
Abstract. We systematically summarize theoretical develop-
ments related to the relativistic and nonrelativistic fluctuation-
electromagnetic interaction of bodies of different temperatures
moving translationally and (or) rotationally relative to one
another. The small-particle±plate and small-particle±vacuum
background configurations are considered as the basic ones. A
method is presented for calculating the basic characteristics of
this interaction: the conservative±dissipative forces and torques,
the heating (cooling) rates, and the intensities of thermal and
nonthermal radiation fluxes that arise under `Cherenkov fric-
tion' conditions. Experimental results and possible applications
are discussed.

Keywords: fluctuation-electromagnetic interaction of moving
bodies, Casimir friction, quantum friction, thermal and nonther-
mal radiation under translational±rotational motion of particles in
a vacuum

1. Introduction

The role of fluctuation-electromagnetic interaction between
individual molecules and larger bodies was apparently clearly
realized for the first time by P N Lebedev in the last decade of
the 19th century. For example, in a paper on the study of the
ponderomotive action of electromagnetic waves on resona-
tors [1], Lebedev wrote: `From the point of view of the
electromagnetic theory of light we should state that between
two molecules, as between two vibrators in which electro-
magnetic oscillations are excited, ponderomotive forces
should be present due to electrodynamic interactions of
alternating electric currents in molecules (according to
Ampere's law) or of variable electric charges (according to
Coulomb's laws). Therefore, we should assert that in this case
molecular forces should operate between molecules inher-
ently related to radiation processes. The most interesting and
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the most complicated case is that of a physical body in which
many molecules simultaneously interact with each other, and
oscillations of these molecules, owing to their mutual
proximity, are not independent of each other....''

The first theoretical calculation of the dissipative force
acting on a moving atom in an equilibrium electromagnetic
radiation background was performed by Einstein and
Hopf [2]. The next extremely important step was taken in
the pioneering papers by Casimir [3], Casimir and Polder [4],
and Lifshitz [5], devoted to the attraction force between two
thick plates separated by a narrow vacuum gap [3, 5] and to
the interaction of two small polarizing particles with surfaces
or with each other [4].

On celebrating the recent 150th anniversary of Lebedev's
birth, it can be stated that the interaction of electromagnetic
radiation with matter and its appearance in the fluctuation-
electromagnetic interaction (FEI) between condensed bodies
and with a fluctuating electromagnetic field remain topical in
physics research. Only during the last two decades have many
review papers andmonographs been published [6±20]. One of
the most important avenues of modern FEI research is the
study of dynamically and thermally nonequilibrium systems
[6, 8±20].

FEI is due to spatial correlations of quantum and thermal
fluctuations of polarization and magnetization of condensed
bodies and a vacuum. For atomic particles located beyond the
reach of chemical forces, the interaction is mediated by the
fields formed by fluctuating electric and magnetic moments
(of the dipole or higher order). FEI appears not only as van
der Waals±Casimir±Lifshitz and Casimir±Polder conserva-
tive forces but also as dissipative forces (quantum friction
forces) arising in the relative motion of bodies and as a
radiation heat exchange between them. The classical black-
body radiation of heated bodies also has a fluctuational
nature.

Unlike static interaction described in detail in classical
textbooks [21±28] (see also [7, 8, 12, 18]), FEI betweenmoving
bodies demonstrates many new interesting features [6, 10, 11,
13, 14, 19±34]. FEI has wide applications ranging from
biology and atomic physics [28] to particle physics, astro-
physics, and cosmology [6±8, 12, 20, 35±37].Measurements of
the Casimir forces, in particular, probe the structure of the
quantum vacuum and impose restrictions on the amplitude of
hypothetical long-range forces deviating from the Newton
gravity force [7, 38]. FEI research is also stimulated by
nanotechnology because it plays a major role on micro- and
nano scales in the interaction between individual pieces of
micro and nano-machines [39±44].

From the very beginning, the development of research
related to dissipative FEI with or without taking thermal
nonequilibrium into account has had no consensus as to the
dependence of the dissipative force on distance, velocity, and
temperature [45±49]. Later on, this led to a dramatic increase
in interest in this problem from numerous research groups
[50±104] (this list is by no means exhaustive). Taking the
relative motion of bodies, retardation effects, and the
difference (in general) between the local temperatures of
contacting bodies into account makes the problems techni-
cally very complicated. This is probably why, although the
relevant technique was developed quite long ago in the form
of the Levin±Rytov [21, 22] and Dzyaloshinskii±Lifshitz±
Pitaevskii [23] formalism, the solution of nonequilibirium
FEI problems came much later [45±49], and other methods
were used in calculations of dissipative forces. These methods

include nonrelativistic statistical mechanical treatment of the
system of moving oscillators using the Kubo formula [50±57]
and the Kubo formula in combination with other approaches
[47, 59, 71], a dynamic generalization of the Lifshitz formula
[66, 67], the Keldysh formalism [78], the quantum perturba-
tion theory [92±96, 102], and quantum scattering theory [103,
104].

Presently, it can be stated that there is complete agreement
among the results of most authors concerning the dissipative
force acting on a small particle or an atom moving parallel to
a smooth homogeneous plate (configuration 2 below), and
the dissipative force acting on a small particle moving in an
equilibrium electromagnetic background (configuration 3).
These results played an important role in comparing different
theories and reaching consensus among different authors [11,
15, 52, 58, 63, 73, 74, 88, 99, 102].

Unlike these cases, no generally accepted result has been
obtained so far for two parallel platesÐ the classical
Casimir±Lifshitz configuration (configuration 1 below)Ð
that move relativistically and in the absence of the general
thermal equilibrium. In particular, the results in [64, 65] imply
a zero dissipative quantum friction force at zero temperature
for configuration 1 and, as a consequence, for configuration 2
(in contradiction to the results in [63, 73, 74, 80±91] and most
other papers).

For these reasons and because of our scientific interests, in
considering nonequilibrium FEI effects, we here rely on the
results obtained for configurations 2 and 3 and related ones (a
particle rotating near the surface and in a vacuum), for which
we have developed a systematic relativistic method using the
standard fluctuation electrodynamics formalism [80±86, 88±
91]. The treatment of configuration 1 is restricted to the
nonrelativistic case. We also discuss recent results related to
the generation of thermal and nonthermal radiation in the
translational and rotational motion of particles in a vacuum
and near a transparent dielectric plate [31±34, 100, 105±112].
In Section 8, experiments are considered in which non-
equilibrium FEI effects have been or can be observed.

All formulas are written in the Gaussian units, kB, �h, and c
are the Boltzmann constant, the Planck constant, and the
speed of light, and T is the absolute temperature. Indices 1
and 2 (for example, T1 or T2) respectively relate to a moving
body and a body at rest. One and two primes respectively
denote the real and imaginary parts of the dielectric and
magnetic polarizability of a particle, ae;m�o�, and of the
dielectric response reaction of the medium De;m�o� (Fresnel
amplitudes). In other cases, one or two primes denote the
values related to reference frames S 0 and S 00, and dots over
symbols denote time derivatives. Dielectric (magnetic) prop-
erties of small particles are taken into account in the isotropic
polarizability model. Anisotropy effects in the presence of
dynamic and thermal nonequilibrium further complicate the
problem, and their consideration goes far beyond the scope of
this review.

2. General characteristics
of fluctuation-electromagnetic interaction
between moving bodies

2.1 Problem setup and geometric configurations
Our calculations of FEI characteristics are based on the direct
quantum statistical averaging of the Lorentz force operators
and of other physical quantities related to amoving particle in
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the presence of several statistically independent sources of
spontaneous fluctuations of the electromagnetic field for
given temperatures of bodies and the ambient vacuum
background (photon gas). In the static case, such an
approach was used in [25, 26].

In configurations of type 2 (Fig. 1) and type 3 (Fig. 2), the
respective bodies at rest are the plate and the photon gas.
They are related to the inertial reference frameS. The moving
particle (body) has a velocity 0 < V < c relative to S and is
associated with the comoving inertial reference frame S 0. If
the particle rotates relative to S 0 with an angular velocity O,
an additional reference frameS 00 rigidly related to the particle
is introduced (Fig. 3). The linear rotation velocity is assumed
to be nonrelativistic (OR=c5 1, where R is the radius of the
particle). A system of two particles in which one particle is at
rest is a modification of configuration 2. We also assume the
local thermal equilibrium for the particle with a temperature
T1, for the plate (particle) at rest with a temperature T2, and
for the vacuum background with a temperature T3. The
temperature T3 can be different from T1 and (or) T2. The
use of the inertial frames S and S 0 provides a unique relation
between the components of the electrodynamic and mechan-
ical quantities given in these frames via Lorentz transforma-
tions. Clearly, this allows a covariant formulation of themain
relations [99].

2.2 Ponderomotive forces and torques; heating rate
and emission power of a moving particle
Without loss of generality, we consider one neutral particle
(body) moving with the velocity V relative to a body at rest
(see Figs 1 and 2). The Lorentz force acting on the particle
from the fluctuating electromagnetic field with vectors E and
B is

F �
�
hrEi d3r� 1

c

�
h j� Bi d3r ; �1�

where r and j are fluctuating charge and current densities, the
angular brackets denote complete quantum statistical aver-
aging, and the integrals formally extend to the entire space,
although r and j are nonzero only inside the particle volume.
By expressing the current j and charge r density as

j � qP
qt
� c rotM ; r � ÿdivP ; �2�

where P and M are the polarization and magnetization
vectors, and using the standard Lorentz transformations for
r, j, E, B, P, and M, we can represent the energy dissipation
integral for the electromagnetic field as [14, 15, 111]�

h j Ei d3r � FV� gÿ2
�
h j 0E 0i d3r 0 ; �3�

where g � �1ÿ V 2=c 2�ÿ1=2 and primed quantities are related
to the comoving frame S 0. Clearly, the integral in the right-
hand side of (3) gives the heat release rate dQ 0=dt 0 in the body
(i.e., dQ 0 � Cs dT1, where Cs is the body thermal capacity).
This integral can be reduced to the form

dQ 0

dt 0
�
�
h j 0 E 0i d3r 0 �

���
qP 0

qt 0
� c rotM 0

�
E 0
�
d3r 0

� c

�
�M 0 � E 0� ds�

��
qP 0

qt 0
E 0 � qM 0

qt 0
B 0
�
d3r 0

ÿ
��

q
qt 0
�M 0 B 0�

�
d3r 0 �

��
qP 0

qt 0
E 0 � qM 0

qt 0
B 0
�
d3r 0: �4�

The surface integral of M 0 � E 0 in (4) vanishes because it is
taken over an infinitely remote surface, and the integral of
q�M 0 B 0�=qt 0 vanishes by the stationarity condition of
electromagnetic fluctuations, which we assume everywhere
below. Next, by using Lorentz transformations for the
quantities in the right-hand side of (4) and the time and
volume transformations dt 0 � gÿ1 dt, d3r � gÿ1 d3r 0, we
obtain��

qP 0

qt 0
E 0 � qM 0

qt 0
B 0
�
d3r 0 � g 2

��
qP
qt

E� qM
qt

B

�
d3r : �5�
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Figure 1. Particle±plate configuration and the reference frames of the plate

S and the particle S 0.
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Figure 2. Particle±vacuum background configuration and the reference

frames of the vacuum background S and the particle S 0.
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Figure 3. Translational±rotational motion of a particle in a vacuum and

the relevant reference frames S, S 0, and S 00.
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Letting dQ=dt denote the integral in the right-hand side of (5),
we arrive at the general relation

dQ 0

dt 0
� g 2

dQ

dt
; �6�

which holds irrespective of the size of the moving body. With
account for (6), formula (3) takes the form�

h j Ei d3r � FV� dQ

dt
: �7�

Physically, this result means that the work done by the
fluctuating electromagnetic field is spent to changing the
kinetic energy and heat release of the body, although, as we
see below, the quantity dQ=dt has an independent meaning
(see also [102]) and coincides with the heating rate of the body
only for nonrelativistic motion. Because the particle tempera-
ture T1 is defined only in the comoving frame S 0, the time
evolution ofT1 is described byEqn (6) with a given dQ=dt and
a given heat capacity in S 0.

For a small particle with fluctuation dipole moments d�t�
and m�t�, the polarization and magnetization vectors are

P�r; t� � d�t� d�rÿ Vt� ; M�r; t� � m�t� d�rÿ Vt� : �8�

Using (2) and (8), we can simplify expressions forF and dQ=dt
after the integrals over the particle volume are easily
calculated using the Maxwell equations

rotE � ÿ 1

c

qB
qt

; divB � 0

and the quasi-stationarity condition for fluctuations

F � 
H�dE�mB�� ; �9�
dQ

dt
� h _dE� _mBi : �10�

The dots over d and m in (10) denote time derivatives.
The obtained equations can be easily related to the

emission power of a particle moving in a vacuum or near the
surface of a transparent nonmagnetic medium. Following
[105±107], we surround the particle by a sufficiently remote
surface s such that the electromagnetic field on this surface
has the wave character (Fig. 4). We write the energy
conservation law for the fluctuating field inside the volume
O (not to be confused with the angular velocityO) bounded by
the surface s,

ÿ dW

dt
�
�
s
Sdr�

�
O
h j Ei d3r ; �11�

whereW � �1=�8p�� �O�hE 2i � hH 2i� d3r is the field energy in
O and S � �c=�4p��hE�Hi is the Poynting flux vector. In the
quasistationary regime �dW=dt � 0�, Eqn (11) implies

I �
�
s
Sdr� ÿ

�
O
h j Ei d3r � I1 ÿ I2 ; �12�

where I is the difference between the emission and absorption
powers I1 and I2. It follows from (7) and (12) that

I � ÿ
�
dQ

dt
� FV

�
: �13�

We now consider a more complicated case where the
particle is in translational motion with a velocity V relative to
S and in rotational motion with the velocity On relative to S 0

(see Fig. 3). The comoving rest frameS 00 has the same angular
velocity. The work dQ 0=dt 0 � �O 0 h j 0 E 0i d3r 0 of the fluctua-
tion field in the frame S 0 is now spent not only to heat the
particle but also to slow down its rotation. The corresponding
expression for the dipole particle can be easily found after
transforming a dipole moment and electromagnetic field
vector rotations by passing from the frame S 0 to the rest-
frame S 00. As a result, we obtain�

V 0
h j 0 E 0i d3r 0 � h _d 0 E 0 � _m 0 B 0i � dQ 00

dt 0
�M 0

nO ; �14�

where M 0
n � hd 0 � E 0 �m 0 � B 0in is the projection of the

torque on the particle spin axis in the frame S 0. In (14), it is
taken into account that dt 00 � dt 0 because the particle
rotation is nonrelativistic. We choose the Cartesian rest
frame S 00 associated with the particle such that (see Fig. 3)
its z 00 axis coincides with the angular velocity unit vector
n � �cos y; 0; sin y� lying in the plane �x 0; z 0� of the frame S 0

(here, y is the angle between the vector n and the x 0 axis).
Taking the relativistic transformation for the torque vector
projections M 0

x � gMx, M
0
z �Mz, M

0
y �My into account, it

is convenient to represent Eqn (14) in the form�
V 0
h j 0 E 0i d3r 0 � dQ 0

dt 0
� dQ 00

dt 0
�MxgO cos y�MzO sin y ; �15�

where Mx and Mz are the projections of the torque vector
in S.We note that the torque componentMy does no work on
the particle and can induce only its precession. Using (5) and
(15), we obtain an equation for the heating rate of the particle
in S:

dQ 00

dt
� g

dQ

dt
ÿ O�Mx cos y�Mzgÿ1 sin y� : �16�

Given the particle heat capacity, Eqn (16) enables calculating
the time dependence of its temperature.

Thus, all physically relevant quantities related to amoving
particle are expressed through correlators of the electromag-

z

y y 0

z 0

x 0xS

O

s

V

S 0

T2

T1Vacuum

S2

S1

Figure 4.Wave surface s of an emitting particle in a vacuum background.

S1 and S2 are the respective Poynting vectors of the emitted and absorbed

electromagnetic radiation.

562 G V Dedkov, A A Kyasov Physics ±Uspekhi 60 (6)



netic field and fluctuation moments of the particle in the
laboratory frame S.

2.3 Particle dynamics
In the dynamics of a particle, the change in its mass and the
relation of this change to other quantities characterizing FEI
are important. This point was first noted by Polevoi [49] in the
problem of calculating the dissipative force in the type-1
configuration (see also [10, 11, 100, 107, 108]). By assuming
that the translation velocity is directed along the x axis of the
frame S (see Figs 2 and 3), the dynamic equation can be
written as

d

dt

mV����������������������
1ÿ V 2=c 2

p � Fx : �17�

Equation (17) implies that

g 3m
dV

dt
� gV

dm

dt
� Fx : �18�

On the other hand, using energy conservation law (11) in the
form

ÿ d

dt

 
W� mc 2��������������

1ÿ b 2
q !

� I �19�

and the quasistationarity condition dW=dt � 0, we obtain

ÿg 3mV
dV

dt
ÿ g

dm

dt
c 2 � I : �20�

From (13), (18), and (20), important general relations can be
derived:

g 3m
dV

dt
� Fx ÿ bg 2

1

c

dQ

dt
; �21�

dm

dt
� g

c 2
dQ

dt
: �22�

Taking (22) into account, it is easy to see that the right-hand
side of (21) represents the tangential force F 0x acting on the
particle in the reference frame S 0:

Fx ÿ bg 2

c

dQ

dt
� Fx ÿ V

dm

dt 0
� F 0x : �23�

Therefore, dynamic equation (21) takes the form

g 3m
dV

dt
� F 0x : �24�

In this derivation, we used the identity Fx ÿ V dm=dt 0 � F 0x
that follows from time differentiation of the Lorentz
transformation for the particle momentum, px �
g�p 0x � Vm=c 2�. Thus, the acceleration of the particle in the
laboratory frame S is determined by the dissipative force
specified in the frame S 0 [107, 108].

The dynamic equations of the rotational motion of the
particle can be conveniently written in the frame S 0 (see
Fig. 3):

Iik
dOk

dt 0
�M 0

i ; �25�

where Iik are components of the tensor moment of inertia of
the particle in S 0, and the projectionsM 0

k of the torque in S 0

must be expressed through the projections Mk in S [see text
before Eqn (15)]. For a spherical particle, Iik � I0dik.
Equations (16), (24), and (25) describe the interrelation and
time evolution of the thermal state of the particle and its
kinematic and dynamic characteristics.

3. Fluctuation±dissipation relations
in dynamically and thermally
nonequilibrium systems

The presence of independent sources of spontaneous fluctua-
tions in interacting subsystems (d sp and m sp for the particle
and E sp and B sp for the medium filling a half-space in
configuration 2, or for equilibrium electromagnetic radiation
in a vacuum in configuration 3) gives rise to induced
fluctuations of d ind, m ind, E ind, and B ind. The initial
expressions for fluctuation force (9), heat exchange rate (10),
and the torque hd� E�m� Bi then become

F � 
H�d sp E ind �m sp B ind��� 
H�d ind E sp �m ind B sp�� ;
�26�

dQ

dt
� 
 _d sp E ind � _m sp B ind

�� 
 _d ind E sp � _m ind B sp
�
; �27�

M � 
d sp� E ind �m sp� B ind
�� 
d ind� E sp �m ind� B sp

�
:

�28�
Clearly, expression (28) vanishes for a nonrotating particle.
All quantities in (26)±(28) are calculated within a single
formalism in the laboratory frame S. As follows from
formulas (26)±(28), irrespective of the specific configuration,
the calculation of all quantities is reduced to the statistical
averaging of the right-hand sides. In configuration 2, in
particular, conservative and dissipative components of FEI
are determined by the projections Fz and Fx of force (26), and
in configuration 3, only the component Fx of the dissipative
(tangential) force is nonzero.

The first terms in (26)±(28) describe the contribution
from spontaneous fluctuations of the dipole and magnetic
moments of the particle to its interaction with the external
electromagnetic field. These terms can be calculated in two
stages. First, the system of Maxwell equations with point-
like spontaneously fluctuating sources (8) for configuration 2
or 3 is solved, with the boundary conditions on the surface
z � 0 in the first case. As a result, the vectors E ind and B ind

are expressed in terms of d sp 0 and m sp 0, and the vectors d sp

and m sp in (26)±(28) are expressed in terms of d sp 0 and m sp 0

by relativistic transformations of dipole moments in passing
from the frame S to the frame S 0. The subsequent quantum
statistical averaging is convenient to perform using fluctua-
tion±dissipation relations (FDRs) specified in the frame S 0.
If the particle rotates, then, clearly, the form of the
corresponding FDRs differs from their standard form in
the rest frame.

The second terms in the right-hand sides of (26)±(28)
describe the interaction of the induced moments with
spontaneous fluctuations of the external electromagnetic
field. To calculate them, the induced dipole moments of the
particles are expressed via fluctuating external fields using
linear integral relations containing the dielectric andmagnetic
polarizability of the particle. Next, after substituting the
obtained quantities in (26)±(28), correlators arise that
include Fourier components of random electromagnetic
fields of the medium. These correlators are expanded using
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FDRs containing imaginary parts of the components of the
retarded Green's function for a photon in the medium.

3.1 Fluctuation±dissipation relations for dipole moments
Formore generality, it is useful to consider configuration 2, in
which a particle rotates with an angular velocity O relative to
the reference frame S 0, which can move with a relativistic
velocity V relative to the laboratory frame S (see Fig. 3).

To obtain FDRs for dipole moments, we first make a
rotational transformation of spontaneous dipole moments of
the particle by passing from the frameS 0 to the rotating frame
S 00 in which the particle is at rest,

d sp 0
i �t� � Aik�t�d sp 00

k �t� ; �29�
m sp 0

i �t� � Aik�t�m sp 00
k �t� : �30�

The rotation matrix defined by a unit vector n is [113]

Aik�t� � ni nk � �dik ÿ ni nk� cos �Ot� ÿ eikl nl sin �Ot� : �31�

Next, we make a partial Fourier transformation of the left-
and right-hand sides of Eqns (29) and (30), after which we
multiply their corresponding Fourier images.Here, we use the
standard FDR defined in the particle rest frame [114]:

d sp 00
i �o� d sp 00

k �o 0�� � 2p�hdikd�o� o 0�a 00e �o� coth
�ho

2kBT1
;

�32�

m sp 00

i �o�m sp 00
k �o 0�

� � 2p�hdikd�o� o 0�a 00m�o� coth
�ho

2kBT1
;

�33�

where a 00e �o� and a 00m�o� are imaginary parts of the electric and
magnetic polarizability, and T1 is the particle temperature.
After multiplying Fourier images of (29) and (30) and some
transformations, the FDRs of interest take the form

d sp 0
x �o� d sp 0

x �o 0�
� � 1

2
2p�hd�o� o 0�

�
�
2 cos2 y a 00e �o� coth

�ho
2kBT1

� sin2 y
�
a 00e �o�� coth

�ho�

2kBT1
� a 00e �oÿ� coth

�hoÿ

2kBT1

��
; �34�



d sp 0
z �o� d sp 0

z �o 0�
� � 1

2
2p�hd�o� o 0�

�
�
2 sin2 y a 00e �o� coth

�ho
2kBT1

� cos2 y
�
a 00e �o�� coth

�ho�

2kBT1
� a 00e �oÿ� coth

�hoÿ

2kBT1

��
; �35�



d sp 0
y �o� d sp 0

y �o 0�
� � 1

2
2p�hd�o� o 0�

�
�
a 00e �o�� coth

�ho�

2kBT1
� a 00e �oÿ� coth

�hoÿ

2kBT1

�
; �36�



d sp 0
x �o� d sp 0

y �o 0�
� � ÿ
d sp 0

y �o� d sp 0
x �o 0�

�
� i

2
sin y 2p�hd�o� o 0�

�
�
a 00e �o�� coth

�ho�

2kBT1
ÿ a 00e �oÿ� coth

�hoÿ

2kBT1

�
; �37�



d sp 0
y �o� d sp 0

z �o 0�
� � ÿ
d sp 0

z �o� d sp 0
y �o 0�

�
� i

2
cos y 2p�hd�o� o 0�

�
�
a 00e �o�� coth

�ho�

2kBT1
ÿ a 00e �oÿ� coth

�hoÿ

2kBT1

�
; �38�



d sp 0
x �o� d sp 0

z �o 0�
� � 
d sp 0

z �o� d sp 0
x �o 0�

�
� sin y 2p�hd�o� o 0�

�
a 00e �o� coth

�ho
2kBT1

ÿ 1

2

�
a 00e �o�� coth

�ho�

2kBT1
� a 00e �oÿ� coth

�hoÿ

2kBT1

��
; �39�

where o� � o� O. The FDR for magnetic moments has the
form similar to (34)±(39) with the substitutions d sp 0 ! m sp 0

and a 00e �o� ! a 00m�o�.
The FDRs (34)±(39) and their magnetic analogs written in

the frame S 0 clearly show that rotation of the particle makes
the different projections of the dipole and magnetic moment
vectors statistically dependent (they acquire correlations).
These correlations, in turn, give rise to torque (28), which
tends to slow down the particle rotation or change its spin
axis, and which affects its heating dynamics [see (16)].

3.2 Fluctuation±dissipation relations
for electromagnetic field components
FDRs for a fluctuation electromagnetic field external to the
particle are most naturally written in the laboratory frame S
related to this field. Therefore, the form of these FDRs is
preserved, irrespective of the motion of the particle relative
to S.

The stationarity condition for fluctuations [114] implies
that for configuration 2, all possible correlators of the vector
components of the equilibrium electromagnetic field are
expressed in terms of spectral densities as


U sp
i �o; k; z�U sp

j �o 0; k 0; z 0�
�

� �2p�3d�o� o 0�d�k� k 0�ÿU sp
i �z�U sp

j �z 0�
�
ok ; �40�

i; j � 1; 2; 3;

and for configuration 3 they are given by the relations

U sp

i �o; k�U sp
j �o 0; k 0�

�
� �2p�4d�o� o 0�d�k� k 0��U sp

i U sp
j �ok : �41�

Here, k � �kx; ky� is a two-dimensional wave vector in (40),
and k � �kx; ky; kz� is a three-dimensional wave vector in (41).
In turn, spectral densities of the electromagnetic field
correlators are generally expressed in terms of the anti-
Hermitian part of the retarded Green's function of a photon
in a medium [115]. As a result, for configuration 2, the FDRs
take the formÿ
E sp
i �z�E sp

j �z 0�
�
ok

� i

2
coth

�ho
2kBT2

o2

c 2
ÿ
Di j�o; k; z; z 0�ÿD �ji �o; k; z 0; z�� ; �42�

ÿ
B sp
i �z�B sp

j �z 0�
�
ok �

i

2
coth

�ho
2kBT2

� rotil rot
0
jm

ÿ
Dlm�o; k; z; z 0�ÿD �ml�o; k; z 0; z�� ; �43�
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ÿ
E sp
i �z�B sp

j �z 0�
�
ok

� i

2
coth

�ho
2kBT2

io
c

rot 0jm
ÿ
Dim�o; k; z; z 0�ÿD �mi�o; k; z 0; z�� ;

�44�

where rotil � einl q=qxn and rot 0jm � ejnm q=qx 0n.
The spectral representations of the retarded Green's

function for configuration 2, corresponding to FDRs (42)±
(44), have the form [81, 82]

Dxx�o; k; z; z 0� � ÿ �hc 2

o2

2p
q0

exp
�ÿq0�z� z 0��

�
�
k 2
x

�
1ÿ o2

k 2c 2

�
De�o� � k 2

y

o2

k 2c 2
Dm�o�

�
; �45�

Dyy�o; k; z; z 0� � ÿ �hc 2

o2

2p
q0

exp
�ÿq0�z� z 0��

�
�
k 2
y

�
1ÿ o2

k 2c 2

�
De�o� � k 2

x

o2

k 2c 2
Dm�o�

�
; �46�

Dzz�o; k; z; z 0� � ÿ �hc 2

o2

2p
q0

exp
�ÿq0�z� z 0��k 2De�o� ; �47�

Dxy�o; k; z; z 0� � Dyx�o; k; z; z 0�

� ÿ �hc 2

o2

2p
q0

exp
�ÿq0�z� z 0��

� kxky

��
1ÿ o2

k 2c 2

�
De�o� � o2

c 2
Dm�o�

�
; �48�

Dxz�o; k; z; z 0� � ÿDzx�o; k; z; z 0�

� ÿ �hc 2

o2

2p
q0

exp
�ÿq0�z� z 0���ÿikx�q0De�o� ; �49�

Dyz�o; k; z; z 0� � ÿDzy�o; k; z; z 0�

� ÿ �hc 2

o2

2p
q0

exp
�ÿq0�z� z 0���ÿiky�q0De�o� ; �50�

where

De�o� � q0e�o� ÿ q

q0e�o� � q
; Dm�o� � q0m�o� ÿ q

q0m�o� � q
;

q �
�
k 2 ÿ o2

c 2
e�o� m�o�

�1=2

; q0 �
�
k 2 ÿ o2

c 2

�1=2

; �51�

k � �k 2
x � k 2

y �1=2 :

For the components Dik�o; k; z; z 0� without the imaginary
unit i, the anti-Hermitian part of the Green's function
reduces to the imaginary part of Dik�o; k; z; z 0�. The
derivation of formulas (45)±(50) from the initial representa-
tion [115] for the retarded Green's function Dik�o; r; r 0� is
given in Appendix A. For configuration 3, the retarded
Green's function is given by [115]

Dik�o; k� � 4p�h

o2=c 2 ÿ k 2 � i0 signo

�
dik ÿ c 2

o2
ki kk

�
; �52�

and the FDRs take a simpler form:

�E sp
i E sp

j �ok � ÿ
o2

c 2
coth

�ho
2kBT2

ImDi j�o; k� ; �53�

�B sp
i B sp

j �ok � ÿ coth
�ho

2kBT2
rotil rot

0
jm ImDlm�o; k� ; �54�

�E sp
i B sp

j �ok � ÿ
io
c

coth
�ho

2kBT2
rot 0jm ImDim�o; k� : �55�

4. Nonrelativistic motion of a neutral particle
near a plain surface

We illustrate the above formalism with the example of a
neutral polarized particle performing nonrelativistic uniform
translational or rotational motion near a surface. Here and
below, we assume that the medium is described by frequency-
dependent dielectric andmagnetic permeabilities, although in
the nonrelativistic limit the results can easily be generalized to
the case of a nonlocal dielectric permeability (see [15, 82] for
more details).

4.1 Uniform rectilinear motion
In the nonrelativistic limit �c!1�, with the magnetic
moments of the particle ignored, formulas (26), (27) take the
form

F � 
H�d sp E ind � d ind E sp�� ; �56�

dQ

dt
� 
 _d sp E ind � _d ind E sp

�
: �57�

The induced electric field components can be found from the
equations [83]

E ind � ÿHF ind ; �58�
DF � 4p divP ; �59�
P � d�xÿ Vt�d�y�d�zÿ z0�d sp�t� ; �60�

where F ind is the induced component of the total electric
potential F. The solution of Poisson equation (59) must
satisfy the boundary conditions on the plate surface z � 0
with a dielectric permeability e�o�:

F�x; y;�0� � F�x; y;ÿ0� ; �61�
qzF�x; y; z�

��
z��0� e qzF�x; y; z�

��
z�ÿ0 :

To solve Eqn (59), we represent the potential F and polariza-
tion vector P in the form of Fourier integrals over the two-
dimensional wave vector k � �kx; ky� and frequency o. In
particular,

F�x; y; z; t�

� 1

�2p�3
���

do d2kF�o; k; z� exp �ikxx� ikyyÿ iot� : �62�

After substituting (62) and a similar decomposition for P in
(59), we obtain�

d2

dz 2
ÿ k 2

�
F�o; k; z�

� 4pd�zÿ z0�
�
ikxd

sp
x �oÿ kxV� � ikyd

sp
y �oÿ kxV�

�
� 4pd 0�zÿ z0�d sp

z �oÿ kxV� ; �63�

where d sp
j �oÿ kxV� are the Fourier components of the dipole

moment projections d sp�t�, j � x; y; z. The solution of
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Eqn (63) with boundary conditions (61) yields the Fourier
image of the induced part of the potential

F ind�o; k; z� � 2p
k

D�o� exp �ÿk�z� z0�
�

� �ikxd sp
x �oÿ kxV�� ikyd

sp
y �oÿ kxV�� kd sp

z �oÿ kxV�
�
;

�64�

where D�o� � �e�o� ÿ 1�=�e�o� � 1�. Taking Eqns (58), (62),
and (64) into account, the Fourier components of the induced
field can be expressed in terms of the Fourier image of the
potential:

E ind
x; y�o; k; z� � ÿikx; yF ind�o; k; z� ; �65�

E ind
z �o; k; z� � kF ind�o; k; z� :

Ultimately, the induced field at the particle location
�x � Vt; 0; z0� is

E ind � 1

�2p�3
���

do d2kE ind�o; k; z0� exp
�ÿi�oÿ kxV�t

�
:

�66�
The first term in the right-hand side of (56) is obtained

using (64)±(66) and the Fourier frequency decomposition of
d sp�t�. Here, correlators of the spontaneous dipole moment
[formula (32)] appear in the corresponding integral expres-
sions for the force projections Fx; z. After elementary integra-
tion over frequency and wave-vector components taking the
analytic properties of ae�o� and D�o� (the evenness of real
parts and the oddness of imaginary parts) into account, we
obtain

Fx�T1� � �h

p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky kkx exp �ÿ2kz�

� D 00�o�a 00e �o�� coth
�ho�

2kBT1
; �67�

Fz�T1� � ÿ �h

p2

�1
0

do
��1
ÿ1

dkx

� �1
ÿ1

dky k
2 exp �ÿ2kz�

� D 0�o�a 00e �o�� coth
�ho�

2kBT1
; �68�

where o� � o� kxV and k 2 � k 2
x � k 2

y . The corresponding
contribution to the heating rate in (57) is expressed by a
formula similar to (67) with the substitution kx ! ÿo� in the
integrand.

To calculate the force components and the heating rate
due to spontaneous fluctuations of the plate field, we first find
the induced dipole moment of the particle d ind using the linear
integral relation [116]

d ind�t� �
� t

ÿ1
dt ae�tÿ t�E sp�r0; t� ; �69�

where the spontaneous field of the plate is taken at the particle
location point r0 � �Vt; 0; z0�. By substituting the Fourier
decomposition of the field E sp�r0; t� in (69), we obtain

d ind�t� � 1

�2p�3
���

do d2k ae�oÿ kxV�E sp�o; k; z0�

� exp
�ÿi�oÿ kxV�t

�
: �70�

Given (70) and E sp�o; k; z0�, the second terms in formulas
(56) and (57) follow. To calculate them, we use the FRD


E sp�o; k; z0�E sp�o 0; k 0; z0�
� � 2�2p�4k�h exp �ÿ2kz0�

� coth
�ho

2kBT2
D 00�o�d�o� o 0�d�k� k 0� : �71�

Formula (71) follows from (40), (42), and (45)±(47) in the
limit c!1. Using (71), the tangential and normal compo-
nents of the fluctuation force caused by the induced particle
dipole moments can be reduced to the form (here and below,
we omit the index at z0)

Fx�T2� � ÿ �h

p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky kkx exp �ÿ2kz�

� D 00�o�a 00e �o�� coth
�ho

2kBT2
; �72�

Fz�T2� � ÿ �h

p2

�1
0

do
��1
ÿ1

dkx

� �1
ÿ1

dky k
2 exp �ÿ2kz�

� D 00�o�a 0e�o�� coth
�ho

2kBT2
: �73�

The corresponding contribution to the thermal heating rate is
also derived from (67) by replacing kx ! ÿo�. Taking
Eqns (67) and (68) into account, the resulting nonrelativistic
formulas for Fx; z and dQ=dt can be reduced to the form [15]

Fx � ÿ �h

p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky kkx exp �ÿ2kz�

� D 00�o�a 00e �o��
�
coth

�ho
2kBT2

ÿ coth
�ho�

2kBT1

�
; �74�

Fz � ÿ �h

p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky k
2 exp �ÿ2kz�

�
�
D 00�o�a 0e�o�� coth

�ho
2kBT2

� D 0�o�a 00e �o�� coth
�ho�

2kBT1

�
;

�75�
dQ

dt
� �h

p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky k exp �ÿ2kz�

� D 00�o�a 00e �o��o�
�
coth

�ho
2kBT2

ÿ coth
�ho�

2kBT1

�
: �76�

Formulas (74)±(76) are more suitable for the following
comparison with relativistic results, unlike the formula
obtained in [83]. Similar expressions can be obtained for a
magnetic particle by replacing the electric polarizability with
the magnetic one: ae�o� ! am�o�. The presence of the
frequency o� in the hyperbolic cotangent depending on the
particle temperature T1 stresses the actuality of its motion (its
dynamic nonequilibrium), while the contributions with the
temperature T2 are due to fluctuations of the immobile plate.
In nonrelativistic motion without rotation, the particle
heating rate in its rest frame, by virtue of (16), is determined
by formula (76) for dQ=dt, and hence the particle heats even
for equal temperatures T1 � T2. In thermal equilibrium
T1 � T2 � T, in the linear approximation in the particle
velocity, Eqn (74) yields a formula for the `viscous' friction
force for the particle in the near field of the plate, which was
first derived in [59]:

Fx � 3

2p
�hV

z 5

�1
0

doa 00�o�D 00�o� d

do

�
1

exp
�
�ho=�kBT �

�ÿ 1

�
:

�77�
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It is interesting to also consider the case of so-called
quantum friction [55±60], where T1 � T2 � 0. The energy
dissipation mechanism for nonrelativistic velocities is
thought to be due to the generation of surface excitations
[10, 11, 95]. Because the difference between hyperbolic
cotangents in formula (74) with T1 � T2 � 0 is equal to
signoÿ sign �o� kxV�, from (74) we obtain [83]

Fx � 4�h

p2

�1
0

dkx kx

�1
0

dky k exp �ÿ2kz�

�
� kxV

0

doa 00�oÿ kxV�D 00�o� ; �78�

with Fx < 0 because of the oddness of a 00�o�. For low particle
velocities, a 00�o� � o andD 00�o� � o, and Eqn (78) yields the
dependence Fx / V 3=z 7. A formula similar to (78) with a
cubic dependence onVwas obtained for the quantum friction
force between two plates [55, 60]. For an atom with the
simplest oscillator form of the polarizability [see Eqn (82)
below], formula (78) formally gives a zero force Fx. However,
using the effective atomic polarizability of the particle, which
takes the field of surface plasmons into account, a finite
quantum friction force Fx / a 2

0V
3=z 10 follows from (78)

(here, a0 is the static polarizability of an atom) [56±58]. With
the radiative correction to the polarizability taken into
account, the quantum friction force (for an atom) behaves
as Fx � a 2

0V
5=z 9 with a much smaller numerical value [56,

58]. These results are in full agreement with quantum field
calculations [101, 102]. The presence of the quantum friction
force at T1 � T2 � 0 (for atoms and nanoparticles) is due to
the different mode distribution of the electromagnetic field
near the plate compared to the vacuum modes in the empty
space.

From formula (76), in turn, we obtain the heating rate

dQ

dt
� 4�h

p2

�1
0

dkx

�1
0

dky k exp �ÿ2kz�

�
� kxV

0

do �oÿ kxV�a 00�oÿ kxV�D 00�o� �79�

and hence dQ=dt > 0 due to the positive definiteness of the
integrand. In addition, as follows from a comparison of (78)
and (79), ÿFxV > dQ=dt, i.e., the decrease in the particle
kinetic energy due to quantum friction does not entirely
transform into heating the particle. Clearly, part of the
energy is transmitted to the plate.

In turn, formula (75) generalizes all known results for the
nonretarded van derWaals interaction between a particle and
a plate. For example, for V � 0 and T1 � T2 � T, using the
analytic properties of the integrand and the standard rotation
transformation of the frequency integration contour in the
complex plane, we can rewrite formula (75) in the form [15]

Fz � ÿ 3

2

kBT

z 4

X1
n�0

�
1ÿ dn0

2

�
a�ixn�D�ixn� ; xn �

2pkBT
�h

n :

�80�

Under thermal equilibrium conditions, the force Fz is related
to the free energy ~F�z;T � of the particle±surface system as
Fz � ÿ�q ~F�z;T �=qz�T, and therefore the expression for
~F�z;T � is obtained by multiplying (80) by z=3. The integra-
tion constant depending on temperature should vanish as
T! 0 by the Nernst±Planck postulate.

At the zero temperatureT � 0, dynamic corrections to the
force Fz of the (energy) interaction U�z;V� of an atom with a
wall were first considered in [117, 118]. Formula (85) includes
these results as particular cases. For example, in the limit
T1;T2 ! 0 and with the relation Fz � ÿqU�z;V�=qz, it
follows from (75) that [119]

U�z;V� � ÿ �h

2p2

� �1
ÿ1

dkx

� �1
ÿ1

dky k exp �ÿ2kz�

� Im

�
i

�1
0

dxD�ix�a�ix� kxV�
�

� 2�h

p2

�1
0

dkx

�1
0

dky k exp �ÿ2kz�

�
� kxV

0

doD 0�o�a 00�oÿ kxV� � U �0��z;V� � DU�z;V� :
�81�

In particular, for ametallic plate with a plasma-type dielectric
function e�o� � 1ÿ o2

p=o
2, whereop is the plasma frequency

in a metal, using the resonance approximation for the atomic
polarizability

a�o� � a�0�o2
0

o2
0 ÿ o2 ÿ i0o

;
�82�

a 00�o� � pa�0�o0

2

ÿ
d�oÿ o0� ÿ d�o� o0�

�
;

where a�0� and o0 are the static polarizability of an atom and
the atomic transition frequency, the first term in the right-
hand side of (81) in the low-velocity limit can be reduced to
the form [119]

U �0��z;V� � ÿ �ha�0�oso0

8z 3�os � o0�
�
1� 3V 2

2z 2�os � o0�2
�
; �83�

whereos � op=
���
2
p

. Formula (83) coincides with the results in
[117, 118], where a quantum formula for a 00�o� was used that
takes several resonance lines into account, as well as with
quantum perturbation theory calculations [93]. The applic-
ability range of (83) corresponds to the condition
V5 z�os � o0�. In this case, the term DU�z;V� in (81) is
exponentially small [119]. For z�os � o0�5V5 c, by con-
trast, the term DU�z;V� dominates, which is absent in [93,
117, 118].

The results obtained can be easily generalized to the case
of nonretarded interaction of a particle moving parallel to
the walls (made of different materials) of a dielectric gap of
width l. In particular, for T � 0, the resulting formula for
U�z; l;V� takes the form [120]

U�z; l;V� � ÿ �h

2p2

� �1
ÿ1

dkx

� �1
ÿ1

dky k exp �ÿ2kz�

� Im

�
i

�1
0

dxD�ix; z; l �a�ix� kxV�
�

� 2�h

p2

�1
0

dkx

�1
0

dky k exp �ÿ2kz�

�
� kxV

0

doRe
�
D�o; z; l ��a 00�oÿ kxV� ; �84�

D�o; z; l � � D1�o� exp �ÿ2kz� � D2�o� exp
�ÿ2k�lÿ z��

1ÿ D1�o�D2�o� exp �ÿ2kl � ;

�85�
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where Di�o� � �ei�o� ÿ 1�=�ei�o� � 1�, i � 1; 2. Clearly, for-
mula (81) can be derived from (84) in the limit l!1.

4.2 Uniform rotation
In the FEI context, the effects of rotational motion of
particles in a vacuum were first considered in [31±33] (see
Section 5). In [90, 121], braking torques and other quantities
were calculated for particles rotating in the near field of a
heated plate in particular cases where the rotation axis is
perpendicular [90] or parallel [90, 121] to the surface. Using
the FEI formalism presented in Section 3, it is easy to obtain
more general results for an arbitrary orientation of the
particle rotation axis relative to the plate [122]. Here, new
features appear that were not considered in [90, 121].

Figure 5 shows the configuration of the systems and
reference frames used, S, S 0, and S 00. The frame S
corresponds to the plate at rest, S 00 is the rest frame rigidly
connected with the particle and rotating with an angular
velocityO relative to the reference frameS 0. The unit vector n
of the angular velocity O has the components �cos y; 0; sin y�,
and the angle y ranges the interval ÿp=24y4 p=2.

The quantities to be calculated, in addition to the
attraction force to the surface Fz and the heat exchange rate
dQ=dt [see (56) and (57)], include the torque components

M � hd sp � E indi � hd ind � E spi : �86�

Due to the obvious invariance of Fz and dQ=dt under
rotations about the normal to the plate surface (z and z 0 axes
in Fig. 5), the calculation of these quantities in frames S and
S 0 gives the same result; however, they are more easily
calculated in the frame S 0. The components of the vector M
are not invariant under rotations about z and z 0 axes;
therefore, at the first stage of calculations, we find them in
the frame S 0 and then transform to the frame S. To simplify
formulas in what follows in this section, we omit primes at the
quantities related to the frame S 0.

The calculation of the first term in (86) and similar terms
in (56) and (57) uses FDRs (34)±(39) for dipole moments.
Here, the components of the induced field E ind are given by
formulas (64) and (65) at V � 0. The calculations are similar
to those that led to formulas (67) and (68).

When calculating the second terms in (56), (57), and (86),
the induced dipolemoment d ind 00�t� in the rest frameS 00 of the
rotating particle is expressed by a formula equivalent to (69):

d ind 00�t� �
�1
0

dt a�t�E sp 00�tÿ t� ; �87�

where the field E sp 00�tÿ t� is taken at the particle location
�0; 0; z�; the explicit dependence on the coordinate z is omitted
in (87) and below. The vectors d ind 00 and E sp 00 in (87) are
related to the vectors d ind and E sp in the frame S 0 by the
formulas

d ind
i �t� � Aik�t�d ind 00

k �t� ; �88�
E sp 00
i �tÿ t� � Aÿ1im �tÿ t�E sp

m �tÿ t� ; �89�

where Aik�t� is rotation matrix (31) and Aÿ1km�tÿ t� is the
inverse matrix,

Aÿ1km�tÿ t� � nk nm � �dkm ÿ nk nm� cos
�
O�tÿ t��

� ekmp np sin
�
O�tÿ t�� : �90�

By multiplying matrices Aik�t� and Aÿ1km�tÿ t�, we obtain
Aik�t�Aÿ1km�tÿ t� � ni nm � �dim ÿ ni nm� cos �Ot�

ÿ eiml nl sin �Ot� : �91�
It is easy to see that the right-hand side of (91) coincides with
that of (31) after the corresponding change of indices:
Aim�t� � Aik�t�Aÿ1km�tÿ t�; therefore, after substituting (87)
in (88) and taking (89) and (91) into account, the components
of the induced dipole moment are given by the formula

d ind
i �t� �

�1
0

dt a�t�Aim�t�E sp
m �tÿ t� : �92�

Next, by representingE sp
m �tÿ t� as a Fourier integral over the

frequency and two-dimensional wave vector at the particle
location point,

E sp
m �tÿ t� �

�
do d2k

�2p�3 E sp
m �o; k� exp

�ÿio�tÿ t�� ; �93�

and substituting (93) in (92), we obtain explicit expressions for
the projections d ind

i �t� (see Appendix B). Formulas (B4)±(B6)
supersede formula (70) in the case of rotational motion of the
particle. Further calculations repeat those in Section 4.1 with
account for the FDRs presented in Section 3.2. The resulting
expressions for Fz, dQ=dt, and the torque projections
Mx 0; y 0; z 0 are

Fz � ÿ 3�h

32pz 4

� �1
ÿ1

do
�
�2ÿ cos2 y�

�
�
D 0�o�a 00�o� coth �ho

2kBT1
� D 00�o�a 0�o� coth �ho

2kBT2

�

� �2� cos2 y�
�
D 0�o�a 00�o�� coth �ho�

2kBT1

� D 00�o�a 0�o�� coth �ho
2kBT2

��
; �94�

dQ

dt
� �h

16pz 3

� �1
ÿ1

dooD 00�o�
�
�2ÿ cos2 y�a 00�o�

�
�
coth

�ho
2kBT2

ÿ coth
�ho

2kBT1

�

� �2� cos2 y�a 00�o��
�
coth

�ho
2kBT2

ÿ coth
�ho�
2kBT1

��
; �95�
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Figure 5. (a) Particle rotating near the plate surface and the reference

frames used: �x; y; z�, �x 0; y 0; z 0�, and �x 00; y 00; z 00�. (b) Reference frames

used to describe the rotational and precessional motion.
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Mx 0 � ÿ 3�h cos y
16pz 3

� �1
ÿ1

doD 00�o�a 00�o��

�
�
coth

�ho
2kBT2

ÿ coth
�ho�
2kBT1

�
; �96�

My 0 � ÿ �h sin y cos y
16pz 3

� �1
ÿ1

do
�
D 0�o�

�
a 00�o� coth �ho

2kBT1

ÿ a 00�o�� coth �ho�
2kBT1

�
� D 00�o�

�
a 0�o� coth �ho

2kBT1
ÿ a 0�o�� coth �ho�

2kBT1

��
; �97�

Mz 0 � ÿ 2�h sin y
16pz 3

� �1
ÿ1

doD 00�o�a 00�o��

�
�
coth

�ho
2kBT2

ÿ coth
�ho�
2kBT1

�
; �98�

whereo� � o� O.We note that torque projections (96)±(98)
refer to the frame S 0.

Analysis of the rotational dynamics of a spherically
symmetric particle can be conveniently performed in a more
general geometry (Fig. 5b), when the orientation of the vector
On relative to the plate (the reference frame S) is defined by
angles y and j. The system of dynamic equations (25) then
reduces to the form [122]

I
dO
dt
�Mn ; �99�

IO
dy
dt
�M? ; �100�

IO cos y
dj
dt
�My ; �101�

where I is the moment of inertia, Mn is the braking torque
along the angular velocity determined by the expression

Mn �Mx 0 cos y�Mz 0 sin y

� ÿ �h�2� cos2 y�
16pz 3

� �1
ÿ1

doD 00�o�a 00�o��

�
�
coth

�ho
2kBT2

ÿ coth
�ho�
2kBT1

�
; �102�

and M? is the orientation torque lying in one plane with the
vector n and the z axis,

M? �Mz 0 cos yÿMx 0 sin y

� �h sin y cos y
16pz 3

� �1
ÿ1

doD 00�o�a 00�o��

�
�
coth

�ho
2kBT2

ÿ coth
�ho�
2kBT1

�
: �103�

The torque My 0 perpendicular to this plane is given by
formula (97). In the particular cases y � 0;�p=2, formula
(102) coincides with results in [90, 121]. Here, as seen from
(97) and (103), the direction of the angular velocity does not
change with time �My 0 �M? � 0�. Equations (97), (102),
and (103) enable a more detailed analysis of the character and
stability of the rotational motion.

We first note that the signs of the torques Mn and M?,
generally speaking, can be different depending on the sign of
the frequency integral in the right-hand sides of (102) and

(103), which is the same in both cases [122]. If Mn > 0, the
angular velocity can initially increase. However, the rate of
establishing a quasi-equilibrium particle temperature
T1 � T2 (which can be calculated by equating the right-hand
side of (16) to zero) is much higher than the rate of
establishing the dynamic equilibrium [90, 106], and in the
quasistationary state we always have Mn < 0 [122]. As a
result, during most of the time before stopping, the perma-
nent slowing-down regime is realized, in which Mn < 0 and
the sign of M? depends only on the sign of y [see (103)] but
does not change after the quasi-equilibrium temperature of
the particle has been reached.

Next, from (99) and (100) with (102) and (103), we obtain
the general relation between the angular velocity O and the
orientation angle y at an arbitrary time:

O � O0 sin y0 tan2 y0
sin y tan2 y

; �104�

where O0 and y0 are the values of these quantities at t � 0.
Equation (104) implies that y! �p=2 at the particle braking
stage, depending on the sign of y0. Thus, for any initial
conditions �y0 6� 0�, the vector On tends to lie perpendicular
to the surface, but the states with y � �p=2 are reached only
at the full stop and are asymptotically stable. The state with
the rotation axis parallel to the surface �y � 0� is unstable,
and with any arbitrarily small deviation from this state, the
modulus of y would increase.

The change in the azimuthal angle j does not affectO and
y by causing angular momentum precession relative to the
z axis with the rate dj=dt according to formulas (97) and
(101). In the case of a plate without dielectric losses
�e 00�o� � 0�, the precession rate dj=dt is independent of
time, y � y0 � const and O � O0 � const. Such a situation,
however, is typical only for a nonretarded interaction with the
plate. Accounting for retardation (see Section 6.5 and [112])
shows that the spinning particle is decelerated by its rotation
near a transparent plate due to emission.

For T1 � T2 � T, formulas (102) and (103) in the linear
order in the angular velocity take the form

Mn� ÿ �hO�2� cos2 y�
8pz 3

�1
0

doa 00�o�D 00�o�
�
ÿ q
qo

coth
�ho

2kBT

�
;

�105�
M? � �hO sin y cos y

8pz 3

�1
0

doa 00�o�D 00�o�
�
ÿ q
qo

coth
�ho

2kBT

�
:

�106�

Formula (105) is a `rotational analog' of formula (77) for the
friction force acting on a particle moving parallel to the plate
surface. For T1 � T2 � 0, Eqn (102) in turn leads to the
formula for the torque of the quantum friction force during
rotational motion:

Mn � �h�2� cos2 y�
8pz 3

� O

0

doD 00�o�a 00�oÿ O� : �107�

To conclude this section, we emphasize the difference
between the heating components of a rotating particle from
those in translational motion. At equal temperatures T1 � T2

(including the case T1 � T2 � 0), a rotating particle heats as
in translational motion. But its heating rate in the comoving
frame is not given by formula (95): it also includes the rotation
energy dissipation rateÿMnO [in accordance with (16)]. Here,
dQ=dt < 0, but ÿMnO� dQ=dt > 0. By adding ÿMnO and
dQ=dt using (102) and (95) with the O-independent term
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omitted, the frequency dependences in (76) and in the
obtained expression turn out to be identical after the change
o� kxV$ o� O.

5. Translational±rotational motion
and emission of a neutral particle
in a radiative vacuum background

5.1 Tangential force and heating rate
in translational motion
In a simplified form, the problem of particle deceleration in an
equilibrium electromagnetic radiation background was first
discussed by Einstein and Hopf in [2], where they considered
the motion of an oscillator relative to black-body radiation.
In the more general case of nonrelativistic motion of a neutral
particle in thermal equilibriumwith the radiation background
at a temperature T (see Fig. 2), the tangential braking force
was first calculated almost a hundred years later, in [76] (also
see [51]). This force is given by

Fx � ÿ �h 2V

3pc 5kBT

�1
0

doo5a 00�o� sinhÿ2 �ho
2kBT

: �108�

We note that in the considered (nonrelativistic) limit, formula
(108) is valid both in the radiation background frame (the
frame S of configuration 3) and in the rest frame of a particle
moving with velocity V (the frame S 0 of configuration 3). As
shown in [123, 124], Eqn (108) can be rewritten in the form
coincident with the Einstein and Hopf result under some
additional assumptions.

The general relativistic expression for the tangential force
within the FEI theory was first derived in [85, 88] and later
confirmed by other authors [98, 99, 108]. In the notation used
in [85, 88], the corresponding formula has the form

Fx �


Hx�d sp E ind �m sp H ind� � Hx�d ind E sp �m ind H sp��

� ÿ g�h
pc 4

�1
0

doo4

� 1

ÿ1
dx x�1� bx�2

�
n
a 00e
�
go�1� bx��� a 00m

�
go�1� bx��o

�
�
coth

�ho
2kBT2

ÿ coth
g�ho�1� bx�

2kBT1

�
: �109�

The contributions of spontaneous and induced dipole
moments in (109) are represented by terms depending on the
particle temperature T1 (in its proper frame S 0) and the
radiation background temperature T2. When T1 � T2 � T
and b5 1, Eqn (109) reduces to (108). At T1 � T2 � 0, the
tangential force vanishes.

The relativistic calculation of the second important FEI
characteristic in this problem, the heating rate dQ=dt [see (10)
and (27)], leads to the expression [85, 88]

_Q � 
Hx� _d sp E ind� _m sp H ind���
Hx� _d ind E sp� _m ind H sp��
� g�h

pc 3

�1
0

doo4

� 1

ÿ1
dx �1� bx�3

�
n
a 00e
�
go�1� bx��� a 00m

�
go�1� bx��o

�
�
coth

�ho
2kBT2

ÿ coth
g�ho�1� bx�

2kBT1

�
: �110�

With Eqn (8), formula (110) allows analyzing the heating
and the change in the particle temperature T1 in its proper
frame S 0.

Next, by substituting (109) and (110) in (23), we
immediately obtain the relativistic expression for the force
F 0x, also in the frame S 0 [107]:

F 0x �
�h

pc 4

�1
0

doo4

� 1

ÿ1
dx x

ÿ
a 00e �o� � a 00m�o�

�
� coth

�hog�1� bx�
2kBT2

: �111�

It is easy to see that for b5 1, formula (111) transforms into
(108) if T2 � T and a 00m�o� � 0. A significant new point is that
formula (111) relates to the case where the particle is not in
thermal equilibrium with the background. Formula (111) is
important for the subsequent analysis of particle dynamics
described by Eqn (24). In specific calculations of dissipative
forces acting on atoms, the expression for atomic polariz-
ability can also include contributions from radiative correc-
tions [56, 108, 123].

5.2 Thermal emission of a particle
Formulas (109) and (110) can be used to find another
important characteristic of a moving particle, its thermal
radiation power [105]. Substituting these formulas in (13)
gives

I � ÿ 2�hg
pc 3

�1
0

doo4

� 1

ÿ1
dx �1� bx�2a 00�ob�

�
�

1

exp
�
�ho=�kBT2�

�ÿ 1
ÿ 1

exp
�
�hob=�kBT1�

�ÿ 1

�
; �112�

where ob � go�1� bx� and a 00�o� � a 00e �o� � a 00m�o�. The
first term in (112) depending on the temperature T2 of the
radiation background describes the power of absorbed
radiation, and the term depending on the particle
temperature T1 describes the radiation power of the
particle itself. This formula can be applied, like (109)±
(111), under the dipole approximation condition
R5 min

�
2p�hc=�kBT1�; 2p�hc=�kBT2��. The opposite case

corresponding to the geometric optics limit (short-wave
approximation) is considered in Section 6.

As shown in [105], the characteristic time of particle
deceleration tV is much longer than the time of reaching the
quasi-equilibrium temperature tQ (as in the case of rotation
near a surface [90] or in a vacuum [106]). Then, for t > tQ, the
particle emission is determined by the corresponding effective
(quasi-equilibrium) temperature. In particular, for a spherical
conducting particle with the dielectric permeability e�o� �
i4ps0=o (where s0 is the static conductivity), the imaginary
part of the low-frequency dielectric polarizability is a 00e �o� �
3R 3o=�4ps0�, and the quasi-equilibrium temperature of the
particle, which is determined from the condition dQ=dt � 0
[see (6)], is expressed as [105]

T1 � T2

�
1� 2b 2 � b 4=5

�1ÿ b 2�2
�1=6

: �113�

Correspondingly, using (112) and (113) for the emission and
absorption power of the particle, we obtain [105]

I1 � 8p4

21

�hR 3

c 3s0

�
kBT2

�h

�6

g 4
�
1� 2b 2 � b 4

5

�
; �114�

I2 � 8p4

21

�hR 3

c 3s0

�
kBT2

�h

�6

g 2 : �115�
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Equations (114) and (115) suggest that in the quasithermal
equilibriumwith a radiation background, the emission power
of a relativistic particle is about 3g 2 times as high as the
absorption power. We also note that the form of the thermal
emission spectrum of a moving particle [the integrand in
frequency spectrum (112)] essentially depends on its dielectric
properties, and the position of themaximum is determined by
the Lorentz factor g, shifting toward higher frequencies with
increasing g.

5.3 Dynamics and emission of a large black-body particle
The problems discussed in Sections 5.1 and 5.2 are also
relevant to the case of particles (bodies) of a large radius
R4 max �2p�hc=�kBT1�; 2p�hc=�kBT2��, i.e., in the geometric
optics approximation. The simplest but practically very
important model of condensed bodies with a large radius
that enables studying their thermal and radiation properties is
the black-body model. However, interest in the relativistic
dynamics of a black-body particle appeared only after the
discovery of the cosmic microwave background (CMB)
radiation by Penzias and Wilson in 1965. For example,
papers [125±128] discussed the possibility of detection of the
absolute motion of Earth relative to the CMB. For this, the
expression for the tangent force F 0x [similar to formula (111)
for a small particle] acting on a spherical particle with radius
R in its proper frame (the frameS 0 in configuration 3)moving
relative to the CMB center of mass with a velocity bc was
found. The corresponding formula is [125]

F 0x � ÿ
4

3
bg 2�pR 2� 8p

5

15

�kBT2�4
�2p�hc�3 � ÿ

4

3

bg 2

c
aT 4

2 ; �116�

where T2 is the CMB temperature, a � 4pR 2sB, and
sB � p2k 4

B=�60�h 3c 2� is the Stephan±Boltzmann constant. In
addition, the formula for the energy density of equilibrium
electromagnetic radiation in S 0, which is important for
further discussion, was obtained in [125]:

e 0 � 4

c
sBT 4

2 g
2

�
1� b 2

3

�
: �117�

We note that these results can be derived from the expression
for the energy±momentum tensor of an electromagnetic field
in the proper frame S of the radiation background [129]:

Tmn � �p� e� umun ÿ pgmn ; �118�

where p � e=3, e � 4sBT 4
2 =c, um are the 4-velocity compo-

nents, gmn is the metric tensor, and m; n � 0; 1; 2; 3. Lorentz
transformations of Tmn from S to S 0 allow expressing the
quantities F 0x and e 0 in terms of the T 0mn components. Clearly,
formula (116), aswell as (108), does not depend on the particle
temperature, i.e., the proper thermal emission of the particle
does not lead to the appearance of a braking force.

The important fact that general formulas (6), (13), and
(21)±(23) remain valid in this case was first noted in [111]. This
allows us to analyze the dynamics and to find radiation
characteristics of a black-body particle in the CMB frame S
using (116) and (117).

Following [111], we write the expression for the power of
proper thermal emission of a particle with a temperature T1

according to the Stephan±Boltzmann law:

I 01 � sBT 4
1 4pR

2 � aT 4
1 : �119�

On the other hand, with (117), the power of absorbed
background radiation in S 0 is

I 02 �
c

4
e 04pR 2 � aT 4

2 g
2

�
1� b 2

3

�
: �120�

Hence, the thermal heating (cooling) rate of the particle in S 0

is determined by the difference between (120) and (119):

dQ 0

dt 0
� _Q 0 � I 02 ÿ I 01 � aT 4

2 g
2

�
1� b 2

3

�
ÿ aT 4

1 : �121�

Next, using formula (6), we find dQ=dt:

dQ

dt
� aT 4

2

�
1� b 2

3

�
ÿ 1

g 2
aT 4

1 : �122�

The expression for the force Fx, similar to (109) for a dipole
particle, is obtained after substituting (116) and (122) in (23):

Fx � ÿ b
c
a

�
T 4
1 �

1

3
T 4
2

�
: �123�

Finally, substituting (122) and (123) in (13), we arrive at a
quite unexpected result:

I � I1 ÿ I2 � a�T 4
1 ÿ T 4

2 � : �124�

Formula (124) formally coincides with a similar expression
for a particle at rest relative to the background, but is
significantly different from formula (112) for the emission
power of a small particle [see, in particular, (114) and (115)],
in which contributions from I1 and I2 to I are highly
dependent on the g factor. Formulas (123) and (122) share
similar features (partial or complete absence of the g factor),
unlike (109) and (110).

The apparent paradoxicality of (124) is somewhat relaxed
if we recall that a `large' particle can also reach the state of
quasithermal equilibrium with the radiation background.
The corresponding temperature can be found from (122) by
setting dQ=dt � 0 [cf. (113)]:

Ts � T2g 1=2
�
1� b 2

3

�1=4

: �125�

Substituting Ts instead of T1 in (124), we obtain

I � aT 4
2

�
g 2
�
1� b 2

3

�
ÿ 1

�
: �126�

The characteristic time of establishing the quasithermal
equilibrium tQ and the deceleration time tV are [111]

tQ � CsrR
3sBT 3

2

; tV � rRc 2

8sBT 4
2

; �127�

where r is the particle mass density. For example, for an ice
H2Oparticlewith radiusR � 1 cmanddensityr � 0:9g cmÿ3,
for the background temperature T2 � 50 K, we find
tV � 1010 years from (127). On the other hand, tQ=tV �
8CsT2=�3c 2� � 10ÿ10ÿ10ÿ14 for the typical values Cs �
10ÿ103 J kgÿ1 Kÿ1 and T2 � 10ÿ103 K. Thus, as in the
case of a small radius, the processes of establishing thermal
and dynamic equilibrium can be treated independently: with a
fixed velocity (in the first case) or a fixed temperature (in the
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second case). Detailed time dependences of the temperature
and velocity can be found from Eqns (24), (116), and (121).
The above results can be easily extended to the case of a `gray'
particle with given absorption aa �0 < aa < 1� and emission ar
�0 < ar < 1� coefficients.

5.4 Translational±rotational motion of a particle
The translational±rotational motion of a dipole particle in a
vacuumwas considered in [106, 109]. The tangential force, the
heating rate, and the torque are calculated in the standard
way using the general formulas (26)±(28). It is assumed that
the proper (Cartesian) reference frame of the particle S 00

moves with a velocity V along the x axis of the vacuum
reference frame S and rotates with an angular velocity O
relative to the comoving fame S 0, which also moves with the
velocity V along the x axis of the S frame (this is different
from the assumptions on reference frames in Sections 5.1
and 5.2). In view of the obvious azimuthal symmetry of all
quantities relative to the vector V direction, we can con-
veniently choose the axes �x 0; y 0; z 0� of the frame S 0 such that
the particle angular velocity vectorOn lies in the �x 0; z 0� plane
(see Fig. 3). In such frames, FDRs (34)±(39) remain valid, and
induced dipole moments of the particle can be calculated
using formulas (B1)±(B6) with the electric and magnetic field
vectors transformed from the frame S into S 0. The FDRs for
vacuum electric and magnetic fields are expressed as in (53)±
(55). The final expressions for Fx, dQ=dt, Mx, and Mz have
the form [106, 109]

Fx � ÿ �hg
4pc 4

� �1
ÿ1

doo4

�
� 1

ÿ1
dx x

�
a 00�ob� f1�x; b; y�

�
coth

�ho
2kBT2

ÿ coth
�hob

2kBT1

�
� a 00�o�b � f2�x; b; y�

�
coth

�ho
2kBT2

ÿ coth
�ho�b
2kBT1

��
; �128�

dQ

dt
� �hg

4pc 3

� �1
ÿ1

doo4

� 1

ÿ1
dx �1� bx�

�
�
a 00�ob� f1�x; b; y�

�
coth

�ho
2kBT2

ÿ coth
�hob

2kBT1

�
� a 00�o�b � f2�x; b; y�

�
coth

�ho
2kBT2

ÿ coth
�ho�b
2kBT1

��
; �129�

Mx � ÿ �hg cos y
4pc 3

� �1
ÿ1

doo3

�
� 1

ÿ1
dx a 00�o�b �

��1� x 2��1� b 2� � 4bx
�

�
�
coth

�ho
2kBT2

ÿ coth
�ho�b
2kBT1

�
; �130�

Mz � ÿ �h sin y
8pc 3

� �1
ÿ1

doo3

� 1

ÿ1
dx a 00�o�b ��3ÿ x 2 � 2bx�

�
�
coth

�ho
2kBT2

ÿ coth
�ho�b
2kBT1

�
; �131�

whereob � go�1� bx�,o�b � go�1� bx� � O, and auxiliary
functions fi�x; b; y� �i � 1; 2� are given as

f1�x; b; y� � �1ÿ b 2��1ÿ x 2� cos2 y

� ��1� b 2��1� x 2� � 4bx
� sin2 y

2
; �132�

f2�x; b; y� � �1ÿ b 2��1ÿ x 2� sin2 y

� ��1� b 2��1� x 2� � 4bx
� 1� cos2 y

2
: �133�

In these formulas, a 00�o� � a 00e �o� � a 00m�o�, as in (112). The
presence or absence of the precession torque My in this case
requires an additional study, but, as we show in what follows,
this does not affect the particle dynamics considered below.

Substituting (128) and (129) in (13) yields the general
formula for the particle emission and absorption power
balance [109]:

I � I1�T1� ÿ I2�T2� � �hg
4pc 3

� �1
ÿ1

doo4

�
� 1

ÿ1
dx

�
a 00�ob� f1�x; b; y�

�
coth

�hob

2kBT1
ÿ coth

�ho
2kBT2

�
� a 00�o�b � f2�x; b; y�

�
coth

�ho�b
2kBT1

ÿ coth
�ho

2kBT2

��
; �134�

where the terms I1�T1� and I2�T2� depending on the
temperatures T1 and T2 respectively describe the power of
emitted and absorbed electromagnetic radiation. For O � 0,
formula (134) reduces to (112), and for V � 0, to the results
in [31, 32]. Insofar as the frequency O is sufficiently low
compared to the frequencies kBT1; 2=�h or to the resonance
absorption frequencies of the particle, the rotational effects
on the thermal radiation spectrum are insignificant, and the
results in Section 5.2 can be used. The opposite case is
considered in [130]; however, the qualitative character of
thermal radiation persists in this case. In particular, as in the
case of no rotation, the particle can reach a quasi-equilibrium
state with some effective temperature, albeit dependent on
both the g factor and O.

A qualitatively different situation arises at T1 � T2 � 0,
because a particle rotating in a vacuum can generate non-
thermal radiation. The appearance of excessive electromagnetic
radiation (`superradiation') from a rotating cylinder, scattering
incident photons, was first noted by Zel'dovich [131]. In the
context of this review, the problem of nonthermal radiation
from spinning particles was discussed in [33, 132]. A more
general problem of radiation from a spinning particle in
relativistic translationalmotionwas discussed in [106, 109, 130].

The general expression for the power (intensity) of
nonthermal radiation emerging during the translational±
rotational motion of a dipole particle with an arbitrary
misalignment between the linear and angular velocity
vectors follows from (134) in the limit T1 ! 0, T2 ! 0. The
terms with the temperature T2 (which are responsible for
absorption) then vanish, and the resulting formula takes the
form [109]

I �0� � I1�0� � �hg
2pc 3

� 1

ÿ1
dx f2�x; b; y�

�
� Ogÿ1�1�bx�ÿ1

0

doo4a 00
ÿ
Oÿ go�1� bx�� : �135�

After integrating (135) over x using (133), we obtain

I �0� � 4�h

3pc 3

� O

0

dx x 4a 00�Oÿ x� : �136�

Formula (136) coincides with the results obtained in [132]
(ignoring the magnetic polarization), where the translational
motion of the particle was not taken into account, however.
But we note that as follows from (135) and (136), while the
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integral radiation power does not depend on the g factor, the
angular spectral intensity distribution is essentially dependent
on it and on the mutual orientation of the linear and angular
velocity vectors.

Making the substitution y! y0 in (135) (to emphasize the
difference from the photon emission angle y relative to the
velocity V) and taking into account that x � ÿ cos y, we have
the angular spectral emission power per unit solid angle
d~O � 2p sin y dy:

d2I

do d~O
� g�ho4

4p2c 3
Y
ÿ
Oÿ go�1ÿ b cos y��

� a 00
ÿ
Oÿ go�1ÿ b cos y����1ÿ b 2��1ÿ cos2 y� sin2 y0

� ��1� b 2��1� cos2 y� ÿ 4b cos y
� 1� cos2 y0

2

�
; �137�

where Y�x� is the Heaviside step function.
Equation (137) implies that the nonthermal radiation is

generated in the frequency range

0 < o <
O

��������������
1ÿ b 2

q
1ÿ b cos y

;

and the maximum frequency omax � O
���������������������������������1� b�=�1ÿ b�p

is
emitted along the particle motion, y � 0. In the opposite
direction, the radiation frequency is omin�O

������������������������������1ÿb�=�1�b�p
.

For b5 1, the angular spectral intensity does not depend on
the linear velocity and takes the simplest form

d2I

do d~O
� �ho4

4p2c 3
Y�Oÿ o�a 00�Oÿ o�

�
�
sin2 y sin2 y0 � �1� cos2 y� 1� cos2 y0

2

�
: �138�

Generally, as seen from (137) and (138), the spectral shape is
determined by the particle dielectric properties.

The dynamics of translational and rotational motion in
the case T1 ! 0, T2 ! 0 can easily be analyzed using
Eqns (128)±(131). After making the corresponding limit
transitions and integrating over x, we obtain

F �0�x � ÿ 4�hV

3pc 5

� O

0

dx x 4a 00�Oÿ x� ; �139�

dQ

dt
� ÿ 4�h

3pc 3g 2

� O

0

dx x 4a 00�Oÿ x� ; �140�

Mx � ÿ 4�h cos y
3pc 3g

� O

0

dx x 3a 00�Oÿ x� ; �141�

Mz � ÿ 4�h sin y
3pc 3

� O

0

dx x 3a 00�Oÿ x� : �142�

Substituting (139) and (140) in Eqn (23) yields F 0x � 0, and
hence there is no dissipative force in the proper reference
frame of the particle. Correspondingly, it follows from
translational motion equation (24) that the particle velocity
is constant: b � const. We also note that the important
relation F

�0�
x � ÿ�b=c�I �0� follows from the general formula

(13) using Eqns (136), (139), and (140).
We next note that Eqns (99) and (100) of the rotational

dynamics in this case hold in the comoving reference frameS 0

if the projections of the torques in the right-hand side of these
equations are also expressed in S 0. Using (141) and (142) and

taking into account that M 0
x � gMx and M 0

z �Mz and that
the projectionsM 0

n andM
0
? are related toM

0
x andM

0
z asM

0
n �

M 0
x cos y�M 0

z sin y andM 0
? � ÿM 0

x sin y�M 0
z cos y, we find

M 0
n � ÿ

4�h

3pc 3

� O

0

dx x 3
�
a 00e �Oÿ x� � a 00m�Oÿ x�� ; �143�

M 0
? � 0 :

The first equation in (143) substituted in (99) determines the
dynamics of particle rotation deceleration, and the equation
M 0
? � 0 [in view of (100)] implies that y � const. Therefore,

the angle y between the linear and angular velocity vectors
remains constant in time.

To analyze the particle heating kinetics, we use Eqn (16).
Assuming that the particle is characterized by the heat
capacity C0�T1�, we write the left-hand side of (16) in the
form dQ 00=dt � d�C0T1�=dt and substitute (140)±(142) in the
right-hand side of this equation. As a result, we obtain

d�C0T1�
dt

� 4�h

3pc 3g

� O

0

dx x 3�Oÿ x�a 00�Oÿ x� : �144�

According to (144), the particle temperature must increase
with time. A thermal component then emerges in the
radiation spectrum, and the analysis of particle dynamics
and radiation should be performed using general equations
(128)±(131) and (134).

6. Relativistic fluctuation-electromagnetic
interaction between a small particle and a plate

6.1 General results
As in the case of the nonrelativistic friction force arising in the
motion of a small particle in the near field of a surface (see
Fig. 1, configuration 2), there was no initial consensus among
different authors as to the solution of the relativistic problem
[48, 49, 66±70, 80]. The situation became more clear after
papers [74, 81, 82, 86] and later [98, 99]. The authors of [99], in
particular, using a covariant formulation of fluctuation
electrodynamics, calculated the dissipative force Fx, com-
pared it with our results [86], and showed their identity. It was
shown in [74] that the contribution from the near-field modes
to the relativistic expressions for tangent and normal forces
can be obtained by the limit transition to a rarefied medium
for the material of one of the plates from the corresponding
expression for the friction force between two plates in
configuration 1. The inverse transition is also possible [15,
87] (see Section 7).

The force projections Fx and Fz, as well as the rate dQ=dt,
can be calculated using the general method presented in
Sections 2 and 3. In detailed form, including contributions
from the near and radiation modes of the electromagnetic
field, the results are presented in [14, 15, 81, 86]. In a more
compact form, the resulting expressions can be represented
as [15, 87]

Fx � ÿ �hg
2p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky

�
�
a 00e �go�� Im

�
exp �ÿ2q0z�

q0
Re�o;k�

�
� �e$ m�

�
�
�
coth

�ho
2kBT2

ÿ coth
g�ho�

2kBT1

�
; �145�
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Fz � ÿ �hg
2p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky

�
�
a 00e �go��Re

�
exp �ÿ2q0z�Re�o; k�

�
coth

g�ho�

2kBT1

� a 0e�go�� Im
�
exp �ÿ2q0z�Re�o;k�

�
coth

�ho
2kBT2

� �e$ m�
�
;

�146�
dQ

dt
� �hg

2p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky o�

�
�
a 00e �go�� Im

�
exp �ÿ2q0z�

q0
Re�o;k�

�
� �e$ m�

�

�
�
coth

�ho
2kBT2

ÿ coth
g�ho�

2kBT1

�
; �147�

where o� � o� kxV, and the term shown symbolically as
�e$ m� is identical to the preceding onewith the correspond-
ing change in the polarizabilities and functions Re�o; k�. The
auxiliary relations are

Re�o; k� � De�o�
�
2�k 2 ÿ k 2

xb
2�
�
1ÿ o2

k 2c 2

�
�
�
o�

c

�2�
� Dm�o�

�
2k 2

y b
2

�
1ÿ o2

k 2c 2

�
�
�
o�

c

�2�
; �148�

Rm�o; k� � Dm�o�
�
2�k 2 ÿ k 2

xb
2�
�
1ÿ o2

k 2c 2

�
�
�
o�

c

�2�
� De�o�

�
2k 2

y b
2

�
1ÿ o2

k 2c 2

�
�
�
o�

c

�2�
; �149�

De�o� � q0e�o� ÿ q

q0e�o� � q
; Dm�o� � q0 m�o� ÿ q

q0 m�o� � q
;

q �
�
k 2 ÿ o2

c 2
e�o� m�o�

�1=2

; q0 �
�
k 2 ÿ o2

c 2

�1=2

; �150�

k 2 � k 2
x � k 2

y :

It is important to note that in deriving formulas (145)±(147),
we assumed the plate to be in thermal equilibrium with the
vacuum background (at the temperature T2); however, in
formula (145) for the tangent force and (147) for the heat
exchange rate, the terms related to the particle interaction
with the vacuum background are omitted. These terms are
described by formulas (109) and (110). In the limit c!1, as
can be easily seen, formulas (145)±(147) reduce to (74)±(76).

6.2 Equilibrium and nonequilibrium Casimir±Polder forces
for a particle at rest
For V � 0 and T1 � T2 � 0, formula (146) describes the
`cold' Casimir±Polder force. After the standard rotation of
the frequency integration contour to the imaginary axis, this
force takes the form [14, 15, 133]

Fz � ÿ �h

p

�1
0

dx
�1
0

dk k exp

 
ÿ2

����������������
k 2 � x 2

c 2

s
z

!
� ÿRe�ix; k�ae�ix� � Rm�ix; k�am�ix�

�
; �151�

Re�ix; k� �
�
2k 2 � x 2

c 2

�
De�ix� ÿ x 2

c 2
Dm�ix� ; �152�

Rm�ix; k� �
�
2k 2 � x 2

c 2

�
Dm�ix� ÿ x 2

c 2
De�ix� : �153�

For an ideally conducting particle and plate, as x! 0, we
have e�ix� ! 1, De�ix�! 1, Dm�ix� ! ÿ1, ae�ix� ! R 3, and
am�ix� ! ÿR 3=2, and Eqn (151) implies that

Fz � ÿ 9

4p
�hcR 3

z 5
: �154�

The correct numerical coefficient in (154), which is consistent
with the quantum electrodynamic calculation in [134], can be
obtained only with the magnetic polarization taken into
account. In the original paper by Casimir and Polder [4], the
magnetic polarization of the particle was ignored, and the
numerical coefficient was 1.5 times as small.

For T1 � T2 � T and V � 0, proceeding in the same way
as in transforming formula (75), after passing to the
integration over imaginary frequency, formula (146) can be
rewritten in the form [14, 15]

Fz � ÿ2kBT
X1
n�0

an

�1
0

dk k
�
Re�ixn; k�ae�ixn�

� Rm�ixn; k�am�ixn�
�
exp

 
ÿ2

����������������
k 2 � x 2

n

c 2

s
z

!
; �155�

where an � 1ÿ d0n=2 and xn � 2pkBTn=�h. In (155), it is
interesting to separate the thermal contribution to the
Casimir±Polder force for the ideally conducting particle and
the surface. The corresponding expressions are [14, 15]

Fz�T � � ÿ 3

8
kBT

R 3

z 4
j�x� ; x � 2pkBz

�hc
; �156�

j�x� � ÿ3x� 3x coth2 x� 3 coth xÿ 3x 2 cothx

� 3x 2 coth3 xÿ 12

x
� x 3 ÿ 4x 3 coth2 x� 3x 3 coth4 x :

�157�
The `cold' part of the force can be found from (154). The
`thermal' force (156) prevails over the cold force (154) for
x > 8 (this corresponds to distances z > 8 mm at T � 300 K).
In the high-temperature limit or for large distances between
the particle and the surface, when x4 1 and j�x� ! 3,
formula (156) gives

Fz�T � � ÿ 9

8
kBT

R 3

z 4
: �158�

With the magnetic polarizability of the particle ignored, the
numerical coefficient in (158), as in (154), turns out to be
1.5 times smaller.

For a cold particle �T1 � 0� and a heated plate in thermal
equilibriumwith the vacuumbackground �T2 � T3 � T �, the
resulting force Fz differs from (155) by the additional
contribution [14, 15]

DFz � 2�h

p

�1
0

doP�o;T �a 00e �o�

�Re

��1
0

dk k exp �ÿ2q0z�Re�o; k�
�

� fa 00e ! a 00m;Re ! Rmg ; �159�
where P�o;T � � 1=fexp ��ho=�kBT �� ÿ 1g, and the last term
in the right-hand side (symbolically represented by the
expression in curly brackets) is identical to the main term
with the corresponding changes. For an atom in the ground
state, correction (159) is small compared to (155), but for
particles with noticeable absorption at thermal frequencies, it
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can be substantial (in addition, it has a repulsive character).
We here have a thermally nonequilibrium system.

Another type of thermal nonequilibrium was considered
in [97, 135±140], where the attraction force Fz between a cold
neutral particle or an atom in the ground state �T1 � 0� and a
heated plate �T2 � TS� was calculated assuming the sur-
rounding background with either a zero temperature
�T3 � 0� or a temperature T3 � TE different from TS. It is
important to note that the contributions from the near field
modes of the surface (with two-dimensional wave vectors
k > o=c) to Fz are independent of the vacuum background
temperature. The nonequilibrium forceF neq�TS;TE� can then
be represented in the form [15] (see also [136])

F neq�TS;TE� � F eq�TS� � F rad
th �TE� ÿ F rad

th �TS� ; �160�

where F eq�TS� is the equilibrium force defined by formula
(155) atT � TS, and F

rad
th �TE� and F rad

th �TS� are contributions
from radiation modes to the thermal part of the equilibrium
force Fz (at the respective temperatures TE and TS),
determined by the difference between (155) and (151). The
expression for F rad

th �T � is [140]
F rad
th �T � � ÿ

2�h

p

�1
0

doa 0e�o�P�o;T �

�
� o=c

0

dk k Im
�
Re exp �ÿ2q0z�

�� fa 0e ! a 0m;Re ! Rmg:
�161�

Formulas (160) and (161) are equivalent to expressions for the
nonequilibrium force given in [136±139].

We note that in the case of unequal surface and vacuum
background temperatures, the radiationmodes are emitted or
absorbed by the plate (the Poynting vector on the plate
surface is nonzero). Formula (160) disregards these effects.
The corresponding `wind' force is repulsive, does not depend
on the distance to the plate, and increases as the plate
temperature increases [15]. Calculations show that for 87Rb
neutral atoms over a diamond plate with the temperature
TS � 300 K and a zero vacuum background temperature
TE � 0, the wind force increases the attraction force toward
the plate, Eqn (160), at distances larger than 8 mm [15].

6.3 Casimir±Polder force for a moving particle
In the absence of dynamic equilibrium, but under the
condition T1 � T2 � 0, the Casimir±Polder force acting on a
moving particle is found from (146) by taking the limit
transition T1 ! 0, T2 ! 0:

lim
T1!0

coth
�hg�o� kxV�

2kBT1
� sign �o� kxV� ;

�162�
lim
T2!0

coth
�ho

2kBT2
� signo ;

and, after substituting these relations in (146), we obtain [89]

Fz � F �0�z � F �1�z ; �163�

F �0�z � ÿ �hg
2p2

� �1
ÿ1

dkx

� �1
ÿ1

dky

� Im

(�1
0

dx exp

 
ÿ2

����������������
k 2 � x 2

c 2

s
z0

!
a
ÿ
g�ix� kxV�

�
�
�
iR �1�e �ix; k� ÿ 2bkx

x
c

ÿ
De�ix� � Dm�ix�

��)
; �164�

F �1�z � 2�hg
p2

�1
0

dkx

�1
0

dky

� kxV

0

doa 00
ÿ
g�oÿ kxV�

�
�Re

(
exp

 
ÿ2

�����������������
k 2 ÿ o2

c 2

r
z0

!

�
�
R �1�e �o; k� ÿ 2bkx

o
c

ÿ
De�o� � Dm�o�

��)
; �165�

R �1�e �ix; k� � De�ix�
�
2k 2 � x 2

c 2

�
� Dm�ix�

�
2b 2

�
k 2 � x 2

c 2

�
ÿ x 2

c 2

�
ÿ b 2

ÿ
De�ix� � Dm�ix�

��
k 2 � 2x 2

c 2

�
cos2 y ; �166�

R �1�e �o; k� �
�
o2

c 2
� k 2b 2 cos2 y

�ÿ
De�o� � Dm�o�

�
� 2

�
k 2 ÿ o2

c 2

���1ÿ b 2 cos2 y�De�o� � Dm�o�b 2 sin2 y
�
;

�167�

where cos y � kx=k, b � V=c, and g � �1ÿ b 2�ÿ1=2.
In the nonrelativistic limit c!1, Eqns (163)±(165) imply

Fz � ÿ �h

p2

� �1
ÿ1

dkx

��1
ÿ1

dky k
2 exp �ÿ2kz0�

� Im

�
i

�1
0

dxD�ix�a�ix� kxV�
�

� 4�h

p2

�1
0

dkx

�1
0

dky k
2 exp �ÿ2kz0�

� kxV

0

doD 0�o�a 00�oÿ kxV�:
�168�

Formula (81) [119] can be derived from (168) taking the
relation Fz � ÿqU�z;V�=qz between the force Fz and the
potential energy of the particle±plate system into account. In
the case of an ideally conducting plate �De�o�!1 and
Dm�o�! ÿ1� and atomic polarizability (82), it follows from
(164) and (165) that [89]

F �0�z

'

�ho0a�0�
8pz 40

�1
0

dx
x 4����������������

l2 � x 2
p d3K0�x�

dx 3

�
1ÿ �x

2 � 2l2�b 2

2�l2 � x 2�

�
;

b5 1 ;

�hca�0�
16pz 50 g

� l

0

dx x 4 d3K0�x�
dx 3

�
1ÿ x 2

2l20

�
; g4 1 ;

8>>>>><>>>>>:
�169�

F �1�z � �ho0a�0�
8pz 40 g

�1
l=b

dx
x 4����������������

l20 � x 2

q d3K0�x�
dx 3

; �170�

where l � 2o0z0=�gc� � l0=g and K0�x� is the Macdonald
function. Several important asymptotic forms for the force Fz

can be obtained from (169) and (170), depending on the
parameters l0, b, and g. In particular, for b5 1 and
z0 4V=�2o0�, we find the following asymptotic form from
(169) and (170) [89, 91]:

Fz � F �0�z � F �1�z � ÿ 3

2p
�hca�0�
z 50

�
1ÿ b 2

2

�
: �171�

Therefore, the first relativistic correction to the static
Casimir±Polder force has a repulsive character. In [89],
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numerical calculations of the force Fz for a metal plate with
the Drude dielectric permittivity were carried out.

6.4 Cherenkov friction and radiation
from a relativistic particle
In configuration 2 atT1 � T2 � 0 and b! 1, the fluctuation-
electromagnetic interaction of the particle with a transparent
medium with a refractive index n can be accompanied by
electromagnetic emission for b > 1=n, which is analogous to
the Vavilov±Cherenkov effect [34]. Here, the frequency of
photons emitted inside the Cherenkov cone satisfies the
anomalous Doppler effect condition o 0 < 0 (where o 0 is the
photon frequency in the particle rest frame). The correspond-
ing process has been called `Cherenkov friction' [34, 100, 110,
132]. It is well known [141, 142] that in the anomalous
Doppler effect for a particle with internal degrees of freedom
moving with a velocity V > c=n, the emission of photons is
attended by its excitation. The necessary energy is drawn from
the particle kinetic energy.

In the considered case of a transparent dielectric plate, the
wave surface surrounding the particle can go inside the plate
(Fig. 6a), and therefore all considerations made in deriving
formula (13) for the emission power remain valid. The
quantities Fx and dQ=dt can be found from (145) and (147)
by taking limit transition (162). After performing some
algebra, we obtain [143]

Fx � 2�hg
p2

�1
0

doy�nbÿ 1�
� no=c

o=V
dkx kx

�
� �������������������

n 2o2=c 2ÿk 2
x

p

0

dky
X
i�e;m

a 00i �goÿ� Im
�
exp �ÿ2q0z0�

q0
Ri�o;ÿkx�

�
;

�172�

_Q � 2�hg
p2

�1
0

doy�nbÿ 1�
� no=c

o=V
dkx

� �������������������
n 2o2=c 2ÿk 2

x

p

0

dky oÿ

�
X
i�e;m

a 00i �goÿ� Im
�
exp �ÿ2q0z0�

q0
Ri�o;ÿkx�

�
; �173�

where Ri�o;ÿkx� is identical to Re;m�o; k� in (148) and (149)
for k � �ÿkx; ky�, and oÿ � oÿ kxV, and y�x� is the unit
Heaviside function. In addition, by taking into account that
for a transparent dielectric e�o� � n 2, Im e�o� � 0, and
m�o� � 1, the functions De�o� and Dm�o� in (150) can be
represented in the form

De�o� � n 2
������������������������
k 2 ÿ o2=c 2

p ÿ �����������������������������
k 2 ÿ n 2o2=c 2

p
n 2

������������������������
k 2 ÿ o2=c 2

p
�

�����������������������������
k 2 ÿ n 2o2=c 2

p ;
�174�

Dm�o� �
������������������������
k 2 ÿ o2=c 2

p
ÿ

�����������������������������
k 2 ÿ n 2o2=c 2

p������������������������
k 2 ÿ o2=c 2

p � �����������������������������
k 2 ÿ n 2o2=c 2

p :

Substituting (172) and (173) in (13) yields

I � ÿ 2�hg
p2

�1
0

doy�nbÿ 1�

�
� no=c

o=V
dkx

� �������������������
n 2o2=c 2ÿk 2

x

p

0

dky o
X
i�e;m

a 00i �goÿ�

� Im

�
exp �ÿ2q0z0�

q0
Ri�o;ÿkx�

�
: �175�

Formula (175) coincides with similar results in [100, 110], with
the difference that the magnetic polarizability of the particle
a 00m�o� is also taken into account in (175).

The integration limits in (175) agree with the anomalous
Doppler effect conditions in the particle rest frame S 0,
because the photon frequency o 0 � g�oÿ kxV� is negative
in S 0. Because of the analytic properties of a 00e;m�o� and
exp �ÿ2q0z0�=q0 and the positive definiteness of De;m�o�
within the corresponding integration limits, Eqns (172)±
(175) imply that Fx < 0, _Q > 0, and I > 0. Here, all three
quantities are related by condition (13). This means that the
Cherenkov friction leads to a partial conversion of the
particle kinetic energy into radiation. The positive sign of _Q
is consistent with the concept of excitation of internal degrees
of freedom in the anomalous Doppler effect. Here, the energy
absorption rate by the particle in S 0 and dQ 0=dt 0 is obtained
from formula (6). For a multi-atom particle or an atom, as
above, dQ 0=dt 0 can be respectively associated with the
heating rate and the inner atomic transition rate.

As stated in [34, 100, 132], a quantum vacuum instability
occurs in the considered system, which is similar to the
creation of electron±positron pairs in a strong electric field
or to the Hawking radiation in a strong gravitational field.
Zel'dovich's `superradiation' from a rotating cylinder has the
same nature [131]. We must note an important difference
between formulas (175) and (136), however: the emission
from a spinning particle does not have a lower angular
velocity threshold, whereas radiation in the rectilinear
motion does have a lower velocity threshold.
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ÿy
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Figure 6. (a) Schematics of particle motion near a transparent dielectric

under Cherenkov friction. (b) Schematics of the rotational motion and

radiation of a particle near the transparent dielectric surface.
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To conclude this section, we present a formula for the
radiation force F 0x in the particle rest frame S 0, which is
needed in solving dynamic equations (24). Substituting (172)
and (173) in (23), we obtain [143] (see also [110])

F 0x �
2�hg 2

p2

�1
0

doy�nbÿ 1�
� no=c

o=V
dkx

�
kx ÿ bo

c

�
�
� �������������������

n 2o2=c 2ÿk 2
x

p

0

dky
X
i�e;m

a 00i �goÿ�

� Im

�
exp �ÿ2q0z0�

q0
Ri�o;ÿkx�

�
: �176�

Formula (176) implies that F 0x < 0, i.e., the particle should be
decelerating. In [100, 110], the radiation forces and radiation
powers for model polarizabilities of atoms and dielectric
particles were calculated numerically. We note, however,
that the experimental detection of radiation in this situation
is very difficult due to two factors: (1) the need to have an
electrically neutral relativistic particle, and (2) the short fly-by
time of the particle over an extended plate with an atomically
smooth surface.

6.5 Radiation from a particle rotating
near a transparent dielectric plate
As shown in Section 4.2, the angular velocity vector of a
dipole particle rotating in the near field of a plate tends to
become normal to its surface. Therefore, to facilitate the
analysis, we consider just this configuration below. As in
Section 6.4, we consider a dielectric plate. To calculate the
emission power, we use Eqn (13) again with a zero transla-
tional velocity (Fig. 6b). In this case, the heating rate dQ=dt
cannot be calculated using formula (95), but the retardation
effects should be taken into account. In agreement with the
results in [144], we obtain

dQ

dt
� �h

4p2

� �1
ÿ1

doo
��

d2k
X
s�e;m

a 00s �o��

� Im

�
exp �ÿ2q0z0�

q0
Rs�o; k�

���
coth

�ho
2kBT2

ÿ coth
�ho�
2kBT1

�
� �h

4p2

� �1
ÿ1

doo
��

d2k
X
s�e;m

a 00s �o�

� Im

�
exp �ÿ2q0z0�

q0
k 2Ds�o�

���
coth

�ho
2kBT2

ÿ coth
�ho

2kBT1

�
;

�177�

Re�o; k� �
�
k 2 ÿ o2

c 2

�
De � o2

c 2
Dm ;

�178�
Rm�o; k� �

�
k 2 ÿ o2

c 2

�
Dm � o2

c 2
De ;

De � n 2q0 ÿ q

n 2q0 � q
; Dm � q0 ÿ q

q0 � q
;

�179�

q0 �
�����������������
k 2 ÿ o2

c 2

r
; q �

����������������������
k 2 ÿ n 2o2

c 2

r
; o� � o� O :

It is easy to see that for O � 0, formula (177) coincides with
(147) for V � 0. In this particular case, Eqn (177) describes
the thermally nonequilibrium situation of heat exchange
between a particle at rest and the plate. On the other hand,
in the nonrelativistic limit c!1, Eqn (177) reduces to (95)
(for y � p=2).

Of the greatest interest is nonthermal emission from a
spinning particle. Making the limit transition T1 � T2 � 0 in
(177) using (162) and taking into account that I � ÿdQ=dt
due to (13), we obtain [112]

I � ÿ �h

p

� O

0

doo
� on=c

0

dk k
X
s�e;m

a 00s �Oÿ o�

� Im

�
exp �ÿ2q0z0�

q0
Rs

�
: �180�

The corresponding formula for the braking torque in this case
is [112]

Mz � 2�h

p

� O

0

do
� on=c

0

dk k
X
s�e;m

a 00s �Oÿ o�

� Im

�
exp �ÿ2q0z0�

q0
Rs

�
: �181�

Formulas more convenient for analysis can be derived from
these expressions by taking (178) and (179) into account:

I � ÿ �h

pc 3

� O

0

doo4
X
s�e;m

a 00s �Oÿ o�cs

�
n;

oz0
c

�
; �182�

Mz � 2�h

pc 3

� O

0

doo3
X
s�e;m

a 00s �Oÿ o�cs

�
n;

oz0
c

�
; �183�
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�������������
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���������������
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���������������
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p
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������������
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���������������
t 2ÿ n 2
p
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:

�185�

Comparing formulas (136) and (142) for the radiation
intensity from a particle spinning in a vacuum and the torque
acting on it with formulas (182) and (183) reveals that the
presence of the plate increases these quantities by numerical
factors depending on the refractive index and distance.
Calculations [112] show that the functions ce;m�n; x� are
negative and rapidly increase (by modulus) as n increases,
whichmeans that the transparent dielectric plate enhances the
nonthermal emission. Here, a much stronger emission is
expected from metal particles with high magnetic polariz-
ability because jcm�n; x�j4 jce�n; x�j, n4 1. The dependence
on the distance is determined by the retardation factorOz0n=c
and turns out to be insignificant for Oz0n=c < 1.

Formulas (182) and (183) also imply thatÿMzO > I. The
energy balance equation according to (15) (for g � 1) has the
form ÿMzO � I� dQ 00=dt, where dQ 00=dt is the particle
heating rate, which suggests that part of the kinetic energy is
expended for thermal excitation of the particle, as in the case
of Cherenkov friction, and hence the state T1 � 0 is unstable.
The radiation spectrum, similarly to the particle radiation
spectrum in a vacuum, is determined by dielectric character-
istics of the particle and has no lower angular velocity
(frequency) threshold. This creates more favorable condi-
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tions for the experimental detection of nonthermal radiation
from spinning particles (see Section 8.4).

7. Fluctuation-electromagnetic interaction
in the plate±plate configuration

7.1 Modification of the rarefied medium limit
for transitions between particle±plate
and plate±plate configurations
The limit transition from the two-plate configuration to the
small-particle±plate configuration (transition 1! 2) in the
static case was already found by Lifshitz [5]. Since then, this
transition has been used in the original form to calculate FEI
effects in configuration 2 in both equilibrium and non-
equilibrium conditions [10, 11, 56, 72].

As shown in [87], based on the fact that all quantities
characterizing the FEI in both configurations �Fx, Fz, and _Q�
should be derived from the solution of one electrodynamic
problem (in proper configurations), it can be asserted that
any relation between them in one configuration also holds in
other configurations. This enables formulas for configura-
tion 1 to be uniquely obtained from the corresponding
formulas for configuration 2, but only in the nonrelativistic
approximation. Unfortunately, the use of the `correspon-
dence principle' in the relativistic case does not lead to unique
results.

The rule for calculating the Casimir±Polder force F �2�z �z�
acting on a small particle (atom) located at a distance z from
the plate is [23, 145, 146]

F �2�z �z� � ÿ
1

n1S

dF �1�z �l �
dl

����
l�z
: �186�

Here, indices 1 and 2 relate to the corresponding configura-
tions, and F �1�z �l �=S is the Casimir force in configuration 1
related to the area S of the vacuum interface between the
plates separated by a gap of width l. The relation between the
tangent forces F

�1; 2�
x and the heating rates dQ �1; 2�=dt in

configurations 1 and 2 are expressed in a form similar to (186):

F �2�x �z� � ÿ
1

n1S

dF
�1�
x �l �
dl

����
l�z
;

�187�
dQ �2��z�

dt
� ÿ 1

n1S

d _Q �1��l �
dl

����
l�z
:

Formulas (186) and (187) should be complemented by
relations between the reflection amplitude De;m and polariz-
abilities ae;m of the particle corresponding to a rarefied
material of the plate [87],

D1e�o� ! pn1
q 2
0

�
ae�o�

�
2k 2 ÿ o2

c 2

�
� am�o� o

2

c 2

�
; �188�

D1m�o� ! pn1
q 2
0

�
am�o�

�
2k 2 ÿ o2

c 2

�
� ae�o� o

2

c 2

�
: �189�

More simple limit relations D1e�o� ! 2pn1ae�o�,
D1m�o� ! 2pn1am�o�, as used in [10, 11, 56, 72], follow
from (188) and (189) in the limit c!1.

7.2 Nonrelativistic interaction
between relatively moving plates
We begin with nonrelativistic formulas (74)±(76). Using (75),
we first write an expression for the attraction force applied to

the particle from the plate for V � 0 and T1 � T2 � T :

F �1�z �z� � ÿ
�h

p2

�1
0

do
� �1
ÿ1

dkx

� �1
ÿ1

dky k
2 exp �ÿ2kz�

�
�
D 00�o�a 0e�o� coth

�ho
2kBT

� D 0�o�a 00e �o� coth
�ho
2kBT

�
:

�190�

A comparison of (190) and (75) reveals that the transition to
nonequilibrium dynamic and thermal states of the interacting
plates for configuration 1 (Fig. 7) is made using the
transformations

D 00�o� coth �ho
2kBT

! D 00�o� coth �ho
2kBT2

;

a 00e �o� coth
�ho
2kBT

! a 00e �o�� coth
�ho�

2kBT1
; �191�

a 0e�o�; a 00e �o� ! a 0e�o��; a 00e �o�� :

On the other hand, comparing (74) with (75) shows that the
tangent force Fx is obtained from (75) using the transforma-
tions

d2kk! d2kkx ; D 00�o� ! D 00�o� ; D 0�o� ! D 00�o� ;

a 0e�o�� ! a 00e �o�� ; a 00e �o�� ! ÿa 00e �o�� :
�192�

Finally, it follows from (74) and (76) that dQ=dt is obtained
from Fx by the transformation

d2kkx ! ÿd2ko� : �193�

Because Eqns (74)±(76) must follow from the analogous
formulas in configuration 1 with account for linear relations
(186) and (187) as e1�o� ÿ 1 � 4pn1a1�o� ! 0, the quantities
F
�1�
x �l �, F �1�z �l �, and _Q �1��l � must be related similarly to

expressions (191)±(193) after the change ae�o� ! D1�o�.
We now use the exact expression for the retarded van der

Waals force between two plates at V � 0 and T1 � T2 � T in
terms of a real frequency [145, 146], which can be conveni-
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Figure 7. General nonequilibrium configuration 1 (Casimir±Lifshitz

configuration) in the reference frame related to the plates. The tempera-

tureT3 of the vacuumbackground between the plates and on their external

sides can generally differ from the temperature T2 of plate 2 at rest. In the

nonrelativistic approximation, the FEI of the plates is independent of the

temperature T3 (i.e., of the background state).
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ently represented in the form [87]

F �1�z �l � � ÿ
�hS

4p3

�1
0

do
� �1
ÿ1

dkx

�
� �1
ÿ1

dky k
exp �ÿ2kl ���1ÿ exp �ÿ2kl �D1�o�D2�o�

��2
�
�
D 001 �o�D 02�o� coth

�ho
2kBT

� D 01�o�D 002 �o� coth
�ho
2kBT

�
;

�194�
where D1; 2�o� � �e1; 2�o� ÿ 1�=�e1; 2�o� � 1� and e1; 2�o� is
the dielectric permittivity of plates 1 and 2. Making the
transformations

D 002 �o� coth
�ho

2kBT
! D 002 �o� coth

�ho
2kBT2

;

D 001 �o� coth
�ho

2kBT
! D 001 �o�� coth

�ho�

2kBT1
; �195�

D 01�o�;D 001 �o� ! D 01�o��;D 001 �o��

in (194), we arrive at the expression for the attraction force
between the plates in nonequilibrium configuration 1:

F �1�z �l � � ÿ
�hS

4p3

�1
0

do
� �1
ÿ1

dkx

�
� �1
ÿ1

dky k
exp �ÿ2kl ���1ÿ exp �ÿ2kl �D1�o��D2�o�

��2
�
�
D 001 �o��D 02�o� coth

�ho�

2kBT1
� D 01�o��D 002 �o� coth

�ho
2kBT2

�
:

�196�
Similarly to the derivation of formulas (74) and (76), the
following changes should be made in formula (196):

d2kk! d2kkx ; D 002 �o� ! D 002 �o� ; D 02�o� ! D 002 �o� ;

D 01�o�� ! D 001 �o�� ; D 001 �o�� ! ÿD 001 �o�� :
�197�

As a result, we obtain

F �1�x �l � � ÿ
�hS

4p3

�1
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do
� �1
ÿ1
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�
� �1
ÿ1
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��2
� D 001 �o��D 002 �o�

�
coth

�ho
2kBT2

ÿ coth
�ho�

2kBT1

�
: �198�

Finally, making the change d2kkx ! ÿd2ko� in (198), we
find

_Q �1��l � � �hS

4p3

�1
0

do
� �1
ÿ1

dkx

�
� �1
ÿ1

dky o�
exp �ÿ2kl ���1ÿ exp �ÿ2kl �D1�o��D2�o�

��2
� D 001 �o��D 002 �o�
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coth

�ho
2kBT2

ÿ coth
�ho�

2kBT1

�
: �199�

Taking Eqns (186) and (187) into account, it is easy to see that
formulas (74)±(76) follow directly from (196), (198), and
(199). To take the magnetic properties of the plates into
account, similar terms with the change D1; 2�o� �
�m1; 2�o� ÿ 1�=�m1; 2�o� � 1� should be added to the right-
hand sides of these formulas [87]. It is straightforward to
show that as T1 ! 0 and T2 ! 0, Eqn (198) yield a nonzero
quantum friction force [cf. (78)]:

F �1�x �l � �
�hS

2p3

� �1
ÿ1

dky

� �1
0

dkx kx

�
� kxV

0

do
exp �ÿ2kl ���1ÿ exp �ÿ2kl �D1�oÿ�D2�o�

��2 D 001 �oÿ�D 002 �o� ;
�200�

where oÿ � oÿ kxV. Formula (200) coincides with the well-
known result [60] (see formula (25) in [60]) up to the notation
for plates 1 and 2 (also see the discussion in [82]). Using our
method for calculating FEI effects, the `shifted frequency'
(o� oroÿ) always relates to themoving body. In contrast, the
plates in [60] were assumed to move with oppositely directed
velocities �V=2.

To conclude, we note that the independence of the
obtained results from the thermal state of the vacuum
background surrounding the plates is one of the reasons for
the correspondence between configurations 1 and 2 in the
nonrelativistic case.

8. Discussion of experimental results

8.1 Equilibrium and nonequilibrium
Casimir±Lifshitz forces
Presently, as in the time of Lebedev, experimental works
related to quantitative measurements of FEI effects are
scarce. It is sufficient to mention that the most compelling
quantitative measurements of the Casimir±Lifshitz forces
corresponding to theoretical predictions were carried out
only in 1997 [147] (in the distance range from 0.6 to 6 mm)
(see also [148]) and in 1998 [149] (in the distance range from
0.1 to 0.9 mm). These experiments were made possible thanks
to significant improvement in locating the interacting bodies,
which diminished the measurements errors to 1% in the
micrometer and nanometer range.

Difficulties in measurements of the Casimir±Lifshitz
force are due to its weakness and the significant influence
of external factors. In particular, in vacuum measurements
using atomic force microscopes (AFMs), electrostatic and
interatomic forces (for nonmagnetic materials) can inter-
fere with FEI forces. The lens±plate and sphere±plate
configurations are thought to be the most favorable
geometric configurations in such measurements. In the
first case, a torsional pendulum suspension is used, as in
the classical Cavendish experiment, with a microscopic
spherical probe (the radius of the sphere is about 12.5 cm
[147]), and in the second case, an AFM is used [145, 146,
149±153], with a metallized sphere about 100 mm in
diameter attached to the AFM cantilever serving as the
probe. The transition from configuration 1 to the sphere±
plate geometry is performed using the locally flat Deryagin
approximation [154]

Fz � 2pRU�h;T � ; �201�
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where R is the sphere radius and U�h;T � is the density of the
regularized part of the free energy of the electromagnetic field
localized in the gap, which depends on the distance z between
the plates and the temperature T.

An up-to-date comparison of the experimental results
with theory is presented in [12, 18, 155]. The comparison of
the calculated and measured forces was done taking the
effects of the dielectric functions of the material, the rough-
ness of the surfaces, the temperature, and geometry factors
into account.

In [152, 153], nonequilibrium thermal Casimir±Polder
forces were first measured in an experiment with the Bose±
Einstein condensate of 87Rb atoms placed in a magnetic
trap near a dielectric plate. The distance to the plate varied
in the range 6±11 mm. The thermal part of the interaction
force was determined from the shift of the oscillation
frequency of the condensate center of mass caused by the
externally induced force. Nonequilibrium thermal config-
urations with different combinations of the plate and
ambient (vacuum background) temperatures from 310 to
605 K were investigated. It was shown in [153] that the
results of measurements are in good agreement with a
formula equivalent to (160).

Thermal Casimir forces were also measured in [156, 157]
in the temperature range 77±300 K in the distance range
0.187±2 mm. A gold-covered glass sphere 50 mm in diameter
attached to the ASM cantilever, which was in vacuum contact
with an Au plate, served as the probe. Unexpectedly, no
thermal contribution to the Casimir pressure was measured
within the experimental errors. This fact was explained by the
authors of [156] by a compensating effect from electrostatic
forces due to charge spots on the sphere. The measurements
of thermal contributions to the Casimir force at low
temperatures are of special interest because of long-standing
discussions about possible violations of the Nernst theorem
and the form of dielectric functions of metals at low
frequencies, which are used in calculations of the Casimir±
Lifshitz force in configuration 1 (see, e.g., [17, 155, 157] and
the references therein).

8.2 Radiation thermal exchange
Progress in measurements of the vacuum thermal exchange in
the submillimeter and nanometer range is also related to the
development of AFM and methods for positioning probes
[158±165]. In this case, the major contribution to the heat
exchange rate can be related to inhomogeneous (near-field)
modes of the electromagnetic field. However, the presence of
the near-field heat exchange remained undetected for a long
time [166]. In vacuum conditions, it was first detected in [158]
for the probe±surface distances in the range 1±100 nm. In this
experiment, the heat output from a PtÿIr needle of a
scanning tunnel microscope with a curvature radius � 60 nm
was measured in the heat exchange with Au and GaN
surfaces. A thermopair was mounted into the probe, whose
sensor was in contact with the needlepoint.

The heat output is measured using the Seebeck effect, in
which the generated thermo emf is Vth � SDT, where S is the
Seebeck factor and DT is the temperature difference between
the thermopair contacts. The cooling rate of the needlepoint
dQ=dt is determined by the temperature difference between
the needle and the sample DT, as well as by the thermal
resistance Rth of the contact: dQ=dt � DT=Rth. The above
relations imply that dQ=dt � Vth=�SRth�. With the constants
S andRth found from the preliminary calibrations, measuring

the voltage Vth for a known distance between the probe and
the surface enables finding dQ=dt.

In the experiment in [158], the respective probe and
surface temperatures were 300 K and 200 K. For both
samples, the measured value dQ=dt showed the initial
plateau in the distance range 1±10 nm with a maximum
cooling rate of 10ÿ5 W, which further transformed into a
power-law dependence dQ=dt � zÿ3 at larger distances from
the surface. The heat exchange rate can also be characterized
by the thermal conductance

G � dQ=dt

DT
; �202�

where DT � jT1 ÿ T2j, and T1 and T2 are the temperatures of
contacting bodies. The measurements in [158] yielded
G � 5 nW Kÿ1 for a gap width of 30 nm in the �PtÿIr�ÿAu
contact. A later experiment [163] involved a 50 mm gold-
covered glass sphere in contact with anAu surface, used as the
AFM probe. For a gap width of 30 nm, the measurements
yielded G � 1:5 nW Kÿ1. Taking into account that the
conductance G increases with the probe radius (as Rn,
n � 0:5ÿ2, according to the estimates in [167]), it is clear
that the results in [158] are significantly overestimated. This
was noted in [163]. We note that the accuracy of the distance
calibration between the probe and the surface [159±163] was
significantly improved by taking the probe attraction to the
surface by the Casimir±Lifshitz force into account.

The interpretation of the measurements in [158±163] was
based on several assumptions, including the dipole approx-
imation of fluctuation electrodynamics [168, 169] in config-
uration 2; the locally flat approximation

dQ

dt
� ÿ2pR

�1
h

S�z� dz ; �203�

where S�z� is the heat flux from the unit surface of the more
heated plate (h is the gap width) calculated using the thermal
exchange theory [170±172] in configuration 1, the transition
to the small-particle limit for the material of one of the plates
[11, 68], the dipole-additive approximation with the vacuum
background taken into account based on formula (147) (for
V � 0) [173, 174], and the dipole approximation for the heat
exchange between two spherical particles [11, 159±161].

The results of the calculations allow the correct descrip-
tion of the characteristic values of dQ=dt, as well as of the
dependences on the temperature, distance, and particle
radius. It was noted that in the contact of a metal particle
with a metal surface, the contribution to dQ=dt due to the
magnetic polarization of the particle dominates [173, 175]. It
was stated theoretically and experimentally that the heat
exchange rate in the dielectric contacts �SiO2ÿSiO2� is 10±
50 times as high as in metal contacts. Experiments with
cylindrically symmetric probes and in the case of heat
exchange with planar surfaces are described in [162, 164, 176].

8.3 Dissipative forces
of the fluctuation-electromagnetic interaction
Unlike conservative van derWaals and Casimir forces, which
can undoubtedly be identified, measurements of dissipative
FEI forces in the geometry of an oscillating probe above a
plate (i.e., forces presumably caused by the component Fx of
the FEI) are scarce [177±182], and the situation is far from
clear. This is largely because the contact-free friction force,
which is proportional to velocity, can be caused by the
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cumulative action of different mechanisms [10, 11] (here, we
do not discuss friction forces unrelated to FEIs arising in
atomic-near contacts [183], when electron exchange and
atomic interaction become significant).

The principal difficulty is that in a contact-free vacuum
dynamic regime of AFMs with compensation of the contact
potential difference, the contact interaction of the probe with
the sample must be determined by the van der Waals force;
therefore, it would be quite natural to expect that the vacuum
friction forces should also have a similar nature in this case.
But theoretical estimates showed that for a silicon±mica
contact [178], the measured damping forces are two to three
orders of magnitude higher than the calculated ones [83, 184],
and for metal contacts [177, 179, 180], 5 to 11 orders of
magnitude [10, 69, 184, 185].

Experiments lead to different dependences of the damping
forces on the distance to the surface: from zÿ3 in [179] to zÿ1:1

or zÿ1:5 in [180], and also reveal a strong temperature
influence and the contacting material effects [180±182].

We note that the damping of a probe oscillating
perpendicular to the surface was investigated in [178, 179],
and the damping during the parallel motion of a probe with a
radius 30±50 times as large as in the first case (1 mm) was
studied in [180]. The significantly different power-law
dependence of the damping force found in [180] is apparently
due to the electrostatic interaction of charge spots and not due
to the van derWaals (dissipative) interaction, which has a zÿ3

dependence [179]. That the attraction force between the probe
and the surface was not measured in this experiment
complicates the interpretation of the results in [180].

In [179], in contrast, the attraction character of the (van
der Waals) force is evident [184], but the problem is in the
large difference between theoretical and experimentally found
values of the damping forces. The strong temperature
dependence of the damping forces does not correspond to
the electrostatic friction [186, 187] and phonon friction [10,
11] mechanisms. For example, in [180], the damping forces at
temperatures of 77 and 4.2 K were measured to be 1=6 and
1=24 those at 295 K. At the same time, the results of
experiments in [181, 182] are in agreement with the electro-
static theory predictions [186, 187], but disagree with the FEI
theory.

The damping force in AFMs (with the dependence
Fx / VTR=z3) close to the experimental results in [179, 180]
can be obtained in accordance with formula (145) for a
nonrelativistic velocity [86] if the particle and the surface
have coincident absorption peaks at the frequency
o � 109 Hz. Such frequencies are typical for rotational
excitations of molecular complexes and phonon excitations.
In addition, the inverse decay time of oscillators is of the same
order in experiments with quartz microbalance [188±190].

To explain the experiments in [177±180], other mechan-
isms [10, 11] have also been proposed, but the present
experimental accuracy does not allow a unique identification
of the dissipative FEI forces (and quantum friction forces).
New measurements of the damping forces of probes with
different types of contacts at different temperatures and
distances and for various geometric and mechanical char-
acteristics of the probes are required.

8.4 Other experiments
Other experiments that could have previously related or can
relate in the future to measurements of the FEI forces and
radiation heat exchange are of interest. For example, the

study of conservative van derWaals forces in an atomic beam
with thermal velocities passing over metallic surfaces were
carried out already 40 years ago [191±193]. In these experi-
ments, however, the beam velocity was not sufficiently high to
reveal dynamic corrections to the Casimir±Polder force
[formulas (83) and (171)]. Later, several experiments were
carried out to measure these forces with additional laser
excitation of neutral atoms [194, 195] and the passing of a
neutral bundle of sodium atoms in a microgap [196], albeit
also with not too high velocities. Meanwhile, the correction
term in formula (83) proportional to the velocity squared
makes a significant contribution (about 1±10%) to the
deviation angle of a beam over the plate only for atomic
velocities of the order of 105ÿ106 m sÿ1 (at distances of 10 nm
from the metal surface). At subrelativistic velocities
�b � 0:1ÿ0:3�, dynamic correction (171) to the Casimir±
Polder force can also be quite noticeable. In this connection,
the experimental search for possible radiation in Cherenkov
friction, in our opinion, is worth being started with measure-
ments of conservative FEI forces (146).

The possibility of probing resonance dissipative FEI
forces in passing neutral atomic±molecular beams through
microgaps (microcapillars) or in reflection from surfaces was
examined in [197, 198]. According to the estimates in [198], in
the reflection of the beam of Cs� ions with an energy of 50±
100 keV from a doped silicon surface, the SiC orGaAs part of
the beam, which was neutralized after the reflection from the
smooth surface, exhibits smaller energy losses compared with
the charged component of the beam that can bemeasured (the
difference can be as high as several dozen eV).

Dissipative FEI forces are likely to play an important role
in damping quartz oscillators in quartz microbalance experi-
ments [188, 189] and in measurements of friction forces in
one- and two-dimensional structures (see [10, 11] and the
references therein). Recently, the possibility of measuring the
quantum friction force between the SiO2 probe of an AFM
and an SiO2 surface covered with a graphene layer was
discussed in [199]. The fluctuating electromagnetic field
acting on the probe in this case is produced by a current of
electrons in the graphene if their drift velocity is at least
105 m sÿ1.

As for thermal FEI effects, experimental studies of
coherent nonthermal radiation of optical diffraction grids
[200] (see [8, 64] for more details) should be mentioned. The
authors of [200], in particular, observed a significant (four
orders of magnitude) increase in the intensity and spatial
coherence of thermal radiation from a silicon carbide
diffraction grid with a period of 11.4 mm at distances of 10±
100 nm from it, i.e., in the near-field zone of the surface.

In the context of this review, it is interesting to discuss the
possibility of measuring the braking torques and radiation of
particles rotating near a surface. For example, the spin
frequency of graphene nanoparticles (in an ion trap) was
experimentally reached at 106ÿ107 Hz [201] and can be
further increased to 109 Hz. This results in much more
favorable conditions for measuring the FEI dissipative
forces compared to conditions of linear motion in an AFM.

Indeed, assuming that a nanoparticle has the shape of a
cylindrical tablet with radius R and thickness d and the gap
width between them on the surface is h, it is straightforward to
estimate the ratio of decay times of the linear and rotational
motion using formulas (77) and (105). Their (integral) right-
hand sides are identical, and we can pass to a cylindrical
particle by the substitution R 3 ! �3=4p�pR 2 dz and subse-
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quent integration over z from h to h� d. As a result, taking
into account that the inertia moment of the cylinder isMR 2=2
(where M is the mass of the particle) and solving dynamic
equations corresponding to (77) and (105), we obtain the ratio
of decay times of linear motion tV to rotational motion tO:
tV=tO � �R=h�2 4 1 (for d5 h). Correspondingly, the
equivalent dissipative forces slowing down the particle
increase by the same ratio. The spectrum of nonthermal
radiation from a spinning particle, according to formula
(182), falls into the visible or ultra-high-frequency range. In
addition, the produced emission can be significantly ampli-
fied in resonators [18]. In the spectrum from heated particles
at �hO5 kBT, the thermal component dominates, but non-
thermal radiation related to rotation does not disappear and
should be observed at low frequencies.

8.5 Astrophysical implications
We briefly discuss possible astrophysical applications of the
results presented in Section 5 for thermal radiation of gas±
dust clouds in regions of intense star formation in galaxies, as
well as for other effects.

According to modern models, the typical size, mass, and
temperature of gas±dust clouds are L � 0:2 pc, M=M� � 20
(whereM� is the solar mass), and T � 30ÿ50 K, and the gas-
to-dust mass ratio is k � 100 [202]. It is important to note that
k can be much smaller at the initial stage of star formation.
Dust particles have a typical size of 0.01±10 mm and
apparently represent structures with silicate and metallic
nuclear inclusions covered with an ice and gas frozen shell.
We assume that the gas±dust cloud with such parameters is
not irradiated by stellar light from inside, and the matter is in
equilibrium with inner thermal radiation. The optical depth
for the inner radiation is high, and photons escape outside the
cloud only from the surface layers. Then the outgoing thermal
radiation is described by the Stephan±Boltzmann lawwith the
total power

WBB � 4pL2sBT 4 � p3

15

k 4
B

�h 3c 2
L2T 4 : �204�

The intensive star formation in the cloud is accompanied by
accretion processes in gravitational condensation centers,
where matter can acquire significant velocities. Under such
conditions, the thermal balance between particles and
radiation is violated, and the outgoing thermal radiation
(per particle) acquires an additional contribution determined
by the difference between (114) and (115). For nonrelativistic
velocities b5 1, the total power from all particles of the cloud
(where for simplicity, we disregard the excess contribution
from the gas component) is expressed as

WD � 4p3

7

M

kr
�h

c 3s0

�
kBT

�h

�6

b 2 ; �205�

where r is themean density of one particle andT is the interior
background radiation temperature. We note that formula
(205) does not depend on the size of the particles: it is obtained
under the assumption that the dielectric function of the
particle material can be represented as e�o� � i4ps0=o (see
Section 5.2). For cosmic dust grains, it can also have the
relaxational form e�o� � a� b=�1ÿ io=o0�, where a and b
are numerical factors and o0 is the Debye relaxation
frequency. In the last case, the imaginary part of the
polarizability of spherical grains in the low-frequency range

o5o0 takes the form

a 00�o� � R 3 Im
e�o� ÿ 1

e�o� � 2
� R 3 3bo=o0

�a� b� 2�2 �206�

and, clearly, we can use formula (205) with the substitution
s0 ! �a� b� 2�2o0=�4pb�. Taking this into account, we
have theWD andWBB power ratio

WD

WBB
� 180p

7

b

�a� b� 2�2
M

kL2

�
kBT

�h

�2 b 2

o0c
: �207�

With the maximum value of the numerical coefficient in (207)
equal to 10.1, for a � 0 and b � 2, and setting o0 � 109 sÿ1,
b � 1=30, T � 50 K, M � 4� 1034 g, L � 0:2 pc�
6:16� 1017 cm, and r � 0:5 g cmÿ3, from (207) we estimate
WD=WBB � 23, with the radiation spectrum corresponding
to (205) in the low-frequency part increasing as o4, not
according to the Rayleigh±Jeans law. Such a spectral index
of thermal radiation from dust clouds was reported in [203,
204] (see also [205]). Thus, radiation with these parameters
can evidence the internal dynamics of protostellar condensa-
tions inside the cloud. The standard interpretation of such
spectra is based on the combination of black-body radiation
(204) from several sources with different temperatures.

The results presented in Sections 5.2 and 5.3 for small and
larger particles should be taken into account in the analysis of
the general balance between matter and radiation in cosmic
conditions and during the transformation of the kinetic
energy of matter into low-frequency background radiation
in the Universe. Dust grains and larger bodies swept out into
interstellar and intergalactic space can have large velocities.
Relativistic effects in thermal radiation could possibly have
an impact on the CMB anisotropy, and in later epochs, on
powerful accretion and explosion processes in which matter
outflows move with subrelativistic velocities.

9. Conclusion

Fluctuating electromagnetic fields of condensed bodies at rest
cause the appearance of the van der Waals and Casimir±
Lifshitz forces, as well as vacuum heat exchange. In
dynamically and (or) thermally nonequilibrium systems,
interesting new phenomena arise, such as the quantum or
van der Waals friction of particles in translational motion or
spinning particles, as well as a specific thermal and non-
thermal radiation similar to Cherenkov radiation.

In the framework of a single review, it is impossible to
discuss in detail the bulk of theoretical and experimental
studies carried out in the last 10±20 years in this field. This is
why we focused on the construction of the comprehensive
picture of FEI based on the application of the theory of
electromagnetic fluctuations to two nonequilibrium systems,
in which relativistic theory turned out to be very useful: a
moving particle in a vacuum and a moving particle over a
plate.

The fundamental FEI characteristics related to a small
polarizable particle include conservative and dissipative
forces (torques), the rate of heating (cooling), and the power
of thermal and nonthermal emission. There are general
relations among them that follow from relativistic transfor-
mations of electrodynamic quantities characterizing FEI.
Using all of these quantities enables the FEI effects to be
fully described and the particle dynamics and kinetics of its

582 G V Dedkov, A A Kyasov Physics ±Uspekhi 60 (6)



thermal state to be analyzed. Results related to particles
spinning in a vacuum and near a surface, Cherenkov
friction, thermal and nonthermal radiation of small parti-
cles, and thermal radiation of large particles are reviewed here
for the first time.

The results presented bear a fundamental character and
can be used to interpret modern and future experiments
related to FEI measurements in systems of moving bodies
(for example, in atomic traps and microelectromechanical
systems). In cosmic conditions, the appearance of excessive
low-frequency thermal and nonthermal radiation from gas
and dust clouds with internal particle dynamics are expected
from star-forming regions at the accretional growth of
condensing centers. Spectral features of this radiation are
determined by dielectric characteristics of dust grains.

Experimental results for conservative Casimir±Lifshitz
forces and the thermal exchange rate are generally consistent
with the existing theory, but the problems of experimental
discovery of dissipative FEI forces and dynamic corrections
to conservative FEI forces and the heat exchange rate remain
unresolved.

Appendix A

In general, the retarded Green's function Dlk�o; r; r 0� for a
photon in a homogeneous medium satisfies the equation [115]�

rotim rotml ÿ o2

c 2
e�o� m�o�dil

�
Dlk�o; r; r 0�

� ÿ4p�hm�o�dikd�rÿ r 0� : �A1�

For configuration 2, due to translation invariance with
respect to coordinates x, y in the plate plane, it is most
natural to use the two-dimensional Fourier decomposition
of the Green's function:

Dlk�o; r; r 0� �
�

d2k

�2p�2 Dik�o; k; z; z 0�

� exp
�
ikx�xÿ x 0� � iky�yÿ y 0�� : �A2�

Substituting (A2) in (A1), we obtain an equation for
Dik�o; k; z; z 0�, whose solution with the corresponding
boundary conditions on the surface z � 0 separating the
vacuum and the medium leads to formulas (45)±(50).

In the case of configuration 3, there is translation
invariance with respect to all three spatial coordinates
�x; y; z�; therefore, the solution of Eqn (A1) can be sought in
the form of the Fourier integral over a three-dimensional
wave vector:

Dik�o; r; r 0� �
�

d3k

�2p�3 Dik�o; k�

� exp
�
ikx�xÿ x 0� � iky�yÿ y 0� � ikz�zÿ z 0�� : �A3�

Substituting (A3) in (A1) and taking into account that
e�o� � 1� id signo, d! �0, and m�o� � 1 in the vacuum
[115], we obtain formula (52) for the retarded Green's
function in the �o; kx; ky; kz� representation. We also note
that the differentiation operators with respect to spatial
variables in the right-hand sides of formulas (43), (44), (54),
and (55) �rotil � einl q=qxn and rot 0jm � ejnm q=qx 0n� are

straightforwardly expressed in terms of kx; ky; k �
�k 2

x � k 2
y �1=2 in the case of configuration 2, and in terms of

kx, ky, kz in the case of configuration 3.

Appendix B

To find the induced dipole moments of a particle using (92)
and (93), the following obvious relations should be used�1
0

dt a�t�E sp
m �tÿ t� �

�
do d2k

�2p�3 a�o�E sp
m �o; k� exp �ÿiot� ;

�B1��1
0

dt a�t� cos �Ot�E sp
m �tÿ t�

�
�
do d2k

�2p�3
a�o�� � a�oÿ�

2
E sp
m �o; k� exp �ÿiot� ; �B2�

�1
0

dt a�t� sin �Ot�E sp
m �tÿ t�

�
�
do d2k

�2p�3
a�o�� ÿ a�oÿ�

2i
E sp
m �o; k� exp �ÿiot� ; �B3�

whereo� � o� O. Substituting (B1)±(B3) in (92) and noting
that n � �cos y; 0; sin y�, we obtain

d ind
x �t� �

�
do d2k

�2p�3 exp �ÿiot�

�
�
a�o�ÿcos2 yE sp

x �o; k� � sin y cos yE sp
z �o; k�

�
� a�o��� a�oÿ�

2

ÿ
sin2 yE sp

x �o;k�ÿ sin y cos yE sp
z �o; k�

�
ÿ a�o�� ÿ a�oÿ�

2i
sin yE sp

y �o; k�
�
; �B4�

d ind
y �t� �

�
do d2k

�2p�3 exp �ÿiot�
�
a�o��� a�oÿ�

2
E sp
y �o; k�

� a�o��ÿ a�oÿ�
2i

ÿ
sin yE sp

x �o;k�ÿ cos yE sp
z �o; k�

��
; �B5�

d ind
z �t� �

�
do d2k

�2p�3 exp �ÿiot�

�
�
a�o�ÿsin y cos yE sp

x �o;k� � sin2 yE sp
z �o; k�

�
� a�o��� a�oÿ�

2

ÿÿ sin y cos yE sp
x �o; k�� cos2 yE sp

z �o;k�
�

� a�o��ÿ a�oÿ�
2i

cos yE sp
y �o; k�

�
: �B6�

Similar relations for magnetic dipole moments can be derived
from (B1)±(B6) with the substitution ae�o� ! am�o� and
using the projections of the Fourier transformations of the
electric fields on the Fourier transformations of the magnetic
field.
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