
Abstract. The possibility of proving the theorem on the connec-
tion between spin and statistics in the nonrelativistic quantum
mechanical framework is examined.

Keywords: identical particles, spin and statistics, Pauli exclusion
principle, irreducible representations of the rotation group, spinor
fields

``... the énal `truth' on the subject is still `dwelling in the abyss...''
W Pauli [1]

1. Introduction

As is well known, Pauli's theorem on the connection between
spin and statistics is proved in the theory of quantized fields
involving invariant properties under the Lorentz group
(including time, space and charge reversal [1±5]) and satisfy-
ing the positive energy requirement and the fulfilment of
causality condition. On the other hand, the formulation of the
theorem is quite concise: the wave function of a system of
identical particles with integer (half-integer) spin is symmetric
(antisymmetric) under simultaneous permutation of the
particle coordinates and spin variables. This connection has
found wide and effective use, in particular, in the nonrelati-
vistic theory of many-electron systems and in molecular
physics (see, for example, Refs [6, 7]). Because the way a
wave function transforms under three-dimensional rotations
is determined by spin, restrictions on permutation symmetry
are naturally expected to be connected with rotation group
symmetry. It should be noted that attempts are still ongoing
to explain the connection between spin and statistics within
the framework of nonrelativistic quantum mechanics (see
Refs [8±11] and references cited therein).

2. Spin-statistics connection
for systems of identical particles

According to Bethe's `simple symmetry' principle, a unique
choice can only be made for each class of identical particles

between two possibilities: symmetry or antisymmetry (see
`arguments in favor of simple symmetry' in Ref. [12, p. 25]); a
detailed analysis of this problem is carried out in Ref. [13] (see
alsoRefs [14, 15]). To establish a connection between spin and
statistics for a given class of identical particles, it suffices to
prove that the theorem necessarily holds for any specific case.
Because the symmetry property we consider should be
independent of the number of particles in the system, the
simplest case of two identical particles appears to be a natural
starting point.

Let us consider a system of two particles with half-integer
spins. The wave function of a particle with half-integer spin
(for simplicity, we can confine ourselves to spin-1=2 particles
with zero orbital moment) is a spinor field, i.e., spinor
specified at each point in space, wm�r�, m � �1=2. Let both
particles be on the x-axis, and let the z-axis be the spin
projection quantization axis.

The transformation of a spinor field under three-dimen-
sional spatial rotation g (i.e., a transformation to a new
orthogonal reference frame) is given by (see, for example,
Ref. [7])

w 0m�gÿ1r� �
X

m 0��1=2
D
�1=2�
m 0m �g� wm 0 �r� ; �1�

whereD
�1=2�
mm 0 �g� is thematrix of the irreducible representation,

with weight 1=2, of the rotation group. The primes denote the
spinor components in the new reference frame obtained from
the original one by a rotation g. Notice that the spinor
components wm�r� are multiplied by exp �ipm� � �i under a
rotation by p around the spin projection quantization z-axis.

The wave function of two such particles is a second-rank
spinor field (a second-rank spinor depending on two vector
arguments, the radius vectors of these particles). The
transformation law for a second-rank spinor can be written
out as

w 0m1m2
�gÿ1r1; gÿ1r2� �

X
m 0

1
;m 0

2
��1=2

D
�1=2�
m 0

1
m1
�g�D �1=2�m 0

2
m2
�g�wm 0

1
m 0

2
�r1; r2� :
�2�

The values of the spatial arguments can be permuted by a
rotation through p about any axis which passes through the
center of inertia of the two particles and which is orthogonal
to the line segment connecting them: gÿ1r1 � r2, g

ÿ1r2 � r1.
We choose the projections of the spin on this axis as the spin
variables. Then, under this rotation, the spin variables retain
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their values, whereas the one-particle wave functions (the
components of the first-rank spinor) are multiplied by i orÿi.
For identical values of the spin variables (the diagonal
components of the second-rank spinor), the two-particle
wave function reverses sign:

w 0m;m�r2; r1� � ÿwm;m�r1; r2� ; �3�

consistent with Eqn (2). Thus, when transforming into a new
reference frame obtained by rotating the original one through
p about the spin projection quantization axis passing through
the center of inertia of the two particles and orthogonal to
their connecting line, the spatial particle coordinates have
their values permuted and the wave function has its sign
reversed.

Let us show that the `permutation antisymmetry' prop-
erty can also be extended to other states of the system under
consideration (withm1 6� m2). To do this, consider a rotation
through p about the y-axis orthogonal both to the connecting
line between the particles and to the spin quantization axis. A
rotation by p about the y-axis results in permutation of the
spinor components:

w 01=2 � iwÿ1=2 ; w 0ÿ1=2 � iw1=2 : �4�

For a second-rank spinor we obtain

w 0m2;m1
�r2; r1� � ÿwm1;m2

�r1; r2� �5�

according to Eqn (2). Equation (5) still does not imply,
however, that the two-particle wave function with equal
values of the spin variables should be antisymmetric under
the permutation of the spatial coordinates in a specific (one
and the same) reference frame. The wave function will be
antisymmetric in the specified (original) reference frame if we
require additionally that the following relationship holds:

w 0m1;m2
�r1; r2� � wm1;m2

�r1; r2� : �6�

Relying onÐand treating as an accepted factÐ the anti-
symmetry property of the wave function of half-integer spin
particles, we can indeed draw this conclusion, i.e., Eqn (6) can
be viewed as a reverse theorem following from the wave
function antisymmetry with respect to permutation of half-
integer spin particles. Relation (6) can be interpreted as a
quantum mechanical expression of the indistinguishability of
identical particles. In our present discussion, this equality is
regarded as a hypothesis.

Thus, the antisymmetry property of the wave function of
two identical particles with spin 1=2 is fully determined by the
half-integer value of the spin. If this fact is taken to be
established, then the symmetry properties of the wave
functions of systems of identical particles with other spin
values are most easily determined by treating them as
`composite particles' made up of an odd or even number of
spin-1=2 particles. It is known that the permutation symmetry
properties of `composite particles' (e.g., such as atoms) are
determined by the value of the total spin (for an atom, the sum
of the spins of the nucleus and electrons). Not only is this
suggested by the logic of theoretical analysis, but it also has a
long history of experimental confirmation (the superconduc-
tivity of helium and Bose condensation of dilute laser-cooled
gases).

3. Conclusion

In the present methodical article, the connection between spin
and statistics is proved using an additional hypothesis,
Eqn (6)Ð the relationship which we suggest should be
considered a formal expression of the indistinguishability of
identical particles.

After the first version of this paper was submitted to the
Physics±Uspekhi Editorial Board, we found that similar
analyses had already been proposed [8, 9], which, however,
came under criticismÐ in particular, from Ref. [11]Ðpre-
sumably for the logical flaw our hypothesis made up for.

The treatment presented in this paper cannot be consid-
eredÐand this is what the epigraph is aboutÐas a complete
proof of the theorem on the connection between spin and
statistics, the reason being the use of an additional hypothesis.
However, the connection which we found to exist between the
transformation properties of the wave functions for a system
of identical particles is ofmethodical interest andwill possibly
stimulate a deeper analysis of the problem in the framework
of nonrelativistic quantum mechanics.

Sincere thanks for discussions go to M G Benedikt,
M M Mestechkin, L N Labzovsky, and A V Tulub. The
work was supported by the RFBR, project 15-02-08369-A.
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