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Abstract. The results of seismic investigations based on methods
of the theory of nonequilibrium processes and self-similarity
theory have shown that a shallow earthquake can be treated as
a critical transition that occurs during the evolution of a non-
equilibrium seismogenic system and is preceded by phenomena
such as the scale invariance of spatiotemporal seismic struc-
tures. The implication is that seismicity can be interpreted as a
purely multifractal process. Modeling the focal domain as a
fractal cluster of microcracks allows formulating the prognos-
tic signatures of earthquakes actually observed in seismic data.
Seismic scaling permits monitoring the state of a seismogenic
system as it approaches instability.

Keywords: seismicity, multifractal measure, prognostic signatures
of earthquakes, seismic kinetics, scaling, fault field, seismic field,
scaling correspondence

1. Introduction

A shallow earthquake is a natural phenomenon that is
extremely difficult to explore and which to date has lacked
an adequate description, not only at the theoretical but also at
the phenomenological level. The preparation processes of
shallow earthquakes can hardly be classified as the subject of
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a single branch of science or even interdisciplinary branches.
Both seismology and geophysics contribute to studies of
shallow earthquakes [1, 2]; during a rather long period of
time, earthquakes were viewed as acts of mechanical failure in
rock material [3]. With the appearance of the kinetic strength
concept and quantum models for the breakup of chemical
bonds in crystals, the failure proper of crystal media (the
rock) turned out to be in the scope of questions treated by
physical chemistry and quantum chemistry [4, 5], while the
phenomenon of magnetoplasticity led to interest on the part
of chemical physics [6]. Nevertheless, current progress in
research on processes leading to shallow earthquakes is
related largely to advances in the theory of nonequilibrium
processes, i.e., nonlinear dynamics and catastrophe theory [7,
8], the multifractal measure theory [9, 10], and the theory of
dissipative structures and self-organization [11, 12].

In the framework of the theory of nonequilibrium
processes, many specific features of seismicity in the crust
find a natural explanation, and many seismic objects obtain
a natural description. The development of nonlinear
dynamics methods, uniform for nonequilibrium systems of
various natures, allows understanding the processes of
earthquake development more deeply than through the
direct study of seismic objects by classical physics meth-
ods. For example, a set of new nontrivial properties of
seismicity is revealed by catastrophe theory methods [13];
no less fruitful in exploring seismicity is the concept of self-
organized criticality in complex systems [14]. Even though
the creation of a universal, complete, and self-consistent
theory of nonequilibrium processes is still ahead, the role of
the already known laws of nonequilibrium system evolution
in seismic processes is so obvious today and the number of
experimental and modeling papers devoted to the topic is so
large that the time is ripe for some (even if preliminary)
generalizations.
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This review is devoted to studies of the fundamental
property of crustal seismicity that follows from the essen-
tially nonequilibrium, dissipative character of this process —
the scale-invariance of spatiotemporal seismic structures.
This property, empirically studied at present in hundreds of
experimental and modeling papers and in studies analyzing
seismic catalogues, indicates that earthquakes cannot be
considered a mechanical phenomenon any longer: the
solutions of partial differential equations characteristic of
classical mechanics lack scale invariance (self-similarity), or
the scale invariance is present in them only in trivial forms.
The process of rock failure (which includes seismicity) is
characterized by a huge scale range: the ratio of the length
of microcracks forming in rock to the length of ruptures
arising in earthquakes reaches 27>, whereas classical physics
is bound to explore predominantly a single-scale level of any
process. Many macrophysical properties of seismicity, by
virtue of its scale invariance, stem from events at the
microlevel, and ignoring this fact leads to qualitative and
analytic drawbacks. Scale invariance is simultaneously a
‘microscope’ revealing information on microscopic pro-
cesses from which earthquakes start to develop in Earth’s
interior and a tool to achieve statistical generalization of a
seismic process as a whole.

Self-similarity occurs as a consequence of self-organiza-
tion in nonequilibrium systems, which, as applied to seismi-
city, implies the self-organization of a seismogenic system.
Historically, the theory of self-similarity (the theory of
multifractal measures) was developed in close connection
with studies of both mathematical objects such as strange
attractors [15] and nonequilibrium physical-chemical pro-
cesses such as turbulence [16], coagulation [17], or even the
origin and distribution of mineral resources in Earth’s crust
[9]. The so-called thermodynamic analogies, well known
from the theory of multifractal measures [9, 18], allow
providing the mathematical equations with a physical
meaning. The series of nonequilibrium natural processes
presenting practical examples of scale invariance also
includes seismicity as ‘turbulence of solids’ [19], which
motivates the consideration of seismic statistics in terms of
the self-similarity theory.

In what follows, the term ‘seismicity’ implies the seismicity
in the crust, i.e., the shallow-focus seismicity in plates, whose
mechanism can be related to the self-organization and brittle
fracture of multicomponent rock. Such is, in particular, the
seismicity in the southern California, Transbaikal, and
northern Anatolia.The mechanism of deep-focus earth-
quakes observed in regions such as New Zealand, the Tonga
Islands, or the Sea of Okhotsk can be different. Physical
processes leading to deep-focus seismicity are poorly known
at present: they call for further research.

2. Scale invariance in nonequilibrium
multicomponent systems

2.1 Theory of dissipative structures

The theory of dissipative structures created by the Nobel
Prize winner Prigogine (and the Brussels School of physical
chemists led by him until 2003) laid the foundations of
modern views on dissipative nonequilibrium processes and
introduced the terminology used presently in many branches
of science [11,12]. The theory considers the evolution of open
dissipative systems that are in states far from equilibrium and

are composed of metastable fluctuating subsystems. It can
easily be seen that such a general definition includes a very
broad class of systems, in particular, many natural systems. If
more energy enters an open dissipative system than this
system can accumulate, it sheds off the energy at ‘sink’ points
or points of dissipation. The sets of dissipation points form
spatiotemporal dissipative structures.

In 1945, Prigogine proved a theorem on the minimum of
entropy production in open systems [20]. Following Prigo-
gine, we let S denote the entropy of an open system, d.S
denote the entropy transport through the boundaries of the
system, and d;S denote the entropy production inside the
system. For stationary states,

dS _dS 45 _
dr— dr  dr

0, (1)

where 7 is the time. If the boundary conditions prevent the
system from reaching thermodynamic equilibrium (zero
entropy production), the system moves to the state of
‘minimum dissipation’:

2 (55) <o, .

Here, X is a generalized force. The principle of the entropy
production minimum is valid only in the vicinity of equili-
brium, i.e., in weekly nonequilibrium systems. In strongly
nonequilibrium states, the characteristics of the system can
change radically: the system evolution is realized via a
sequence of bifurcations, in the vicinity of which the
amplitudes of fluctuations can exceed the mean values of
system parameters. Thus, the characteristics of the system
start to be determined by fluctuations. Among the conse-
quences of strongly nonequilibrium states is the appearance
of dissipative structures and self-organization. Prigogine
defines self-organization as follows: “The self-organization
is the choice of one of solutions appearing at the bifurcation
point, defined by the probability laws. A strongly non-
equilibrium self-organization leads to an increase in complex-
ity” [12].

On the one hand, the realization of a future state of a
strongly nonequilibrium dissipative system via a sequence of
bifurcations makes the evolution of the system irreversible,
which, in particular, rules out the description of the system in
terms of deterministic mechanics allowing time reversal
(t — —1), for example, the description of deformations in a
seismogenic medium in terms of elasticity theory. However,
even though it may seem strange, thermodynamic fluctua-
tions play a constructive role in the theory of dissipative
structures: in multi-component systems they are the cause of
long-range correlations and self-organization processes. A
system composed of metastable subsystems in a strongly
nonequilibrium state starts to evolve as a whole, i.e., in
essence, it passes into a more ordered state or even a sequence
of more ordered states. The classical formulation of the
second law of thermodynamics for nonequilibrium but
closed systems notwithstanding, in open strongly non-
equilibrium dissipative systems, the entropy can decrease in
the process of self-organization, which constitutes the
contents of the so-called S-theorem [21]. Beyond condition
(2), open systems that host irreversible fluctuating processes
(i.e., essentially random processes) give rise to high levels of
organization, to dissipative structures. The entropy, con-
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sidered to be the measure of disorder in traditional physics,
can become a source of order in strongly nonequilibrium
systems.

On the other hand, the realization of a future state of a
strongly nonequilibrium dissipative system via a sequence of
bifurcations changes the notion of time, making it richer
conceptually. Prigogine introduces the concept of ‘internal’
time of a nonequilibrium system, which is the measure of the
change in the thermodynamic entropy. The internal time is
introduced as an operator “‘similar to the operators that
correspond to various physical quantities in quantum
mechanics” [12], and the measured times of qualitative
changes in the system are defined by the eigenvalues of this
operator. The astronomical time ““becomes the mean of the
operator of new time” [12]. Put differently, the internal time
coincides on average with the astronomical time, but can
differ from it in intervals of instability.

Self-organization occurs only in systems with a high level
of nonlinearity, in dissipative nonequilibrium systems evolv-
ing far beyond the realm where the laws of classical physics
are applicable. Moreover, for the emergence of dissipative
structures, it is commonly required that the system size exceed
some critical value, i.e., be sufficiently large. A seismogenic
system is an example. The crustal seismicity should in all
probability be understood precisely as a result of self-
organization in the material of Earth’s crust, and this
determines the tools suitable for its exploration.

2.2 Concept of self-organization

of multicomponent systems in a critical state

Prigogine’s paradigm of self-organization as a spontaneous
transition from chaos to order and the formation of
dissipative structures in open nonlinear media proved to be
extremely fruitful. In 1987, a model of such a spontaneous
transition was proposed in [22], which has become known as
the sandpile model. If a stream of sand falls on a plane, then,
when the pile reaches a critical slope with the plane, a steady
state sets in: ‘avalanches’ are shed from the pile, new sand
compensates the mass lost to the ‘avalanches’, and the shape
of the pile stops changing. The number of avalanches N
containing s sand particles then satisfies the relation

N(s) < s7%, (3)

where o is a constant. Property (3) turned out to be universal
for a wide class of nonequilibrium systems. The authors of
Ref. [22] called it self-organized criticality (SOC). The model
can be easily implemented numerically, which stimulated its
study by many authors [23-25].

The concept of SOC reduces the diversity of complex
processes, including those observed in Nature, to a simple
model containing power-law dependence (3), with the
relevant quantities re-interpreted differently in each particu-
lar case. The authors of [22] named seismicity as the first
example of a natural process demonstrating self-organization
in a critical state. This is because seismicity obeys the firmly
established Gutenberg—Richter empirical law, which can be
written in the ‘energy form’ as

E(N) o NP, (4)
where N is the number of earthquakes with the energy E and f

a constant (from physical considerations, the power law in (4)
is written for a dimensionless quantity). Many papers

followed where the seismic process was explored from the
standpoint of the self-organization of complex systems in a
critical state [26-28].

The concept of SOC found use in many branches of
science [29]. In spite of attempts undertaken previously to
shape it as a classical theory (in particular, with the help of
operator formalism and group theory [29, 30]), SOC remains
‘library of computer models’, formally united by mathema-
tical analogies. The explanation is that SOC is oriented to the
modeling of principally nonintegrable systems. Integrable
dynamic systems are isomorphic to free, noninteracting
particles or can be decomposed into noninteracting subsys-
tems. Self-organization in such systems is impossible and
emerges only in those systems where the characteristics of the
whole and its parts do not coincide.

Power-law distributions (3) and (4) serve as a statistical
expression of scale invariance. In real systems, the scale
invariance takes much more complex forms, but in virtually
all cases indicates that the system reaches its critical state
owing to self-organization. The power-law distributions (or,
as they are sometimes called, distributions with a ‘heavy tail’)
give a high probability of catastrophic events, substantially
exceeding that for normal or exponential distributions. In this
sense, scale-invariant structures are frequently related to the
hazard of catastrophes in the system and can serve as an
indicator of this hazard on their own.

In the seismic process, the dissipative points are the
hypocenters of earthquakes. The sets of hypocenters (or
epicenters if two-dimensional distributions are considered)
can be regarded as dissipative structures of a seismogenic
system. They emerge spontaneously as the result of self-
organization in Earth’s crust material, whereas their self-
organization leads to their scale invariance (self-similarity).
Luckily, the great majority of earthquakes are too weak to
create serious damage to the productive activity of human-
kind. However, obeying power law (4), Earth’s crust in
seismically active regions turns out to be capable of inducing
rare but catastrophic events. The scale invariance of seismic
(i.e., dissipative) structures can therefore be a warning of an
approaching danger, i.e., the transition of the crust material
to the critical state.

2.3 Theory of multifractal measures

The theory of multifractal measures appeared as a mathe-
matical tool to describe the general case of self-similarity
arising in numerous mathematical problems and in natural
objects that are in a critical state. The birth of fractal
geometry can be dated back to 1982 when the book by
Mandelbrot, Fractal geometry of nature [31], was published.
Later on, the general theory of self-similarity (the theory of
fractal measures) was elaborated in papers by Frisch and
Parisi [32], Grassberger [15], Halsey [33], Mandelbrot [9],
and Schertzer and Lovejoy [34, 35].

We give brief explanations of the theory together with
definitions of the terms used in what follows. Let F be a
bounded domain in a D-dimensional Euclidean space. We
assume that a (probability) measure P is defined on F. We
cover F with a grid of identical D-dimensional rectangular
boxes and let p; denote the content of measure P in the ith box.
Carrying out a renormalization of the measure (scale
transformation), we can vary the spatial resolution by
combining several boxes of the original grid into a larger
box on a new scale (for the development of general
renormalization group theory, Wilson [36] was awarded the
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Nobel Prize). In studies of physical systems, the measure P
can, for example, characterize the probability distribution of
the appearance of dissipative points as the system passes to
the critical state. If the geometrical properties of a critical
system are the same on all scales, the critical state is a fixed
point of the scale transformation.

We introduce the partition function

Z,(n =) pl(r). q€{-o0,+oo}, (3)
i=1

where r is the size of the scaling grid box, N is the number of
boxes that are not empty, and ¢ is the order of the measure
moment. For a self-similar measure, the partition function
has a power-law dependence on the scale

N
> plr)ocr . (6)
pa

If relation (6) holds, the power-law exponent d is a
function of ¢, i.e., d = t(g), where t(g) is called the cumulant
generating function. In the limit » — 0, it can be defined as

In the scaling analysis of physical systems, the function
7(g) can be deduced directly from experimental results. For
example, we assume that in exploring a stochastic process in
the course of some experiment, numerical or physical, the
result is obtained as some set 4, whose elements can be of any
physical nature. We also assume that the elements of the set
belong to a finite-dimensional Euclidean space 4 C RP
(D=1,2,3,...). We define the measure P as a function of
the set 4 such that it characterizes the probability of detecting
the elements of the set in a given region of space. We use the
following notation: 4; is the number of elements of the set 4 in
the ith box of the scaling grid and N is the full number of set
elements. The probability p; of the elements of A4 to be in the
ith box (or the content of the measure P in the ith box) can be
approximated by the ratio p; = 4;/N 4, and we hence have the
equality Zﬁ | pi = 1. By renormalization, we can consider
the set 4 on different scale levels, which, in particular, allows
formalizing the notion of ‘scale level’. The value of (g) for a
given ¢ can be estimated as the coefficient of the linear
regression In (32, p/(r)) to Inr.

The spectrum of generalized fractal dimensions of a self-
similar measure is the function [15]

oot _ 1 (S ()
==l :
l—q ¢g—1r0 Inr

®)

The generalized dimensions are characterized by monotoni-
city: Dyi < D for g1 > ¢». Just like 7(g), the function D, is
defined on the infinite interval from ¢ = —oo to ¢ = 0o. As we
see, fractal dimensions D, can be fractional.

For ¢ =0, Dy is called the monofractal dimension or
simply the fractal dimension dr of the set 4 (and also the
measure P induced by the set 4). The fractal measure has the
following properties:

— if the set 4 is everywhere dense in R?, then d; = D; for
example, a smooth line has dimension 1 and a smooth surface
has dimension 2, and so on;

— if 4 C A, then df(AQ) = df(A]);

— if 41, A5, A5, ... is a countable number of sets N, then

df(CJ Ai) = sup {di(4)};

i=1

— if A is finite, then df = 0.

The last property makes it impossible to rigorously apply
the notion of fractal dimension to the analysis of experiments,
the result of which can only be a finite set. Because direct
computations with infinities are impossible, the scaling
parameters computed by experimental data have the mean-
ing of a sampling dimension determined in a finite interval of
scales or with the help of finite sampling.

If the set A is characterized by a single value of the fractal
dimension df, it is called a homogeneous (ideal) fractal
(monofractal). Mandelbrot defines the fractal as a set for
which its fractal dimension is strictly larger than its topologi-
cal dimension [31] (admitting that such a definition is possibly
too stringent). Monofractals are related to the simplest
nontrivial self-similar sets that preserve their form for central
affine scale transformations

X' =CX, 9)

where X = (xy, ... ,x,,)T is the column vector of the coordi-
nates of the set elements before the transformation,
X' = (x{,...,x/)" is the column vector of the coordinates
after the transformation, and C is the operator of scale
change. If C is a positive real number, then relation (9)
defines a group of self-similarly transformations. The
operator of scale change can be given a more general
interpretation [see Eqns (19)—(21)].

A monofractal is not the most realistic model of the
geometry (more precisely, topology) of real objects. In
general, a self-similar set is a superposition of fractal subsets
characterized by their own values of fractal dimensions. For
an infinite number of subsets, the structure of the set
containing them is described by a D, spectrum constructed
with the help of a measure induced by the set.

An alternative way of describing the structure of a self-
similar measure is the computation of the scale-invariant
function f(a) [33]. For self-similar measures (fields), the
condition

piocr® (10)
holds, where the singularity index «; depends on the position
of the ith box. The singularity index a; characterizes the local
self-similarity of the field studied. In [33], a measure Pis called
multifractal if it also satisfies the global self-similarity
condition

D Nu(r) < pla,r)r @, (11)
where > N,(r) is the number of boxes with the common value
of aand p(a, r) is a function slowly varying in « and r such that

Inp(a,r)

— = 12

In(1/r) o0 (12)
The prefactor p(a,r) serves to correct relation (11) for r far
from zero and can be used to estimate the degree of lacunarity
of the object. The function f(a) is known as the singularity
spectrum of a multifractal measure.
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From Eqn (10), we find (if the limit exists)

. Inp;
a,—-}g% Inr (13)
It follows from Eqn (11) that
. In) N,
= —lim ——. 14
fla) = —lim — = (14)

It can be shown that the spectrum of generalized fractal
dimension Dy is related to the singularity spectrum f(a) by
the Legendre transform [9]

QZM7 (15)

dgq

fla) =aq+ (1 —¢)D,. (16)
The Legendre transform allows one to practically compute
the singularity spectrum by the scaling analysis of physical
objects. We note, however, that the Legendre transform,
which includes a set of smoothing operations, is sensitive to
the finite grid resolution and inadequate sampling of the data.
As a result, the sought weak perturbations of z(g) can be lost
in the process of numerical computations. Distortions or
linearization of 7(¢) can also be caused by the poor original
data. For small values of |¢|, low-amplitude oscillations of the
cumulant generating function can be related to the presence
of noise in the object being explored and noise in the
measuring system, where its appearance is often unavoid-
able. To compute f(a) without resorting to the Legendre
transform, an algorithm of direct computation of the
singularity spectrum was proposed [37]. Other algorithms
for finding the scale-invariant function f(a) were proposed,
for example, with the help of constructing a histogram of the
distribution of the ratio In (Y, N,)/In (1/r) and subsequent
parabolic interpolation of the histogram [38]. Each algorithm
hasits applicability domain, which requires care in using them
because the limits in Eqns (8), (13), and (14) can be obtained
in experimental data processing only approximately.

The cumulant generating function has no extrema. An
extremum of f(a) equals the monofractal dimension of the
measure fmax(@) = Dy. The dimensions D; and D, are
commonly called the respective entropy and correlation
dimensions of the measure being explored and the support-
ing set. When the set being explored is monofractal, the
entropy and correlation dimensions of the measure induced
by the set, as well as other dimensions, coincide with the
monofractal dimension of the supporting set. Multifractal
measures are not differentiable; accordingly, the probability
given by the content of the measure cannot be related to a
probability density.

Hence, if a multifractal measure P is supported by a set 4
that can be represented as a union of fractal subsets 4, with
fractal dimensions a,

A=A,
a

then the topological properties of the measure can be
described with the help of scale-invariant functions such as
the spectrum of generalized fractal dimensions D, or the
singularity spectrum f(a).

The theory by Schertzer and Lovejoy [34, 35] is based on
the notion of codimension, i.e., the number completing the
fractal dimension to the dimension of the embedding space. A
(y,¢(y)) notation is used in [34, 35] which the authors call

(17)

‘turbulent’, in contrast to the notation (a, f(«)) used above,
which they call the ‘attractor’ notation. From the standpoint
of exploring objects in physical space (i.e., objects existing in a
single realization), these notations are equivalent. The above
authors introduced the notion of ‘generalized scale invar-
iance’ [35]. As the scale transformation operation, they use
the map

B'=T,B, (18)
where B and B’ are the coordinates of the elements of the set
before and after the transformation, and T is the operator of
scale change, which is written as

T, =719, (19)
where /1 is a dimensionless scale factor. In the case of a linear
scale transformation, the power-law exponent G in Eqn (19) is
expressed in terms of the sums of matrices known from the
algebra of quaternions (we limit ourselves to considering a
two-dimensional (2D) space),

G =al + bl +cJ+dK, (20)
where i, I,J, K are analogs of the Pauli matrices,
~ (10 - (0 -1
() =0 )
(21)

- (01 - (-1 0
=(Vo) #=(0 )

and a, b, ¢, and d are scale factors. In particular, in the case of
alinear anisotropic scale transformation, the shape of the box
becomes a function of the scale. We note that the scale
transform can be nonlinear in general.

The fractal description of physical systems is in essence a
statistical description, which can be compared to the thermo-
dynamic description in terms of ensembles. The function f(a)
in the theory of multifractal measures plays a role that is
analogous to that of entropy in thermodynamics [18]. Such a
comparison is in no way formal because by its physical sense it
reflects the aim of both thermodynamics and the theory of
fractals to describe multicomponent systems. It should be
kept in mind that the possibility of a geometrical formulation
of thermodynamics was already demonstrated in studies by
Gibbs in the early 20th century [39]. Whereas classical physics
was always understood as the science of energy transforma-
tions, nonequilibrium physics is rather the science of
transformations of structures.

The thermodynamic analogies in the theory of multi-
fractal measures (f(a) ~ —S, ¢ ~ T~!, and a ~ —E, where
S is the entropy, 7 is the absolute temperature, and E is the
Gibbs free energy) were of course noticed immediately by the
author of the theory of dissipative structures. In book [11],
Prigogine notes that the research on nonequilibrium struc-
tures required an extended functional space from the very
beginning, and the lack of suitable mathematical tools created
‘technical’ difficulties. The strong instability of nonequili-
brium processes destroys the trajectories of the system in
phase space (even for an arbitrarily accurate specification of
the initial conditions), and a statistical description emerges as
the only possible one. Fractal geometry provided the theory
of dissipative structures with the sought functional tools. In
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the terminology proposed by Mandelbrot, dissipative struc-
tures can be called structures possessing fractal organization,
which led Prigogine to the conclusion that “Fractals play a
decisive role in understanding the laws of nature” [11].

3. Scale invariance of disjoint structures
in Earth’s crust and seismicity

3.1 Real structures

The appearance of fractal geometry and the development of
computer algorithms for experimental data processing led to
a rapid increase in the number of works exploring self-
similarity in natural objects. It turned out that many natural
processes and geometric forms taken by natural systems are
self-similar, which literally confirmed the main position of the
dissipative system theory: Nature is created via non-
equilibrium processes and is being recreated by them
presently. Since the mid-1980s, research has been carried out
on spatiotemporal self-similar structures occurring through
the fracture of polycrystalline rock and seismicity. Presently,
it can be stated that experimenters succeeded in studying the
geometry of rock failure in virtually the entire range where it
takes place. The experimental results, given their large
number and good reproducibility, leave no doubts that scale
symmetry is a fundamental attribute of rock failure.

The lowest-scale level of crack formation is determined by
the possibility of distinguishing between microcracks and
point defects in crystals, which corresponds to crack lengths
of 107°—10~7 m. With the help of direct X-ray and electron
scanning microscopy measurements and small-angle neutron
scattering, it was repeatedly shown that microcracks already
form sets of scale-invariant, fractal structures at the level of
the crystal lattice [40—44]. In all probability, this implies that
spatial distributions of point defects in crystals also obey
multifractal statistics; however, it is still difficult to answer
this question definitively because of the difficulty in carrying
out direct observations.

The next scale level in studies of failure is the one set by the
possibilities of optical microscopy and the method of
acoustical emission (the length of cracks is 107°—10=3 m).
The failure is typically realized as a result of loading the
samples of rock in laboratory presses. Macrocharacteristics
of fractures in such experiments can depend on the type of
rock, its water content, the stiffness of the loading machine,
the magnitude of hydrostatic pressure, or the speed of
loading, but the spatial distribution of cracks in the sample
practically always stays fractal and scale-invariant. The
number of papers in this domain is also rather large, and we
mention only some of them [45—-49].

A higher scale level of failure is the geophysical one, in
which the spatial distribution of cracks is explored on objects
such as rock damaged between the sides of seismically active
faults (fault gouges), slip mirrors in rock outcrops, and other
natural objects (the length of cracks is 1072—10? m). The
methods of research are luminescent or capillary defecto-
scopy, on-site mapping, computer analysis of photographs,
and so on. The fractal character of crack distribution is also
found here [50-53].

Finally, the coarsest scale level of the failure of Earth’s
crustal material available for studies is the level of seismically
active faults explored by geographical or geological methods
or with the help of aerial or satellite photography (the fault
length is 103 —10° m). The fractal analysis of these objects

was already carried out in the early 1990s, and some time
after that it was proved that spatial distributions in Earth’s
crust faults demonstrate the general case of self-similarity,
i.e., they show a multifractal structure organization [54—58].
We note that all cases of rock failure, just the fault structures
in Earth’s crust, because of their large size, can be studied in
the widest scale range. Thus, in Refs [56, 57], the resolution
of scale grid was 2° x 2°. Such a scale resolution may not
always be achieved, even in studies of meteorological or
hydrological objects [58—60].

The presence of scaling in spatial distributions of earth-
quake epicenters was discovered even before the appearance
of fractal geometry with the help of a method based on the
correlation integral computation [61], while studies of
seismicity using multifractal theory methods were begun in
the 1990s [62—-64]. In the mid-1990s, the multifractal character
of seismic process was still under scrutiny [65], but in the time
that followed a clear concept emerged that seismicity and
fault formation share a common multifractal nature [66, 67].
In contemporary work, the multifractality is already under-
stood as a fundamental property of seismicity [68—72].

Research into the self-similarity of the temporal course of
seismicity — studies of temporal dissipative structures of
seismic process — began in the mid-1990s [73-75]. A remark
is due here. There is a certain difference between the multi-
fractality of spatial distributions of earthquake epicenters and
that of the temporal course of seismicity. Spatial seismic fields
are multifractals with localized singularities. Spatial seismic
fields (i.e., multifractal measures modeling the spatial dis-
tribution of earthquake epicenters) are characterized by the
existence of limit (13) and repeated generation of micro-
earthquakes at the same field points. In particular, this leads
to the fact that spatial distributions of epicenters of
paleoseismicity practically coincide with the distribution of
current seismicity in regions where representative historical
catalogs are available (Italy, Greece, the Caucasus, Scandi-
navia). In other words, spatial distributions of seismicity are
described by ‘geometrical’ multifractals.

The temporal course of seismicity, however, does not have
this property: it is characterized by another kind of multi-
fractality. It is described by ‘stochastic’ multifractals for
which limit (13) is absent, i.e., the temporal course of
seismicity shows statistical self-similarity. The difference
between geometrical and stochastic multifractals can be
most conveniently explained with the help of a mathematical
procedure called the multiplicative cascade (see below).

Research on self-similarity in the time evolution of
seismicity actively continues today [76, 77]. There are no
doubts that scale invariance is present in the temporal course
of seismicity, but this leads to a natural question: are the
seismic time series self-similar always or only in certain phases
of seismic process? Indeed, the seismic process can be
considered to be practically infinite, even though today we
can explore samples of a maximum duration of 20-30 years.
We try to find an answer to this question in what follows, and
now summarize the results of experimental work.

The fractal organization of sets of cracks is observed for
all mesoscales of failure from the micro- to the macrolevel,
i.e., from the scale level of a crystal lattice to the scale of
earthquakes and seismically active faults. Because of this
fundamental self-similarity, the seismicity and formation of
micro-cracks should be related to the same universality class
[78], but the real relation between them is even deeper. The
independence of the structure of failure from the scale allows
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us (as a substantiated assumption) to consider the formation
of micro-cracks and seismicity as opposite boundaries of the
scale spectrum of a unique scale-invariant process controlled
by unique order parameters. We do not have any grounds to
distinguish the formation of micro-cracks and seismicity on
the level of complexity, the number of controlling parameters,
or the geometry of the fracture, because we cannot propose
any scale boundaries in the entire range between the
formation of micro-cracks and seismicity. According to the
data in Ref. [50], even monofractal dimensions of crack
structures in the wide scale range of rock failure fit a
relatively narrow range df ~ 2.6 +0.11 (for three-dimen-
sional distributions). Rock failure preserves scale symmetry
in such a wide range of scales that it is difficult to find any
comparable physical process on Earth!

3.2 Some model results

The appearance of fast and powerful modern computers has
allowed writing code of numerical multi-step algorithms in
various models of kinetic growth, in particular, in lattice
models of quasistatic fracture of structured solid bodies. In
models of this kind, it is assumed that the deformation
properties of the grid are described by equations of the
continuum medium mechanics, and the crack growth is
modeled by breaking up the grid connections. It should be
remembered that the nonequilibrium state of material at the
crack tip, according to the theory of dissipative structures,
implies that the decisive role in fracture development is played
by thermodynamic fluctuations. The fluctuating character of
crack growth is reproduced by including a random number
generator into the code for the selection of the crack
propagation directions. The priority in this domain belongs
to Refs [79, 80], which simulated fractal clusters with the
shape of cavities in a grid made of triangular boxes. In[81, 82],
both triangular and quadrilateral grids were used. The
algorithms included a random number generator as well as
fixed rules for the breakup of connections [83]. Grid models of
fracture consistently simulate the generation of monofractal
crack structures with the fractal dimension weakly dependent
on the precise shape of the stress field. However, the
respective studies dealt only with elastic material rheology.
Combining the fluctuation character of fractures with a
nonequilibrium state of the entire grid was achieved in
Ref. [84] on a rectangular viscous—elastic grid. We turn to
this model and the results obtained with its use.

The fracture (the growth in the crack cluster) in the model
was realized through a stepwise algorithm of grid connection
breakup as follows. We create an initial defect (one or more)
in the grid by removing one (or more) connections. We
introduce an orthogonal reference frame x;, x,, x3 with the
axes x| and x, located in the grid plane. We begin to construct
the model from the equations of stress equilibrium in a
deformed body: o;; ; =0, where ¢;; is the stress tensor.
Taking into account that the key role in the process of
tectonic fracture in Earth’s crust belongs to shear stresses,
we relate the crack growth to the behavior of a stress deviator.
Staying in the framework of a plane problem, we assume that
013 750 and 023 7& 0 (0'11 =02 =033 =012 = 0) We let U
denote the displacement vector with the components U;, U,
Us, and Vij denote the strain tensor; shear deformations are
then expressed as y,3 = Ui 1, 7,3 = Usz». We consider a
fracture in a nonequilibrium (viscous—elastic) grid, i.e.,
assume that the connections in the grid are deformed
according to the rheologic equation of a Kelvin body

proposed in Ref. [85] to describe tectonic deformations in
Earth’s crust. Then the relation between the stresses and
deformations takes the form

oij = L(2y;5), (22)
where L = p + 1 0/0¢t is the linear viscous—elastic operator, u
is the shear modulus, # is the viscosity coefficient, and ¢ is
time.

Thus, the resolvent equation of the model takes the form

L(AU;) =0, (23)
where A is the two-dimensional Laplace operator and Us is
the displacement normal to the grid plane. For o;;, = 0, the
solution of Eqn (23) can be written as

Us = U + (U — U exp <fz %) . (24)

The growth of cracks in grid models is discrete and is split
into ‘steps’, which are understood as transitions from the grid
with R broken connections to the state with R + 1 broken
connections, R = 1,2,3,.... Let 1° be the instant of time that
correspond to the beginning of the subsequent ‘step’ (1° = 0),
and ¢* be the time over which the grid passes to a state close
to equilibrium. In expression (24), UY is the displacement field
at the instant ¢°, and U° is the displacement field at the
instant 1°°. It can be shown that expression (24) is a solution
of Eqn (23) if Uz° is a harmonic function, AU =0,
satisfying boundary conditions. For numerical integration,
Eqn (23) was replaced by a system of finite-difference
equations based on centered second-order approximations,
which was solved iteratively. The boundary conditions on the
outer boundary G were given in terms of displacements,
U;(G) = f(G). On the inner grid contour, the boundary
conditions were set as g;;1; = 0, where n is the unit vector of
the outer normal to the surface.

The fluctuation character of fracture in natural conditions
implies that the time and direction of fracture are determined
by thermodynamic fluctuations. In the model, the fluctua-
tions were simulated by a random number generator. It was
used to select the fracture time ¢ (' < ) and the next
connection to be broken from 5-10% of the most stressed
connections at the instant of fracture. The process of crack
cluster growth was modeled via multiple (up to 10° times)
iterations of the procedure of grid connection breakup. The
displacement field at the instant a grid connection is broken
was used as the initial conditions for the next ‘step’ of cluster
generation. The grid in this situation is never in the state of
equilibrium: it stays permanently under the viscous deforma-
tion condition, and breaks in the next connections change the
parameters of deformation.

Figure 1a shows one of the realizations of a crack cluster
obtained in this computer model. The crack cluster was
generated on a grid with a resolution of 100 x 100 from two
initial defects placed at the grid center. The set of broken
connections was explored by multifractal analysis methods;
the spectrum of the measure f(a) induced by the set of broken
connections is shown in Fig. 1b.

If elastic grids give predominantly monofractal clusters
(or weakly multifractal ones), the singularity spectrum f(a)
does not degenerate into a point in the range of scales that
could be explored, i.e., the set of broken grid connections is
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Figure 1. (a) Crack cluster generated on a 100 x 100 grid from two initial
defects at the grid center. (b) The singularity spectrum of the multifractal
measure induced by a set of broken grid connections.

not monofractal. The crack cluster demonstrates a developed
multifractal scaling. The nonequilibrium grid state and the
‘fluctuating’ selection of the direction of crack growth (even
for fixed parameters of a ‘medium macrostate’ Us ,(G) = 0)
are fully sufficient to obtain the structure organization of
disjoint breaks in continuity observed in Earth’ crust on
different scales. The model describes all the diversity of
elements encountered in natural systems: the convoluted
character of trajectories, the branching that repeats itself
infinitely, and the coalescence of cracks up to the formation
of closed loops. Even though the modeled process cannot be
reduced to an analytically integrable system of differential
equations (the random-number generator continuously
destroys the analyticity of the solution), computer simula-
tions do capture the physical essence of the modeled object
(nondynamical growth of cracks or faults in Earth’s crust).
Multifractal approximations of spatial crack distributions
can be regarded as realistic and possibly adequate models of
natural phenomena.

Processes in Nature, however, depend on many factors
and involve numerous interacting fields. Fault formation and
seismicity can occur simultaneously in the same natural
system (accompanied by phenomena such as vertical slips of
the day surface, changes in water permeability, and so on,
characterized by their own scale invariance [60, 86, 87]). Are
the scalings of these processes independent? This question
prompts one to look for fundamentally new statistical models
that would help to unravel the interaction of natural processes
on a qualitatively new level.

The basis of such modeling is laid by a multiplicative
cascade procedure proposed originally in Refs [88, 89] for the

description of turbulence. In general, this procedure can be
defined as follows. A unit D-dimensional interval undergoes a
4P -fold subdivision, where A is a natural number, 1 > 2. At
the first iteration, a positive multiplier »1; is associated with
each ith element of the subdivision, and all the m; form a finite
set of numbers (initial multipliers) satisfying the conditions

0<m <m<...<mp<l, (25)
ZD
Sm=t. (26)
J=1

At the second iteration, each element of the subdivision once
again undergoes a A”-fold subdivision and each newly formed
element is associated with one of the initial multipliers. The
result of the multiplicative procedure at the second iteration is
the product of multipliers of ‘parent’ and ‘child’ elements of
the subdivision. On subsequent iterations, the procedure is
repeated. Let k denote the number of iterations. At the kth
iteration, the ith element is associated with the product
I mj’“”f, where @; are the relative frequencies with which the
multipliers m; enter these products. Because

),k D

m{((p’zl, k — o0,
STl
=

the quantities p; =[] ; m_/-k(pj can be considered fractions of
some multinomial measure P restricted to the ith element of
the subdivision (in the ith box of the scaling grid). Each
subsequent iteration modulates the measure distribution
inherited from the preceding iteration, increasing the inter-
mittency of the distribution. In the limit £ — oo, the singular
nowhere differentiable measure P is a multifractal also for
arbitrary shuffles of ‘child’ boxes within the ‘parent’ box.
Multiplicative generators give rise to an infinite diversity of
self-similar distributions.

If the multipliers m7; in the cascade procedure preserve
their constant values, the result is a self-similar, strictly
renormalizable measure, or the so-called geometric multi-
fractal. However, the measure P also preserves statistical self-
similarity when the m; are random numbers such that the
condition

AD
Y omi=1
=1

is satisfied only as a mean over the field. In this case, the
singularities of a multifractal field are no longer localized and
perform a random walk over the field upon a change in scale
levels. Such stochastic multifractals are called ‘universal’ in
Refs [34, 35, 65].

The term ‘universal multifractals’ (not very apt, even in
the opinion of the authors) should not lead to misunderstand-
ing: the increase in the role of randomness in the measure
formation leads not to generalization but to a change in the
properties of the multifractal. Geometric and stochastic
multifractals are related to models of physical processes with
differing properties. For processes occurring in solid bodies,
random walks of singularities over spatial fields and distribu-
tions are clearly not typical. Accordingly, an appropriate
model for spatial distributions of fault formation and
seismicity is naturally provided by geometric multifractals.
Stochastic multifractals are used for mathematical modeling
in meteorology and hydrology [34, 35, 60] and can be used to
model the time evolution of seismicity.

(27)
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We consider the structure of a two-dimensional multi-
fractal field in more detail in the case where it can be
generated by a geometric multiplicative cascade (in what
follows, we use such fields to model spatial distributions of
seismicity). Let a 2D (geometric) cascade contains n unique
multipliers that are not connected by any relations except the
conditions of measure generation (25) and (26). Each
iteration creates 2% boxes of the scaling grid, representing
A(n, k) subsets of boxes characterized by a common value of
the fractions of the measure p; supported by them. These
subsets are fractal, or more precisely, become such as k — oc.
Obviously, on the first iteration, A(n, 1) = n. Forn =2, as is
known from the binomial measure theory, A(2,k) =k + 1.
The values of A(n, k) for arbitrary n and k can be obtained
with the help of the recurrence formula [90]

A(n k) =Ank— 1)+ An—1,k), n>2, k>1. (28)

To describe the structure of the measure, we use the
polynomial theorem known in combinatorics [91]. The
fraction of the measure in grid boxes has the form

pi= mf‘mfz .. mfz’z , (29)
where (;,...,{;» are the numbers of occurrences of the
multipliers mj,...,my in products (29). The number of

boxes in each of the A(n, k) subsets at the kth iteration are
expressed as

>N i (30)
OGN
where the exponents in Eqn (29) satisfy the condition
O+...0p=k. (31)

The cumulant generating function is expressed in terms of the
values of multipliers as

In (7, mf)

In A (32)

t(g) =

Performing the Legendre transform, we obtain expressions
for the spectrum of multifractal field singularities:

2

a(q) = Z./:l m./q Inm;

)VZ ’
Ay, m!

fla(q)) =1(q) +aq.

(33)

(34)

We continue with the model analysis and construct a
model of two structurally connected multifractal processes.
Let two two-dimensional multiplicative cascades I'’ and I'”
model two multifractal fields. We assume that

(1) the cascades have the same structure, i.e., A’ = 1”;

(2) a one-to-one correspondence is established between
the cascade multipliers, m; < m/', i.e., only mutually related
permutations of multipliers can be used to construct model
fields, such that in boxes with the same number i of both
scaling grids, the next multipliers of the kth iteration are in
one-to-one correspondence (Fig. 2).

For all arbitrary permutations of multipliers of ‘child’
boxes within the ‘parent’ box, the multipliers of different
cascades that have the same index are permuted in the process
of measure generation in the same way. Let the numerical

7, 7 7
Zray .
v n
V4
- %% ,T
Ll——rl —/
7 7 / /

Figure 2. Distribution of model measures at the second iteration of the
multiplicative process in the model of scalings correspondence using two-
dimensional multiplicative cascades. The arrows point to the multipliers
that are in one-to-one correspondence for any admissible permutation in
the course of the subsequent iteration.

values of multipliers of these cascades m/ and m/ be
connected by the power-law dependence

(35)

where ¢ is a proportionality coefficient. In Ref. [92], it is
shown that expressing the parameters of one field in terms of
the parameters of the other gives the following relations for
the characteristics of the fields generated by cascades:

oln (27 m)) ~In (S, (m)")
In (1/2) ’

a”" =wa' +

@) =f"(a’),

where a’ and a” are the singularity indices of the two fields at
points with the same coordinates, and f/(a’) and f"(a") are
the singularity spectra of these fields. Additionally, we obtain
one more important relation:

(36)

(37)

a'  —a

_ “max min
o=, (38)
max min
where a;,, and a/;  are the maximum and minimum values of

the singularity indices for the fields generated by the cascade
I'’, and !, and a, are the respective values for the
singularity indices for the field generated by the cascade I'”.
We see that the scalings of the generated fields are not
identical but correspond to each other, which is why this
model is termed the model of correspondence in Refs [92, 93].

Seismicity gives us an example of two multifractal fields
with corresponding scalings: spatial distributions of earth-
quake epicenters (seismic fields) and spatial distributions of
seismic energy (seismoenergetic fields). We assume that the
cascade I'’ generates a model of a seismic field, whereas the
cascade I'” generates a model of a seismoenergetic field. We
recall that the Gutenberg—Richter law can also be represented
in the form [92]

Eqm Nﬁ

sum ’ (39)
where Eg is the net energy of a representative number of
earthquakes, Ny, is their net number, and f is the exponent
(its absolute value) from formula (4). The relation between
the multipliers of multiplicative cascades reflecting this fact
takes the form m/ = c(m/ )ﬁ [90], and expressions (36) and
(38) can be written in a form that allows a direct verification



May 2017 Scale invariance of shallow seismicity and the prognostic signatures of earthquakes 481
3524 N
3470 N ]
116.92 W 3.5
IlgN
2.0 - c 2.0 d
S(a) f(a)
1.6 - 1.6
1.2 12
0.8 - ] 2 0.8 -
0.4 04
1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 0 1 2 3 4 5 7

Figure 3. (a) Spatial distribution of earthquake epicenters in an area of 60 x 60 km? in the vicinity of Barstow for the period 01.01.1992-31.12.2000 in the
range of magnitudes M > 1.9 (2946 events). Large dots mark epicenters of events with 4.5 < M < 5.2. (b) Recurrence plot in energy form for the data
sample explored here. The dots are the catalog data, the solid line is a linear regression constructed based on this data. (c) Singularity spectra of seismic (/)
and seismoenergetic (2) fields. (d) The result of juxtaposing singularity spectra of the seismic field (circles) after stretching and translation transformations

on the singularity spectrum of the seismoenergetic field (solid curve).

against the seismic data:

a” = Pa’ + const, (40)
a'  —a
p = max o (41)
max min

Here, a’ are the singularity indices of the seismic field and a”
are the singularity indices of the seismoenergetic field.
Expressions (37) and (40) show that under the scaling
correspondence conditions 1 and 2 formulated above, the
singularity spectrum of one field should transform into the
singularity spectrum of the other one with the help of affine
transformations(stretchingand translations). The f(a) spectra
are strongly nonlinear functions and, being constructed from
truly different data, they can coincide after linear transforma-
tions only when they indeed satisfy relations (37) and (40).

To test the model result, we take a set of earthquakes that
occurred in a 60 x 60 km? area of Earth’s crust in the vicinity
of Barstow to the northwest of Los Angeles (data from the
South California catalog). During the period 01.01.1992—
31.12.2000 in the range of magnitudes M > 1.9, the catalog
documents 2946 events for this region, which comprise the
sampling to be explored. The spatial distribution of their
epicenters is given in Fig. 3a.

Figure 3b presents the dependence of Ig £ on Ig N based
on the sampling data. The circles connected by the dashed
line correspond to the catalog data and the straight line

represents the linear regression computed by the least-
square fit of experimental points. The regression coeffi-
cientis f = —1.570....

Figure 3c presents the f(a) spectra of seismic (/) and
seismoenergetic (2) fields constructed from the sampling data.
Maximum and minimum values of singularity indices for the
fields under study were a/; ~ 0.770, a,, ~4.592, a/. ~
0.502, and a;,, ~ 6.495. Using Eqn (41), we obtain the
second estimate of the ‘slope of the recurrence graph’
f =~ 1.568.

We write dependence (40) as a” = fa’+ ¢. The coeffi-
cients f and ¢ can be estimated in different ways depending
on the selected criterion of spectrum divergence. In our
case, the coefficients were selected based on the construc-
tion of an auxiliary function 7(q) = ft'(q) + ¢¢ and using
the Kolmogorov criterion 7= sup_s, <, <3 /7"(q) —1(q)|
for the minimization of the maximum residual modulus
between t”(q) and 1(q). Here, t/(¢) and t”(q) are the
cumulant generating functions for seismic and seismoener-
getic fields. The estimates f§ ~ 1.545 and ¢ ~ —0.643 are the
result. Figure 3d shows the f(a) spectrum of the seismoener-
getic field and the f(a) spectrum of the seismic field redrawn
in agreement with expressions (37) and (40) with the above
values of coefficients. After stretching and translation
transformations, the f(a) spectrum of the seismic field
practically coincides with the f(a) spectrum of the seismo-
energetic field. Some insignificant discrepancies are explained
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by inaccuracies in constructing the f(a) spectra (first of all,
their right branches) because of the lack of data. The
difference in independent estimates of the recurrence curve
slope f obtained in three different ways is only around 1.5%.

We see that the model works correctly, but have we
learned anything new about the seismic process? We have
seen that spatial and energetic scalings of seismic processes
are interrelated. The energetic scaling here implies the slope of
the recurrence graph. It may seem surprising for seismologists
that the slope of the recurrence plot can be found without
plotting it, and yet the parameter § can indeed be computed
on the basis of the analysis of only the spatial distribution of
epicenters and seismic energy (41). The scale invariance
turned out to be not an external attribute of seismicity but
the structural core of the whole process.

In Ref. [90], the idea of scaling correspondence was
extended to include three multifractal fields: fault, seismic,
and seismoenergetic (the model of a self-similar self-orga-
nized structure of Earth’s crust). We note that the question of
the connection between seismic activity in the crust with
morphologic structures has been discussed for a long time in
the seismotectonic literature [94-96]. Traditionally, to find
links between disjoint and seismic structures, Euclidian
geometry is used: in Earth’s crust, some bounded volumes
are selected that contain hypocenters of earthquakes related
in one way or another to rupture trajectories. No universal
description of the relation between seismicity and fault
formation was found this way. And yet a solution can be
found with the help of fractal geometry. The true relation
between multifractal fields is revealed in the correspondence
between their scalings.

The relation between the multipliers of multiplicative
cascades in the model of scaling correspondence is not
limited to a power-law dependence like (35). More general
cases are considered in Ref. [93].

4. Microlevel of fracture

4.1 Kinetics of microfractures

Any failure of polycrystalline rock (including earthquakes)
begins with the breakup of molecular bonds. Two models
were proposed to describe this process, based on completely
different premises. The kinetic concept of strength assumes
that the breakup occurs when the energy of thermodynamic
fluctuations exceeds the bond energy (the activation energy),
which leads to a kinetic equation of the form [4, 97]

do E—vyo
Eocexp(— kBT>’

(42)

where Q has the meaning of the number of broken bonds per
time ¢, E is the activation energy, ¢ is the mechanical stress,
T is the absolute temperature, kg is Boltzmann’s constant,
and y is a material parameter.

The quantum model, an alternative to the kinetic concept,
explains the disappearance of the interaction potential
between atoms of a crystal solid body by the tunnel transition
of valence electrons from the valence band to the conductivity
band or the continuous spectrum [5]. This model leads to the
kinetic equation

4o c
EO(CXP (—E> s

where C is a material parameter.

(43)

Which of these models corresponds to the real fracture
process in rock? There is no unique answer yet. However, in
their physical essence, Eqns (42) and (43) model the kinetics of
the breakup of different crystals: Eqn (42) corresponds to the
breakup of crystals with ion bonds, whereas Eqn (43)
corresponds to the breakup of crystals with covalence bonds.

Most minerals forming the erupted rock are dielectric and
are characterized, like most dielectrics, by ion interatomic
bonds. Ton bonds require much lower energy to be broken
than covalence bonds do. It is therefore reasonable to guess
that the mechanism implied by Eqn (42) should be realized in
Earth’s crust with a higher probability than the mechanism
implied by Eqn (43).

Equation (42) is the classical equation of the Arrhenius
chemical kinetics [98], adapted to chemical reactions that
depend on the presence of mechanical stresses. In other
words, the kinetic concept of strength governs the breakup
of ion crystals (and hence earthquakes) as a solid-body
chemical reaction of dissociation. The mechanical stresses in
this case are not the cause but a catalyst of the breakup
process (according to Eqn (42), for ¢ = 0 but T # 0, the rate
of crack appearance is dQ/dz > 0). In fact, in agreement with
the kinetic concept of strength, earthquakes as an instanta-
neous release of energy of intermolecular bonds should be
considered a chemical (‘molecular’) explosion. An even more
radical conclusion was proposed in [6], associating earth-
quakes with critical phenomena such as ‘a chain chemical
explosion’ occurring in a ‘lithospheric macroreactor’. Taking
the goals of this review into account, we note that there are
indeed some analogies between chain reactions and the
process whereby microcracks coalesce into a macrorupture.

However, both models agree in that the cause of the
breakup lies in the nonequilibrium state of the crystal lattice.
Just the fluctuations— thermodynamic or quantum —lead
to the breakup of molecular bonds. Accordingly, rupture on
larger scales inherits the fluctuating character of the source of
the fracture.

4.2 Scale invariance at the stage of crack coalescence

The concept of an empirical criterion of crack coalescence was
introduced nearly 30 years ago [99]. For cracks of the same
length, the coalescence criterion is written as

L 1

where L is the distance between the tips of the cracks, i.e., the
size of the barrier that must be overcome when the cracks
coalesce, [ are the lengths of coalescing cracks, X is the
concentration of cracks of the same length in the material,
and e is the base of the natural logarithm. According to the
definition of the coalescence criterion (called the ‘concentra-
tion criterion’), cracks coalesce at the same thermodynamic
parameters of the medium as those at which cracks form, if
the distances between them become approximately equal to
e crack lengths. In practice, the coalescence criterion is
frequently taken to be three, K= 3. As follows from
definition (44), the spatial distribution of cracks in this case
is assumed to be homogeneous. This is explained by the fact
that up to the time the coalescence criterion was experimen-
tally discovered, there had been no information in fracture
physics about the presence of an internal structure of any kind
in ensembles of cracks. Because it was later shown that real
spatial distributions of cracks in rock are always fractal, the



May 2017

Scale invariance of shallow seismicity and the prognostic signatures of earthquakes 483

numerical value of the coalescence criterion must be recalcu-
lated in general with this fact taken into account. For
example, in experimental work exploring the coalescence
process for cracks artificially introduced in rock samples, it
has been shown that cracks coalesce under load if the distance
between them is equal to their length [100, 101].

However, it is much more important that on a purely
experimental level it was found (even before the birth of
fractal geometry!) that the criterion of crack coalescence in
Eqn (44) has a scale-invariant nature. It is easy to see what the
result of the action of the scale-invariant coalescence criterion
on a scale-invariant ensemble of cracks is. In Fig. 4, arrow 1/
shows a well-known procedure, the first five iterations leading
to the Cantor set (a unit interval is split into three equal parts
and the middle one is removed; each of the remaining parts is
also split into three, with the middle one-thirds removed, and
so on). For an infinite number of iterations, this procedure
generates a set of the Lebesgue measure 0, ‘Cantor dust’, or
the simplest fractal. We interpret the intervals on the lowest
scale level as microcracks, assuming that the scale-invariant
coalescence criterion is observed for the nearest microcracks
(whatever its numerical value). As soon as the closest cracks
of the lowest level coalesce, they become cracks of the coarser
scale, but on this new scale level (as well as on all subsequent
ones), the coalescence criterion is also satisfied. Hence, the
coalescence proceeds as an avalanche ending in a macro-
rupture.

Arrow 2 in Fig. 4 shows this inverse crack coalescence
process. In the framework of a scale-invariant crack distribu-
tion and under the action of the scale-invariant coalescence
criterion, nothing can stop the fracture avalanche. The
process of the avalanche coalescence of microcracks from
the microlevel to the macrorupture can be referred to as a
‘geometric phase transition’, a term borrowed from the
percolation theory [102]. The use of such a terminology is
fully relevant because the result of a geometric phase
transition is an objectively significant change in the material
structure: an initially small-scale structure acquires a large-
scale order. The procedure of inverse cascade was repeatedly
used to model earthquake preparation processes [102—-105]. A
crack elongation cascade is also observed in laboratory
experiments [106].

We return to the schematic in Fig. 4. Let N denote the
number of remaining parts of the interval at the second stage
of the cascade procedure just described. In general, X can be

Figure 4. Arrow / shows the first five iterations of the uniform Cantor set
construction. For an infinite number of iterations, this procedure
generates a simple fractal—a set of the Lebesgue measure 0 with
dr ~ 0.63. Arrow 2 shows an inverse cascade procedure—subsequent
coalescence of microcracks if the nearest of them satisfy the coalescence
criterion K (the intervals are interpreted as microcracks). Thus, via
subsequent coalescence events in the scale-invariant set of microcracks, a
macrorupture can form.

any natural number: it characterizes the structure of the set,
which can have an infinite number of variants. We assume
that the distance between the remaining parts is expressed as
an integer number of lengths of the remaining parts
(interpreted, as previously, as ‘cracks’). Then the number of
elements in the set of ‘cracks’ at the kth iteration is expressed
as

N(k) = N (45)
and the length of the elements in our set (the length of
‘cracks’) can be found from the equation

k—1)

I(k) = [N+ KN = 1)] (46)

We take / as the scale unit / = 1/A. Then the fractal dimension
of our set can be found as

Noc /7%, (47)
Inserting (45) and (46) into Eqn (47), we find
. In R*! InN
df:—llm =) = — 1
0In R+ K(N —1)] In [N+ KN - 1)]
(48)

Hence, for the types of one-dimensional sets considered here
(for integer K), if the distance between the remaining parts of
the interval corresponds to K, the relation of the coalescence
criterion to the fractal dimension of the resulting set becomes
N 1/dy N

K= N_1 - (49)

Varying the structure number X, we can obtain an infinite
variety of forms of the ‘crack sets’ model in the scheme
considered. We see that the use of the scale-invariant
coalescence criterion in a scale-invariant set of cracks
radically changes even the paradigm of fracture (rock
fracture is not a stability loss by a single macrocrack but the
stability loss in a set of microscopic cracks). This raises a
number of unanticipated questions. Even from the rather
simple scheme considered here, it becomes clear that cracks
can coalesce at many points of the trajectory of future
macroruptures. What should then be called the earthquake
‘epicenter’? For the fractal spatial distribution of micro-
cracks, their net length NI, as follows from Eqns (45) and
(46), tends to zero,

Nk71
lim y
oY N+ KN - 1)

=0, (50)

i.e., is theoretically an infinitesimal quantity. In other words,
do earthquakes evolve from ‘nothing’? In a finite scale range,
the crack lengths are of course always finite, but expression
(50), albeit with some reservations, invites such a hyperbo-
lized metaphor.

Computer simulations show that for sufficiently large N
(for example, N > 10%) the number of crack coalescence
stages, covering the entire range from microcracks to seismic
faults, is very moderate, being less than 10. If the microcracks
whose number is sufficient for them to coalesce and form a
macrorupture (once again, in a finite scale range) were
redistributed uniformly in space, they would be separated by
absolutely nonpenetrable barriers of undamaged material.
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Microcracks whose number is so small can coalesce into a
macrorupture just because they are distributed extremely
irregularly in space, i.e., in a scale-invariant manner. We
again face scale invariance as an indicator of a critical state in
a nonequilibrium system. Related experimental research
shows that the ensembles of cracks in rock almost always
have a self-similar spatial structure, and hence the accumula-
tion of microcracks in rock is a process of gradual increase in
the fractal dimension of microcrack sets continuing to the
critical transition — the avalanche coalescence.

The scheme of a geometric phase transition considered
above is transparent even on an intuitive level; however, the
path from it to quantitative estimates of failure parameters
proved to be extremely difficult. Real sets of microcracks exist
in rock and are always three-dimensional. We have not yet
succeeded in exploring the structure and fractal dimensions of
one-dimensional subsets of such three-dimensional sets.
Today, we still do not know the critical values of the fractal
dimensions of one-dimensional crack ensembles, i.e., the
values of fractal dimensions at which cracks coalesce in an
avalanche manner into a major rupture, causing a geometric
phase transition in rock. And yet, the scheme considered
above does not contain ungrounded assumptions and
represents generalizations of empirically collected facts; we
can therefore hope that it will be elaborated further as new
information becomes available.

5. Prognostic criteria of earthquakes

5.1 Spatial distribution of epicenters

So what is the crust earthquake preparation process? We
collect the known results of observational, model, and
theoretical studies and formulate a cautious phenomenologi-
cal hypothesis. In the process of tectonic deformation of
Earth’s crust, because of geometric, structural, or any other
inhomogeneity, a concentration of stresses can appear in the
crust interior. In the region of stress concentration (having a
macroscopic size), the accumulation rate of individual
microcracks substantially increases. In the process of further
deformation and microcrack accumulation, the region of
stress concentration gradually evolves into a strongly non-
equilibrium state and approaches an instant when stability is
lost. In the region of stress concentration, microcracks form
fractal clusters (sets of microcracks with self-similarity of a
general form, multifractality). As the cluster monofractal
dimension reaches a critical value, an avalanche coalescence
of cracks into a macrorupture is initiated (a geometric phase
transition), which is what is regarded as an earthquake on
Earth’s surface.

We stress that it is only a hypothesis, which is intentionally
formulated in a purely schematic way. But it does not
contradict any known facts, and therefore invites some
general conclusions.

First, the ‘source’ of a forming earthquake is a fractal
cluster of microcracks, having no characteristic size, shape,
envelope surface, or characteristic scale. Second, as an
earthquake forms, no intermediate physical mechanisms are
required on mesoscales between the microscopic cracks
caused by thermodynamic fluctuations and the macrorup-
ture (for example, ‘trigger’ actions like fluid diffusion). Owing
to the scale invariance of a microcrack cluster, the cascade of
fracturing overcomes any scale range. And third, processes
leading to earthquakes occur in any crystalline rock fragment,

irrespective of its size. The cause of failure is the non-
equilibrium state of the crystal lattice in and of itself. A
natural failure is perceived as seismicity if the ‘rock fragment’
becomes very large, for example, reaches the size of a
lithospheric plate, and the rupture reaches ‘seismic’ scales
because of its scale invariance.

The analysis could be continued, and each of the questions
touched on here discussed, but our intention is now to find
which processes preceding an earthquake can be diagnosed
from the surface of Earth and used as prognostic indicators of
an earthquake that is about to occur. We cannot measure
stresses at the ‘source’, we cannot see the appearance of
microcracks there, and we cannot measure the fractal
dimensions of microcrack clusters. But we can assume that
given a highly inhomogeneous distribution of microcracks in
a three-dimensional rock, the fractal dimension of a micro-
crack set do not reach critical values at different points in the
region of stress concentration simultaneously. The formation
of a major rupture (global loss of stability) must be preceded
by a smaller-scale seismicity.

If, using the terminology of the theory of dissipative
structures, we consider an earthquake as a global ‘bifurca-
tion’ in the process of seismogenic system evolution, then,
based on very general arguments, we can expect that
‘bifurcations’ in a strongly nonequilibrium state are preceded
by growing ‘fluctuations’ in system parameters. In our case,
this implies fluctuations in seismic activity. That said,
detecting and distinguishing them against the extremely
irregular the background seismic activity is a problem far
from trivial.

We can try to solve this problem by methods of the
multifractal theory. An additional difficulty is brought
about by low representability of the existing seismic data.
The threshold of representability of seismic data is rather high
today, commonly up to two magnitude units. The amount of
data is simply insufficient to be used for constructing multi-
fractal measures (seismic fields), for example, monthly. If they
are constructed based on data for several years, the result are
cumulative fields that lack information on the time of
particular fluctuations of seismic activity. However, we can
at least try to detect their presence.

To test these assumptions (in hindsight) we apply the
following computational procedure. We take the data of a
seismic catalog preceding strong earthquakes in the vicinities
of their epicenters for 4-5 year, split these data into two
samples over time intervals of 2-2.5 years, and construct two
multifractal fields based on these samples. One then char-
acterizes the seismic activity of the vicinity of the future
epicenter long before the strong earthquake, while the other
does it directly before. In this manner, we model seismic fields
of the steady state and the transient process before a strong
earthquake. If the methods of multifractal analysis are
sensitive to the fluctuations of seismic activity, the para-
meters of model fields should differ.

The results of such a comparison are presented in Fig. 5
[107, 108]. The singularity spectra of seismic fields con-
structed from the data on seismicity in an 80 x 80 km? region
before the Joshua Tree earthquake in southern California
(23.04.1992, magnitude M = 6.1, depth of hypocenter 12 km)
are shown in Fig. 5a. The epicenter of this earthquake was at
the center of the region. The first spectrum (solid curve) is
based on the data for the period 01.04.1988-01.04.1990
(1713 events) and the second one (dashed curve) used data
from 01.04.1990-23.04.1992 (1713 events).
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Figure 5. Effect of widening of the f(a) spectra of seismic fields prior to
(a) the Joshua Tree earthquake (1992, M = 6.1) in southern California,
(b) an earthquake in Iceland (2000, M = 6.6). The wider spectra (dashed
curves) are based on the data from two years before these earthquakes,
while the narrower spectra (solid curves) rely on earlier data.

Figure 5b shows spectra of seismic field singularities based
on seismicity data in a 60 x 60 km? area before an earthquake
in Iceland (17.06.2000, M = 6.6, depth of hypocenter 6.3 km).
The first spectrum (solid curve) is based on data from
28.05.1995-17.06.1998 (2230 events), and the second one
(dashed curve) is based on data for the period 17.06.1998—
17.06.2000 (2230 events).

Figure 5 shows that in both cases the f(a) spectra of
seismic fields based on the seismicity data preceding strong
earthquakes turn out to be substantially broader than those
characterizing earlier seismic activity. Seismic fields that
directly precede strong earthquakes contain wider ranges of
singularity indices, which quantitatively (statistically) reflects
the presence of fluctuations in seismic activity before strong
earthquakes (short-term but substantial bursts in seismic
activity at some points and reduction in activity at others).
It can be assumed that broadening in the f(a) spectra of
seismic fields is caused by the transition of seismogenic
systems into a strongly nonequilibrium state before they lose
their stability (before the main shocks of earthquakes or
system breakup).

We note that the process conductive to strong earth-
quakes is revealed through the analysis of higher moments
of multifractal measures constructed from seismic data,
whereas the monofractal dimensions of these measures (the
values of spectral extrema) are only weakly sensitive to
rearrangements in the field structure. The reason is that a
large number of earthquakes occur at the same field points (at
focal centers), which induce the earthquakes many times.
Precisely the distribution of focal centers determines the
monofractal field dimensions, and these distributions are
stationary (because they are tightly connected to the fault

fields). The variable quantity is the seismic activity of focal
centers, which is reflected in the behavior of the higher
moments of measures. Taking the already mentioned thermo-
dynamic analogs in the theory of multifractal measures into
account, seismic scaling can be called the macroparameter of
the seismogenic medium, which, like temperature in a
thermodynamic system, allows diagnosing the state of a
seismogenic system and the degree of its closeness to the
moment it loses global stability.

5.2 Temporal course of seismicity

The effect of widening of the f(a) spectra of seismic fields
before strong earthquakes points explicitly to changes in a
seismic process with time and to the presence in this process of
steady-state and transient regimes, which ends with a strong
earthquake (we refer to a ‘strong’ earthquake only because
the sensitivity of present-day seismic networks does not allow
this effect to be seen prior to the ‘weak’ events). We have
already mentioned that the evolution of seismicity with time
can be self-similar. We now explore this question in more
detail.

The behavior of any dynamic system in a steady state can
be studied by constructing its attractor (phase portrait), i.e.,
the limit subset in phase space that determines the sequence of
system states (phase trajectory). The construction of an
attractor does not cause any problems if the system evolution
equations are known. However, for seismicity we know
neither the evolution equations nor their number. In such
situations, the topological invariants of the attractor of a
dynamical system can be computed with the help of an
attractor reconstruction procedure based on the temporal
behavior of an experimentally observed system parameter.
This procedure relies on the proof of a theorem by Tackens
[109].

The procedure of attractor reconstruction by a seismic
time series is carried out in Ref. [110]. As this series, a series is
taken whose elements are the numbers of events per unit of
astronomic time. The data of the South Californian catalogue
were used for the region to the south of the Salton Sea in
southern California, bounded by a circle 25 km in radius.
Strong earthquakes are not known for this region, for both
instrumental and historical periods, which allows us to refer
to the seismic regime that is studied as a steady-state one. The
sample consisted of data on 3398 events in the magnitude
range 1.7 < M < 5.1 for the period from 01.01.2000 to
01.11.2014.

The reconstruction has shown that the seismic attractor
was a strange chaotic attractor in a three-dimensional phase
space. An estimate for the largest Lyapunov exponent gave a
positive value for it, which is a criterion of chaos. Thus, it was
shown that the temporal course of seismic kinetics in the
steady state is chaotic and unpredictable. The time series in
this case does not contain information on the concrete state of
the system in the future; it only contains statistical informa-
tion on the topological structure of the attractor. The seismic
time series in a steady state does not have scale invariance
either.

To be fair, we must mention that proposals for the
Poisson character of seismic time series were formulated
long ago [111]. Our task, however, is to find prognostic
indicators of strong earthquakes in the time series of
seismicity, and once again a ‘signal’ has to be singled out
from the ‘background’ characterized by extremely high
intermittency.
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But we first reflect on whether a seismic time series, each
element of which represents the number of seismic events per
unit of astronomical time, is the best characteristic of the time
evolution of the process of seismic kinetics. When construct-
ing a traditional seismic time series, one is forced to select a
sufficiently large time unit (of the order of a month) in order
to avoid the appearance of null (no-content) elements. In this
case, information on the time of particular events is lost, while
the total number of elements in the series in many cases proves
to be insufficient for statistical analysis. Thus, we are
prompted to seek a method of handling the temporal seismic
data that would preserve all the information on times of
seismic events contained in catalogs.

The analysis of a series whose elements are the intervals
between subsequent seismic events in the region where the
earthquake is about to occur (the focal area) [112] can be
proposed as such a method. The size of the focal area is
routinely computed using the Sadovskii formula [113], which
can be written as

~ 3/ E
S~ 1037

where E is the earthquake energy [erg] and J is the linear size
of the focal area [cm]. In particular, for an earthquake with
M =17, formula (51) gives § ~ 3 x 10° cm = 30 km.

In the original study by Sadovskii [113], the quantity 3 is
treated as the ‘source’ volume. However, according to the
phenomenological scheme in Section 5.1, the ‘source’ is the
fractal cluster of microcracks for which the notion of volume
is not applicable. In the framework of this scheme, J can be
interpreted as a size proportional to the gyration radius R,
[114, 115] for a fractal cluster of microcracks,

(s1)

J x 2Ry, (52)
where
- N 172
Rg = (]V*; I, —Icm ) . (53)

Here, rcy is the radius vector of the barycenter of the cluster,
r; are the radius vectors of the cluster elements, and N, is the
net number of cluster elements. The gyration radius is ‘the
root-mean-square cluster radius’ and, in all probability, a
plausible characteristic of the ‘source’ that represents a fractal
set of microcracks. A circle with the radius equal to the
gyration radius embraces the dominant number of cluster
elements, which, as applied to seismology, means the
dominant number of earthquake aftershocks (if they are
observed). The major rupture is approximately located
within this circle.

We turn once again to the South California catalog. The
last of the strongest earthquakes that took place in southern
California (more precisely, on Mexican territory) is the
Northern Baja or Sierra Mayor Cucapah earthquake,
04.04.2010, M = 7.2, with the depth of hypocenter 10 km.
For the focal area of this earthquake with a radius of 15 km
(3/2) for the period 01.01.1990-04.04.2010, the catalog
reports data on 2991 events with a magnitude exceeding the
threshold one, M > 1.7 (M = 1.7 is the representativeness
threshold for the catalog). We enumerate the events in the
sampling explored by the index 7 in the direction of increasing
time. Then the time interval between events with indices i
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Figure 6. Emergence of self-similarity in the temporal behavior of
microseismicity in the focal region of the Northern Baja earthquake
(2010, M =7.2). (a) A series of time intervals between subsequent
microearthquakes that took place in the focal area. The abscissa plots
the ordering number of events, the ordinate plots the duration of the time
interval in seconds. The arrow points to the moment of the Northern Baja
earthquake. The values of series elements are shown by dots, which are
connected by lines to guide the eye. (b) The dependence of the sum of
measure moments on the scale for the main part of the series (A). (c) The
dependence of the sum of measure moments on the scale for the final part
of the series (B).

and i+ 11s

Ati=ti1 — 1, (54)

where ¢; is the time of the ith event.

Figure 6a shows a series of time intervals A¢; constructed
for the sampling considered after cleaning the data from
aftershocks. The figure shows that the series A¢; is a numerical
series that can be formally treated as a geometrical object, i.e.,
as a distribution of time intervals over the uniform axis of
their listing indices or as the distribution of the measured
physical parameter over a uniform scale grid. Such a
representation of the catalog data has characteristic features
that make it distinct from traditional seismic time series
(whose elements are the numbers of events per unit time). As
mentioned above, in traditional time series, information on
the time of particular events is lost, whereas it is preserved in
the series of time intervals A¢; and can be directly used in
computations. The number of elements of the time interval
series is sufficiently large for statistical analysis. The values of
At; can be determined with high accuracy because the
astronomical time of seismic events is recorded up to
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seconds. As we can see, the series of intervals At; preserves
practically all temporal information about the process of
seismic kinetics present in the catalog.

The analysis of time interval series amounted to a
numerical data filtration in a running window, with the use
of scaling analysis methods. The running window (of the size
of n elements of the series) was moved along the axis of
natural indices for the elements of the series At; being
explored. The elements of the series that fit inside the
running window were transformed to the measure P, whose
fractions p; related to a single element of the series were
approximated with the help of normalization. In this way,
the measure P was distributed over a uniform grid of »
boxes. Further, the validity of a power-law relation between
the distribution function and the scale (or a linear relation
between their logarithms, which is the same) Eqn (6), was
tested. The values of ¢ and r were discretized. The scale
variations r (r=ry,r2,...,'min) Wwere set by the grid
renormalization, and the values of ¢ were stepped through
the intervals Aqg = 0.1 in a finite range of values. For a fixed
value of ¢, the matrices

T
Y= (X X2 oo Xo0) (55)
were constructed, with their rows being the vectors
N
X, = {m <Z p_;f(r)> ,In r} : (56)
=1

Resorting to the components of matrices (55), the depen-
dences of In (Zj]ilp/-q(r)) on Inr were constructed, which
could be linear [with valid relation (6)] or nonlinear [with
relation (6) violated]. The computations were then repeated
for the next value of ¢.

For the convenience of the scaling analysis, the size of the
running window was chosen equal to n = 2% = 256 series
elements, i.e., the renormalization of the measure P was
carried out with the use of a binomial cascade scheme. On
finishing particular computations, the window was shifted
along the series by one element and the full cycle of
computations was repeated. In this way, the variability in
the series was explored along its entire length.

Figure 6a shows that the series of time intervals can be
split into two parts: the main one (A) and the final one (B).
Over the entire length of the main part, the dependences of
the sum of measure moments on the scale had a shape
resembling that in Fig. 6b. As we can see, the dependences of
In (Zj]ilqu(r)) on Inr for part (A) of the series are non-
linear —relation (6) is not satisfied for them. Thus, no
structure is observed in part (A) of the series. It is noteworthy
that the nonlinearity of the dependences of In (3 ;i 1 pf(r)) on
In r increases with the moment order ¢: the analysis of higher
moments allows identifying the main part of the series as a
chaotic one (the sensitivity of lower moments to chaos is
substantially lower). We thus reproduced the result obtained
in reconstructing the seismic attractor: the temporal course of
the seismic kinetics is chaotic in a steady state.

However, in the final (B) part of the series, the depen-
dences of In (iji] p;](r)) on In r become linear, i.e., the series
acquires a statistically self-similar structure (Fig. 6¢). As can
be seen, prior to the Northern Baja earthquake, scale
invariance emerged in the structure of the series studied.

Thus, the process of seismic kinetics in the focal region of
the Northern Baja earthquake was characterized by chaotic

features over a long time period, but approximately 21 months
prior to the main shock a global scale-invariant structure
began to form in the temporal course of microseismicity
(within the focal region). It is natural to assume that the
cause of this was the global (on the scale of the focal region)
transition of the material in Earth’s crust into a strongly
nonequilibrium state, which then culminated in the main
shock of the Northern Baja earthquake. The transition was
accompanied by the appearance of statistical self-similarity in
the temporal course of microseismisity, which could be
detected and revealed by multifractal analysis methods,
when the scale-invariant series structure was formed over a
scale interval sufficiently wide for numerical analysis. There-
fore, the appearance of self-similarity in the series of time
intervals between sequential events can be considered a
physically grounded prognostic indicator of strong earth-
quakes.

As an additional result, we note that in the main part of
the series (A), the sample mean for the duration of the time
interval was 406529.01 ... s, whereas in the final series, part
(B), the sample mean of the interval length turned out to be
equal to 181308.29.. .. s, i.e., smaller by more than two times.
Part (B) of the series directly preceding the main shock of the
Northern Baja earthquake is the one with shorter (‘on
average’) time intervals A¢; relative to the main-series part
(but strong intermittency, which is characteristic of the whole
series, is preserved).

In accordance with the SOC concept and the dissipative
structure theory, the temporal scale invariance of the seismic
kinetic process reveals a strongly nonequilibrium medium
state. Therefore, we can note certain analogies between the
structural organization of the series of time intervals Az; and
properties of the internal time in nonequilibrium systems
introduced by Prigogine [12] in the theory of dissipative
structures. As mentioned, the internal time coincides with
the astronomical time on average, but can deviate from it in
periods of instability. As indicated by the study carried out,
systematic deviations of the durations of time intervals Az;
from the sample-mean value (Af) over the main part of the
series were indeed observed shortly before a strong earth-
quake, when the seismogenic system was in a critical state. It
can be speculated that the length of time intervals Az is
sensitive to the same physical factors as is the internal time of
a nonequilibrium system according to Prigogine. The main
factors are the change in the thermodynamic entropy of the
system and the degree of system closeness to the instant of
stability loss. As a result of the action of these factors,
microearthquakes start to occur ‘more frequently’, forming
a scale-invariant structure in time.

6. Conclusions

Seismicity is one of the most apparent examples of self-
organization in complex nonequilibrium systems through a
sequence of bifurcations, which leads to a scale-invariant
organization of dissipative structures. Numerous mechanical
manifestations of seismicity, such as the motion of the sides of
a seismic fault and generation of seismic waves, are the
macroscopic consequences of thermodynamic processes
unfolding at the level of a crystal lattice: the change in system
entropy, thermodynamic fluctuations, breakup of molecular
bonds, accumulation of microcracks, spatial organization of
microcracks in the form of self-similar sets, critical transitions
in their structure, and so on. With such a highly extended
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range between scales of the observed processes and scales of
their underlying causes, Nature nevertheless left seismologists
a way to obtain direct information on the processes giving rise
to earthquakes in real time, and this way is the scale-
invariance of seismic processes. Owing to the scale invar-
iance, we understand (at least qualitatively) what happens in
Earth’s crust on the macro- and microlevels and can detect the
period of the unstable, strongly nonequilibrium state in the
crustal material that ends with an earthquake.

This review gives examples of how the scale invariance of
rock failure occurs, where and how it is observed, which
forms it takes, and how it can be used in seismic prognosis.
The results of theoretical, experimental, and model studies
exploring the scale invariance of seismicity mutually augment
each other and allow us to draw a self-consistent picture of
earthquake preparation, even if this picture is unconventional
from the classical physics standpoint. The scale invariance
can be termed the structural bone of seismicity, tightly
connected with its physical basis. Seismic scaling is simulta-
neously a form of nontrivial description of seismic process,
the medium macroparameter, and an indicator of its critical
state.

The reality of scale invariance of seismic structures in all
probability implies that the seismogenic system should be
conceived of as a principally nonintegrable one. The main
physicochemical phenomenon intrinsic in the process of any
crust earthquake evolution is the system self-organization
caused by its nonequilibrium state. Self-organization deter-
mines the properties of the system as it evolves to the instant
of stability loss. In this framework, the earthquake source
turns out to be the fractal cluster of microcracks caused by
thermodynamic fluctuations, i.e., an object that cannot be
explored with the methods of Euclidean geometry. However,
such a source model (thus far a hypothetical one) allows
explaining a number of specific features built in seismic
process , such as the known uncertainties in determining the
coordinates of earthquake sources, the impossibility of
detecting an earthquake source with seismic sounding
methods, and so on. The idea of critical transition (geo-
metric phase transition) in a fractal cluster of microcracks
eliminates the question of ‘trigger action’ at the source, which
is frequently proposed to be water diffusion, and therefore the
model in the form of a microcrack cluster is applicable to
studying not only terrestrial but also lunar seismicity.

Spatial self-similarity of seismic structure is tightly
connected with the spatial self-similarity of fault systems in
Earth’s crust, evolving on geological, not seismic, time scales.
This is why the monofractal dimensions of seismic fields are
only weakly sensitive to the processes of preparation of
separate earthquakes. However, the increase in seismic
activity fluctuations prior to ‘global bifurcation’, predicted
by the dissipative system theory, can be detected by the
behavior of the higher moments of multifractal measures
induced by the sets of epicenters.

Scale invariance is also discovered in the temporal course
of the seismic kinetic process in focal areas of future earth-
quakes. The emergence of scale invariance in the temporal
course of seismicity can be seen as a result of the transitional
process from a steady state (a chaotic one, characterized by a
strange chaotic attractor) to the earthquake proper (the loss
of global stability by the system). Thus, the detection of scale
invariance in temporal structures of seismicity allows identi-
fying the period when the state of a seismogenic system is
strongly nonequilibrium.

The present level of structural studies of seismicity is still
limited by a critical and frequently catastrophic lack of data.
With an increase in the quality of seismic data, we can also
hope that studies of fine structures of seismic objects will
become possible, which will eventually lead to new prognostic
characteristics of earthquakes. Studies of the fractal structure
of seismicity have started, in essence, relatively recently, but
their results suggest optimism in looking for new discoveries
in the nearest future.
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