm2, where m1, m2 are the film magnetizations;
`staggered' susceptibility wstg � �hm 2

stgi ÿ hmstgi2�=�TNs�,
where Ns is the number of spins in the film; heat capacity
Ch � �hE 2i ÿ hEi2�=�T 2Ns�, and Binder cumulant U4 �
�3ÿ hm 4i=hm 2i2�=2 were calculated.

The analysis of the temperature dependence of these
thermodynamic quantities in films of different linear size L
makes it possible to unambiguously characterize the type of
phase transformations in a multilayer structure and deter-
mine critical temperatures Tc and TN [40, 41]. To enhance
the physical correspondence of the temperature dependences
of the above characteristics to the Co=Cr system, the
temperature scale was set through the exchange interaction
integral J1 � 4:4� 10ÿ14 erg corresponding to cobalt. By
way of example, Fig. 39 presents the temperature depen-
dence of heat capacity with two characteristic peaks
corresponding to TN � 60 K �kBTN=J1 � 0:19� and Tc �
249:6 K �kBTc=J1 � 0:78�. To recall, these critical tempera-
tures for the model multilayer structure are in excellent
agreement with TN � 53 K and Tc � 225 K measured in
experiment [13] for the Co=Cr structure.

The next stage of the study was designed to examine the
nonequilibrium behavior of the multilayer structure at
quenching temperatures Ts equaling critical temperature

Tc � 249:6 K and temperatures Ts � 96 and 160 K being
within the TN < Ts < Tc range. The autocorrelation function
was calculated for the evolution of the system from a high-
temperature initial state created for T0 4Tc with reduced
`staggered' magnetization m stg

0 � 0:05 and from a low-
temperature initial state with m stg

0 � 1. Characteristics were
averaged over 1000 runs.

The plots in Fig. 40 demonstrate the presence of aging
effects in the system, i.e., the abatement of correlation effects
over time tw. Aging effects arise in multilayer structures not
only at Ts � Tc as in bulk systems but also at quenching
temperatures Ts < Tc. Evidently, evolution from both low-
temperature and high-temperature initial states is associated
with a time-related correlation slowing down corresponding
to the sense of aging. It should also be noted that, correlation
times in the course of system's evolution from a high-
temperature initial state are two±three orders of magnitude
more than those in the evolution from a low-temperature
initial state at the same tw values.

In the aging regime for tÿ tw � tw 4 1, the two-time
dependence of the autocorrelation function is characterized
by the scaling form

C�t; tw� � tÿbw FC
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where exponent b at quenching temperature Ts � Tc is
expressed via critical exponents: b � 2b=�zn�. The scaling
function FC�t=tw� in formula (108) is the homogeneous
function of argument t=tw, being characterized at the long-
time stage of evolution with tÿ tw 4 tw 4 1 by the power-law
decay:

FC

�
t

tw

�
�
�

t

tw

�ÿca
�109�

with exponent ca � d=zÿ y 0 in the course of evolution from a
high-temperature initial state at Ts � Tc and ca �
1� d=z� b=�zn� in the case of evolution from a low-
temperature initial state at Ts � Tc. At quenching tempera-
tures Ts 6� Tc, exponents b and ca in formulas (108) and (109)
are already unrelated to critical exponents of the system of
interest.

To verify the validity of the scaling form (108) for the data
on the autocorrelation function, t=tw dependences of
t bwC�t; tw� � FC�t=tw� were constructed with the choice of b
values such that the data for different tw fall, if possible, into a
single curve for t=tw 4 1. By the example of the autocorrela-
tion function obtained for evolution from a high-temperature
initial state, the collapse of the data on t bwC�t; tw� and different
tw is seen in the universal curve (see Fig. 40) corresponding to
the scaling function FC�t=tw� at Ts � Tc � 249:6 K with the
exponent bc � 2b=�zn� � 0:318�8�, at Ts � 96 K with b �
0:04�1�, and at Ts � 160 K with b � 0:055�10�.

The evaluation of aging effects in the behavior of the
autocorrelation function was supplemented by modeling
conditions under which aging effects in the relaxation proper-
ties of magnetization were revealed for the Co=Cr structure
[13]. To this effect, a rather strong magnetic field was applied
in the film plane �h � 100J1� at instant tw for a short time
during relaxation of `staggered' magnetization of the struc-
ture evolving from a low-temperature initial state at quench-
ing temperature Ts. Removal of the field gave rise to
isothermal relaxation of `staggered' magnetization and its
slow return to the relaxation curve characterizing the non-
equilibrium behavior of the structure in the absence of the
magnetic field �h � 0�. The regions within which magnetiza-
tion first relaxed and thereafter recovered following magnetic
field withdrawal to its unperturbed value at h � 0 were
analyzed at waiting times tw � 10, 50, 100, and 1000 MCS/s
and quenching temperatures Ts � 96 and 160 K, and
Ts � Tc � 249:6 K. Figure 41 graphically demonstrates
manifestations of aging effects in the relaxation of film
magnetization in a multilayer structure, i.e., relaxation
slowing down with growing tw.

The theory of nonequilibrium processes predicts the
following scaling dependence for the magnetization behavior
(in our case `staggered' magnetization):

mstg�t; tw� � tÿaw Fm

�
t

tw

�
; �110�

where exponent a at quenching temperature Ts � Tc is
expressed via critical exponents: a � b=�zn�.

The proposed t=tw dependences of t awmstg�t; tw� (see
Fig. 41) confirmed the scaling form (110) and distin-
guished the tw-independent function Fm�t=tw� where there
is an adequate choice of exponent a for each quenching
temperature Ts. The figure shows that the `collapse' of the
data in the curve common for all tw takes place not only at
the critical temperature with Ts � Tc but also for Ts < Tc.

The following values for the exponent a were obtained:
ac � b=�zn� � 0:159�5� atTs � Tc � 249:6K, a � 0:022�7� at
Ts � 96 K, and a � 0:025�7� at Ts � 160 K. It follows from
the comparison of a and b values that equality b � 2a,
consistent with the ratio of these exponents at the critical
temperature, holds within the calculation accuracy. More-
over, aging effects in the relaxation behavior ofmagnetization
in our model multilayer structure are in excellent agreement
with those observed in the Co=Cr experiment [13].

To sum up, investigations and calculations of two-time
dependences of the autocorrelation function and `staggered'
magnetization by Monte Carlo methods revealed aging
effects in the nonequilibrium critical behavior of multilayer
magnetic structures not only at Ts � Tc but also in a wide
quenching temperature range Ts < Tc. Clearly, such none-
quilibrium effects should be taken into consideration in
practical applications of multilayer magnetic structures as
components of spintronic devices with a giant magnetic
resistance effect.

8. Conclusions

This review deals with characteristic features of the non-
equilibrium critical behavior of far-from-equilibrium macro-
scopic systems. Special emphasis is laid on the methods for
renormalization group and numerical descriptions of model
statistical systems, such as the three-dimensional Ising model
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and two-dimensional XY model. Processes of the critical
relaxation of pure and structurally disordered systems
exposed to the influence of abnormally strong fluctuation
effects accompanying ordering processes in solids during
second-order phase transitions are considered. The current
upsurge of interest in such systems comes from predicted and
observed aging effects associated with their slow evolution
from a nonequilibrium initial state and violations of the
fluctuation±dissipation theorem.

Results of numerical studies of the nonequilibrium critical
behavior of the three-dimensional Ising model presented in
this review give evidence of FDT violations and strong aging
effects in the two-time behavior of the correlation and
response functions. They show that limiting FDR values
characterizing the degree of system departure from equili-
brium and FDT violation satisfy inequality X1 < 1 and
depend on the universality class of nonequilibrium critical
behavior to which they belong: one of these classes corre-
sponds to the high-temperature, and the other to the low-
temperature initial state of the system. The concept of
threshold initial magnetization m th

0 separating these two
universality classes falling in the 0:1 < m th

0 < 0:4 range was
introduced.

Numerical research revealed the strong influence of
structural defects on nonequilibrium critical behavior of the
three-dimensional Ising model. Specifically, a rise in defect
concentration results in the strengthening of aging effects
manifested as the slowing down of correlation and relaxation
processes in structurally disordered systems, in contrast to
`pure' systems. Nonequilibrium initial states begin to increas-
ingly more strongly influence peculiar features and character-
istics of the system's evolution. For example, in the case of
evolution from a high-temperature initial state with magneti-
zation m0 5 1, the influence of defects is manifested in
quantitative changes to universal characteristics of none-
quilibrium critical behavior, such as critical exponents and
the limiting FDR X1�p�.

It was shown that the presence of structural defects results
in setting new X1�p� values, with X1�p� for strongly
structurally disordered systems being higher than X1�p� for
weakly disordered systems, which, in turn, is higher than
X1�p � 1� for a `pure' three-dimensional Ising model. For
evolution from a low-temperature initial state with m0 � 1,
the autocorrelation function for times tÿ tw 4 tw 4 1
decreases as a power-law of critical magnetization relaxation
due to domain wall pinning on structural defects, while
limiting FDR values determined by the domain dynamics in
the long-time regime become equal to zero. In this case, the
two-time scaling dependence of the autocorrelation function
was found to obey relations of the `superaging' theory
suggesting enhanced influence of the system's `age' (the time
of onset of tw measurement) determined by the power-law
dependence t mw with exponent m > 1. The values of this
exponent were shown to differ for weakly �m � 2:3�1�� and
strongly �m � 2:8�1�� disordered Ising models. Investigations
into the influence of initial magnetization m0 on peculiarities
of the nonequilibrium critical behavior of the disordered
three-dimensional Ising model demonstrated an enhance-
ment of aging effects with increasing m0 that turn into
`superaging' effects in the autocorrelation function behavior
for m0 5 0:25.

A comprehensive analysis of the nonequilibrium critical
dynamics of the three-dimensional Ising model revealed that
critical parameters determining the asymptotic behavior of

the autocorrelation function and response function belong to
different universality classes of critical behavior, namely the
critical behavior of `pure', weakly disordered, and strongly
disordered systems. Each of these classes can be subdivided
into two universality subclasses of nonequilibrium critical
behavior corresponding to the system's evolution from high-
temperature and low-temperature initial states with limiting
FDR values characteristic for each of them.

Research on the nonequilibrium critical behavior of the
three-dimensional Ising model at cyclic temperature varia-
tions demonstrated that the time-related behavior of the
autocorrelation function in the aging regime exhibits effects
of memory about the state of the system at the instant of
quenching responsible for the recovery of this state following
the return of the temperature to the critical value after the
system resides for some time in the `frozen' state. Domainwall
pining on structural defects was shown to prevent the
complete recovery of `memory' about the system's state at
the instant of `quenching'.

When preparing conditions of experiments for the study
of critical behavior of different systems and analysis of the
experimental data, it is important to take into consideration
not only critical slowing down effects but also aging effects
that markedly strengthen the critical slowing down effects as
the `sample' age tw increases and underlie the influence of the
system's initial states. The presence of structural defects and
the increase in their concentration enhance the influence of
aging effects.

The review includes results of descriptions of nonequili-
brium behavior of one more important statistical system, the
two-dimensional XYmodel providing a basis for research on
phase transitions and critical events in such physical systems
as ultrathin magnetic films, planar magnets, superfluid thin
films, and two-dimensional crystals.

A specific feature of the XY model is the abnormally
strong spatial and temporal correlation between the system's
states throughout the entire low-temperature phase for
T4TBKT characterized by power-law decline. It allows the
slow dynamics of the two-dimensional XY model to be
observed not only near the critical point but also over the
entire low-temperature T4TBKT range. The numerical
description of the nonequilibrium behavior of the two-
dimensional XY model as opposed to that of the three-
dimensional Ising model is complicated by correlation and
relaxation times one or two orders of magnitude longer than
those inherent in the latter system, even taking into account
the finite-dimensional effect.

Peculiarities of the influence of initial states and structural
defects on characteristics of the two-time behavior of
response and autocorrelation functions for the two-dimen-
sional XY model were considered and the FDR calculated.
One of the factors underlying the influence of initial states is
the different time dependence of the correlation length x�t�. In
the course of evolution from a low-temperature initial state,
the correlation length x�t� � t 1=2, whereas in the case of a
high-temperature initial state, this dependence is modified by
vortex interaction effects and assumes the form x 2�t� � t= ln t.
In the latter case, the key role is played by high-energy vortex
excitations and their interaction. This type of initial state was
shown to be associated with the enhancement of aging effects
parallel to the increase in structural defect concentration. The
behavior of the autocorrelation function for long observation
times tÿ tw 4 tw 4 1 was shown to be characterized by a
faster decline in the power-law regime than in the aging
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regime. The onset of the power-law regime was shown to be
shifted toward the longer observation time region with
increasing defect concentrations.

Calculations of limiting FDR valuesX1�p;T4TBKT�p��
for the two-dimensional XY model gave evidence that the
influence of structural disorder is responsible for their
increase with growing defect concentrations. The tempera-
ture dependence of the limiting FDR can be given in the
form X1 � T l, with the exponent l�p� taking the following
values for different impurity concentrations: l�p � 1:0� �
1:988�23�, l�p� 0:9��1:848�22�, and l�p � 0:8�� 1:838�31�.
Extrapolation of the temperature dependences obtained for
X1�p;T4TBKT�p�� as T! 0 gives limT!0 X

1 � 0 for all
impurity concentrations.

In the evolution of the two-dimensional XYmodel from a
low-temperature initial state, the key role in the influence on
model dynamics is played by low-energy spin-wave excita-
tions. The strong influence of structural defects on the
nonequilibrium behavior of the autocorrelation function
manifests itself in the considerable slowing down of correla-
tion effects in structurally disordered systems in comparison
with those in a `pure' XY model. These pronounced changes
are related to cluster fragmentation, i.e., the breakdown of a
single large cluster into a few smaller ones. The introduction
of defects into the system leads to the abnormal slowing down
of cluster fragmentation as confirmed by results of detailed
studies on autocorrelation function behavior. In this case, the
two-time scaling dependence of the autocorrelation function
obeys relations of the `superaging' theory, and the power-law
increase in the influence of the system's age tw is characterized
by the exponent m � 1� Z�T; p� > 1, where Z�T; p� stands for
the temperature- and spin concentration-dependent critical
exponent related to transverse rigidity of the system.

The review provides evidence that the intriguing features
of nonequilibrium behavior manifest themselves in the
properties of magnetic superstructures composed of alternat-
ing Co=Cr nanoscale magnetic and nonmagnetic layers not
only near the critical temperature Tc of ferromagnetic
ordering in films, but also within a wide temperature range
with T4Tc. The nanoscale periodicity stipulates the appear-
ance in these multilayer magnetic structures mesoscopic
effects of the spatial spin correlation with slow magnetiza-
tion relaxation dynamics during quenching of the system in
the nonequilibrium state.

It is worthy of note that critical properties of an
ultrathin cobalt film on the chromium substrate in a
Co(0.6 nm)=Cr(0.78 nm) magnetic superstructure showing
experimentally observable aging effects [13] are adequately
described by the two-dimensional XY model taking account
of finite-dimensional effects [89]. The influence of non-
equilibrium aging effects should be taken into consideration
in practical applications of multilayer magnetic structures as
components of spintronic devices with the giant magnetic
resistance effect.
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