
Abstract. Various aspects of the generalized Nambu ± Jona-
Lasinio model of QCD in four dimensions are reviewed. The
properties of mesonic excitations are discussed in detail, with
special attention on the chiral pion. Spontaneous chiral symme-
try breaking in a vacuum and effective chiral symmetry restora-
tion in the spectrum of highly excited mesons and baryons are
described microscopically.
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1. Introduction

Quark models of strong interactions have a long history,
starting from the mid-20th century when the idea of hadrons
composed of quarks was commonly accepted. And, as it
happens, not only the number of various quark models but
even the number of their types turned out to be quite large.
For example, the so-called Coulomb+linear potential model
in [1] describes heavy quarkonium spectra with rather good
accuracy, which is clearly due to the heavy quark mass being
much larger than the scale of strong interaction LQCD. A
naive kinematical relativization [2] of the quark model allows
considering mesons made of light quarks, although the
justification for the potential model approach is less obvious
in this case. The given approach, as well as similar models, is
simple, for numerical calculations as well; however, its range
of applicability is very limited, andmany phenomena inherent
in quantum chromodynamics (QCD), which are of interest
for the phenomenology of strong interactions, cannot be
addressed in such a framework. Among them, the effect of
spontaneous breaking of chiral symmetry in the QCD
vacuum, its implications for the spectrum of hadrons, and
the effective restoration of chiral symmetry in excited hadrons
should be mentioned.

It is well known that in the chiral limit, the SU�2�L�
SU�2�R symmetry of the QCDLagrangian is broken, and this
affects the observed spectrum of hadrons. Thus, the sponta-
neous symmetry breaking SU�2�L � SU�2�R ! SU�2� [3]
manifests itself through the absence of low-lying hadrons
populatingmultiplets of the SU�2�L� SU�2�R group, through
the Goldstone nature of the pion, in particular, through its
vanishing mass (which is finite beyond the strict chiral limit,
but quite small compared to the typical hadronic scale),
through the nonzero value of the chiral condensate in the
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vacuum, and so on. Thus, chiral symmetry is realized non-
linearly in low-lying hadrons.

Meanwhile, there are good reasons to believe that the
aforementioned symmetry is effectively restored in the
spectrum of both excited baryons [4±6] and excited mesons
[7±9]. A nice and convincing justification of such a restora-
tion in the spectrum of excited hadrons was suggested in a
recent paper [10], where the masses of light hadrons were
extracted from the lattice configuration after the near-zero
modes of the Dirac operator, responsible for the sponta-
neous chiral symmetry breaking [11], were artificially
removed. The resulting mass spectrum demonstrated a
remarkably high degeneracy pattern, including formation
of chiral multiplets [12].

The full solution of QCD would yield a microscopic
description of the effect of the spontaneous breaking of
chiral symmetry. In the absence of such a solution, various
approaches have been suggested aimed at identification of
gluonic field configurations that could be responsible for
chiral symmetry breaking. It is quite natural to relate chiral
symmetry breaking to confinement, yet another prominent
feature of QCD. For example, in the approach in [13], the
confining kernel derived in the vacuum correlatormethod [14]
gives rise to the interaction of light quarks with Nambu±
Goldstone fields, thus yielding an effective chiral Lagrangian.
The subject of the present review is a phenomenological
approach that employs a simple ansatz for the confining
kernel pertinent to the matter at hand. The approach gains
experience from the 't Hooft model [15] of two-dimensional
QCD in the limit of a large number of colors (Nc !1).

First, we note that a microscopic description of the effect
of spontaneous chiral symmetry breaking requires an
intrinsically field theoretic approach that takes both particles
and antiparticles into account on equal footing within the
same formalism. And this necessity lies outside the scope of
constituent quark models because they merely provide an
essentially quantum mechanical approach, even if one
considers relativistic kinematics. Formally, the problem
stems from the fact that when working in the formalism of
relativistic quantum-mechanical Hamiltonians, one is stuck
with a particular (positive) sign of the energy while the
contributions from the other (negative) sign of the energy
are ignored. Such `negative' solutions correspond to anti-
particles, and hence the interplay of both positive and
negative solutions leads to a Z-like (Zitterbewegung) trajec-
tory of the particle, that is, to so-called Z-graphs. The
problem can be traced to the spectrum: the Salpeter equation
that emerges for the bound states is defined with the help of a
single-component Hamiltonian that describes the particle,
and therefore the resulting bound-state equation is derived
without theHamiltonian components related to antiparticles.
Such an approximation is well justified for heavy particles;
however, it is obviously misleading for light quarks and hence
for the light hadrons built thereof, for the chiral pion in the
first place.

The proper mechanism to account for the Zitterbewe-
gung motion of particles can be established in terms of a
matrix Hamiltonian and a two-component wave function.
In [16], such an approach to the two-dimensional 't Hooft
model was suggested and described in detail. The key
approximations that allowed controlling the pair creation
process are the limit of the large number of colors Nc !1
(an introduction to this limit in QCD and related issues can
be found in [17]). In addition, we note that the limit of the

large number of degrees of freedom allows overriding [18]
the Coleman no-go theorem, which forbids spontaneous
breaking of chiral symmetry in two dimensions [19].
Additional simplifications in the model arise from the
instantaneous type of interaction mediated by the two-
dimensional gluon. To establish this last property, it is
sufficient to count the number of the degrees of freedom
for the two-dimensional gluon and then to arrive straight-
forwardly at the absence of the gluon transverse propagating
degrees of freedom. The 't Hooft model in the axial gauge
considered in [16] describes the interaction of two quark
currents taken at equal time and mediated by the confining
potential that depends on the one-dimensional interquark
separation. The terms containing higher powers of the quark
currents do not appear in this Hamiltonian, which is a
reflection of the fact that all correlators of several gluonic
fields either vanish or reduce to the powers of the bilocal
correlator, which is merely the gluon propagator. As a result,
there is only one irreducible field correlator hhA1A2ii �
hA1A2i ÿ hA1ihA2i � hA1A2i, with all such irreducible cor-
relators of higher orders vanishing. This result is exact in two
dimensions and does not rely on any approximations or
assumptions. A review of the 't Hooft model in the axial
gauge can be found in [20].

In contrast to the two-dimensional case, the instantaneous
nature of the interquark interaction and the absence in the
Hamiltonian of terms with the product of more than two
quark currents are approximations that allow building a
realistic quark model, which we review in what follows.
Thus, a quark model with quark currents endowed with an
instantaneous interaction was suggested as a model for QCD
about 30 years ago in [21±24] and was studied in detail in the
Hamiltonian formalism in [25±30], as well as in later studies
[31±35]. As was mentioned above, this model can be regarded
as the four-dimensional generalization of the 't Hooft model
in two dimensions. At the same time, the samemodel can also
be viewed as the generalization of the four-dimensional
Nambu±Jona-Lasinio (NJL) model [3] to a nonlocal interac-
tion of the quark currents. It is important to note that in spite
of its long history, theNJLmodel [3] still remains a useful and
convenient tool for various studies in the physics of strong
interactions. An important role in this was played by a
detailed study of the connection between the model and
QCD (see, e.g., [36, 37]) and by its further development (see
reviews [38, 39]), which allow considerably extending the
range of the problems where this model can be successfully
used. An important feature of a Nambu±Jona-Lasinio-type
model, hereinafter referred to as the generalized Nambu±
Jona-Lasinio (GNJL) model, is the presence of a confining
interaction, which allows using this model to address the
problem of bound states and which also brings an intrinsic
scale into the model.

The model is defined in terms of the Hamiltonian (for
simplicity, only one quark flavor is considered, the general-
ization to the multi-flavor case being trivial)

Ĥ �
�
d3x�c�x; t��ÿic �m�c�x; t�

� 1

2

�
d3x d3y Ja

m �x; t�Kab
mn �xÿ y� Jb

n �y; t� ; �1�

where, as was explained above, the coupling of quark currents
Ja
m �x; t� � �ca�x; t� gm�l a=2�abcb�x; t� is parameterized with the
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help of the instantaneous kernel

Kab
mn �xÿ y� � gm0gn0d abV0

ÿjxÿ yj� : �2�

Hereinafter, the following notation is used:
� lower-case letters from the beginning of the Greek

(Latin) alphabet, that is, a, b, and so on (a, b, and so on) are
used for the color indices in the fundamental (adjoint)
representation and range 1; 2; . . . ; Nc (1; 2; . . . ;N 2

c ÿ 1);
� lower-case letters from themiddle of theGreek alphabet

(m, n, and so on) are used for those Lorentz indices that take
values from 0 to 3;
� c�x; t� is the fermion (quark) field; �c � cyg0;
� m is the mass of the quark (the chiral limit implies that

m � 0);
� gm � �g0; c � are the Dirac matrices;
� l are the color matrices (generators of the SU�Nc�

group);
� gmn is the Minkowski metric tensor; and
� dab is the Kronecker symbol.
Typically, the confining potential is chosen in a power-law

form,

V0

ÿjxj� � K a�1
0 jxja ; 04a4 2 ; �3�

whereK0 is the parameter of the model, with the dimension of
mass. The qualitative predictions of the model are indepen-
dent of the particular form of the potential if it only is
confining for colored objects, on the one hand, and demon-
strates moderate growth with the interquark separation to
avoid divergent integrals, on the other.

Boundary cases with a � 0 and a � 2 require special
treatment. In particular, in the limit a! 0, the potential has
to be redefined as

V0

ÿjxj�! ~V0

ÿjxj� � K0

ÿ
K0jxj

�aÿ1
a

����
a!0

�K0 ln
ÿ
K0jxj

�
;

�4�

and hence the resulting interaction is logarithmic. Strictly
speaking, the potential can also be defined for negative values
a > ÿ1 (for a � ÿ1, that is, for the Coulomb potential, the
integrals become divergent again; see [32] for details).
However, negative powers of a do not provide confinement
for quarks, and they are disregarded in what follows.

In the limit a � 2, the Fourier transform of the potential
reduces to the Laplacian of the three-dimensional d-function,
and therefore, by taking integrals by parts, we can turn all
integral equations into second-order differential equations,
which are much simpler to deal with from the technical
standpoint. This explains why such a choice is quite popular
in the literature (see, e.g., [21±29]). Still larger values of a,
a > 2, lead to divergent integrals and are not considered
(a detailed discussion of the problem can be found in [21±23,
32]). More realistic quantitative predictions can be made with
the help of the linear confinement [40±44].

As was mentioned above, qualitative results are insensi-
tive to the particular form of the potential, and therefore it is
not fixed in most cases in what follows. If, however, a
quantitative investigation of equations is needed, the poten-
tial is chosen in the most appropriate power-law form, as in
Eqn (3).

The GNJL model meets a wide set of requirements, such
as (a) the ability to account for relativistic effects; (b) the

presence of an explicit confining force (and therefore it can be
employed to address various questions related to bound states
of quarks, including excited hadrons); (c) chiral symmetry
(for m � 0); and (d) the ability to describe the effect of
spontaneous chiral symmetry breaking in a vacuum. The
last point deserves an additional remark. In particular, the
model satisfies all low-energy theorems such as the Gell-
Mann±Oakes-Renner relation [45] (see [21±23]), the Gold-
berger±Treiman relation [46] (see [47]), the Adler self-
consistency condition [48], and the Weinberg theorem [49]
(see [50]). At the same time, the model has an attractive
feature to microscopically describe the phenomenon of
spontaneous breaking of chiral symmetry in a vacuum and
its effective restoration in the spectrum of excited hadrons.
These questions are discussed in detail in this review.
Furthermore, because the effects of chiral symmetry break-
ing and restoration are closely related to the problem of the
Lorentz nature of the confining interaction in quarkonia, that
issue is also addressed in this review.

2. Bardeen±Cooper±Schrieffer approximation,
mass-gap equation, and chirally broken vacuum

A convenient approach to studies of the model described by
Hamiltonian (1) is the Bogoliubov±Valatin transformation,
which allows proceeding from `bare' quarks, which are the
relevant degrees of freedom in a chirally symmetric vacuum,
to `dressed' quarks, which are the physical degrees of freedom
in the chirally broken vacuum [25±29]. The quark field
ca�x; t� is defined in terms of annihilation and creation
operators b̂, d̂ and b̂ y, d̂ y, and takes the form

ca�x; t� �
X
s�"; #

�
d3p

�2p�3 exp �ipx�

� �b̂as�p; t� us�p� � d̂ yas�ÿp; t� vÿs�ÿp�
�
; �5�

us�p� � 1���
2
p
� ��������������������

1� sinjp

q
�

��������������������
1ÿ sinjp

q
a p̂

�
us�0� ;

vÿs�ÿp� � 1���
2
p
� ��������������������

1� sinjp

q
ÿ

��������������������
1ÿ sinjp

q
a p̂

�
vÿs�0� ;

�6�

b̂s�p; t� � exp �iEpt� b̂s�p; 0� ;
d̂s�ÿp; t� � exp �iEpt� d̂s�ÿp; 0� : �7�

Here, the rest-frame bispinors are defined as

us�0� � ws

0

� �
; vÿs�0� � ÿig2u �s �0� � 0

is2w �s

� �
; �8�

where g2 �s2� is the secondDirac (Pauli) matrix, s � �1 labels
the spin eigenstates, whence �ws�i � dsi, and Ep is the dressed-
quark energy. The quantity jp, which parameterizes the
Bogoliubov±Valatin transformation, is known as the chiral
angle and is defined with the boundary conditions
jp�p � 0� � p=2 and jp�p!1� � 0.

After normal ordering 1 in terms of the dressed creation
and annihilation operators, Hamiltonian (1) takes the

1 In this review, normal ordering of operators is indicated by colons, for

example, : Ĥ2 :.
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form

Ĥ � Evac� : Ĥ2 : � : Ĥ4 :; �9�

Evac�jp� � ÿ
1

2
gV

�
d3p

�2p�3 �Ap sinjp � Bp cosjp� ; �10�

where V is the three-dimensional volume and the factor g
counts the total number of degrees of freedom for each quark,
g � �2S� 1�Nc, where 2S� 1 (with S � 1=2) is the number
of quark spin projections (in the multi-flavor case, g is to be
additionally multiplied by the number of flavors Nf). The
functions of the momentum Ap and Bp are given by the
formulas

Ap � m� 1

2

�
d3k

�2p�3 V�pÿ k� sinjk ;

Bp � p� 1

2

�
d3k

�2p�3 p̂k̂V�pÿ k� cosjk ;
�11�

where the hats in p̂ and k̂ denote unit vectors for the
respective momenta (hats over scalar quantities identify
operators: see, e.g., (5)), V�CFV0, and CF�N 2

c ÿ 1�=�2Nc�
is the eigenvalue of the fundamental Casimir operator. To
ensure that the potential takes finite values in the limit
Nc !1, its strength is subject to an appropriate rescaling,
that is, K a�1

0 Nc !Nc!1const.
The explicit form of the chiral anglejp is determined from

the requirement that the vacuum energy be kept at the
minimum. For a qualitative investigation of the properties
of the corresponding functional (10), it is convenient to use
the following trick [30]. We suppose that the given functional
has a minimum at a particular function j0�p�. Then, if
evaluated at a rescaled function j0�p=x�, with 04x <1, it
must take larger values for all x 6� 1, and it should reproduce
the aboveminimum at x � 1. Finally, taking the limit x! 0 is
equivalent to taking an infinitely large argument of the chiral
angle, and because jp�p!1� ! 0, such a limit is equivalent
to the evaluation of the energy functional for the trivial,
chirally symmetric solution. Thus, it proves instructive to
study the behavior of the function Evac�x�, which should have
a minimum at x � 1. For simplicity, we consider the chiral
limit and set m � 0. In this case, the only remaining
dimensional parameter is the potential strength K0. Then, by
a redefinition of the integration variable in the functions Ap

and Bp, p! p=x, we readily arrive at

Evac�x� � C1x
d�1 � C2K

a�1
0 x dÿa ; �12�

where D is the space±time dimension, d � Dÿ 1, and C1 and
C2 are two x-independent constants. For convenience, we
measure the energy from the chirally symmetric solution
jp � 0, which corresponds to x � 0, that is, we set
Evac�0� � 0. Whether a minimum exists with a negative
energy at x � 1 depends on the relation between the
coefficients and the powers of the two contributions in
expression (12). An interesting case is given by the limit
a � d. The 't Hooft model of two-dimensional QCD con-
stitutes an example of such a limit for which a � d � 1.
Naively, one could expect that the second term in (12) turns
into a constant in this limit and hence no nontrivial minimum
can exist. However, this is not the case. It is important to note
that for a � d, the momentum integrals are logarithmically

divergent in the infrared domain and, as such, they need a
regulator, hereinafter denoted as l. Then, in the given limit,
the second term in formula (12) contains a logarithmic
dependence on x,

E �a�d�vac �x� � C1x
d�1 � C2K

d�1
0 ln

�
x
K0

l

�
; �13�

which entails two consequences: (i) a nontrivial minimum is
possible if the coefficients C1 and C2 have different signs and
(ii) the vacuum energy grows in approaching the trivial
solution at x � 0. In other words, the chirally symmetric
phase of the theory ceases to exist [30]. A similar conclusion
for the 't Hooft model is made in [51].

For theGNJLmodel, d � 3, and in view of the restrictions
on the value of the exponent a [see (3)], we always have a < d.
For a particular choice of the signs of the coefficients C1 and
C2 in (12), this ensures the existence of a nontrivial solution
that is energetically favorable compared to the trivial
vacuum. By a straightforward check, we can ensure that,
indeed, the needed signs are in evidence.

We note that the requirement that the vacuum energy be
minimum guarantees at the same time that the quadratic part
of the Hamiltonian, : Ĥ2 :, is diagonal (that is, the anomalous
terms of the form b̂ yd̂ y ÿ d̂b̂ are absent), and the correspond-
ing equation is known as the mass-gap equation [21±29],

Ap cosjp � Bp sinjp : �14�

Then the dressed-quark dispersive law is

Ep � Ap sinjp � Bp cosjp : �15�

It is easy to verify that the solution of the mass-gap
equation for a free particle takes the form jp�arctan �m=p�,
and then the free dispersive law Ep �

�����������������
p 2 �m 2

p
is readily

reproduced. It is also worth mentioning that the same angle
defines the Foldy±Wouthuysen transformation that brings
the freeDiracHamiltonianH�ap� bm to the diagonal form
H 0 � bEp. Such a deep connection between the chiral angle
and the Foldy±Wouthuysen transformation persists for the
nontrivial confining interaction and for the chiral angle given
by the solution of the corresponding mass-gap equation (see,
e.g., [20, 33]).

For an arbitrary power-law confining potential (3), the
mass-gap equation takes the form (in the chiral limit, that is,
for m � 0)

p 3 sinjp �
1

2
K 3

0

�
p 2j 00p � 2pj 0p � sin 2jp

�
�16�

for a � 2 [21±29], and

p 3 sinjp � K a�1
0 G�a� 1� sin pa

2

�1
ÿ1

dk

2p

�
�
pk sin�jk ÿ jp�
jpÿ kja�1 � cosjk sinjp

�aÿ 1� jpÿ kjaÿ1
�
�17�

for 04a < 2 [32], where G�a� 1� is the Euler gamma
function. For convenience and to make the formulas more
compact, the absolute value of the momentum p is formally
extended to the domain p < 0 according to the rule
cosjÿp � ÿ cosjp, sinjÿp � sinjp. As was mentioned
above, the mass-gap equation for the harmonic oscillator
potential reduces to a second-order differential equation.
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In Fig. 1, the behavior of the chiral angle as a function of
the momentum is exemplified by the solution of the mass-gap
equation with a linear potential. Qualitatively, the shape of
the curve does not depend on the particular form of the
interquark potential. Further details of the formalism of the
chiral angle can be found in [21±30, 33], whereas the details of
various studies of the mass-gap equation can be found in [32]
(for the four-dimensional theory) and in [16, 52] (for the two-
dimensional theory). In particular, in some of the studies
mentioned above, it was pointed out that the mass-gap
equation supports the existence of `excited' solutions, with
the chiral angle possessing knots. Attempts to assign a
physical meaning to such solutions can be found in [30, 31,
35]. In what follows, the problem of excited solutions
(replicas) is not discussed, and we always understand the
chiral angle of the form depicted in Fig. 1 as the nontrivial
solution of the mass-gap equation.

For the chiral angle that is the solution of mass-gap
equation (14), Hamiltonian (9) takes a diagonal form [25±29],

Ĥ � Evac �
XNc

a�1

X
s�"; #

�
d3p

�2p�3 Ep

� �b̂ yas�p� b̂as�p� � d̂ yas�ÿp� d̂as�ÿp�
�
; �18�

and the contribution of the omitted term : Ĥ4 : is suppressed
as 1=

������
Nc

p
in the large-Nc limit. In the literature, such an

approximation is often referred to as the Bardeen±Cooper±
Schrieffer (BCS) approximation, analogous to the similar
approach by Bardeen, Cooper, and Schrieffer to the theory of
superconductivity. The new, dressed operators b and d
annihilate the vacuum j0i that is related to the trivial vacuum
j0i0 annihilated by the bare operators, by the relations [25±29]

j0i � exp �QÿQ y� j0i0 ; Q y � 1

2

X
p

jpC
y
p ;

C yp �
XNc

a�1

X
s; s 0�"; #

b yas�p�
��r p̂� is2�ss 0d yas 0 �p� ; �19�

where r is given by the standard Pauli matrices and the
operator C yp creates quark±antiquark pairs with the quantum
numbers of the vacuum, JPC � 0��, that is, 3P0 pairs. With
the help of the (anti)commutation relations between the
quark and antiquark operators, we can arrive at the
following representation for the chirally broken (BCS)

vacuum [25±29]:

j0i�
Y
p

� �������
w0p
p � 1���

2
p �������

w1p
p

C yp �
1

2

�������
w2p
p

C y2p

�
j0i0 ; �20�

where the coefficients take the form

w0p � cos4
jp

2
; w1p � 2 sin2

jp

2
cos2

jp

2
; w2p � sin4

jp

2
�21�

and obey the condition w0p � w1p � w2p�1. We note that
coefficients (21) support a natural interpretation in terms of
the probabilities of finding one (w1p) or two (w2p) quark±
antiquark pairs with the given relative momentum 2p in the
new vacuum, or of finding no such pairs at all (w0p) [34]. The
Fermi statistics for the quarks and antiquarks makes it
impossible to create more pairs with the same relative
momentum.

It is straightforward to ensure, with the help of Eqns (20)
and (21), that the wave function of the BCS vacuum is
normalized (the trivial vacuum is assumed to be normalized
as well),

h0j0i �
Y
p

�w0p � w1p � w2p� � 1 ; �22�

and that the two vacua are orthogonal in the limit of an
infinite volume V,

h0j0i0 � exp

�X
p

ln

�
cos2

jp

2

��
� exp

�
V

�
d3p

�2p�3 ln

�
cos2

jp

2

��
ÿ!
V!1

0 : �23�

It is easy to see that the BCS vacuum describes a cloud of
strongly correlated quark±antiquark pairs at each point of the
configuration space; the pair is created by the operator
exp �QÿQ y�, and this fact ensures the appearance of a
nonzero quark±antiquark condensate in the vacuum,

h�cci � ÿNc

p 2

�1
0

dp p 2 sinjp ; �24�

which vanishes at the trivial solution jp � 0 but takes
nonzero values for the nontrivial solution depicted in Fig. 1.
Therefore, spontaneous chiral symmetry breaking occurs: the
Hamiltonian of the theory is chirally symmetric, while the
BCS vacuum is not. The large-momentum asymptotic form of
the chiral angle is related to the chiral condensate as

jpjm�0 �p!1ÿ
p
Nc

G�a� 2�K a�1
0 sin

�
pa
2

� h�cci
p a�4 : �25�

It is instructive to note that, by the substitution
j�p� ! j�p=x� and a subsequent variable change p � xp0 in
formula (24), it is easy to demonstrate that the chiral
condensate scales as x 3. We can then rewrite (12) in the form
of the function Evac�h�cci�, which therefore supports the
interpretation as an effective potential that reaches the
minimum at a nonzero value of the chiral condensate.

An alternative approach to the derivation of the mass-gap
equation is related to the Dyson equation for the dressed
quark propagator, shown graphically in Fig. 2. Schemati-
cally, this equation can be represented as a sum of an infinite

0.8

0.6

0.4

0.2

1.6

1.4

1.2

1.0

0 1 2 3

jp

p=
���
s
p

Figure 1. Solution of mass-gap equation (14) for m � 0 and for the linear

confining potentialV�r� � sr, where the parameter s has the dimension of

mass squared.
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series of loops,

S � S0 � S0SS0 � S0SS0SS0 � . . . � S0 � S0SS ;

�26�

with the mass operator given by the integral of the dressed
propagator,

iS�p� �
�

d4k

�2p�4 V�pÿ k� g0S�k0; k� g0 ;

V�p� � CFV0�p� ; CF � N 2
c ÿ 1

2Nc
:

�27�

The propagator S�p0; p� can be written with the help of
projectors on the positive- and negative-energy solutions of
the Dirac equation,

S�p0; p� � L��p� g0
p0 ÿ Ep � i0

� Lÿ�p� g0
p0 � Ep ÿ i0

; �28�

where

L��p� � 1

2
�1� g0 sinjp � a p̂ cosjp� : �29�

The pole of the dressed quark is given by the value Ep

(ÿEp for the antiquark), which in turn depends on the mass
operator, and we thus arrive at a closed system of equations,

iS�p� �
�

d4k

�2p�4 V�pÿ k� g0
1

Sÿ10 �k0; k� ÿ S�k� g0 ;

S0�p0; p� � 1

g0p0 ÿ c pÿm� i0
:

�30�

Since the Fourier transform of the potential is indepen-
dent of energy (which is a consequence of the instantaneous
form of the interaction), the integral over the temporal
component of the momentum in mass operator (27) only
touches upon propagator (28) and can therefore be evaluated
explicitly, which in turn allows parameterizing the mass
operator in the form

S�p���Ap ÿm� � c p̂�Bp ÿ p� ; Ep�Ap sinjp � Bp cosjp ;

�31�
and gives the propagator

Sÿ1�p0; p� � g0p0 ÿ �c p̂�Bp ÿ Ap : �32�
The self-consistency condition for such a parameterization is
simply the mass-gap equation (14) for the chiral angle.

3. Beyond the Bardeen±Cooper±Schrieffer level.
Mesonic states

In the preceding section, the GNJL model was studied in the
BCS approximation with the dressed quarks as the physical
degrees of freedom. This approximation allows the phenom-

enon of spontaneous chiral symmetry breaking in a vacuum
to be described microscopically. We note that the model
contains confinement and does not therefore support the
existence of free quarks. A natural next step is then to proceed
beyond the BCS approximation, with the inclusion of the
interaction between the dressed quarks and thus with the
building of colorless objectsÐhadrons. In Sections 3.1±3.2,
this problem is addressed in the framework of two
approaches: in the matrix formalism (see [21±29, 33] for the
details) and with the help of a generalized Bogoliubov±
Valatin transformation (the relevant details can be found
in [33]).

3.1 Bethe±Salpeter equation
In the framework of the matrix formalism, proceeding
beyond the BCS approximation is done by considering the
Bethe±Salpeter equation for the bound states of quarks and
antiquarks, which is written as an equation for the mesonic
amplitude w�p;M� in the meson rest frame (where p is the
momentum of the quark and M is the mass of the meson)
(Fig. 3),

w�p;M� � ÿi
�

d4q

�2p�4 V�pÿ q� g0S
�
q; q0 �M

2

�
� w�q;M�S

�
q; q0 ÿM

2

�
g0 : �33�

The instantaneous form of the interaction allows us to
simplify this equation considerably. In particular, since the
integral for the energy in Eqn (33) only depends on the
position of the poles of the propagators, it is easy to see that
when the propagators are substituted in the form of Eqn (28),
only two terms of the four survive, with the poles in the q0
complex plane located on different sides of the real axis. The
corresponding integrals are then straightforwardly evaluated
and give�1

ÿ1

dq0
2pi

1

q0 �M=2ÿ Eq � i0

1

q0 �M=2� Eq ÿ i0

� ÿ 1

2Eq �M
; �34�

and hence Eqn (33) becomes the system of coupled equations

�2EpÿM � w ��� �ÿ
�

d3q

�2p�3 V�pÿ q� g0
��L�g0� w ����Lÿg0�

� �Lÿg0� w �ÿ��L�g0�
�
g0 ;

�2Ep�M � w �ÿ� �ÿ
�

d3q

�2p�3 V�pÿ q� g0
��L�g0� w ����Lÿg0�

�35�

� �Lÿg0� w �ÿ��L�g0�
�
g0 ;

= + +

+...

...

+++= =

=
S

S
S0

S0 S0 S0

S S
S0 S0

S
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S

Figure 2.Graphical representation of the equation for the propagator and

for the mass operator of the dressed quark.

=

Figure 3.Graphical representation of the Bethe±Salpeter equation for the

amplitude w�p;M�.
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where we introduce the amplitudes

w ����q;M� � w�q;M�
2Eq ÿM

; w �ÿ��q;M� � w�q;M�
2Eq �M

:

In order to proceed, we
� multiply the first equation in system (35) by �us1 from the

left and by vs2 from the right, and do the same for the second
equation, with �vs3 and us4 , respectively;
� represent the projectors L� in terms of bispinors,

L��p� �
X
s

us�p� 
 u ys �p� ;

Lÿ�p� �
X
s

vÿs�ÿp� 
 v yÿs�ÿp� ;
�36�

� define matrix amplitudes f�s1s2���us1w ��� vÿs2 � and
fÿs1s2 � ��vÿs1w �ÿ�us2 �.

As a result, the Bethe±Salpeter equation takes the form

�2Ep ÿM�f�s1s2 � ÿ
X
s3s4

�
d3q

�2p�3 V�pÿ q�

���v���s1s2s3s4f�s3s4 � �v�ÿ�s1s2s3s4fÿs3s4	 ;
�2Ep �M�fÿs1s2 � ÿ

X
s3s4

�
d3q

�2p�3 V�pÿ q�

���vÿ��s1s2s3s4f�s3s4 � �vÿÿ�s1s2s3s4fÿs3s4	 ;

8>>>>>>>>>>><>>>>>>>>>>>:
�37�

where we define the quantities v�� such that�
v���p; q��

s1s3s4s2
���us1�p� g0us3�q����vÿs4�ÿq� g0vÿs2�ÿp��;�

v�ÿ�p; q��
s1s3s4s2

���us1�p� g0vÿs3�ÿq����us4�q� g0vÿs2�ÿp��;
�
vÿ��p; q��

s1s3s4s2
���vÿs1�ÿp� g0us3�q����vÿs4�ÿq� g0us2�p��;

�38�

�
vÿÿ�p; q��

s1s3s4s2
���vÿs1�ÿp� g0vÿs3�ÿq����us4�q� g0us2�p��;

with�
�us�k1� g0us 0 �k2�

� � �Ck1Ck2 � Sk1Sk2�r k̂1��r k̂2�
�
s;s 0 ;�

�vÿs�ÿk1� g0vÿs 0 �ÿk2�
� � ��ÿis2�ÿCk1Ck2

� Sk1Sk2�r k̂1��r k̂2�
��is2��s;s 0 ;

�
�vÿs�ÿk1� g0us 0 �k2�� �

�ÿ
Sk1Ck2�r k̂1�

�39�

ÿ Sk2Ck1�r k̂2�
��is2��s;s 0 ;�

�us�k1� g0vÿs 0 �ÿk2�
� � ÿ��is2�ÿSk1Ck2�r k̂1�
ÿ Sk2Ck1�r k̂2�

��
s;s 0 ;

and where the following shorthand notation is used:

Cp � cos

�
1

2

�
p
2
ÿ jp

��
�

��������������������
1� sinjp

2

r
;

Sp � sin

�
1

2

�
p
2
ÿ jp

��
�

��������������������
1ÿ sinjp

2

r
:

�40�

It is also convenient to include the potential in the
definition of the amplitudes, thus writing�
T���p; q��

s1s3s4s2
� ��us1�p� g0us3�q���ÿ V�pÿ q��
� ��vÿs4�ÿq� g0vÿs2�ÿp��;�

T�ÿ�p; q��
s1s3s4s2

� ��us1�p� g0vÿs3�ÿq���ÿ V�pÿ q��
� ��us4�q� g0vÿs2�ÿp��;�

Tÿ��p; q��
s1s3s4s2

� ��vÿs1�ÿp� g0us3�q���ÿ V�pÿ q�� �41�

� ��vÿs4�ÿq� g0vÿs2�p��;�
Tÿÿ�p; q��

s1s3s4s2
� ��vÿs1�ÿp� g0vÿs3�ÿq��
� �ÿ V�pÿ q����us4�q� g0us2�p��;

or, symbolically,

T�����ug0u ��ÿV ���vg0v � ; T�ÿ���ug0v ��ÿV ���ug0 v �;

Tÿ����vg0u ��ÿV ���vg0u � ; Tÿÿ���vg0v ��ÿV ���ug0u �:
�42�

Equations (37) comprise the Bethe±Salpeter equation in
the so-called energy±spin formalism described in [25±29].

In [16], the approach of matrix wave functions is
suggested for the two-dimensional QCD, which is conveni-
ent in various applications. Below, this approach is general-
ized to the four-dimensional GNJL model [33].

To begin, we note that it is convenient to define the Foldy
operator Tp and use it to rewrite the Dirac projectors L�

in (29):

L��p� � TpP�T yp ; P� � 1� g0
2

;

Tp � exp

�
ÿ 1

2
c p̂

�
p
2
ÿ jp

��
:

�43�

As the next step, Eqn (33) for the mesonic amplitude is
rewritten in terms of the matrix wave function

~f�p;Mp��
�
dp0
2p

S

�
p; p0 �Mp

2

�
w�p;Mp�S

�
p; p0 ÿMp

2

�
;

�44�

which is subject to rotation with the Foldy operator Tp both
from the left and from the right; we thus define
f�p;Mp� � T yp ~f�p;Mp�T yp . For such a matrix wave func-
tion, Bethe±Salpeter equation (33) takes the form

f�p;Mp��ÿ
�

d3q

�2p�3 V�pÿ q�
�
P�

T ypTqf�q;Mp�TqT
y
p

2Ep ÿMp
Pÿ

� Pÿ
T ypTqf�q;Mp�TqT

y
p

2Ep �Mp
P�

�
: �45�

It is easy to see that the solution of Eqn (45) has the form

f�p;Mp� � P� APÿ � Pÿ BP� ; �46�

whereA and B are two unknownmatrix functions, which can
be expanded in the complete set of the 4� 4 matrices,
f1; gm; g5; gmg5; smng. We note, however, that due to the
orthogonality properties of the projectors P�Pÿ �
PÿP� � 0 and also because the matrix g0 can always be
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absorbed into their definition, the actual set of matrices is
reduced to just two, fg5; c g, and hence wave function (46) can
be represented as

f�p;M� � 0 j��p�
jÿ�p� 0

� �
; �47�

where j��p� are 2� 2 matrices. It is a straightforward
exercise to demonstrate that the eigenvalue problem given
by (37) is equivalent to the one given by (45), with

f�s1s2 � i�j�s2�s1s2 ; fÿs1s2 � i�s2jÿ�s1s2 : �48�

Further transformations correspond to projecting the
matrix amplitudes onto the states with the given total
momentum and spatial and charge parities.

3.2 Chiral pion
We first consider the case of a chiral pion. For the
corresponding matrix amplitude, we have

f�s1s2�p� �
�

i���
2
p s2

�
s1s2

Y00�p̂�j�p �p� ; �49�

where Y00�p̂� � 1=
������
4p
p

is the lowest spherical harmonic
normalized to unity. Then, if the amplitudes T��p �p; q� are
introduced in accordance with Eqn (41) and all spin traces are
taken explicitly, we arrive at the following system of
equations for the scalar wave functions j�p :

�2Ep ÿMp�j�p �p�

�
�
q 2 dq

�2p�3
�
T��p �p; q�j�p �q� � T�ÿp �p; q�jÿp �q�

�
;

�2Ep �Mp�jÿp �p�
�50�

�
�
q 2 dq

�2p�3
�
Tÿ�p �p; q�j�p �q� � Tÿÿp �p; q�jÿp �q�

�
;

where

T��p �p; q� � Tÿÿp �p; q� � ÿ
�
dOqV�pÿ q�

�
�
cos2

jp ÿ jq

2
ÿ 1ÿ p̂q̂

2
cosjp cosjq

�
;

T�ÿp �p; q� � Tÿ�p �p; q� � ÿ
�
dOqV�pÿ q�

�51�

�
�
sin2

jp ÿ jq

2
� 1ÿ p̂q̂

2
cosjp cosjq

�
:

The resulting system of equations (50) can be interpreted
as a bound-state equation for a quark±antiquark pair in the
channel with quantum numbers of the pion. The physical
interpretation of the two amplitudes used to describe one
meson comes from the observation that the quark±antiquark
pair in it can move both forward and backward in time, and
each type of motion is described by an independent amplitude
[16, 21±29]. Thus, the Hamiltonian turns out to be a matrix in
the so-called energy±spin space, and the bound-state equation
takes the form of a system of two coupled equations.

It can be verified explicitly that in the strict chiral limit
m � 0, the function

j�p �p� � jÿp �p� � sinjp �52�

is a solution of system (50) with the eigenvalue Mp � 0.
Indeed, substituting function (52) and Mp � 0 in system
(50), we arrive at the single equation

2Epjp�p� �
�
q 2 dq

�2p�3
ÿ
T��p �p; q� � T�ÿp �p; q�

�
jp�q�

� ÿ
�

d3q

�2p�3 V�pÿ q�jp�q� ; �53�

which holds due to mass-gap equation (14) and dispersive law
(15). The resulting equation looks especially simple and
instructive in the coordinate space:ÿ

2Ep � V�r��jp � 0 : �54�

Formally, it takes the form of a simple Salpeter equation with
equal masses and with the eigenvalue M � 0; however, the
form of the quantity Ep is very different from the simple
kinetic energy of a free quark �p 2 �m 2�1=2, which guarantees
the existence of the vanishing eigenvalue.

We show in such a way that in the chiral limit, the pion
Bethe±Salpeter equation is equivalent to the mass-gap
equation for the chiral angle, which, in turn, demonstrates
the celebrated dualism of the pion: as a Goldstone boson, it
already appears at the BCS level, while beyond the BCS
description the same pion emerges from the Bethe±Salpeter
equation, as the lowest level in the spectrum of quark±
antiquark states.

System of equations (50) allows studying the behavior of
the pionic solution near the chiral limit. In particular, it can be
demonstrated that as Mp ! 0, the solution of this system
takes the form (higher-order terms in the pion mass are
ignored)

j�p �p� �
�����������
2pNc

p
fp

�
1�������
Mp
p sinjp �

�������
Mp

p
Dp

�
;

f 2p �
Nc

p 2

�1
0

p 2 dpDp sinjp ;
�55�

where the function Dp satisfies an equation that does not
containMp any more (see also [25±29]):

2EpDp � sinjp �
�

d3k

�2p�3 V�pÿ k�

� ÿsinjp sinjk � p̂k̂ cosjp cosjk

�
Dk : �56�

It is easy to verify that the normalization condition for the
wave functions j�p takes the form�

p 2 dp

�2p�3
�
j�2p �p� ÿ jÿ2p �p�

� � 1 : �57�

The physical interpretation of such a normalization becomes
clear from the generalized Bogoliubov±Valatin transforma-
tion for mesonic operators.

We now consider the matrix structure of the pionic wave
function. In the case of the pion, it is obvious that only g5
contributes, and we can therefore extract the matrix structure
of the quantities A and B explicitly and introduce the scalar
wave functions j�p as

Ap � g5j
�
p �p� ; Bp � g5j

ÿ
p �p� ; �58�

where the signs and the coefficients are chosen so as to comply
with definition (49) used previously. Thus, with the help of
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Eqns (46) and (58), it is easy to see that the pion wave function
becomes

~f�p;Mp��Tp

�
P�g5j

�
p � Pÿg5j

ÿ
p

�
Tp�g5Gp � g0g5T

2
p Fp ;

�59�

where Gp � �1=2� �j�p � jÿp � and Fp � �1=2��j�p ÿ jÿp �,
and Bethe±Salpeter equation (45) can be rewritten in the form

Mp
~f�p;Mp� � �ap� g0m� ~f�p;Mp�

� ~f�p;Mp��apÿ g0m� �
�

d3q

�2p�3 V�pÿ q�

� ÿL��q� ~f�p;Mp�Lÿ�ÿq�ÿL��p� ~f�q;Mp�Lÿ�ÿp�
ÿ Lÿ�q� ~f�p;Mp�L��ÿq� � Lÿ�p� ~f�q;Mp�L��ÿp�

�
:

�60�
Multiplying the last equation by g0g5, integrating it over

the momentum p, and taking the trace in the spinmatrices, we
arrive at the relation

Mp

�
d3p

�2p�3 Fp sinjp � 2m

�
d3p

�2p�3 Gp ; �61�

which can easily be identified as the celebrated Gell-Mann±
Oakes±Renner relation, if the explicit form of pion wave
function (55) is used together with the quantities Gp and Fp,
defined as

Gp �
�����������
2pNc

p

fp
�������
Mp
p sinjp ; Fp �

������������������
2pMpNc

p
fp

Dp ; �62�

with the pion decay constant fp and the function Dp

introduced in Eqn (55). Then the conventional form of the
Gell-Mann±Oakes±Renner relation [45] is readily restored as
soon as formula (24) for the chiral condensate is used:

f 2p M
2
p � ÿ2mh�cci : �63�

3.3 Bogoliubov transformation for mesonic operators
In [53], an alternative approach to mesonic states in the two-
dimensional model for QCD was proposed, allowing the
study of mesonic states in this theory with the help of the
generalized Bogoliubov±Valatin transformation for the
mesonic sector. This approach can naturally be generalized
to the four-dimensional GNJL model. Such a generalization,
suggested in [33], is described in detail below.

We define four operators quadratic in the quark opera-
tors. Among them, the first two,

B̂ss 0 �p; p 0� � 1������
Nc

p
X
a

b̂ yas�p� b̂as 0 �p 0� ;

D̂ss 0 �p; p 0� � 1������
Nc

p
X
a

d̂ yas�ÿp� d̂as 0 �ÿp 0� ;
�64�

`count' the number of quarks and antiquarks, while the other
two,

M̂
y
ss 0 �p; p 0� �

1������
Nc

p
X
a

b̂
y
as 0 �p 0� d̂ yas�ÿp� ;

M̂ss 0 �p; p 0� � 1������
Nc

p
X
a

d̂as�ÿp� b̂as 0 �p 0� ;
�65�

create and annihilate quark±antiquark pairs. In the limit
Nc !1, the introduced operators obey the standard

bosonic commutation relations. In particular, the only
nonvanishing commutator is�

M̂ss 0 �p; p 0� M̂ y
ss 0 �q; q 0�

�
� �2p�3d �3��pÿ q��2p�3d �3��p 0 ÿ q 0� dssds 0s 0 : �66�

It is easy to see that at the BCS level, Hamiltonian (18) is
expressed entirely in terms of the first pair of the above
operators,

Ĥ � Evac �
������
Nc

p X
s�"; #

�
d3p

�2p�3 Ep

ÿ
B̂ss�p; p� � D̂ss�p; p�

�
;

�67�

while the omitted part (at the BCS level, suppressed in the
large-Nc limit) of the Hamiltonian : Ĥ4 : contains all four
operators. The key observation of the approach is the
statement that in the presence of confinement, quarks and
antiquarks cannot be created or annihilated as isolated
objectsÐ this is only possible for quark±antiquark pairs.
Therefore, beyond the BCS approximation, operators (64)
cannot be independent, but must be expressed in terms of
operators (65). In the large-Nc limit, it is sufficient to restrict
to the minimal number of quark±antiquark pairs, that is, to
retain only one accompanying antiquark for each created
quark and vice versa and not to consider the entire quark±
antiquark cloud. Then the sought relation between the
operators is

B̂ss 0 �p; p 0� � 1������
Nc

p
X
s 00

�
d3p 00

�2p�3 M̂
y
s00s�p 00; p� M̂s 00s 0 �p 00; p 0� ;

D̂ss 0 �p; p 0� � 1������
Nc

p
X
s 00

�
d3p 00

�2p�3 M̂
y
ss 00 �p; p 00�M̂s 0s 00 �p 0; p 00�:

�68�

It is easy to verify that in the limit Nc !1, substitution
(68) reproduces the commutation relations between operators
(64), and it can therefore be interpreted as an independent
solution of the equations given by these commutation
relations.

If relations (68) are substituted in Hamiltonian (9), the
terms : Ĥ2 : and : Ĥ4 : turn out to be of the same order of
magnitude, while all other terms, suppressed in the limit
Nc !1, can be disregarded. Then the center-of-mass
Hamiltonian of the quark±antiquark cloud takes the form

Ĥ � E 0vac �
�

d3P

�2p�3 Ĥ�P� ; �69�

where (for simplicity, the Hamiltonian density H is taken in
the rest frame, with P � 0)

Ĥ � Ĥ�P � 0� �
X
s1s2

�
d3p

�2p�3 2EpM̂
y
s1s2
�p; p� M̂s2s1�p; p�

� 1

2

X
s1s2s3s4

�
d3p

�2p�3
d3q

�2p�3 V�pÿ q�

�
n�
v���p; q��

s1s3s4s2
M̂ y

s2s1
�p; p� M̂s4s3�q; q�

� �v�ÿ�p; q��
s1s3s4s2

M̂ y
s2s1
�q; q� M̂ y

s3s4
�p; p�

� �vÿ��p; q��
s1s3s4s2

M̂s1s2�p; p� M̂s4s3�q; q�

� �vÿÿ�p; q��
s1s3s4s2

M̂s3s4�p; p� M̂ y
s1s2
�q; q�

o
; �70�
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and the amplitudes v are given by the expressions in
Eqn (38).

Strictly speaking, only two amplitudes of the four in
Eqn (38), for example, v�� and v�ÿ, are independent, while
the others, vÿÿ and vÿ�, are related to them by the operation
of Hermitian conjugation. Nevertheless, we prefer to keep all
four amplitudes explicitly in order to preserve the most
symmetric form of the equations.

3.3.1 The case of the chiral pion. Before we come to the
diagonalization of the full Hamiltonian (70), we treat the
case of the chiral pion separately. For the pion, J � L �
S � 0, and hence the operator M̂ss0 �p; p� can be written in the
form

M̂ss0 �p; p� �
�

i���
2
p s2Y00�p̂�

�
ss0
M̂�p� ; �71�

where the spin±angular structure is equivalent to the one in
the matrix wave function of the pion, Eqn (49).

Substituting expression (71) in Hamiltonian (70), we find

Ĥp �
�
p 2 dp

�2p�3 2EpM̂
y�p� M̂�p� ÿ 1

2

�
p 2 dp

�2p�3
q 2 dq

�2p�3

� ÿT��p �p; q� M̂ y�p�M�q� � T�ÿp �p; q� M̂ y�q� M̂ y�p�
� Tÿ�p �p; q� M̂�p� M̂�q��Tÿÿp �p; q� M̂ y�q� M̂�p�� ; �72�

where the amplitudes T��p �p; q� are nothing more than
combinations of the amplitudes v���p; q� and the potential
V�pÿ q�, integrated with respect to the angle [see Eqn (51)].

Expression (72) is a typical Hamiltonian requiring
diagonalization by a bosonic Bogoliubov±Valatin transfor-
mation of the form

M̂�p� � m̂pj�p �p� � m̂ ypj
ÿ
p �p� ;

M̂ y�p� � m̂ ypj
�
p �p� � m̂pjÿp �p� ;

�73�

which can be inverted as

m̂p �
�
p 2 dp

�2p�3
ÿ
M̂�p�j�p �p� ÿ M̂ y�p�jÿp �p�

�
;

m̂ yp �
�
p 2 dp

�2p�3
ÿ
M̂ y�p�j�p �p� ÿ M̂�p�jÿp �p�

�
:

�74�

The operators m̂ yp and m̂p support a clear physical
interpretation: they create and annihilate the pion in its rest
frame. Then, with the help of the commutator

�
M̂�p�; M̂ y�q�� � �2p�3

p 2
d�pÿ q� ; �75�

which follows directly from Eqn (66), it is straightforward to
find that�

m̂p; m̂
y
p

� � � p 2 dp

�2p�3
ÿ
j�2p �p� ÿ jÿ2p �p�

�
: �76�

Therefore, the requirement of the canonical commutation
relation between the bosonic creation and annihilation
operators for the pion, �m̂p; m̂

y
p � � 1, leads to the normal-

ization condition (amplitudes j�p �p� are chosen real) of form
(57), which is just the standard condition for the Bogoliubov
amplitudes. At the same time, the equation that guarantees
cancellation of the anomalous Bogoliubov terms in Hamilto-

nian (72), that is, that hOjĤpjppi � 0 and hppjĤpjOi � 0
(where jOi is the vacuum annihilated by the mesonic
operators, for example, m̂p), takes the form of the bound-
state equation for the amplitudes j�p �p� [see Eqn (50)].

It is important to note that the vacuum jOi annihilated by
the operator m̂p differs from the BCS vacuum j0i and both
vacua are related by a unitary transformation,

m̂pjOi � m̂pU
yj0i � U y�Um̂pU

y�j0i / U yM̂�p�j0i � 0 :

Because the quark±antiquark pair creation is suppressed in
the large-Nc limit, the deviation of the operatorU y from unity
demonstrates the same suppression pattern. Similarly, the
vacuum energy E 0vac in Eqn (69) differs from the vacuum
energy Evac in BCS Hamiltonian (18), and it contains
contributions from the commutators of the operators M̂ and
M̂ y (suppressed in the limit Nc !1). Finally, the chiral
condensate evaluated in the BCS approximation provides the
leading-order term in the expansion of the exact condensate in
inverse powers of Nc.

Hamiltonian (72) diagonalized in the given order in Nc

takes the form

Ĥp �Mpm̂
y
pm̂p ; Mp � hpjĤpjpi ; �77�

whereMp is the pionmass, and the omitted terms (suppressed
for large Nc) describe pion±pion scattering.

3.3.2 The general case. We now diagonalize the full Hamilto-
nian (70) in terms of compound mesonic states. With a trivial
generalization of Eqns (73) and (74),

M̂ss 0 �p; p� �
X
n

ÿ
m̂nf

�
n; ss 0 �p� � m̂ ynf

ÿ
n; ss 0 �p�

�
;

M̂
y
ss 0 �p; p� �

X
n

ÿ
m̂ ynf

�y
n; ss 0 �p� � m̂nf

ÿy
n; ss 0 �p�

�
;

�78�

m̂n �
�

d3p

�2p�3 Sp
ÿ
M̂�p; p�f�yn �p� ÿ M̂ y�p; p�fÿn �p�

�
;

m̂ yn �
�

d3p

�2p�3 Sp
ÿ
M̂ y�p; p�f�n �p� ÿ M̂�p; p�fÿyn �p�

�
;
�79�

it is straightforward to find the following expressions for the
commutators m̂n and m̂ ym:

�m̂n; m̂
y
m� �

�
d3p

�2p�3 Sp
ÿ
f�yn �p�f�m �p� ÿ fÿym �p�fÿn �p�

�
;

�m̂n; m̂m� �
�

d3p

�2p�3 Sp
ÿ
f�yn �p�fÿm �p� ÿ f�ym �p�fÿn �p�

�
:

�80�

Here, the subscripts n and m denote the complete set of
quantum numbers describing mesonic states. The natural
requirement that �m̂n; m̂

y
m� � dmn and �m̂n; m̂m� � 0 leads to

the orthogonality condition for the wave functions in the
form�

d3p

�2p�3 Sp
ÿ
f�yn �p�f�m �p� ÿ fÿym �p�fÿn �p�

� � dnm ;

�
d3p

�2p�3 Sp
ÿ
f�yn �p�fÿm �p� ÿ f�ym �p�fÿn �p�

� � 0 :

�81�
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It is then easy to verify that representation (78), together
with the orthogonality and normalisation condition (81),
guarantees that the Hamiltonian is diagonal, that is,

Ĥ �
X
n

Mnm
y
nmn �O

�
1������
Nc

p
�
; �82�

if the mesonic wave functions f�n;s1s2 satisfy system of
equations (37) with the eigenvalue M �Mn.

In the leading order in Nc, Hamiltonian (82) describes
stable mesons, while the neglected (Nc-suppressed) terms
include quark exchanges and therefore describe decays and
scattering of the mesons (see review [20], where such
suppressed terms are restored for two-dimensional QCD).

In practical applications, the Hamiltonian is diagonalized
in the JPC basis. For this, we should keep in mind that while
the Hamiltonian commutes with the sum J � S� L, it does
not commute with either the operator of the total quark spinS
or the operator of the angular momentum L separately.

The case of spin singlets, P � �ÿ1�J�1, and C � �ÿ1�J, is
trivial in this respect, because the wave functions are given by
the expression

f�n; s1s2�p� �
�

i���
2
p s2

�
s1s2

YJm�p̂�j�n �p� ; �83�

whereYJm�p̂� is the spherical harmonic with the momentum J
and magnetic quantum number m. Spin triplets with J � L,
P � �ÿ1�J�1, and C � �ÿ1�J�1 are described by

f�n; s1s2�p� �
�ÿ
rYJJm�p̂�

� i���
2
p s2

�
s1s2

j�n �p� ;

fÿn; s1s2�p� �
�

i���
2
p s2

ÿ
rYJJm�p̂�

��
s1s2

jÿn �p� ;
�84�

whereYJlm�p̂� is the spherical vector with the totalmomentum
J, the orbital momentum l, and the magnetic quantum
number m.

The case L � J� 1, P � �ÿ1�J, and C � �ÿ1�J is more
complicated, because it has to be described by four scalar
amplitudes j�J�1; n�p� (with the obvious exception of the 0��

scalar meson with J � 0 and l � 1),

f�n; s1s2�p� �
�ÿ
rYJJÿ1m�p̂�

� i���
2
p s2

�
s1s2

j�Jÿ1; n�p�

�
�ÿ
rYJJ�1m�p̂�

� i���
2
p s2

�
s1s2

j�J�1; n�p� ;

fÿn; s1s2�p� �
�

i���
2
p s2

ÿ
rYJJÿ1m�p̂�

��
s1s2

jÿJÿ1; n�p�
�85�

�
�

i���
2
p s2

ÿ
rYJJ�1m�p̂�

��
s1s2

jÿJ�1; n�p� ;

and the interaction in system of equations (37) mixes all four
amplitudes in (85); after projection onto spin±angular states,
this gives rise to four coupled equations for the scalar
amplitudes j�J�1;n�p�. This can be exemplified by the r-
meson: its quantum numbers 1ÿÿ correspond to two terms,
3S1 and 3D1, and hence the r-meson has to be described by
four amplitudes, rather than only the two needed for, say, a
0ÿ� meson. It is instructive to note that system (37) would

describe not only the r-meson but also a heavier vector meson
that is defined by the orthogonal combination of the S and D
waves. Thus, the doubling of the number of scalar functions is
nothing but a mere consequence of the situation where the
wave function of the r-meson is `entangled' with the wave
function of its heavier partner.

Wave functions (83)±(85) are written in the LS basis;
however, the problem of the adequate choice of the basis
cannot be solved in general terms, since the mixing pattern of
different partial waves with the same quantum numbers is a
dynamical problem. The LS basis is quite suitable for heavy
quarkonia where partial-wave mixing can be treated as a
relativistic correction. Another notable exception is pro-
vided by the regime of the effective restoration of chiral
symmetry in the spectrum of excited mesons (see Section 5
below) filling chiral multiplets and, as a result, having the
wave functions strictly fixed by chiral symmetry (see review
[54] and the references therein). In [55], a chiral basis is
discussed in detail, which provides a much more convenient
framework for studies of the spectrum of mesons in the
regime of the effectively restored chiral symmetry. However,
it has to be pointed out that this chiral basis per se cannot
solve the problem of the dynamical mixing of different
waves; it only refers to particular combinations of such
waves corresponding to those multiplets with the restored
chiral symmetry.

A final remark is in order here. Bethe±Salpeter equation
(37) describes the spectrum of genuine quark±antiquark
states. In the limit Nc !1, that is, in the limit inherent to
the model under study, such states have well-known proper-
ties. In particular, as the number of colors grows, the mass of
a genuine �qq state remains nearly constant, while its width
tends to zero, since the effects of the light-quark pair creation
from the vacuum are suppressed in this limit. As can be seen
from Eqn (82), the leading suppressed terms describing the
amplitudes of the two-body decays of the mesons behave as
O�1= ������

Nc

p �, thus yielding the well-known typical behavior
1=Nc for the width of the mesons. This property allows
distinguishing genuine quarkonia from dynamically gener-
ated objects, for example, from the scalar state f0�500�. Thus,
in [56], in the framework of the unitarized chiral perturbation
theory, it was demonstrated that in the limit Nc !1, the
poles that describe the genuine quarkonia indeed behave as
explained above. In themeantime, the pole responsible for the
f0�500� (in the cited paper, an obsolete notation f0�600� is
used) demonstrates an entirely different behavior: its real part
(mass) grows withNc, while theNc-dependence of its width is
rather nontrivial and does not follow the 1=Nc law. This
observation confirms the common belief that the f0�500� is a
result of the strong interaction between mesons in the final
state, and therefore describing this state requires going
beyond the formalism used above.

4. Lorentz nature of confinement

One of the important issues in the phenomenology of strong
interactions is related to the Lorentz nature of the confining
interaction. For example, spin-dependent interactions in the
quark±antiquark system are very sensitive to the relations
between the potentials added to the mass (scalar interaction),
to the energy, or to the momentum (vector interaction) (see,
e.g., the key papers [57, 58] as well as a series of later studies,
like [59±63]). The phenomenology of heavy quarkonia and
lattice calculations [64] is more compatible with the spin-
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dependent potentials that follow from the scalar confinement.
Meanwhile, in a theory with scalar confinement, chiral
symmetry would be broken explicitly, and that would contra-
dict the idea of its spontaneous breaking (see [65] for a
discussion of the possibility of the coexistence of scalar
confinement and spontaneous chiral symmetry breaking).
To investigate this problem, we consider a heavy±light
quarkonium with the heavy quark treated as a static center.
This allows us to study the Lorentz nature of the confining
potential and some properties of quark±antiquark mesons,
avoiding unnecessary technical complications. The spectrum
of the heavy±light system should be described by system of
equations (37) generalized to the case of two quark flavors.
Later, the limit of the static antiquark is to be taken explicitly
in Eqns (37). But first, it is helpful to stick to a different
approach to the heavy±light quarkonium based on the
vacuum background correlators method (see review [14] and
the references therein) and to investigate the Lorentz nature
of confinement in such a system [59±63]. Themotion of a light
quark in the field of the static antiquark should be described
by a single-particle Dirac-like equation with the interaction
with the static center given by an effective potential. The
Lorentz nature of this potential can be investigated this way.

We start from the Green's function of such a heavy±light
quarkonium Sq�Q taken in the form [60, 62, 63]

Sq�Q�x; y� �
1

Nc

�
DcDc yDAm exp

�
ÿ 1

4

�
d4xF a2

mn

ÿ
�
d4xc y�ÿiq̂ÿ imÿ Â�c

�
� c y�x�S�Q�x; yjA�c�y� �86�

(unless stated otherwise, all expressions are written in
Euclidean space), where S�Q�x; yjA� is the propagator of the
static antiquark placed at the origin. To proceed, it is
convenient to choose a particular version of the Fock±
Schwinger gauge allowing us to express the vector potential
in terms of the field tensor [66],

xA�x4; x� � 0; A4�x4; 0� � 0 : �87�

This particular gauge condition proves convenient, because
the gluonic field vanishes at the trajectory of the static
antiquark, and hence its Green's function takes a particu-
larly simple form,

S�Q�x; yjA� � S�Q�x; y�

� i
1ÿ g4

2
y�x4 ÿ y4� exp

�ÿM�x4 ÿ y4�
�

� i
1� g4

2
y�y4 ÿ x4� exp

�ÿM�y4 ÿ x4�
�
; �88�

where y is a step-like function.
It is then easy to notice that Eqn (86) takes the form

Sq�Q�x; y� �
1

Nc

�
DcDc y exp

�
ÿ
�
d4xLeff�c;c y�

�
� c y�x�S�Q�x; y�c�y� ; �89�

that is, the antiquark is completely decoupled from the system
and the dynamics of the light quark is defined by the effective

Lagrangian Leff�c;c y� such that�
d4xLeff�c;c y� �

�
d4xc ya �x��ÿiq̂ÿ im�ca�x�

�
�
d4xc ya �x� gmcb�x�
hAm

a
b i
�

� 1

2

�
d4x1 d

4x2c
y
a1�x1� gm1cb1�x1�c ya2�x2� gm2cb2�x2�

� 
hAm1
a1
b1
�x1�Am2

a2
b2
�x2�i

�� . . . ; �90�

where a and b are color indices in the fundamental representa-
tion, and the gluon field enters the form of irreducible
correlators hhAm1

a1
b1
�x1� . . .Amn

an
bn
�xn�ii of all orders, as was

already mentioned in the Introduction. Retaining only the
first nonvanishing (that is, Gaussian) correlator is an
approximation (here, it is taken into account that
hhAm

a
b ii � hAm

a
b i � 0). Discussions on the justification for

this approximation can be found, e.g., in review paper [14].
It is also important to mention the results of lattice
calculations [67] and their relation to the Casimir scaling in
QCD traced in [68, 69].

Then, defining the interaction kernel of the two quark
currents in terms of the bilocal correlator of the gluon fields in
the vacuum,
hAm

a
b �x�An

g
d �y�i

� � 
Am
a
b �x�An

g
d �y�

�
� 2�la�ab�la�gdKmn�x; y� ; �91�

using the Fierz identity �la�ab�la�gd � 1=2dad dgb ÿ �1=2Nc��
dab dgd, and taking the limit of the infinite number of colors, we
can write

Leff�c;c y� � c ya �x��ÿiq̂ÿ im�ca�x�

� 1

2

�
d4y c ya �x� gmcb�x�c yb�y� gnca�y�Kmn�x; y� ; �92�

which implies the Schwinger±Dyson equation for the light
quark in the form [60, 62, 63]

�ÿiq̂x ÿ im�S�x; y�ÿ i

�
d4zM�x; z�S�z; y��d �4��xÿ y� ;

ÿ iM�x; z� � Kmn�x; z� gmS�x; z� gn : �93�

Here, S�x; y� � �1=Nc� hcb�x�c yb�y�i. It is instructive to note
that although (93) looks like a single-particle equation, it
nevertheless contains information about the heavy antiquark,
because the kernel Kmn is evaluated in gauge (87), which is
closely related to the static antiquark placed at the origin.

Using the aforementioned property of gauge condition
(87), we can express the vector potential of the gluon field in
terms of the field tensor [66],

Aa
4 �x4; x� �

�1
0

xiF
a
i4�x4; ax� da ;

Aa
i �x4; x� �

�1
0

axkFa
ki�x4; ax� da ; i � 1; 2; 3;

�94�

and therefore the interaction kernel Kmn can be expressed
through the field correlator hFa

mn�x�Fb
lr�y�i. Then, with the

help of the vacuum background correlators method (see
review [14]) and retaining only the confining part of the
interaction, we can arrive at the kernel Kmn�x; y� �
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Kmn�x4 ÿ y4; x; y� (with t � x4 ÿ y4) in the form (see [60, 61,
70] for a detailed derivation)

K44�t; x; y� � �xy�
�1
0

da
�1
0

dbD�t; jaxÿ byj� ;

Ki4�t; x; y� � K4i�t; x; y� � 0 ; �95�

Kik�t; x; y��
ÿ�xy�dik ÿ yixk

� �1
0

a da
�1
0

b dbD�t; jaxÿ byj� ;

where the function D�t; l� decreases in all directions and
describes the profile of the bilocal correlator of the nonpertur-
bative gluon fields in the QCD vacuum (see review [14]).

Equation (93) is essentially nonlinear. It can, however, be
linearized if the free Green's function is substituted,
S�x; z� ! S0�x; z�, into the mass operator M�x; z�. Such an
approach, appropriate in the heavy-quark limit, was used in
[59, 61] to derive the effective potentials and the spin-
dependent corrections to it. The leading correction due to
the proper dynamics of the string was found in [71]. But the
above linearization is only possible if mTg 4 1 [61], where m
is the mass of the quark and Tg is the correlation length of
the vacuum, which governs the decrease in the correlator D
(see [72, 73] and the references therein for the extraction of
the correlation length from the interquark potentials). In the
opposite limit mTg 5 1, such a linearization procedure is
misleading and results in a divergent series [61], and non-
linear equation (93) therefore has to be studied in the full
form in this limit. Inasmuch as the question discussed in this
section is related to the spontaneous breaking of chiral
symmetry, we must have a small quark mass, and it is
therefore exactly the nonpotential regime with mTg 5 1
that is adequate for the situation. Thus, we have to use a
different simplification scheme for the equation. To begin,
we disregard the spatial part of kernel (95), Kik, which does
not affect the qualitative result. We then take the Fourier
transform of K44 in time,

K44�o; x; y� � K�o; x; y� � K�x; y�

� xy

�1
0

da
�1
0

db
�1
ÿ1

dtD
ÿ
t; jaxÿ byj� : �96�

To proceed, we note that the vacuum correlation length
extracted from the lattice data is very small compared to the
other scales of the problem (Tg90:1 fm [72, 73]). It is
therefore natural to take the so-called string limit Tg ! 0,
which, given the normalization condition,

s � 2

�1
0

dn
�1
0

dlD�n; l� ; �97�

where the parameter s defines the tension of the QCD string
[14], yields a d-function-like profile for the correlator,

D�t; l� � 2sd�t� d�l� ; �98�

whence

K�x; y� � 2s�xy�
�1
0

da
�1
0

db d
ÿjaxÿ byj� : �99�

The fact that kernel (99) does not vanish only for collinear
vectors x and y is a consequence of the infinitely thin (in the
limit Tg ! 0) string connecting the quark and the antiquark.

Then the integral in (99) can be taken exactly to yield

K�x; y� � 2smin
ÿjxj; jyj�

� s
ÿjxj � jyj ÿ jxÿ yj� ; x k y ,

0 ; x 6 k y .
�

�100�

The obtained expression can be viewed as a three-dimensional
generalization of the one-dimensional kernel derived in [20]
for the 't Hooft model. We note that the condition of
collinearity for the vectors x and y is trivial for only one
spatial dimension; however, for kernel (100) it leads to
technical complications not important for the mechanisms
of spontaneous chiral symmetry breaking. Therefore, it is
natural to relax this condition and, for any x and y, to
consider the interaction kernel in the form

K�x; y� � s
ÿjxj � jyj ÿ jxÿ yj� : �101�

This kernel has a number of attractive features, such as
� it allows one to pass more trivially fromEuclidean space

to Minkowski space; from now on, only Minkowski space is
considered;
� it has a simple physical interpretation: the part

ÿsjxÿ yj describes the self-interaction of the light quark,
while the term s�jxj � jyj� is responsible for the interaction of
the quark with the static antiquark. The fact that both
interactions are encoded in the same kernel is a consequence
of gauge condition (87), which results in the static antiquark
decoupling from the system. Then, because the gauge
condition violates translation invariance, kernel (101) does
not demonstrate such an invariance either;
� it allows a natural generalization to an arbitrary profile

of the interquark interaction potential V�r�, such that the
generic form of the kernel is

K�x; y� � V�jxj� � V�jyj� ÿ V�jxÿ yj� ; �102�

� it establishes a natural relation between the vacuum
background correlators method and the GNJL model,
because from now on any equation can be derived with the
help of either of the two approaches.

Although the above considerations cannot be treated as a
true derivation of the GNJL model from QCD, it never-
theless allows establishing a close relation between the
fundamental theory and this model. In the literature, one
can find a similar derivation of the Hamiltonian in the form
of Eqn (1) in the Gaussian approximation for the QCD
vacuum (see [74]), as well as attempts at a more rigorous
derivation of the classic NJL model from QCD (see, in
particular, [36, 37]).

We are now in a position to return to the equation for the
heavy±light quarkonium. In particular, Schwinger±Dyson
equation (93) for the light quark can be written in the form�

ÿ ig0
q
qt
� ic

q
qx
ÿm

�
S�t; x; y�

ÿ
�
d3zM�x; z�S�t; z; y� � d�t� d �3��xÿ y� ; �103�

where

M�x; z� � ÿ i

2
K�x; z� g0L�x; z� ;

L�x; z� � 2i

�
do
2p

S�o; x; z� g0 : �104�
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The Lorentz nature of the interaction described by the kernel
K depends on the matrix structure of the mass operator
M�x; y�. Thus, if M�x; y� acquires a contribution propor-
tional to the unit matrix, it gives rise to an interaction added
to the mass, that is, to scalar confinement. For a detailed
study of this problem, we use the natural separation of kernel
(101) into the local and nonlocal parts. As was explained
above, the local part of the kernel is responsible for the light
quark self-interaction and therefore defines the `dressing' of
the quark. Indeed, it is easy to see that omitting the nonlocal
contribution s�jxj � jyj�, we can proceed fromEqn (93) to the
Dyson equationÿ

g0p0 ÿ c pÿmÿ S�p��S�p0; p� � 1 ; �105�
where the mass operator for the light quark S�p� takes the
form

S�p� � ÿi
�

d4k

�2p�4 V�pÿ k� g0S�k0; k� g0 ; �106�

and, due to the instantaneous nature of the interaction, it does
not depend on the energy. It is easy to verify that expression
(106) for the mass operator reproduces Eqn (27), which was
derived above by summing the Dyson series for the dressed-
quark propagator (see Fig. 2).

Once the Green's function S�p0; p� is determined from
Eqn (105), its substitution in (106) results in a self-consistency
condition, which is nothing more than the mass-gap equation
(30) in the GNJL model [21±29], which can be conveniently
written as Eqn (14) for the chiral angle jp.

For the function L�p; q� parameterized through the chiral
angle, which is the double Fourier transform of L�x; y�
introduced in Eqn (104), it is straightforward to find

L�p; q� � 2i

�
do
2p

S�o; p; q� g0 � �2p�3d �3��pÿ q�Up ;

�107�

where

Up � b sinjp � a p̂ cosjp ; b � g0 ; a � g0c : �108�

We revisit Eqn (103) and rewrite it in the form of the
bound-state equation for the wave function ~C�x�,

�a p̂� bm� ~C�x� � b
�
d3zM�x; z� ~C�z� � E ~C�x� ; �109�

where both local and nonlocal parts of the kernel are now
taken into account. Then, passing to the momentum space
and using the mass-gap equation in the form

EpUp � ap� bm� 1

2

�
d3k

�2p�3 V�pÿ k�Uk ; �110�

we can write Eqn (109) as

EpUp
~C�p� � 1

2

�
d3k

�2p�3 V�pÿ k��Up�Uk� ~C�k��E ~C�p� :

�111�
Equation (111) allows an exact Foldy±Wouthuysen

transformation [75],2

~C�p� � TpC�p� ; C�p� � c�p�
0

� �
;

Tp � exp

�
ÿ 1

2
c p̂

�
p
2
ÿ jp

��
;

�112�

which brings it to a Schr�odinger-like equation for the two-
component spinor for the light quark c�p�,

Epc�p� �
�

d3k

�2p�3 V�pÿ k�

� ÿCpCk � �r p̂��r k̂�SpSk

�
c�k� � Ec�p� ; �113�

where Cp and Sp are defined in (40).
Before we study the properties of Eqn (113) in detail, we

derive it directly in the framework of the GNJL model. First
of all, we note that the bound-state equation for quark±
antiquark system (37) is symmetric under the change�

Mn;j�n �p�
	$ �ÿMn;j�n �p�

	
: �114�

As was explained in Section 3.2, the two components of the
wave function, j�n �p� and jÿn �p�, describe the motion of the
quark±antiquark pair forward and backward in time in the
meson and, what is more, because of the instantaneous form
of interaction kernel (2), the quark and the antiquark can only
move back and forth in time in unison. Therefore, because the
static antiquark can never move back in time, the other quark
is forced to do the same. It can thus be expected that in the
limit of the static antiquark, system (45) splits into two
decoupled equations.

Indeed, Eqn (33) is generalized to the heavy±light system
as

w�p;M� � ÿi
�

d4k

�2p�4 V�pÿ k� g0Sq

�
k; k0 �M

2

�

� w�k;M�S�Q

�
k; k0 ÿM

2

�
g0 ; �115�

where, similarly to Eqn (28),

Sq�p; p0� � L��p� g0
p0 ÿ Ep � i0

� Lÿ�p� g0
p0 � Ep ÿ i0

; �116�

L��p� � TpP�T yp ; P� � 1� g0
2

; �117�

while the chiral angle for the static antiquark is simply
j�Q�p� � p=2, and hence the positive- and negative-energy
projectors take a simpler form, as does the Green's function
of the antiquark,

S�Q�p; p0� �
P�g0

p0 ÿm�Q � i0
� Pÿg0
p0 �m�Q ÿ i0

: �118�

Similarly to the generic case [see Eqn (44)], it proves
convenient to define the matrix wave function

~f�p� �
�
dp0
2p

Sq

�
p; p0 �M

2

�
w�p;M�S�Q

�
p; p0 ÿM

2

�
;

�119�

which is subject to the Foldy±Wouthuysen transformation by
the operator Tp [see definition (112)] from the left (for the

2 This possibility is closely related to the instantaneous nature of the

interaction and to the presence of an infinitely heavy particle in the

system [16].
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light quark) and by the operator Tp�jp � p=2� � 1̂ from the
right (for the static antiquark),

~f�p� � Tpf�p� 1̂ : �120�

It is then easy to arrive at the equation

�Eÿ Ep�f�p� � P�

� �
d3k

�2p�3 V�pÿ k�T ypTkf�k�
�
Pÿ ;

�121�

where E �Mÿm�Q is the excess of energy over the mass of
the static antiquark. The form of the solution of Eqn (121)
follows from the projectors in the right-hand side,

f�p�� 0 c�p�
0 0

� �
� c�p�

0

� �

 �0 1� � C�p� 
CT

�Q�p� ;
�122�

where the right-hand side is written in the form of the tensor
product of the components describing the light [see Eqn (112)]
and the heavy degrees of freedom. Substituting the explicit
form of the operators Tp and Tk in (121), it is easy to
reproduce Eqn (113).

Due to symmetry (114) of system (45), the solution for the
meson with the energyMn � ÿm�Q ÿ En can be obtained with
the help of the same (inverse) Foldy±Wouthuysen transfor-
mation (120), now applied to the wave function �0;c�p��T. As
a result, we can reproduce Eqn (109) with the propagator
given by [75],

S�o; p; k� �
X
En>0

~Cn�p� ~C yn �k� g0
oÿ En � i0

�
X
En<0

~Cn�p� ~C yn �k� g0
o� En ÿ i0

;

�123�
while for the quantity L�p; k�, result (107) is reproduced with

Up � Tpg0T
y
p : �124�

Equations (103) and (113) allow us to answer the question
on the Lorentz nature of the confining interaction in the
heavy±light quarkonium. For low-lying states with a small
relative momentum between the quarks, the chiral angle jp

takes values close to p=2 (see Fig. 1). Then, in the limit
jp � p=2, it is easy to find that Cp � 1, Sp � 0, and it is then
straightforward to pass to the coordinate space in Eqn (113),
and the interaction reduces to the linear potential sr. If, in
addition, the kinetic termEp is substituted by the energy of the
free particle,3 the resulting equation reproduces the Salpeter
equation� �����������������

p 2 �m 2
p

� sr
�
c � Ec ; �125�

which is commonly used in the literature on hadronic
spectroscopy (see, e.g., [76, 77]).

On the other hand, for jp � p=2, we have Up � g0, and
therefore

L�x; y� � g0d
�3��xÿ y� ; M�x; y� � sjxj d �3��xÿ y� ;

�126�

whence we see that the entire potential sjxj is added to the
mass in Eqn (103), that is, the interquark interaction is
purely scalar. It is important to note that this scalar has
essentially dynamical origins apparently entirely due to the
chiral angle deviation from the trivial solution, which, in
turn, is closely related to the effect of chiral symmetry
breaking in a vacuum.

In the opposite limit of large interquark momenta, when
the chiral angle decreases and tends to zero, the contribution
of the scalar interaction also decreases, but, on the contrary,
the contribution of the (spatial) vectorial interaction
increases. This regime is realized for highly excited states in
the spectrum of hadrons (see a detailed discussion of this
problem in Section 5). It has to be noted that the matrix
L�p; k� does not contain contributions proportional to the
unit matrix, which could have brought about the temporal
component of the increasing-with-distance vectorial interac-
tion and which would therefore be potentially dangerous
from the standpoint of the Klein paradox.

In short, we used the heavy±light quark±antiquark system
to demonstrate, at the microscopic level, the emergence of the
effective scalar interquark interaction as a result of the
phenomenon of spontaneous chiral symmetry breaking in a
vacuum. Moreover, we traced the connection between the
GNJL model and QCD in the Gaussian approximation for
gluon fields in a vacuum.

5. Effective chiral symmetry restoration
in the spectrum of hadrons

5.1 Introductory comments
In Sections 2±4, the GNJL model was used to address the
phenomenon of spontaneous chiral symmetry breaking in a
vacuum microscopically. In addition, the properties of the
chiral pionÐ the lowest state in the spectrum of hadrons,
which also plays the role of a pseudo-Goldstone bosonÐ
were described in detail. Meanwhile, there are good reasons
to expect that the effects of spontaneously broken chiral
symmetry are not manifested in the spectrum of excited
hadrons, and it is therefore relevant to discuss its effective
restoration and how it occurs (see review [54] and the
references therein). We emphasize that the discussion in
this section concerns the way chiral symmetry is realized in
the spectrum of excited hadrons; in particular, it is
demonstrated that the properties of highly excited hadrons
are only weakly sensitive to the phenomenon of sponta-
neous chiral symmetry breaking in a vacuum. This entails
various observable consequences, which are also discussed
below.

In [75, 78±83], this phenomenon was described in the
framework of various approaches to QCD. Regardless of the
particular model used, such an effective chiral symmetry
restoration implies the emergence of multiplets of hadronic
states approximately degenerate in mass. An important
comment is in order here. It is well known that the mass
spectrum of quark±antiquark mesons bound by a linear
potential shows a Regge behavior, that is, M 2

n; l / n and
M 2

n; l / l for n; l4 1. Here, n and l are the radial quantum
number and the angular momentum. It is easy to see that
states with the opposite parity, which form approximately
degenerate doublets, have angular momenta different by one
unit (for example, the scalar 3P0 and the pseudo-scalar 1S0).
Therefore, for a given angular momentum l0, the splitting in

3 This procedure is definitely ill-defined for the chiral pion; however, for

the other mesonic states, it provides a rough but rather adequate

approximation.
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such a pair is

DM�ÿ
n; l0
�M�

n; l0�1 ÿMÿ
n; l0
� 1

M�
n; l0�1�Mÿ

n; l0

� 1���
n
p ; �127�

which decreases as the radial quantum number increases.
Clearly, such a decrease does not imply effective chiral
symmetry restoration. Indeed, exactly the same dependence
takes place for the splitting between same-parity neighbors,

DM��
n; l0
�M�

n; l0�1 ÿM�
n; l0
� 1

M�
n; l0�1�M�

n; l0

� 1���
n
p ; �128�

which has nothing to do with chiral symmetry. Therefore,
it is necessary to define the quantity that would allow
deciding whether the effective restoration of chiral symme-
try in the spectrum occurs. For such a quantity, we can
choose the splitting between the masses squared,
D�M�ÿ�2��M��2ÿ�Mÿ�2, [75] 4 or, equivalently, the ratio
of the splittings DM�ÿ=DM�� within the same chiral
multiplet [84].

Thus, it would be natural to use themicroscopic approach
to chiral symmetry breaking provided by the GNJL model in
order to study the influence of chiral symmetry breaking on
the spectrum of excited hadrons.

5.2 Quantum fluctuations and the semiclassical regime
in the spectrum of excited hadrons
The phenomenon of effective restoration of chiral symmetry
in the spectrum of excited hadrons has a simple qualitative
explanation. Inasmuch as spontaneous breaking of chiral
symmetry is a consequence of quantum fluctuations (loops),
it must be a quantum effect itself. The parameter characteriz-
ing the role played by such fluctuations is provided by the
ratio �h=S, where S is the classical action responsible for the
internal degrees of freedom in a hadron. For large values of
the quantum numbers, that is, in the semiclassical region of
the spectrum, we have S4 �h, and therefore the effect of
spontaneous chiral symmetry breaking cannot affect the
properties of highly excited hadrons [85].

Below, we exemplify this qualitative picture with the help
of the GNJL mode. As before, we take the large-Nc limit,
which allows us to consider only planar (ladder and rainbow)
diagrams; in addition, for illustrative purposes, we restrict
ourselves to the simplest structure of the confining potential,
g0 � g0, [see Eqn (2)].

We consider Dyson equation (30) for the mass operator.
Similarly to many nonlinear equations, this equation has
several solutions. One of them is perturbative, and it is given
by the series

S�
�
d4k Vg0S0g0 �

�
d4kd4qV 2g0S0g0S0g0S0g0 � . . . ;

�129�

which rapidly converges in the weak-interaction limit. It is
easy to demonstrate that this solution is nothing but a series in
the powers of the Planck constant �h. For this, we restore it
explicitly in formula (30).

The confining potential is defined by the averagedWilson
loop


W�C �� � exp

�
ÿ sA

�hc

�
; �130�

where s is the string tension and A is the area of the minimal
surface in Euclidean space bounded by the contour C. For
convenience, the speed of light c is also shown explicitly, but is
to be omitted later when appropriate. Then, for a rectangular
loop,

sA
�hc
� sR�cT�

�hc
� 1

�h

�T
0

sR dt � 1

�h

�T
0

V�R� dt : �131�

From Eqn (131), it is easy to find the linear confinement
V�r� � sr as the interquark potential, which is assumed to be
a classical quantity surviving in the formal classical limit
�h! 0. For its Fourier transform, we then find

V�p� �
�
d3x exp

�
ipx

�h

�
sjxj � ÿ 8ps�h 4

p 4
� �h 4 ~V�p� ;

�132�

where the quantity ~V�p� does not contain �h. As a result, it is
easy to arrive at

iS�p���h

�
d4k

�2p�4
~V�pÿ k� g0

1

Sÿ10 �k0; k� ÿ S�k� g0 ; �133�

where the factor �h 4 from the potential in the numerator
cancels the factor �h 4 from the differential d4k=�2p�h�4 in the
denominator. The remaining �h is easily restored to provide
the correct dimension of the right-hand side. Therefore, the
perturbative expansion in powers of potential (129) is a loop
expansion, and each power of the potential (each loop)
brings �h.

We next consider mass-gap equation (14) with the Planck
constant �h and the speed of light c restored explicitly:

pc sinjp ÿmc 2 cosjp �
�h

2

�
d3k

�2p�3
~V�pÿ k�

� ÿ cosjk sinjp ÿ p̂ k̂ sinjk cosjp

�
: �134�

We study the limit m � 0 first. It is easy to see that in the
formal classical limit �h! 0, the right-hand side of Eqn (134)
vanishes and the only solution of this equation is the trivial
chirally symmetric solution jp � 0. This result is quite
natural because, for m � 0, the chiral angle parameterizes
the loop contribution, which is a purely quantum effect and
which must therefore vanish in the classical limit. Any
attempt to find a solution of Eqn (134) in the form of a series
in powers of �h, jp � �h f1�p� � �h 2 f2�p� � . . ., has to fail,
because all coefficients in such a series vanish. This should
not come as a surprise either, for it has a simple qualitative
explanation. Indeed, the full form of the given expansion of
the chiral angle in powers of �h should look like

jp �
�h

S f1

�
p

mc

�
� �h 2

S 2
f2

�
p

mc

�
� . . . ; �135�

where the Planck constant enters divided by the quantity S,
which has the dimension of action, while the momentum is

4 For generic power-law potential (3), the power of the masses to be

considered is �a� 1�=a.
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measured in units of some mass parameter m. It is easy to
verify that the only two dimensional parameters at hand, s
and c, are not sufficient to build the quantity S, and this fact
alone automatically invalidates expansion (135).

To gain an insight into the behavior of the chiral angle in
the classical limit, we proceed to the dimensionless mass-gap
equation obtained from (134) by the substitution p � mcn and
k � mcg, such that all dimensional parameters in the equation
produce a single mass scale m � ��������

s�hc
p

=c 2. It easy to see that
the scale m depends on the Planck constant. Then the small-
momentum expansion of the chiral angle has the form

jp �
p!0

p
2
ÿ const

pc

mc 2
� . . . � p

2
ÿ const

pc��������
s�hc
p � . . . ;

and therefore, in the formal limit �h! 0, the chiral angle
becomes steeper at the origin, thus approaching the chirally
symmetric solution jp � 0. In other words, we witness a
collapse of the chiral angle, similar to the one that happens to
the quantum mechanical wave function in the classical limit.
Indeed, the chiral angle can be viewed as the radial wave
function of quark±antiquark pairs in a vacuum [see, e.g.,
formula (19)]. Furthermore, the chiral angle defines the wave
function of the chiral pion. Thus, the chiral angleÐ the
solution of the mass-gap equationÐdepends on the Planck
constant essentially nonperturbatively.

Beyond the chiral limit, if the quark mass is introduced as
a perturbation, the chiral angle can be represented as a series
in powers of the small dimensionless parameter mc 2=

��������
s�hc
p

,

jp �
X1
n�0

�
mc 2��������
s�hc
p

�n

fn

�
pc��������
s�hc
p

�
: �136�

The leading term f0�p� is plotted in Fig. 1.
On the other hand, as was mentioned above, beyond the

chiral limit, the quark mass m, by furnishing an additional
dimensional parameter, allows building both the classical
dimension of the action, S � m 2c 3=s, and the classical
dimension of the momentum, mc. Then expansion (135)
becomes possible and takes the form

jp �
X1
n�0

�
s�hc

�mc 2�2
�n

~fn

�
p

mc

�
; �137�

and hence the dimensionless expansion parameter is given by
s�hc=�mc 2�2. The leading term in series (137) is known
analytically and is given by the free chiral angle ~f0 �
arctan �mc=p�. In other words, perturbative solution (137) is
given by expansion (129).

Both expansions (136) and (137) reproduce the same
solution for the chiral angle. However, expansion (136)
converges fast near the chiral limit with m � 0 and beyond
the classical limit with �h 6� 0 (expansion (137) blows up in this
limit). On the contrary, for m4

��������
s�hc
p

=c 2, expansion (137)
converges much better than expansion (136). Meanwhile,
there is no one-to-one correspondence between the functions
f fng and f~fng, and each function from one set is given by an
infinite series in terms of the functions from the other set. For
example, for asymptotically large momenta, the function f0,
depicted in Fig. 1, tends to zero as 1=p 5 [see Eqn (25)], while
the asymptotic behavior of ~f0 is much slower, 1=p.

As a final remark, we note that expansions (136) and (137)
explicitly specify two dynamical regimes of the system
depending on the value of the parameter m=

���
s
p

. Sponta-
neous chiral symmetry breaking occurs in the limit m5

���
s
p

(regime (136)), while in the opposite limit m4
���
s
p

, we are
dealing with `heavy-quark' physics (regime (137)).

5.3 Effective chiral symmetry restoration
in the spectrum of excited mesons
As was mentioned in Section 5.1, the spectrum of highly
excited hadrons is expected to show the phenomenon of an
effective restoration of chiral symmetry. In Section 5.2,
general qualitative arguments were given in favor of such a
restoration in the GNJL model. Below, we study this
phenomenon quantitatively [75].

We start from Schr�odinger equation (113) describing the
mass spectrum of heavy±light quarkonia. Multiplying this
equation by �rp� from the left, we can rewrite the result in the
form of the bound-state equation for the wave function

c 0�p� � r p̂c�p� ; �138�

which, by construction, has the opposite parity compared
with c�p�. The resulting equation

Epc
0�p� �

�
d3k

�2p�3 V�pÿ k��SpSk � �r p̂� �r k̂�CpCk

�
� c 0�k� � Ec 0�p� �139�

differs fromEqn (113) by the permutation of the quantitiesCp

and Sp defined in (40). It is then easy to see that in the limit of
large relative momenta, jp

!
p!1 0 (see Fig. 1), and hence

Cp � Sp � 1=
���
2
p

and Eqns (113) and (139) coincide, taking
the form

Epc
�0��p� � 1

2

�
d3k

�2p�3 V�pÿ k��1� �r p̂��r k̂��c �0��k�
� Ec �0��p� : �140�

Therefore, the opposite-parity states c�p� and �r p̂�c�p�
become degenerate. We note that the Fourier transform of
the potential in Eqns (113) and (139) picks up the region
p � k, and therefore, approximately, we can speak of the
effective restoration of chiral symmetry if C 2

p � S 2
p . It is then

easy to find that in the chiral limit,

C 2
p ÿ S 2

p � sinjp � �N ÿ1p j�p �p� ; �141�

where j�p �p� are the components of the wave function of the
chiral pion [see Eqn (55)]. This relation emphasizes the
connection between the parity degeneracy observed in the
spectrum of highly excited mesons and chiral symmetry. In
Fig. 4, we can see the dependences of C 2

p and S 2
p on the

momentum for potentials of the form V�r� � K a�1
0 r a with

different values of the exponent a. It is easy to see from the
plot that the above functions indeed reach the asymptotic
value 1/2 fast.

As was mentioned above many times, qualitative predic-
tions of the model do not depend on the exponent a.
Moreover, quantitative predictions also demonstrate only a
very weak dependence on a (see Fig. 4). Thus, for a detailed
quantitative study of the problem of chiral symmetry
restoration in the spectrum of highly excited mesons, it is
sufficient to choose the exponent a that provides the simplest
form of the equations, that is, a � 2. Then

V�pÿ k� � ÿK 3
0Dkd

�3��pÿ k� ; �142�
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and the mass-gap equation reduces to second-order differ-
ential equation (16). Chiral condensate (24) equals
ÿ�0:51K0�3 and takes the standard value ÿ�250 MeV�3 for

K0 � 490 MeV : �143�

It has to be noted that the most appropriate basis to deal
with the spectrum of highly excited mesons and, in particular,
to study the prevalence of chiral symmetry restoration is the
chiral basis [55]. For example, in [86], this basis was
successfully used for numerical studies of the mass spectrum
of excited mesons in the GNJL model. Nevertheless, for
better correspondence between the calculations done in the
framework of the GNJL model and with the Salpeter
equation, we adhere to the standard basis fJ;L;Sg. Then
the wave function of the light quarkc�p� is decomposed in the
basis of spherical spinors

Ojlm�p̂� �
X
m1m2

C jm
lm1�1=2�m2Ylm1�p̂� wm2 �144�

as

c�p� � Ojlm�p̂� u�p�
p

; �145�

where u�p� is the radial wave function in the momentum
representation, for which the following equation can be
derived from (113):

u 00 � �Ep ÿ E � u� K 3
0

�
j 02p
4
� �

p 2
��� sinjp�

�
u ; �146�

and where the spin±orbit interaction for the central potential
is introduced in the standard way,

� �
l; for j � lÿ 1

2

ÿ�l� 1� ; for j � l� 1

2

8>><>>: � �
�
j� 1

2

�
:

Equation (146) can now be rewritten in the form of the
Schr�odinger equation

ÿK 3
0 u
00 � V� j; l ��p� u � Eu �147�

with the effective potential

V� j; l ��p� � Ep � K 3
0

�
j 02p
4
� �

p 2
��� sinjp�

�
: �148�

We note that the well-known property of the spherical
spinors

r p̂Ojlm�p̂� � ÿOjl 0m�p̂� ; l� l 0 � 2j ; �149�

guarantees the opposite parity of the states with j � l� 1=2.
Using the explicit form of effective potential (148), it is easy to
find the difference between the potentials for the states with
� � �� j� 1=2�:

DV � ÿ�2j� 1�K 3
0

p 2
sinjp ; �150�

which explicitly demonstrates the relation between the
splitting in mass for the opposite-parity states and chiral
symmetry, which was already discussed above in general
terms. Obviously, for highly excited states with larger mean
values of the relative momentum, the chiral angle decreases
(see Fig. 1), as does the potential responsible for the splitting
of the opposite-parity energy levels.

This type of behavior is clearly seen from the explicit
solution of Eqn (147) quoted in Tables 1 and 2 and shown in
Fig. 5. For clarity, we compare the obtained solutions with
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p

Figure 4. Momentum dependence of the coefficients C 2
p and S 2

p for the

potential V�r� � K a�1
0 r a with a � 0:3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.7, and

2.0. For each potential, the parameter K0 is tuned to provide the same

value of the chiral condensate, equal to ÿ�250 MeV�3.

Table 1.Masses of orbitally excited states and their splittings for the radial quantumnumber n � 0 resulting from the solution of exact equation (147) with

potential (148) and from approximate Salpeter equation (150). All energies are given in units of the parameter K0.

j 1/2 3/2 5/2 7/2 j 1/2 3/2 5/2 7/2

El�jÿ1=2
El�j�1=2
DEj

2.04

2.66

0.62

3.51

3.69

0.18

4.51

4.57

0.06

5.35

5.36

0.01

E Sapl
l�jÿ1=2

E Salp
l�j�1=2

DESalp
j

2.34

3.36

1.02

3.36

4.24

0.88

4.24

5.05

0.81

5.05

5.79

0.74

Table 2. The same as in Table 1 but for n � 1.

j 1/2 3/2 5/2 7/2 j 1/2 3/2 5/2 7/2

El�jÿ1=2
El�j�1=2
DEj

3.91

4.39

0.48

5.03

5.17

0.14

5.87

5.92

0.05

6.60

6.61

0.01

E Sapl
l�jÿ1=2

E Salp
l�j�1=2

DESalp
j

4.09

4.88

0.79

4.88

5.63

0.75

5.63

6.33

0.70

6.33

7.00

0.67
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those for the naive Salpeter equation,� �����������������
p 2 �m 2

p
� K 3

0 x
2
�
c�x� � Ec�x� ; �151�

as derived fromEqn (147) by the substitutionEp �
�����������������
p 2 �m 2

p
and jp � p=2 in potential (148),

V Salp
� j; l � �p� �

�����������������
p 2 �m 2

p
� K 3

0

���� 1�
p 2

�
�����������������
p 2 �m 2

p
� K 3

0

l�l� 1�
p 2

: �152�

Because the opposite-parity states correspond to the angular
momenta differing by one unit, in analogy with Eqn (150), we
can find that

DVSalp � ÿ 2�l� 1�K 3
0

p 2
: �153�

The semiclassical spectrum of Eqn (151) demonstrates a
linear dependence ofE 3=2 (E �a�1�=a with a � 2) on the angular
momentum l, such that, for a given radial quantum number n,
Eqn (151) produces two parallel trajectories E 3=2� j � with
l � j� 1=2. For small j, similar trajectories for Eqn (147) with
potential (148) have a level splitting comparable to the above-
mentioned trajectories for the naive Salpeter equation, which,
however, decreases fast with the growth of the angular
momentum l.

This calculation explicitly demonstrates the phenomenon
of effective chiral symmetry restoration in the spectrum of
highly excited mesons in the GNJL model. As can be seen by
just comparing potentials (150) and (153),

Eÿ E 0 / hsinjpi ; �154�

where E and E 0 are the energies of the opposite-parity states,
and averaging over the radial wave function is assumed in the
right-hand side.

5.4 Pion decoupling from excited mesons
One of specific predictions for highly excited hadrons with
effectively restored chiral symmetry is the decoupling of the
chiral pion from them, which manifests itself through a
decrease in the corresponding coupling constant with an
increase in the hadron excitation number [8, 87±90]. This
behavior of the coupling can be readily established with the

help of the Goldberger±Treiman relation for the transitions
n! n 0 � p, where n and n 0 are chiral partners, that is,
opposite-parity hadronic states that become degenerate in
mass if chiral symmetry is restored in the spectrum.5

We first restrict ourselves to the BCS approximation and
show that the pion coupling to excited hadrons is defined by
the effective mass of the dressed quark. For this, we consider
the axial-vector current (for simplicity, we consider the single-
flavor case and omit the chiral anomaly),

J 5
m �x� � �q�x� gmg5q�x� ; �155�

which, due to the hypothesis of the partial conservation of the
axial-vector current (PCAC), is related to the wave function
of the chiral pion fp,

J 5
m �x� � fpqmfp�x� : �156�

Then, with the help of Eqn (156), it is easy to average the
divergence of this current, qmJ 5

m , between the states of dressed
quarks,


q�p�jqmJ5m�x�jq�p 0�
� � fpm

2
p hq�p�jfp�x�jq�p 0�

�
/ fpgp�q 2���upg5up 0 � ; q � pÿ p 0 ; �157�

where we have introduced the pion±quark±quark form factor
gp�q 2�.

On the other hand, if chiral symmetry is spontaneously
broken and the quark wave functions obey the effective Dirac
equation with the dynamically generated mass m eff

q , then,
with the help of Eqn (155), it is easy to arrive at


q�p�jqmJ 5
m �x�jq�p 0�

� / m eff
q ��upg5up 0 � : �158�

Equating the right-hand sides of Eqns (157) and (158), we
find that

fpgp � m eff
q ; gp � gp�m 2

p � ; �159�
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Figure 5.Regge trajectories for Eqn (147) with potential (148) (solid line) and for Salpeter equation (151) (dashed line). The respective lower and upper line

correspond to l � jÿ 1=2 and l � j� 1=2.

5 Strictly speaking, the Goldberger±Treiman relation connects the pion±

nucleon constant with the nucleon axial constant; the derivation of this

relation can be found in any textbook on strong interactions. Notwith-

standing that, we hereafter use the name of Goldberger±Treiman relation

to denote the one for the pion±hadron coupling constant gnn 0p.
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where all numerical coefficients are absorbed into the
definition of the coupling constant gp for simplicity. It
follows from Eqn (11) that the effective mass of the quark is
described by the quantity Ap. Then, with the help of relation
(159), it is straightforward to finally find that [91]

fpgp�p� ' Ap : �160�

Beyond the BCS level, the Goldberger±Treiman relation
connects the pion coupling constant with an excited hadron
exhibiting mass splitting between the two hadronic chiral
partners. For definiteness, we consider the transition
�D� JP�0�� ! �D

0�JP�0ÿ� p, where the quark content of
the �D �0� meson is �cq with the light quark q � u; d.

From PCAC condition (156) generalized to the isospin
group SU�2�, we obtain


0jJ 5a
m �0�jp b�q�� � i fpqmdab ; �161�

whence the transition matrix element


n 0jJ 5a

m jn
�
(n �0� � �D �0�)

is easily found as

n 0jJ 5a

m jn
� � 
n 0jJ 5a

m jn
�
nonpion

ÿ 2Mqmfpgnn 0p
q 2 ÿM 2

p � i0
D 0yt aD ;

�162�

where we introduce the pion coupling constant gnn 0p and the
isospin doublets D and D 0.

On the other hand, it is easy to establish the most general
form of the left-hand side of Eqn (162) compatible with
Lorentz invariance,


n 0jJ 5a
m jn

� � ��Pm � P 0m�GA�q 2�

ÿ �Pm ÿ P 0m�GS�q 2��D 0y� t a

2

�
D ; �163�

where Pm and P 0m are the momenta of the respective initial and
final D meson, and qm � Pm ÿ P 0m. Then, in the leading order
in the heavy-quark mass, the axial-vector current conserva-
tion leads to the condition

2M�MÿM 0�GA ÿ q 2GS � 0 : �164�

From relation (162), we can see that in the limit q 2 ! 0,
we haveGA�0� � GA 6� 0 ifGS is identified with the pion pole,
that is,

lim
q 2!0

GS�q 2� ! 4Mfpgnn 0p
q 2

: �165�

The resulting equation

1

2
�MÿM 0�GA � fpgnn 0p ; �166�

is nothing more than the sought Goldberger±Treiman
relation for heavy±light mesons. This relation implies that as
the excitation of D grows, and therefore its degeneracy with
its chiral partner D 0 becomes more manifested, the pion
decouples from this meson.

We now derive relations (160) and (166) microscopically.
We consider the pion emission process by a hadron n (here,
hadrons n and n 0 are mesons; the case of baryons is studied in
Section 5.5), n! n 0 � p. The corresponding diagrams are

depicted in Fig. 6, and the matrix element is given by

M�n! n 0 � p� �
�

d4k

�2p�4 Sp
�
wn�k;P�S�kÿ P�

� �wn 0 �kÿ P;P 0�S�kÿ q� �wp�k; q�S�k�
�

�
�

d4k

�2p�4 Sp
�
wn�k;P�S�kÿ P� �wp�k; q�

� S�kÿ q� �wn 0 �kÿ P;P 0�S�k�� ; �167�
where q � Pÿ P 0 and each hadronic vertex contains an
amplitude w (�w for the outgoing meson) that satisfies Bethe±
Salpeter equation (33). Thus, the pion emission vertex is given
by the overlap of three vertex functions. The maximal overlap
is achieved if the wave functions of all three mesons are
localized in the same region in momentum. As it happens,
pion wave function (44) is localized at small relative momenta
between the quark and the antiquark, and it decreases fast as
the momentum increases. The wave functions of the mesons n
and n 0 are localized at approximately the same momenta,
which grow with the excitation number. This implies that the
overlap of the vertex functions decreases with the growth of
the excitation of the meson n, as does the pion coupling
constant.

To describe this effect quantitatively, we write the matrix
vertex w�p;P� in terms of the matrix wave function defined in
Eqn (44),

w�p;P� �
�

d3k

�2p�3 V�pÿ k� g0~f�k;P� g0 : �168�

The matrix vertex for the incoming meson is simply related to
the vertex for the outgoing meson,

�w�p;P� � g0w
y�p;P� g0 : �169�

The explicit form of the matrix wave function ~fp for a
pion at rest (Pp � q! 0) is given by Eqn (59), while the
components j��p are quoted in Eqn (55). It is then easy to find
for the pion emission vertex �wp�p; q � 0� � �wp�p� that

fp�wp�p��
�����������
2pNc

mp

r
g5

�
d3k

�2p�3 V�pÿ k� sinjk�const�g5Ap ;

�170�

where definition (11) of the function Ap is used. If the pion
form factor gp�p� is defined with the same constant as in
Eqn (170),

�up�wp�p� up � const� gp�p���upg5up� ; �171�

then we finally arrive at the Goldberger±Treiman relation in
the form

fpgp�p� � Ap ; �172�

M�n! n 0 � p�=
k p

n 0
n

+

k

p

n 0
n

Figure 6. Transition amplitude n! n 0 � p.
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which coincides with formula (160), but now this relation is
derived rigorously.

We emphasize an essential difference between Eqns (172)
and (159), with the latter taken naively. Indeed, naively, one
could conclude that the right-hand side of (159) contains a
quantity that depends only on the momentum transfer in the
pion emission vertex, that is, on the pion momentum q � 0.
Then m eff

q has to be treated as a constant, independent of the
excitation number of the hadron that emits the pion. The
same would be true for the pion coupling gp. However, the
microscopic treatment expounded above demonstrates that
the pion emission vertex is a function of two variables: the
pion momentum and the loop momentum floating through
the pion emission vertex. The latter quantity also plays the
role of the momentum of the quark interacting with the pion.
Therefore, even in the limit q � 0, the right-hand side of (172)
is a decreasing function of the momentum rather than a
constant. It is easy to estimate its decrease rate. Indeed, in the
chiral limit, Ap � Ep sinjp, while for large momenta, Ep � p
with the chiral angle behaving as jp / 1=p 4�a, where a is the
parameter of the power-law potential [see Eqn (25)]. Thus,

gp�p� �
p!1

1

p a�3 : �173�

The result of the numerical calculation of the ratio
gp�p�=gp�0� for the harmonic oscillator potential (a � 2),
given in Fig. 7, shows that the pion coupling does decrease
as the quark momentum increases.

To conclude this section, we derive Goldberger±Treiman
relation (166) for the pion emission by a heavy±light meson
microscopically [92].

First, we proceed from the nonrelativistic normalization
(57) for pion wave functions (55) to the relativistic one, and
we therefore define the wave functions

Xp �
������
Nc

p
fp

ÿ
sinjp �MpDp

�
; Yp �

������
Nc

p
fp

ÿ
sinjp ÿMpDp

�
:

�174�

We can then find that�
d3p

�2p�3
�
X 2

p ÿ Y 2
p

�
� 2Mp; �175�

and the pionic field with the isospin projection a in its rest
frame can be written in the form

jp ai � 1������
Nc

p
XNc

a�1

X
s1; s2�"; #

�s2�s1s2
X

i1; i2��1=2

�
t a

2

�i1i2 � d3p

�2p�3

� �b yas1i1�p� d ay
s2 i2
�ÿp�Xp � d a

s2i2
�ÿp� bas1i1�p�Yp

� j0i ; �176�
where j0i is the BCS vacuum.

The wave functions of the pseudoscalar and scalar heavy±
light mesons that obey Eqns (113) and (139) can be written in
the form

c�p�� i���
2
p s2fp ; c 0�p� � r p̂c�p�� i���

2
p r p̂ s2f

0
p �177�

and normalized by the relativistic conditions

Tr

�
d3p

�2p�3
��c�p���2 � � d3p

�2p�3 f 2
p � 2M ;

Tr

�
d3p

�2p�3
��c 0�p���2 � � d3p

�2p�3 f02p � 2M 0;

�178�

where the trace is taken in the spin indices. Moreover, we can
setM �M 0 in the above normalization conditions.

The pion coupling constant gnn 0p is defined by the relation

�D
0p ajV j �D� � 2Mignn 0p�D0yt aD��2p�3d �3��P 0 � qÿ P� ;

�179�

where V is the interaction responsible for the pion emission.
In what follows, we evaluate the matrix element in the left-
hand side of (179) in the framework of the GNJL model.

In Fig. 8, we draw the four diagrams contributing to the
matrix element h �D

0pjV j �Di, for which we can then write

�D
0p ajV j �D�
�2M

�
Aa

X�Ba
Y � Ca

X �Da
Y

� �2p�3d �3��P 0 � qÿP�; �180�

where the contributions Aa
X and Ba

Y cancel each other, while
the amplitudes Ca

X and Da
Y take the form [92]

Ca
X �
�D 0t aD�
4M

������
Nc

p
�

d3k

�2p�3
d3p

�2p�3 f 0pV�pÿ k�

� Xkfk�SpCk ÿ p̂k̂CpSk� ;

Da
Y �
�D 0t aD�
4M

������
Nc

p
�

d3k

�2p�3
d3p

�2p�3 f 0pV�pÿ k�
�181�

� Ypfk�SpCk ÿ p̂k̂CpSk� ;

where Cp and Sp are defined in (40) and their products follow
from the vertices shown in the diagrams as black dots and
given by various products of dressed quark bispinors (6). For
instance, in the amplitude Aa

X (see Fig. 8), we have the
combination

u y�p� u�k� � CpCk � �r p̂��r k̂�SpSk : �182�

Now, taking relations (179)±(181) together and using the
explicit form of pion wave functions (174), it is easy to find the
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Figure 7. Dependence of the ratio gp�p�=gp�0� on the momentum

evaluated for the harmonic oscillator potential. For definiteness, the

parameter K0 is fixed as in Eqn (143).
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coupling constant gnn 0p in the leading order inMp [92]:

fpgnn 0p � 1

2M

�
d3k

�2p�3
d3p

�2p�3 f 0pV�pÿ k��

� fk�sinjp � sinjk�
�
SpCk ÿ p̂k̂CpSk

�
: �183�

The non-pion contribution to the off-diagonal axial
charge GA can be evaluated with the help of the explicit
expression for the temporal component of the axial-vector
current, and it takes the form [92]

GA � 1

2M

�
d3k

�2p�3 f 0kfk cosjk : �184�

To proceed, we multiply Eqn (113) for the wave function
c�p� by c 0�p� cosjp, take the trace in the spinor indices, and
integrate both sides of the resulting equation over the
momentum d3p=�2p�3. Then we repeat the above procedures
for Eqn (139) for the wave function c� 0�p�, nowmultiplied by
c�p� cosjp. Subtracting one resulting equation from the
other, we arrive at the relation

1

2
�Eÿ E 0�GA � 1

2M

�
d3k

�2p�3
d3p

�2p�3 f 0pV�pÿ k�

� fk

�
cosjp�CpCk � p̂k̂SpSk�

ÿ cosjk�p̂k̂CpCk � SpSk�
�
: �185�

After simple trigonometric transformations, the right-hand
side of the last equation reduces to that in (183). Therefore,
equating the left-hand sides of Eqns (183) and (185) and
proceeding from the energies E and E 0 to the corresponding
masses (that is, adding the mass of the heavy antiquark), we
finally arrive at Goldberger±Treiman relation (166).

Two comments are in order here. On the one hand, it is
easy to see that the role played by the Y (jÿp ) component of
the pion wave function in the derivation of relation (166) is as
important as the role of the component X (j�p ). This once
more emphasizes the Goldstone nature of the chiral pion,
which, as a matter of principle, cannot be described in naive
(constituent) quark models.

On the other hand, it follows from Eqn (184), from the
properties of the chiral angle, and from normalization
condition (177) that the axial charge approaches unity for
excited mesons, GA !n!1 1. Therefore, as stated above, the
pion coupling constant decreases for highly excited mesons:

gnn 0p � GADM�
2fp

/ DM� !
n!1 0 ; �186�

and that implies that theGoldstone boson decouples from the
spectrum of excited heavy±light quarkonia.

5.5 Effective chiral symmetry restoration
in the spectrum of excited baryons
In Sections 5.3 and 5.4, we studied in detail the problem of the
effective restoration of chiral symmetry in the spectrum of
highly excited hadrons and the related question of the chiral
pion (Goldstone boson) decoupling from the spectrum of
highly excited mesons. A similar situation takes place in the
spectrum of excited baryons. We start from a general
symmetry-based discussion.

We consider a chiral doublet B built from the effective
baryonic fields B� and Bÿ of opposite parities [54],

B � B�
Bÿ

� �
: �187�

The states B� and Bÿ are mixed by the axial transformation

B! exp

�
i
y a
At

a

2
s1

�
B ; �188�

where s1 is the Pauli matrix in the space of the doublet B. It is
easy to establish the form of the Lagrangian invariant under
the above transformation (for alternative forms of this
Lagrangian, see [93, 94]):

L0 � i �BgmqmBÿm0
�BB � i �B�gmqmB� � i �BÿgmqmBÿ

ÿm0
�B�B� ÿm0

�BÿBÿ : �189�

An important property of this Lagrangian is the presence of a
nonvanishing chirally invariant mass m0, the same for
opposite-parity fields. This implies the Wigner±Weyl realiza-
tion of chiral symmetry with massive fermions. Chiral
doublets are inevitable in this scenario.

Therefore, in the spectrum of baryons, in addition to the
`standard' scenario when the fermionmass emerges as a result
of spontaneous chiral symmetry breaking (Nambu±Gold-
stone realization), an alternative realization consistent with
chiral doublets is possible. It is straightforward to build the
Noether current that corresponds to symmetry (188) of
Lagrangian (189):

j a5m � �B�gm
t a

2
Bÿ � �Bÿgm

t a

2
B� : �190�

It does not contain diagonal terms of the form either
�B�gmg5�t a=2�B� or �Bÿgmg5�t a=2�Bÿ. Therefore, the diago-
nal axial charges of the baryons B� and Bÿ that form the
chiral doublet vanish, while the off-diagonal axial charges
related to transitions between the opposite-parity states equal
unity [54]:

G�A � GÿA � 0 ; G�ÿA � Gÿ�A � 1 : �191�

�q�ÿk�

0ÿ

p�X�

V�pÿ k�
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Figure 8.Diagrams contributing to the matrix element h �D
0pjV j �Di.
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We note that the axial charge of the standard Dirac fermion
equals 1.

It is easy to trace the consequences of property (191).
First, the diagonal pion couplings to baryons must vanish
together with the diagonal axial charges of the baryons, that
is, gpB�B� � G�A m�=fp � 0.

Below, we derive the formulas for the off-diagonal
constant gpB�Bÿ . For this, we consider the matrix element of
the axial-vector current between two arbitrary opposite-
parity baryonic states 1=2� and 1=2ÿ:


Bÿ�pf�j j a5mjB��pi�
� � �u�pf�

ÿ
gmH1�q 2�

� smnq nH2�q 2� � qmH3�q 2�� t a
2

u�pi� ; �192�

where pi and pf are the initial- and final-state momenta
(q � pf ÿ pi), and we introduce the form factors H1, H2, and
H3. For the matrix element of the divergence of the axial-
vector current, we then arrive at


Bÿ�pf�jq mj a5mjB��pi�
� � i��m� ÿmÿ�H1�q 2�

� q 2H3�q 2�� �u�pf� t
a

2
u�pi� : �193�

Inasmuch as the left-hand side of (193) vanishes in the chiral
limit due to the PCAC condition, in the limit q! 0, the form
factors must obey the condition

�m� ÿmÿ�H1�0� � lim
q!0

q 2H3�q 2� � 0 ; �194�

which can be easily recognized as the Goldberger±Treiman
relation

gpB�Bÿ �
G�ÿA �m� ÿmÿ�

2fp
; G�ÿA � H1�0� : �195�

Indeed, PCAC requires that the contribution of the term
proportional toH1 be compensated by the term proportional
toH3, and the latter has to develop a pole at q 2 ! 0, which is
naturally identified with the Goldstone pole. Thus, if the
states B� belong to the same chiral doublet, they become
degenerate in the mass, which ensures that gpB�Bÿ � 0, and
this condition, being a consequence of PCAC, is independent
of the particular degeneracy mechanism for the states B�.

Similarly to mesons, the general symmetry-based argu-
ments given above admit a particular microscopic realization
in the framework of the GNJL model. However, it is
important to comment on the baryonic states in this model.
Although the model is considered in the formal limit
Nc !1, properties of the baryons can be studied qualita-
tively (and in many cases also quantitatively) if Nc � 3 is
substituted. Then the baryon can be built by acting with the
three dressed-quark operators on the BCS vacuum and
contracting the result with the relevant wave function,

CB � Ccolor 
Cflavor 
Cspin 
Cspace ;

Ccolor � 1

3!
eabgq aq bq g ;

�196�

where eabg is the antisymmetric Levi-Civita tensor. Baryons
do not bring any new effects to the model and, what is more,
the Dyson equations for baryons turn out to be much simpler
than the similar equations for mesons. The simplification
comes from the fact that the positive-energy component of the

amplitude for baryons does not couple to the negative-energy
component, because such transitions would imply the
existence of states with open color (Fig. 9).

Since the color wave function of the baryon is by
construction antisymmetric under permutations of the
quarks, it is sufficient to study only symmetric combinations
Cflavor 
Cspin 
Cspace, such that in the general case the
spatial wave function CYspace�q ; k� (where q and k are the
standard Jacobi coordinates) contain all possible permuta-
tions of Y: antisymmetric (A), symmetric (S), and mixed F
(DF) or D (DD). So far, all considerations have been quite
general, but a particular form of some baryonic wave
functions is used later in this section to calculate the axial
charges of these baryons.

We consider the axial charge operator

Q a
5 �

�
d3x �cig0g5

�
t a

2

�i j

cj �197�

and evaluate it for dressed quarks using Eqns (5) and (6). The
result is [95]

Q a
5 �

X
i; j

XNc

a�1

X
s; s 0�";#

�
t a

2

�i j �
d3p

�2p�3
h
cosjp�r p̂�ss 0

� ÿb yias�p� b a
js 0 �ÿp� � d

ay
js �ÿp� dias 0 �p�

�
� sinjp�is2�ss 0

ÿ
b
y
ias�p� d ay

js 0 �ÿp� � dias�p� b a
js 0 �ÿp�

�i
; �198�

where the two contributions in the square brackets have
different physical interpretations. The first term is diagonal
in the quark creation and annihilation operators (nonanom-
alous term) and, because it contains the operator r p̂, it is
responsible for the transition from the baryonic state with a
given parity to the baryonic state with the opposite parity,
that is, to the chiral partner. The second term in (198) has the
content of a Bogoliubov anomalous term. Since the axial
current is a component of the conserved Noether current and
therefore commutes with the Hamiltonian, �Q a

5 ;H � � 0, the
state Q a

5 j0i � jp ai is degenerate with the vacuum and is a
Goldstone boson; in other words, it is nothing more than the
chiral pion. Indeed, the quantity sinjp�is2� is the wave
function of the pion in its rest frame [see Eqns (55) and (71)].

We consider the diagonal part of the axial charge operator
of a baryon defined as the sum of operators (198) over all
quarks in the baryon,

Q5 � Q 3
5 �

X3
n�1

Q 3
5n : �199�

a b c

0c

q
q
q

0c

q
q
q

0c
q
�q

0c
�q
q

3cq
0c

q
q
q

3c
�q
�q

Figure 9. (a) Typical color-allowed (singlet±singlet, 0c ! 0c) transition

between the positive-energy and negative-energy amplitudes for a q�q pair.

(b) A similar transition is forbidden in a baryon because it results in a state

with open color (3c). (c) A typical color-allowed diagram contributing to

the Dyson equation for the baryon in the ladder approximation.
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From the above consideration, it is easy to see that the result
of such an operator acting on the baryonic state can be
schematically represented in the form

Q5jBi � jB 0i � jBpi ; �200�

where the first term in the right-hand side describes the chiral
partner of the state jBi, and the second term contains a
neutral pion. The relative weight of the above two terms is
defined by the chiral angle jp. In particular, in the case of
maximal symmetry breaking, jp � p=2, and therefore only
the second term survives in the right-hand side of (200). In
the opposite limit of unbroken chiral symmetry, jp � 0, and
hence only the first term survives. In this case, it is easy
to arrive at the following (obvious) properties of the
operator Q5:

Qy5 � Q5 ;


B2jQ 2

5 jB1

� / 
B2jB1

� � dB1B2
: �201�

Therefore,

Q5jB�i � G��A jB�i ; �202�

where B� stands for opposite-parity baryons andG��A stands
for axial charges. Then, for the baryon spectrum in the limit of
exact chiral symmetry restoration, the following relations
between various axial charges hold:

G�ÿA � Gÿ�A � 1 ; G��A � G�A � 0 ; GÿÿA � GÿA � 0 :

�203�

These relations are approached asymptotically as the excita-
tion number of the baryon increases. Because, as was
mentioned above, the axial charge operator commutes with
the Hamiltonian, the states jB�i and jBÿi should become
degenerate in this limit.

5.6 Axial charges of baryons
in the nonrelativistic quark model
In Section 5.5, the effective restoration of chiral symmetry in
the spectrum of excited baryons was described in detail in the
microscopic framework provided by the GNJL model. In
particular, predictions were made for the axial charges of
baryons. For comparison, we evaluate the axial charges of
some baryons in a different approach. In particular, a popular
alternative approach to baryons is provided by the well-
known nonrelativistic SU�6� quark model, which includes
the SU�3� isospin group and the SU�2� spin group and which
is quite successful in describing the ground states of baryons
[96, 97]. All ground-state baryons with the quantum numbers
1=2� and 3=2�, which respectively form an octet and a
decuplet of the isospin SU�3� group, enter the 56-plet of the
SU�6� group. Then, for example, the magnetic moments of
baryons (in fact, their ratios) are reproduced in the SU�6�
model with an accuracy of about 10±15%. One of the best-
known predictions of this model, the nucleon axial charge
GA � 5=3, coincides with the experimental value GA � 1:26
quite well; the discrepancy is caused by the ignored relativistic
effects, by the pionic cloud, by the effects of the SU�6�
symmetry breaking because of the different quark masses,
and so on.

In the large-Nc limit, the ground states in the spectrum of
baryons indeed obey the SU�6� algebra [98, 99], which is a
consequence of spontaneous chiral symmetry breaking,

resulting in the emergence of large constituent quark masses.
To predict the masses of the excited baryons, the SU�6�
symmetry group needs to be supplied with dynamical
assumptions about the structure of the radial and angular
excitations of quarks in the baryons. In the simplest case of
the harmonic oscillator confining potential, the energy of the
quarks is fully fixed by the principal quantum number, and
the masses of the excited negative-parity states of the nucleon
andD agree well with the predictions of such an SU�6� �O�3�
classification scheme with N � 1. However, for positive-
parity states, this scheme meets certain difficulties, such as
an overestimated splitting with negative-parity states and, for
the Roper resonance, with the wrong ordering of opposite-
parity levels.

In the literature, there have been successful attempts to
resolve the aforementioned difficulties via a particular
symmetry breaking mechanism [100]. However, a systematic
mass degeneracy of opposite-parity excited baryons looks
quite unnatural in the framework of this quark model, and
there is no explanation for this phenomenon. In particular, in
the SU�6� �O�3� scheme, there are no reasons whatsoever
for the axial charges of the baryons to obey formula (203).
Meanwhile, because the axial charges of baryons can be
evaluated on the lattice (see, e.g., [97, 101±104]), it would be
natural to confront the lattice results with predictions of the
SU�6� �O�3� quark model, in which the effective restoration
of chiral symmetry is not possible. Then the deviations of
lattice data from the quark model predictions can be
interpreted as an argument in favor of chiral symmetry
restoration in the spectrum of excited baryons.

To evaluate the axial charges of baryons in the nonrela-
tivistic quark model, we need to work out the averages over
the baryon wave functions of the form

GA
fi �

D
Cf�1; 2; 3�j

X3
n�1

QA
n jCi�1; 2; 3�

E
; �204�

whereQA
n is the operator of the axial charge of the nth quark,

which in the leading order is given by the Gamow±Teller
formula s3t3 (where s and t are the respective spin and
isospin operators of the Dirac fermion). This operator allows
relativistic corrections (which, however, are not considered
below) of the form

1

2M
r�pi � pf� t a exp �iqr� ; �205�

where q � pf ÿ pi. In addition, the operator of the axial
charge of a nonrelativistic quark in the leading order also
contains a dependence on the spatial coordinate in the form of
the exponential exp �iqr�. However, evaluation of both the
diagonal and off-diagonal axial charges amounts to taking
the limit q! 0 [105]. In the leading order, the axial charge
operator is then independent of the coordinate, and therefore
matrix element (204) is nonzero only if the spatial wave
functions of the initial and the final baryons coincide. This
prediction of the SU�6� �O�3� scheme appears to be at odds
with the predictions of chiral symmetry restoration in the
spectrum and, in particular, with its microscopic realization
in the GNJL model framework [see Eqn (203)].

Evaluation of diagonal matrix elements (204) requires
knowing the wave functions of baryons in the SU�6� �O�3�
scheme, which are well known in the literature and are quoted
in Table 3. Each wave function is characterized by several
quantum numbers. First, there is the multiplet of the spin±
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flavor group SU�6� to which the given state belongs and
which is encoded in the Young symbol � f �FS. In each such
multiplet, the baryon wave function has a particular symme-
try in the flavor space (the symbol � f �F with f � 3; 21; 111)
and a particular spin symmetry (the symbol � f �S with f � 3; 21
for S � 3=2 and S � 1=2, respectively). Finally, the spatial
part of the wave function is fixed by the angularmomentumL
and by the permutation symmetry � f �X, which is fixed by the
Pauli principle as � f �X � � f �FS. For a particular basis used,
additional quantum numbers can arise, like the principal
quantum number N in the harmonic oscillator basis or the
spatial symmetry of the angular wave function �lm�.

The diagonal axial charges of some baryons evaluated
with the help of the wave functions quoted in Table 3 are
given in Table 4 (details of the calculations can be found
in [105]). The charges found allow us to compare the
predictions of the SU�6� model with the predictions of the
chiral restorationmodel. In particular, the statesN�1440� and
N�1535� form a chiral doublet, and therefore, according to
the model of chiral restoration, their axial charges should be
small. From Table 4, we can see that the SU�6� model also
predicts a small axial charge for N�1535�; however, for the
state N�1440� the prediction of this model is rather large,
exceeding unity. A similar situation occurs for another pair of
chiral partners, N�1710� and N�1650�: the SU�6� model
predicts rather large values for both axial charges. Other
examples of model calculations of the axial charges of excited
baryons can be found in [106±110].

6. Conclusions

In this review, we discussed some aspects of the phenomenon
of chiral symmetry breaking and the properties of hadrons in
the framework of the GNJL model. An important feature of
this model is its microscopic approach to chiral symmetry
breaking in a vacuum and the presence of confinement, which
allows using the model to address a wide class of problems
related not only to low-lying states in the spectrum of hadrons
but also to various properties of excited hadrons. In
particular, the phenomenon of the effective restoration of
chiral symmetry in the spectrum of excited mesons and
baryons is described microscopically.

The main problems discussed in this review are as follows.
� An explicit microscopic description of the phenomenon

of chiral symmetry breaking in a vacuum is given in terms of
the dressed quark fields and the wave function of a chirally
broken vacuum, which has the form of a coherent-like state
formed by condensed 3P0 quark±antiquark pairs.
� The bosonic Bogoliubov transformation is generalized

to the case of compound meson operators, and the equiva-
lence of the method to the approach based on the Bethe±
Salpeter equation for meson amplitudes is proved.
� The interrelation between the Lorentz nature of con-

finement and spontaneous chiral symmetry breaking is
addressed. The connection of spontaneous chiral symmetry
breaking with the dynamically generated scalar interquark
potential in quarkonium is traced at the microscopic level.
� The existence of two different dynamical regimes in the

mass-gap equation is established from the most general
arguments, and only one of them is shown to be realized in
the chiral limit. For that regime, the chiral angle is shown to
collapse in the classical limit, that is, the quantum nature of
spontaneous chiral symmetry breaking in a vacuum is
demonstrated directly.
� A detailed microscopic description of the phenomenon

of effective chiral symmetry restoration in the spectrum of
excited hadrons is presented in the framework of the GNJL
model. In particular, both qualitative and quantitative
analyses of the mass-gap equation for the model with an
arbitrary power-law confining potential are presented and the
existence of chirally nonsymmetric solutions is demonstrated
for all such power-law potentials.
� The connection is traced between the interquark

potential in quarkonium responsible for splitting between
opposite-parity states and the chiral angle, which describes
the effect of spontaneous chiral symmetry breaking. This
potential is demonstrated to decrease fast with an increase in
the excitation number of the meson.
� A microscopic derivation of the Goldberger±Treiman

relation for the pion coupling constant with a heavy±light
quarkonium is presented, and the pion is explicitly shown to
decouple from the excited hadrons that form approximate
chiral multiplets.
� A microscopic derivation of the behavior of the

diagonal and off-diagonal axial charges of baryons that
form approximate chiral multiplets is presented, and the
results are contrasted with predictions of the SU�6� �O�3�
quark model.

In conclusion, we mention a few questions and problems
of the phenomenology of strong interactions that can be
addressed using the GNJL model. First of all, it has to be
pointed out that highly excited mesons made of light quarks
demonstrate a higher level of degeneracy of the spectrum than
just the restored chiral symmetry. In particular, the slopes of
the Regge trajectories in the total spin J and in the radial
quantum number n coincide with a high accuracy (see, e.g.,
recent paper [111]), which agrees well with the idea of the
existence of the principal quantum number n� J [55].
Furthermore, it was conjectured in a series of recent papers
that highly excited hadrons form multiplets of the SU�4�
group, which includes chiral symmetry as a subgroup [12,
112]. This hypothesis finds support on the lattice if a cute trick
is employed [113, 114]: it was suggested that the properties of
hadrons be investigated using field configurations after the
artificial removal of the near-zero modes of the Dirac
operator. Because the chiral condensate in a QCD vacuum

Table 3.Wave functions of some nucleons in the mass region below 2GeV

in the SU(6) scheme (see, e.g., [100]).

N�lm�L� f �X� f �FS� f �F� f �S JP, nucleon

0�00� 0�3�X�3�FS�21�F�21�S 1
2

�
, N

2�20� 0�3�X�3�FS�21�F�21�S 1
2

�
, N�1440�

1�10� 1�21�X�21�FS�21�F�21�S 1
2

ÿ
, N�1535� 3

2

ÿ
, N�1520�

1�10� 1�21�X�21�FS�21�F�3�S 1
2

ÿ
, N�1650� 3

2

ÿ
, N�1700� 5

2

ÿ
, N�1675�

2�20� 2�3�X�3�FS�21�F�21�S 3
2

�
, N�1720� 5

2

�
, N�1680�

2�20� 0�21�X�21�FS�21�F�21�S 1
2

�
, N�1710�

Table 4.Diagonal axial charges of baryons evaluated in the framework of

the SU(6) quark model.

Baryon N�1440� N�1710� N�1535� N�1650�
JP 1=2� 1=2� 1=2ÿ 1=2ÿ

GA 5=3 1=3 ÿ1=9 5=9
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is defined by the density of such near-zero modes [115], their
removal should result in chiral symmetry restoration, and
therefore all results obtained with the help of such special
lattice configurations should demonstrate all implications of
the restored chiral symmetry. Indeed, the result demonstrates
the emergence of a rather high degeneracy in the spectrum,
which is consistent with the SU�4� group [113, 114]. Building
a dynamical model of a QCD string that has the above
property is an important problem of theoretical high-energy
physics, which can be addressed, in particular, using the
experience gained from microscopic calculations in the
framework of the generalized Nambu±Jona-Lasinio model.
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