
Abstract. The basic concepts behind topological insulators are
briefly reviewed. After discussing what makes some insulators
topological and giving a brief history of this rapidly growing
field, recent successes in experiments with these exotic materi-
als are discussed.

Keywords: topological insulator, Dirac fermions, surface
state, quantum oscillations

1. Introduction

During the last several years, a new class of quantum
materials in the field of condensed matter physics has
appearedÐ three-dimensional (3D) topological insulators,
which have attracted the attention of many scientists (see,
e.g., reviews [1, 2]). Topology studies those properties of
objects that are invariant under transformations. The term
`topological invariance' was introduced bymathematicians in
order to classify different geometrical objects within broad
classes. In mathematics, topological classification does not
describe small details and is focused on fundamental differ-
ences between shapes. A classical example is the transforma-
tion of a sphere into an ellipsoid. The surface of a perfect
sphere is topologically equivalent to the surface of an ellipsoid
because these surfaces can be transformed into each other
without creating any holes, just by compressing or stretching
along one of the axes.

In its simplest description, the topological insulator (TI) is
an insulator that always has a metal surface when it is in
contact with a vacuum or a conventional insulator (dielec-
tric). Metal states occur when the surface `disentangles' the
wave functions of entangled electrons. Moore suggested an
intuitive example of a TI [3], a trefoil knot (Fig. 1a) and a ring
(Fig. 1b), which he respectively called topological and

conventional insulators. Due to the topological nonequiva-
lence of their geometrical shapes, these objects cannot be
continuously (`adiabatically') transformed into each other
without making any cuts [3].

In many-particle systems with a band gap separating the
ground state from excited states, an adiabatic deformation
can be defined as a change that does not close the gap. This
topological concept can be applied to both insulators and
superconductors with a bang gap, but it cannot be applied to
gapless states inherent to metals and doped semiconductors.
According to this general definition, a state with a gap cannot
be transformed into a state with a gap belonging to another
topological class unless a quantum phase transition occurs,
after which the system becomes gapless. This simple argument
shows that such an abstract concept as topological classifica-
tion can be applied to solid-state systems with an energy
gap [4].

It is known that atoms and electrons can form different
states of matter, which can be classified by their symmetries
(translational, rotational, etc.), according to the principle of
spontaneous symmetry breaking. For example, a magnetic
field breaks the rotational symmetry in a crystal, despite the
isotropy of fundamental interactions, and gauge symmetry is
broken in superconductors, which leads to such phenomena
as flux quantization and Josephson effects [1]. In 1980, a new
state with the quantum Hall effect [5] was added to these
states. This was the first example of a quantum state that does
not exhibit spontaneous symmetry breaking. The evolution of
such a state depends only on its topology, not on its specific
geometry. This state is topologically different from any other
previously known state of matter.
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Figure 1. Intuitive example of a topological insulator. (a) Trefoil knot,

`topological insulator'. (b) Ring, `conventional insulator' [3].



1.1 Quantum Hall effect
The quantum Hall effect or the quantization of the Hall
(transverse) conductivity in two-dimensional (2D) semicon-
ductors was discovered more than 35 years ago and was a
great surprise (for this discovery, Klaus von Klitzing received
a Nobel Prize in 1985). This effect is observed in strong
magnetic fields at low temperatures and corresponds to the
fact that in 2D electron layers, the dependence of the
transverse resistance rxy on the magnitude of the magnetic
field normal to the surface (or on the carrier concentration in
a fixed magnetic field) is not smooth. This dependence is
made of steps or `plateaus' with constant transverse resistance
(Fig. 2a). The rxy values at the steps can be expressed through
fundamental constants: rxy � h=Ne 2, where e is the electron
charge, h is the Planck constant, and N is an integer. Such a
quantized transport term clearly indicates a macroscopic
quantum phenomenon.

The Lorentz force acts on electrons moving in the
magnetic field and drives their rotation at the cyclotron
frequency oc. According to laws of quantum mechanics, the
particles that move periodically can have only discrete energy
levels. Hence, the electron spectrum in a magnetic field
consists of Landau levels with the energies EN��hoc�N�1=2�,
where �h � h=�2p�. IfN Landau levels are filled and the others
are empty, the filled and empty states are separated by an
energy gap similar to the band gap in an insulator. A depleting
electric field forms near the edges of a 2D sample in the
magnetic field and `lifts up' the Landau levels [7]. In crossed
magnetic and electric fields, an electron drifts along equipo-
tential lines. Edge current states form near the structure
edges, which leads to the Hall current with a quantized Hall
conductivity sxy�Ne2=h [8]. Steps with a constant transverse
resistance rxy are observed when the chemical potential is
located between two Landau levels, as takes place in
insulators. (For the degenerate electron gas at zero tempera-
ture, the chemical potential coincides with the Fermi energy.)

At the same time, the longitudinal resistance rxx (the ratio of
the voltage drop along the current direction to the magnitude
of this current) vanishes (Fig. 2a) and a dissipationless charge
current flows through the structure. Zero damping is
explained by the fact that for damping to occur, the electrons
must make a transition to the higher Landau levels and
overcome the energy intervals.

In the state responsible for the quantum Hall effect, the
larger part of the 2D sample is an insulator and the charge
current flows along the edges only through 1D conducting
channels. The current in each of these channels flows in one
direction, which is defined by the sign of the quantizing
magnetic field. Because the edge states have no back-
scattering, the current in edge channels is dissipationless.
This surface state can be described by the motion of electrons
along cyclotron orbits, while bouncing from the edges of the
sample (Fig. 2b) [9]. The number of edge channels in the
sample is directly connected with the value of the quantized
conductance sxy [10]. (We do not discuss the fractional
quantum Hall effect here.) This state defines a topological
phase such that the fundamental property of Hall conduc-
tance is topologically protected, which means that it remains
constant despite small changes in the sample and cannot be
altered until the system experiences a quantum phase
transition [8]. Detailed information about the quantum Hall
effect can be found, e.g., in [11, 12].

A system in a quantum Hall state can be considered a TI,
which is the first example of a quantum state that is
topologically different from all states of matter known before
the discovery of the quantumHall effect. (In reality, the term
`topological insulator' was first introduced in [13], where it
was assumed that a TI can exist among 3D systems.) A state
with the quantum Hall effect belongs to the topological
class that simultaneously has to be two-dimensional and
break the time-reversal symmetry (T symmetry) by the
presence, for example, of a magnetic field. (Equations of
classical mechanics, classical electrodynamics, quantum elec-
trodynamics, and the theory of relativity are unchanged under
time reversal. In the microworld, T symmetry is violated by
weak interactions.)

A simple example of a quantumHall effect in band theory
is the model of graphene (2D structure of carbon) in a
magnetic field, introduced by Haldane [14]. Figure 3 shows
the electron spectrum of a 2D sample in the quantum Hall
state according to the Haldane model. Valence and conduc-
tion bands are separated by a band gap and are connected
through a topologically protected 1D edge state, which is
characterized by the Dirac linear dispersion E � �vFp, where
vF is the electron Fermi velocity and p is its momentum.

To summarize, a 2D insulator in a quantumHall state has
a band gap in the bulk and a topologically protected gapless
edge state. The existence of gapless conducting states near the
interface (for example, between the structure with the
quantum Hall effect and a vacuum) where the topological
invariance changes is the main result of the topological
classification [7]. More detailed information on edge states
can be found, e.g., in [15].

1.2 Quantum spin Hall effect.
Two-dimensional topological insulators
Twenty-six years after the discovery of the quantum Hall
effect, it was predicted theoretically in [16] that there is a
possibility of a spin-current state in 2D systems in an electric
field similar to the quantum Hall state but without a
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macroscopic magnetic field. (Spin current is the spin flow not
accompanied by charge transfer. Usually, the electric current
does not carry spin, because electron spins are oriented
randomly.) We note that spin currents have been of great
interest in solid state physics for a long time already, because
they open up possibilities of spin electronics (spintronics) [17].
Since 1970, scientists have started to discuss the possibility of
observing the spin Hall effect by applying an external electric
field, which should deflect the charge carriers with opposite
spins in opposite directions perpendicular to the electric field
(see, e.g., [18]). A major success in this field was achieved
in [19]. The authors assumed that the connection between
physics and topology in insulators could be more funda-
mental than in the case of a simple quantum Hall effect state.
In searching for a new topological class, the authors of [19]
have shown that some pure and doped semiconductors (for
example, Si, Ge, InSb, and GaAs or GaAs heterostructures)
can demonstrate the spin Hall effect due to the time reversal
symmetry and spin±orbit coupling similar to the way this
occurs in graphene, where the band gap is formed due to the
spin±orbit coupling. At the same time, questions remained
regarding the effects associated with disorder. It was assumed
that the spin current, just as in the case of the quantum Hall
effect, would be dissipationless. However, in this case, even if
the spin current does not lead to Joule heating, the external
electric field induces a charge current with losses due to the
nonzero sample resistance.

In a subsequent study [20], the same authors theoretically
predicted the possibility of observing the dissipationless spin
Hall effect without any charge current in 3D band insulators
HgTe and HgSe. This effect is similar to the quantum Hall
effect, but the spin Hall conductivity is not quantized even in
2D systems and depends on the parameters characterizing the
band structure. In the considered case, the electrons canmove
in an external electric field, but the direction of their motion
must depend on the spin direction due to the anisotropy of
electron scattering on impurities. Such spin currents in filled
bands do not suppress each other and Hall spin conductivity
can exist even in a band insulator. As in [19], the spin±orbit
coupling was responsible for the spin conductivity. This was

the first example of a nontrivial topological structure in a
band insulator without a magnetic field. The authors of [14,
19±22] developed an important concept of an insulator that
was afterwards called the quantum spin Hall insulator or
the two-dimensional topological insulator (2DTI). Themost
important result of these papers was that the suggested
models did not require violation of time reversal symmetry.

Extrinsic and intrinsic spin effects can be distinguished. In
the first case, which was theoretically predicted in [18], the
main factor is nonsymmetric spin-dependent scattering on the
impurity potential, while the second case depends on the
interaction of electron spin and orbital motion in the periodic
lattice of the material. In both cases, the spin±orbit coupling
characterizes the process in which a simultaneous change in
the electron spin and orbital momentum takes place.
Entanglement of spin and orbital momentum is a relativistic
effect, which can be derived from the Dirac equation for the
electron [23].

A key improvement in the 2D TI theory was made in [24,
25], where a new type of topological invariance was proposed
that can be present in a conventional insulator. In studying
the quantum spin Hall effect in graphene, which was
discovered at that time, the authors suggested a specific 2D
TI model and showed that a finite spin±orbit coupling in
graphene leads to the formation of a band gap.

This means that a state with the quantum spin Hall effect,
or a 2D TI, has an energy gap in the bulk and two gapless
spin-selective edge states on the sample boundaries [26]. One
of the characteristic properties of massless Dirac fermions is
associated with the Berry phase, due to which back-scattering
is absent in the material. We note that the linear dispersion
law of graphene leads to a linear dependence of the density of
states on energy [16, 17], in contrast to the conventional
parabolic dispersion law E � p 2=2m � (where m � is the
effective mass) in ordinary 2D systems. Such an analogy
with graphene is used because it can help to better describe 2D
TIs and because the Dirac electron physics in graphene is
similar to that on the surface of a 3D TI with only one
difference: the numbers of Dirac cones in these two cases are
not the same.

The authors of [24, 25] also showed that despite the
instability of electron edge states in previous models (in
particular, due to impurities), there are real 2D materials
that must have stable edge states in the absence of a magnetic
field. Their model, as in the case of graphene, is based on the
relativistic effect of spin±orbit coupling, in which the electron
spin and orbital momentum degrees of freedom are coupled
and, due to this coupling, moving electrons `feel' a spin-
dependent force even in nonmagneticmaterials. Such electron
motion is coherent and leads to a collective state, which is
stable because the energy needed to destroy it equals the band
gap. This results in the formation of one-dimensional current
`loops' at the sample edges with spin up and spin down
flowing in opposite directions, as is schematically shown in
Fig. 4a. The state with the quantum spin Hall effect can be
roughly represented as two copies of spatially separated states
with the quantum Hall effect, distinguished only by different
spin directions. The currents in a sample with such states flow
along the edges in opposite directions. Because each current is
unidirectional, back-scattering is not possible, and a dissipa-
tionless spin current with no charge current must form in the
structure.

Figure 4b shows the energy dispersion of edge states in the
absence of spin degeneracy in 2DTI, forming a 1DDirac cone
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[8]. Such edge states were named helical states in [26], similarly
to the `helicity' quantum number that defines the correlation
between spin and momentum of a particle. Usually, systems
with such a spin state are said to have the helical polarization
of the spin or spin±momentum synchronization, such that the
spins align according to themomentum direction. In a gapless
edge state, just as in the case of graphene, such electrons act as
1D massless Dirac fermions inside the gap. Kane and Mele
discovered a very important fact that the electron states in
their quantum spin Hall insulator model are characterized by
a new topology associated with a Z2 index [25], which
determines whether there is an even or odd number of
crossings between the 1D edge state and the Fermi level in
the range from 0 to p=a, where a is the lattice constant. In
other words, this index allows performing a topological
classificationbasedonparity,whichwedescribe inSection1.3.
Unfortunately, due to the weakness of spin±orbit coupling
and scattering on impurities, which should lead to dissipation,
it is difficult to observe the quantum spin Hall effect
experimentally based on the Kane±Mele model.

Soon after the appearance of papers [24, 25], Bernevig,
Hughes, and Zhang [27] suggested another way to realize the
quantum spin Hall effect with topological properties and
showed that with a change in the width of a semiconductor
quantum well in HgTe/CdTe, its usual electron state trans-
forms into the `inverted' state at some critical width. Such a

transformation is a topological quantum phase transition
from a normal insulator phase to the phase with the quantum
spin Hall effect and with one pair of helical edge states.

Following these theoretical predictions, K�onig and
colleagues [10, 28] measured the electrical conductivity
caused by edge states in CdTe/HgTe/CdTe quantum wells
and observed a decrease in the band gap as the width d of the
HgTe layer in the quantum well was increased. At a critical
thickness dc � 6:3 nm, the gap closed, which corresponded to
the phase transition between the state with a normal insulator
phase for d < dc and the state with the quantum spin hall
effect for d > dc. Structures with narrow quantumwells and a
normal electron state with the Fermi level inside the gap
demonstrated zero conductivity. Quantum wells with the
inverted electron state demonstrated conductivity that was
close to the expected value for the transport through edge
channels of a quantum spin Hall insulator (Fig. 5). These
results prove that transport in the quantum spin Hall regime
is indeed caused by the gapless edge state. We note that the
structures under investigation had dimensions less than the
mean free path for inelastic collisions (� 1 mm) in order to
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minimize the scattering on impurities and decrease the spin
current dissipation. In the quantum spin Hall regime,
structures with a two-fold thickness difference had the same
resistance. This clearly indicated that in cases III and IV
shown in Fig. 5, where G � 2e 2=h, the conductivity is defined
by the edge state that is independent of the sample width [1].

We note that the band inversion mechanism in HgTe/
CdTe quantum wells was studied in [29], although it was not
related to TIs and appeared long before the publication of
papers [10, 28].

1.3 Three-dimensional topological insulators
In 2006, three theoretical groups simultaneously showed that
although the quantumHall effect cannot be observed in a 3D
state, the topological characteristics of states in a quantum
spin Hall insulator or a 2D TI can be naturally generalized to
a 3D TI [13, 30, 31]. The authors demonstrated a connection
between the bulk state with an insulator band gap and a
gapless conducting surface state protected by T symmetry.

The possibility of creating `weak' and `strong' 3DTIs was
discussed in [30, 32]. Simple 3D TIs can be created as a
structure composed of 2D quantum spin Hall insulator layers
in analogywith the suggested 3DquantumHall state [33]. The
helical edge state in this case becomes an anisotropic surface
state. However, in such a structure, due to the weak coupling
between the layers and a weak spin±orbit coupling, the band
gap induced by these couplings must be small and the
resulting state turns out to be unstable with respect to
disorder. Such a structure is attributed to weak 3D TIs.

A strong 3D TI has many similarities with a 2D TI in the
sense that the strong 3DTI is a combination of a conventional
insulator with a topological one under continuous interpola-
tion. To create such a TI, strong spin±orbit coupling is
needed. The surface state in a strong 3D TI forms a unique
two-dimensional `topological metal'. Unlike the sate of a
conventional metal, which has both up and down spins at
every point of the Fermi surface, the surface state in a strong
3DTI is not spin-degenerate. This nontrivial topological state
of a 3DTI has an insulator band gap in the bulk and a gapless
surface state formed by an odd number ofDirac states. Such a
state is protected by time-reversal symmetry from back-
scattering on defects. This means that, due to the helical spin
polarization, the back scattering from themomentum k-space
to the momentum ÿk-space is forbidden. A surface state in
which the electron spin is perpendicular to themomentum lies
mainly in the plane of the sample surface [1, 2]. Electrons in
this state, as on the 2D TI edges, can move in directions along
the surface of the bulk material almost without energy
dissipation, as shown in Fig. 6a. If the time reversal
symmetry is not broken in the bulk but is violated on the
surface, thematerial completely becomes an insulator, both in
the bulk and on the surface. An unusual metal that forms on
the TI surface inherits the topological properties of the bulk
insulator.

The existence of disorder or impurities on the surface
should lead to back-scattering, but the topological properties
of a bulk insulator prevent the destruction of the metallic
surface state; band gap formation or localization is impos-
sible [3]. In other words, the metallic surface state formed due
to nontrivial topology cannot be changed as long as the
material in the bulk remains an insulator with a band gap.
Dirac fermions in a 3D TI, just as in a 2D TI, are
characterized by a linear dependence of energy on momen-
tum, which now has the form of Dirac cones with vertices at

the Dirac point (Fig. 6b). Combined data of angle-resolved
photoemission spectroscopy (ARPES) [34] and scanning
tunneling spectroscopy [35] for Bi2Se3 and Bi2Te3 have
shown a linear density of states, as expected for the linear
Dirac dispersion, but only in a small region near the Fermi
level. The rest of the density of states was curved.

Electrons in a gapless surface state act as massless
fermions inside the insulator band gap. Their properties, just
as the properties of 2D TIs, are described by the Dirac
equation, in which the energy eigenvalue for a free particle
with mass m has the form

E � �c
����������������������
p 2 �m 2c 2

p
: �1�

It can be seen that theDirac equation corresponds to positive-
and negative-energy states and the energy eigenvalue has a
band gap for a finite mass but becomes gapless when m � 0.
Therefore, gapless systems that satisfy the Dirac equation are
called massless. If the effective mass were defined as the
second energy derivative d2E=dk 2 with respect to the wave
vector, the expression for the effective mass

m � � �h 2

�
d2E

dk 2

�ÿ1
�2�

would be divergent [2]. (It may be helpful to recall that
p � �hk.)

The theory in [36] predicts that because the T symmetry in
a TI requires that states with momenta k and ÿk have
oppositely directed spins, the electron spin must rotate
through 2p as the electron circulates around the Dirac point
in the momentum space, and the electron wave function must
acquire a nonzero geometrical quantumBerry phase (Fig. 6b).
For linear dispersion in a 3D TI near the Dirac point, the
Berry phase is g � p [37], while metals with conventional
spin±orbit coupling, such as gold, have a zero Berry phase.

The most important property of a topological surface
state in a 3D TI is that it is topologically protected. There are
three aspects to the term `topological protection' [2]. The first
is a consequence of the new topology defined by the
fundamental topological index Z2 mentioned above. In a 3D
TI, Z2-topology guaranties the existence of a gapless surface
state as long as the time-reversal symmetry is preserved. (In
order to fully characterize a 3D system, fourZ2-invariants are
needed.) The second aspect is related to the helical spin
polarization, which forces electrons with momenta k and ÿk
to have oppositely directed spins. The third aspect is defined
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Figure 6. Surface state of a 3D TI with the Dirac dispersion. (a) Schematic
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by the Berry phase p, which corresponds to Dirac massless
fermions and prevents their weak localization via destructive
interference of paths reversed in time.

We note that a combination of a 3DTI and a conventional
superconductor can transform the spin state considered here
into a correlated state at the interface between them and can
lead to the formation of predicted Majorana fermion
excitations and a topological superconductor [38].

A list of more than 30 TIs (binary and ternary compounds
based onBi, Sb, Se, Te, Tl, Sn, and Pb) studied experimentally
is given in [2], although a much larger number of compounds
were predicted to be TIs, but have not been studied experi-
mentally. In Section 2, we discuss the results of experimental
investigations of TIs mostly based on Bi, Te, and Tl, because
the characteristic TI properties are more clearly pronounced
in these materials.

2. Results of experimental investigations
of topological insulators

Before we start analyzing experimental TI investigations, we
briefly discuss verification methods that can show whether
the material under study is indeed a TI.

In the case of 2D TIs, it must be verified that a 1D helical
edge state exists, which can be done only in quantum
transport experiments with nanostructures. In papers [10,
28] discussed in Section 1, the existence of edge states was
verified by measuring the quantized conductivity of quantum
wells. Later, the quantum spin Hall effect was directly
observed in [39], where spin transport was studied in HgTe
quantum wells by using them as a spin current injector and as
a spin Hall effect detector, which allowed observing the
helical spin polarization.

Surface states in 3D TIs were successfully studied using
ARPES, spin-resolved photoemission spectroscopy (SRPES)
[40, 41], and scanning tunneling spectroscopy [35, 42]. In
some works, the existence of metallic surface and coherent
surface states was confirmed experimentally by using optical
spectroscopy and measuring optical conductance [43±47].

Results of topological transport investigations in 3D TIs,
which are discussed in what follows, are still ambiguous.
ARPES is one of the main methods for measuring the
parameters of the Fermi surface and investigating the
electron properties of a solid (band structure, electron
interaction, and so on). In ARPES experiments, the sample
is illuminated by high-energy photons, which cause the
emission of photoelectrons from the occupied states. By
measuring the angle and energy distributions of emitted
photoelectrons, information on the initial electron distribu-
tion over energy andmomentum can be obtained if the energy
of incident photons is known. In the case of SRPES
experiments, the energy analyzer is replaced by a Mott spin
detector, which allows measuring the distribution of the
electron spin orientation over the Fermi surface. This
distribution can be used to estimate the Berry phase on the
surface [1] and, in particular, to separate spin-polarized
electron beams into two channels: with spin-up and spin-
down electrons. For 3D TIs, the ARPES and SRPES
experiments were the most convincing; the authors not only
observed the Dirac cone but also showed that this cone is
nondegenerate and has a helical spin polarization. The
theoretical prediction in [32] that the Bi1ÿxSbx compound is
a 3D TI in the insulator state was soon confirmed experimen-
tally using ARPES [48]. This compound was the first

experimentally identified 3D TI. Direct observation of
helical spin polarization of the Bi1ÿxSbx surface state was
performed in SRPES experiments [49, 50].

However, the Bi1ÿxSbx compound was not very suitable
for use as a TI in real spintronic devices because this
compound had a small band gap in the bulk and its samples
contained many defects caused by disorder [51]. Therefore,
the search for disorder-free topological phases was continued
in stoichiometric compounds with a large band gap, with the
aim to use them as a matrix material for the study of various
topological phenomena. It was soon predicted in [52] that
long-known thermoelectric compounds Bi2X3 (whereX � Se,
Te) should be 3D TIs. These compounds, being the simplest
3D TIs, have been thoroughly studied using ARPES and
SRPES experiments over recent years. The results of the
investigations most likely confirm the existence of a 2D
surface state in Bi2X3 (see, e.g., [1]).

We first consider Bi2Se3 because it has a simple band
structure and a relatively large band gap (� 0:3 eV). High-
purity Bi2Se3 samples show stable behavior inherent to TIs at
temperatures up to room temperature [53], which indicates
good prospects for future applications. This layered com-
pound with a rhombohedral lattice is a package of weakly
bound Se±Bi±Se±Bi±Se quintuples, each 1 nm thick. The
elementary cell consists of three quintets [54], and the Fermi
surface of a Bi2Se3 sample is an ellipsoid. Due to the layered
structure, the resistance of Bi2Se3 samples is anisotropic, with
the ratio rzz=rxx � 10 [55]. Large crystals can easily crack
along the quintet edges, and hence it is not hard to obtain
single crystals with a mirror surface and an area of
10� 5 mm2. As an example, Fig. 7 shows Bi2Se3 and Bi2Te3
single crystals respectively doped by Cu and Sn before
exfoliation [56]. Figure 8 shows a schematic diagram of the
Bi2Se3 3D Brillouin zone, its 2D surface projection (111),
and a topological surface state in Bi2Se3 measured in
ARPES experiments [51]. Quite similar results are obtained
in ARPES experiments with 3D TIs such as Bi2Te3, Sb2Se3,
and Sb2Te3 [1].

1 cm

Figurre 7. Bi2ÿxCuxSe3 and Bi2ÿxSnxTe3 single crystals cut from ingots

before exfoliation [56].
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It was later shown in [57] that the topological surface state
in Bi2Se3 has a much larger degree of spin polarization
(around 0.75) than was found in previous experiments with
the same compound, and the polarization limits are mostly
due to external factors.

However, not all materials can be studied in ARPES
experiments because the samples must have a very clean flat
surface. If ARPES is not possible, charge transfer experi-
ments can be convenient. Furthermore, the lack of informa-
tion about transport and, especially, mobility in 3D TIs was a
serious problem during their study. The measurement of
surface currents is the first key step in the study of Majorana
fermions [58] or the peculiar electrodynamics of TIs [59].

Measurements of quantum oscillations of resistanceÐ
the Shubnikov±de Haas (SdH) effectÐand of magnetiza-
tionÐ the de Haas±van Alphen (dHvA) effectÐcould
confirm the existence of conducting surface states in 3D TIs.

It is known that the SdH effect is widely used in studying
the Fermi surface structure in metals and semiconductors.
Landau quantization associated with the semiclassical cyclo-
tron motion of electrons in a magnetic field can reveal the
difference between conventional and Dirac electrons. In both
cases, the density of states becomes a periodic function
inversely proportional to the magnetic field, which leads to
SdH oscillations [60]. But because the oscillations associated
with the Landau levels of a 2D Fermi surface must depend
only on the perpendicular component of the magnetic field
B? � B cos y, by rotating the sample in the magnetic field we
can distinguish those oscillations from 3D oscillations related
to bulk carriers. Here, y is the angle between the magnetic
field direction B and the crystallographic c axis perpendicular
to the sample surface, which is schematically shown below on
the inset in Fig. 11b. Moreover, the phase term in 2D
oscillations directly represents the Berry phase of the system
and therefore allows confirming the connection of observed
oscillations with Dirac fermions. In TIs, the conductance sxx

for oscillations in the magnetic field can be written as

Ds �N�xx / cos

�
2p
�

F

BN
ÿ 1

2
� b
��

; �3�

where F is the oscillation frequency,BN is themagnetic field at
theNth extremumofDsxx, and b � g=2p. ForDirac fermions,
according to the theory, b � 1=2, whence the Berry phase is
g � p (see, e.g., [61]).

Due to these reasons, after the ARPES experiments with
Bi1ÿxSbx [48, 49], studies of this compound in SdH and dHvA
experiments began [62]. Unfortunately, the charge transfer
experiments, which were successful in the case of 2D TIs, turned
out to be complicated in 3Dmaterials, because if theFermi level in
the insulator was located inside the bulk band gap near the
conduction band, then the contribution to the conductivity
associatedwith bulk carrierswould always dominate the contribu-
tion from the surface conductivity [63±66].

The problem is that bismuth chalcogenides Bi2Se3 and
Bi2Te3 are actually not insulators: they are in fact relatively
good metals. Usually, it turns out that after growing, the
Bi2Se3 and Bi2Te3 single crystals have n-type conductivity
with the concentration of carriers in the bulk n � 1019 cmÿ3

[51, 63±65, 67]. Their Fermi level is located at the edge of the
conducting band and they have high conductivity with a
`metallic' dependence of resistance on temperature. It
followed from the ARPES experiments and first transport
experiments (see, e.g., [1, 2, 64]) that in order to observe 2D
surface states in 3D TIs, samples with n not greater than
1017 cmÿ3 were needed, and hence a series of attempts were
made to control the location of the Fermi level inside the bulk
band gap and move it closer to the Dirac point of the surface
state. This helped to decrease the charge concentration and
conductivity of the samples, transforming them into insula-
tors.

In [68, 69], Bi2Se3 was doped by Cd or Ca, and the
variation of x in Bi2ÿxCdxSe3 or CaxBi2Se3 led to a Fermi
level shift from the conduction band inside the bulk band gap
and then into the valence band. It was shown in [70] that
changing the Sn concentration in �Bi1ÿdSnd�Te3 allows
shifting the Fermi level such that it intersects only surface
states in the bulk band gap. Some authors replaced binary
bismuth chalcogenides in their studies with ternary com-
pounds like Bi2Te2Se [71±73]. Quite recently, it was shown
that charge concentration in Bi2Se3 can be increased by
copper intercalation [74].

In [63], among many Bi2Te3 crystals obtained from a
grown ingot, there were both `metallic' and `nonmetallic'
samples with different charge concentrations. Figure 9, taken
from [63], shows temperature dependences of the longitudinal
resistivity rxx for four Bi2Te3 samples with different charge
concentrations. In nonmetallic samples Q1, Q2, and Q3, the
resistance increased as the temperature decreased, reaching
saturation at low temperatures with a resistance � 50 times
higher than in the metallic sample N1. Hall measurements
have shown that the bulk carrier concentration in nonmetallic
samples did not exceed� 7� 1015 cmÿ3, while for the sample
N1 it was much higher.

The authors of [63], when investigating the SdH oscilla-
tions in nonmetallic samples, confirmed the existence of a 2D
surface state in them. Figure 9b shows the derivatives
drxx=dB versus the inverse magnetic field perpendicular
component 1=B? � 1=B cos y, measured in sample Q1.
Dashed lines indicate the positions of maxima on the curves.
The lower part of Fig. 9b shows the y dependence of the third
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oscillation minimum position on the B axis (dots) and the
value of 1= cos y (solid curve). It is clear that the oscillations
depend only on B?, as it should be in the case of a 2D Fermi
surface. At angles y > 65�, oscillations were not observed.
SdH oscillations were observed in the metallic sample N1 at
angles up to y � 90� and the positions of the oscillation
amplitude minima strongly deviated from the 1= cos y
dependence, which, as the authors of [63] believed, indicated
a connection between these oscillations and the 3D Fermi
surface. It was also obtained in [65] that only 3D SdH
oscillations can be observed in Bi2Se3 with n �
5� 1018 cmÿ3. Figure 9c shows the dispersion layout of
surface states near the G point, built based on the data
in [70]. The Fermi energy positions in the studied samples
[63] are indicated with horizontal segments. As we can see
from the results presented in Fig. 9, the transport experiments
can seriously complement the ARPES experiments.

In studying SdH oscillations in conventional metals, the
connection between the Landau level indexN and the area of
the extremal cross section of the Fermi surface in k-space is
expressed as

2p�N� d� � SF
�h

eB
; �4�

where the Onsager phase correction is d � 1=2 [58, 75]. The
dependence of the positions of rxx minima andmaxima in the

inverse magnetic field 1=B on the corresponding Landau level
indices N for y � 0 was extrapolated in [63] to higher fields.
The result shows that for nonmetallic crystals, the Berry
phase is in the range 0 < g < 1=2.

The findings in [76] were not suggested by the preceding
results: the authors studied magnetotransport in Bi2Se3
samples with a high bulk carrier concentration n �
4:7� 1019 cmÿ3 and expected 3D transport domination. As
it should be for such a concentration n, the temperature
dependence of the resistance had a metallic character. But
instead of bulk SdH oscillations, only 2D oscillations were
observed, being periodic in the inverse magnetic field. A
Fourier analysis of the oscillations indicated only one
frequency.

Figure 10 shows the dependence of the longitudinal
resistance Rxx on the magnetic field, measured for different
tilt angles y of a sample with respect to the magnetic field. It is
clear that in the case of Bi2Se3 with a high bulk concentration
n, the oscillation amplitude is much higher than in [63], and
these oscillations can be studied without using the derivatives
dRxx=dB. As can be seen from Fig. 10, the oscillations were
not observed at angles y > 60�. The inset shows that as y
varies (dots), the position of the 13th Rxx minimum (marked
with arrows) follows the B13�y � 0�= cos y dependence (solid
curve), and therefore depends only on the perpendicular
component of the magnetic field. As the temperature
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increased, the oscillation amplitude decreased and the
oscillation disappeared at T > 50 K. As was noted above, such
dependences are characteristic of SdH 2D oscillations, which
occur in surface layers of 3D TIs with n � 1016ÿ1017 cmÿ3.

It is known that by measuring the temperature depen-
dence of SdH oscillations, the main kinetic parameters
associated with the system conductivity can be found using
the Lifshitz±Kosevich relation [60]

DRxx�T;B� / aT=DEN�B�
sinh�aT=DEN�B�� exp

�
ÿ aTD

DEN�B�
�
; �5�

where DE�B� � heB=�2pm 2D
eff � is the difference between

adjacent Landau level energies, m 2D
eff is the carrier effective

mass, a � 2p2kB, kB is the Boltzmann constant, and e is the
free electron charge. In this case, we obtain the relative
oscillation amplitude

DR
DR0

� T sinh
ÿ
aT=DEN�Bmin�

�
T0 sinh

ÿ
aT0=DEN�Bmin�

� : �6�

From the DR=DR0 temperature dependences, for every Bmin,
we can find the energy difference, and from the tangent to the
semilogarithmic dependence of D � DRB sinh �aT=DE� on
1=B, we can determine the Dingle temperature TD �
h=�4p2tDkB� [K]. The value of TD can be used to find m 2D

eff

and the relaxation time tD � h=�4p2TDkB�, which turns out
to be two to three times shorter than thatmeasured previously
in samples with n � 5� 1018 cmÿ3 [65]. Such a decrease in the
time tD is connected, as the authors of [76] believe, with a
large number of impurities (Se vacancies). Using the SdH
oscillation period F � ��h=2pe�SF [60], where SF � pk 2

F is the
Fermi-surface extremal cross section (under the assumption
that the Dirac cone is isotropic), we can find the Fermi wave
vector kF, the Fermi velocity vF � �hkF=m

2D
eff , and the electron

mean free path lF � vFt. The values of these parameters are
shown in Table 1. The results in [76] were explained by the
existence in a highly doped n-type 3D sample with parallel
transport through many channels, each acting as a 2D
electron system. To substantiate this explanation, the
authors of [76] employed the `bulk quantum Hall effect'
observed by them. Regarding the data from previous studies
of Bi2Se3 TIs with lower bulk carrier concentrations [64, 65,
67, 77±79], the authors of [76] assumed that Bi2Se3 has rich
electron properties with a `dimensional crossover' in the
magnetotransport behavior (from 2D to 3D and then back
to 2D) depending on n. For very low n (� 1017 cmÿ3), the bulk
conductivity vanishes and 2D surface transport is observed in
the TI [64]. For intermediate values of n (� 1017 ± 1019 cmÿ3),
the bulk transport with 3D SdH oscillations prevails [65, 67,
77±79]. For very high n (03�1019 cmÿ3), as in the discussed
paper [76], the dominating bulk transport exhibits 2D SdH
oscillations because the sample contains many 2D conductive
channels.

However, the assumption made by the authors of [76]
about the bulk transport domination with 3D SdH oscilla-
tions for the intermediate values n � 1017ÿ1019 cmÿ3 turned
out to be ambiguous. Soon after the publication of [76],
quantum oscillations were studied in Bi2ÿxSnxTe3 and
Bi2ÿxCuxSe3 single crystals with n � �3ÿ5� � 1018 cmÿ3,
demonstrating a metallic dependence of resistance on
temperature [56]. (The study of Bi2ÿxCuxSe3 single crystals
was of special interest, because the Bi2Se3 3D TI doped with
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Table 1. Parameters of 2D systems* for samples from [76, 82, 86, 87].

Sample Bi2ÿxCuxSe3 [86]
Cu0:25Bi2Se3 [82] Bi2Se3 [76] Bi2Se3, élm [87]

Parameter 1 2 3

n� 1019, cmÿ3

Fs, T
n2D � 1013, cmÿ2

kF, nmÿ1

m 2D
eff =me

TD, K
tD � 10ÿ14, s

m 2D
eff , cm

2 Vÿ1 sÿ1

vF � 105, m sÿ1

`F, nm
g

ÿ2:8
287
1.4
0.94
0.16
21.8
5.6
614
6.8
38
p

ÿ11
330
1.6
1.01
0.18
23.6
5.2
513
6.4
34
0:9p

ÿ12
300
1.5
0.97
ì
ì
ì
ì
ì
ì
1:4p

ÿ4:3
325
ì

0.97; 1.3
0.194
23.5
5.2
ì
5.8
30
ì

ÿ4:7
162
0.78
ì
0.14
25
5

620
5.7��

29��

� 0

ì
106.8
0.26
0.57
0.2
ì
ì

1330
3.3
ì
0:8p

� Fs ì2Doscillation frequency, n2D ìcarrier concentration, kF ìFermi wave vector,m 2D
eff ìcarrier effective mass,me ìfree electronmass,TD ì

Dingle temperature, tD ì relaxation time, m 2D
eff ì effective mobility, vF ìFermi velocity, `F ìmean free path, gìBerry phase, nì bulk carrier

concentration.
�� Data from [81].
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copper exhibited superconductivity at a temperature of 3.6±
3.8 K [80, 81], which gave reason to believe that this TI can
become the first topological superconductor [74]). Indeed,
Bi2ÿxSnxTe3 samples demonstrated oscillations caused only
by bulk 3D carriers from the conduction band. Although
these oscillations depended on the sample tilt angle with
respect to the magnetic field y, their amplitude decreased
insignificantly with increasing y. Positions of the oscillation
amplitude extrema on the B axis strongly deviated from the
2D dependence on the angle y, which was expected for the 2D
surface conductivity, while the Bi2ÿxCuxSe3 samples demon-
strated only 2D SdH oscillations. Most likely, the introduc-
tion of copper into Bi2Se3 not only increases the carrier
concentration, as was noted in [74], but also leads to the
formation of multiple 2D channels [76] and changes some
kinetic parameters.

Here, we first discuss magnetotransport studies of Bi2Se3
doped with copper [82]. This layered compound allows both
copper intercalation between Se layers and random substitu-
tion of Bi with copper, respectively resulting in CuxBi2Se3 or
Bi2ÿxCuxSe3. The result greatly depends on the single crystal
growing conditions (see [81] and the references therein). The
authors of [82] studied dHvA quantum oscillations in
Cu0:25Bi2Se3 and Bi2Se3 samples using torque magnetometry
in magnetic fields up to 8 T. It was discovered that doping the
samples with copper not only increases the carrier concentra-
tion but also affects the Fermi surface shape. At the same
time, vF, tD, and lF remain almost unchanged.When studying
the oscillation dependence on the angle between the magnetic
field and the sample surface in Cu0:25Bi2Se3 and Bi2Se3
crystals, the oscillations were observed only at angles less
than 35�, just as in previous studies of Bi2Se3 performed by
other authors. However, the authors of [82] made an
assumption that these oscillations are bulk ones, because the
angular dependence of their frequency can be connected with
the area variation of the 3D ellipsoidal Fermi surface cross
section during a change in the carrier concentration. Based on
this assumption, the authors deduced the Fermi wave vectors
kx
F � k

y
F � 0:97 nmÿ1 for the minor ellipsoid axes and

kz
F � 1:3 nmÿ1 for the major ellipsoid axis in Cu0:25Bi2Se3.

The angular dependence of the oscillation frequency in

the Bi2Se3 sample was used to find kx
F � k

y
F � 0:69 and

kz
F � 1:2 nmÿ1. Based on the cross-sectional area, these

values were used to obtain the respective bulk carrier
concentrations n � �1=3p2� kx

Fk
y
Fk

z
F � 4:3� 1019 cmÿ3 and

1:8� 1019 cmÿ3 in Cu0:25Bi2Se3 and Bi2Se3. The main kinetic
parameters of these systems shown in Table 1 were obtained
from the periods and temperature dependences of SdH
oscillations.

Immediately after the appearance of [82], Lahoud and
coauthors [83] used ARPES and the SdH effect and also
investigated the evolution of the Fermi surface shape in
Bi2Se3 with the variation of the bulk carrier concentration.
Experiments were performed with nonstoichiometric sam-
ples of Bi2ÿxSe3�y with n � 1017ÿ1019 cmÿ3 and a Bi2Se3
copper-doped sample with n � 1020 cmÿ3. ARPES experi-
ments have shown that the Dirac surface state exists in the
entire range of concentration variation. As n was increased,
the Dirac dispersion was preserved, but the Dirac point
shifted toward lower energies, leaving the Fermi velocity
unchanged. Figure 11a shows the ARPES data obtained with
a copper-doped Bi2Se3 sample with n � 4� 1020 cmÿ3. We
can clearly see the surface state with the Dirac point at an
energy approximately 0.5 eV lower than the Fermi level. Two
branches of the surface state linear dispersion `enclose' the
bulk parabolic band.

Figure 11b shows the longitudinal resistance of a copper-
doped Bi2Se3 sample with n � 1020 cmÿ3 as a function of the
magnetic field, measured at different angles y between the
magnetic field and the sample axis c (see the inset in Fig. 11b).
Oscillations were visible at temperatures up to 49 K and the
temperature dependence of their amplitude was used to
calculate the value m 2D

eff � 0:24me, where me is the free
electron mass. Based on the measurement data of SdH
oscillations, the authors of [83] reconstructed the Fermi
surface and showed that with an increase in n the Fermi
surface transforms from a closed ellipsoid in samples with
n � 1018 and 1019 cmÿ3 to an open cylinder in a sample with
n � 1020 cmÿ3.

SdH oscillations measured in a Bi2Se3 sample with n �
1017 cmÿ3 for different tilt angles y are shown in Fig. 12a. It is
interesting that the oscillation amplitude is very small
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compared with that in the sample with n � 1020 cmÿ3

(Fig. 11b). As stated in [83], the Dirac surface state existed
in the entire n variation range with the linear Dirac dispersion
being preserved. But if the oscillations are associated with
surface states, then their amplitude, obviously, should be
constant for all concentrations, which was not observed.

Figure 12b shows angular dependences of the SdH
oscillation frequencies for three samples with different
concentrations, obtained using the Fourier analysis of
oscillations. In samples with n � 1017 cmÿ3 and n �
1019 cmÿ3 (curves 3 and 2), the oscillations were observed at
angles y up to 90�. According to [65, 67, 77±79], such SdH
oscillation behavior should indicate the domination of 3D
bulk transport in these samples. As the authors of [83] believe,

the oscillation character corresponded to closed ellipsoidal
Fermi surfaces (curves 2 and 3 in Fig. 12b). In the sample with
n � 1020 cmÿ3 (curve 1), the oscillation amplitude decreased
as y was increased, and vanished at y > 55�. The angular
dependence of the oscillation frequency for this sample can be
well described as F / 1= cos y. This, as well as the absence of
oscillations at large y, was taken in the papers cited above to
be the proof of the observation of 2D oscillations associated
with surface states in 3D TIs. In [83], this oscillation
dependence is explained by the presence of an open
cylindrical Fermi surface, although the results of previous
studies of Bi2Se3 with large carrier concentrations [84] are
different from the ones shown in Fig. 12b. Observation of
SdH oscillations in a parallel magnetic field in the Bi2Se3
sample with n � 1017 cmÿ3 contradicts the results of previous
papers, because they indicated that in Bi2Se3 with a carrier
concentration n � 1017 cmÿ3, the oscillations should have a
2D character.

It is interesting to discuss the results of the subsequent
study of quantum oscillations in CuxBi2Se3 [85], which are
radically different from the results of previous studies [82].
The authors studied the oscillation frequency dependence on
the angle between the magnetic field and the single-crystal c
axis using torque magnetometry, but in this case in magnetic
fields up to 31 T. Unlike the oscillations in previous
experiments, where they were observed in Cu0:25Bi2Se3 and
Bi2Se3 single crystals only at angles less than 35�, the
oscillations were observed in [85] at angles up to 90�, that
is, in the field parallel to the ab plane of the surface. The
existence of oscillations in the angular range 0±90� usually
indicates their connection with the 3D Fermi surface. Again,
assuming a 3D ellipsoidal Fermi surface, the authors of [85]
used the oscillation period to calculate the areas of Fermi
surface cross sections and values of kx

F, k
y
F, and kz

F. These
values were then used to find the bulk carrier concentration,
which in six studied CuxBi2Se3 samples lay in the range
5:93� 1019 ± 13:91� 1019 cmÿ3. The angular dependence of
the oscillation frequency F�y� for low bulk concentration
samples was well described by the expression F�y� �
F0�cos2 y��kx

F=k
z
F�2 sin2 y�ÿ1=2, which corresponds to a

closed ellipsoidal Fermi surface. Here, F0 is the oscillation
frequency at y � 0 (its value is a fitting parameter) and
kx
F=k

z
F is the ellipsoidal Fermi surface eccentricity. As the

concentration increased, the Fermi surface increased in the
z-direction. For the highest-concentration sample, the closed
ellipsoidal Fermi surface model predicted the value
kz
F � 4:69 nmÿ1, which exceeded the height of the Brillouin

zone and therefore indicated the presence of an open 2D
quasicylindrical Fermi surface.

Naturally, such a change in the dimensionality of the
CuxBi2Se3 Fermi surface should be accompanied by a change
in the oscillation character. For a high carrier concentration
in the case of a quasi-two-dimensional Fermi surface, the
experiment should show two frequencies of quantum oscilla-
tions: a high frequency associated with the thickened region
of the Fermi surface and a low frequency associated with its
`neck' [85]. The higher frequency was observed in [83, 85], but
the lower one had not been observed previously, which, as
authors of [85] note, was confusing. In fact, the investigations
in [82, 84, 85] repeat the work by Lahoud and coauthors [83],
with the only difference that quantum oscillations were
studied using another method.

Therefore, it follows from [82±85] that the observed
angular dependence of quantum oscillations in CuxBi2Se3

4

6

8

10

12

14

R
x
x
,O

0 5 10

y � 0

20�

45�

60�

90�

a

2.2

F
,r
el
.u

n
it
s

2.0

1.8

1.6

1.4

1.2

1.0

0 20 40 60 80

b1

1ì n � 1020 cmÿ3

2ì n � 1019 cmÿ3

3ì n � 1017 cmÿ3
2

3

y, deg

B, T

Figure 12. (a) Longitudinal resistance of a Bi2Se3 sample with

n � 1017 cmÿ3 versus the magnetic field, measured for different angles y
between the magnetic field direction and the sample axis c. (b) Angular

dependences of SdH oscillation frequencies obtained using the Fourier

analysis of oscillations for three samples with the indicated carrier

concentrations. Solid curves show the experimental data fitting results

using the models with a cylindrical (n � 1020 cmÿ3) Fermi surface (curve

1) and with ellipsoidal (n � 1017 and 1019 cmÿ3) Fermi surfaces (curves 2

and 3) [83].

April 2017 Quantum oscillations in three-dimensional topological insulators 395



samples in amagnetic field is associated not with a 2D surface
state but with a 2D quasicylindrical Fermi surface. We note,
however, that according to the results of both ARPES
experiments [80] and quantum oscillation investigations [82],
CuxBi2Se3 samples demonstrate Dirac dispersion, which is a
characteristic feature of topological systems.

One of the main conclusions in [82±85] regarding the
Bi2Se3 Fermi surface shape variation with the change in the
bulk carrier concentration seems ambiguous, due to results of
a recent paper [86], where 2D SdH oscillations of longitudinal
rxx and Hall rxy resistances were observed in high-quality
copper-doped Bi2Se3 single crystals with a high bulk carrier
concentration and a `metallic' dependence of the resistance on
temperature. By rotating the investigated samples in a
magnetic field, it was shown that they are 3D TIs with a
series of parallel 2D conductive channels with the thickness
� 1ÿ5 nm, as it was in undoped Bi2Se3 [76].

Figures 13a, b show the longitudinal resistances of
Bi2ÿxCuxSe3 with n�1:1�1020 cmÿ3 and n�2:8�1019 cmÿ3

as functions of the magnetic field, measured for different
rotation angles y at the respective temperatures 0.3 and 1.5 K.
It is clear that as the perpendicular component of the
magnetic field decreases due to the increase in the angle y,
the SdH oscillations begin at higher fields and their amplitude
decreases. At y > 30�, rxx�B� oscillations were not observed.
Although Fig. 13b shows only the upper parts of the rxx�B�
curves, it is clear that the sample is superconducting. The inset
in Fig. 13a shows the Hall resistance Rxy in the perpendicular
(y � 0) magnetic field of 15±19.5 T. In can be seen that the
function Rxy�B� in high fields demonstrates a plateau instead
of oscillations. Probably, as in the case of undoped Bi2Se3
[76], the authors observed the `bulk quantum Hall effect'
caused by transport through multiple 2D conducting chan-
nels in a 3D single crystal.

The sample with n � 2:8� 1019 cmÿ3 was of particular
interest in [86]. Figure 14a shows Drxy oscillation amplitudes
as functions of the inverse magnetic field perpendicular
component 1=B? � 1=B cos y, measured for different angles
y in the field range 14.3±9.1 T. (In order to make the
oscillation dependences on the magnetic field more visible,
the authors used the quantity Drxy obtained by subtracting a
smooth baseline from the resistance rxy.) The 2D character of
these oscillations is obvious, because their amplitude
decreases as y is increased and becomes zero at y > 31:5�,
while the positions of maxima on the curves depend only on
the perpendicular component of the magnetic field B? and do
not change as y is varied.

Figure 14b shows the sameDrxy oscillations as in Fig. 14a,
but in a wider field range 14.3±4.5 T. Curves clearly
demonstrate oscillations with a large period, modulated by
oscillations with a small period in higher fields (Fig. 14a). The
amplitude of oscillations with a larger period barely changes
with the angle y, but their period and the positions of maxima
(marked with arrows) depend on the sample tilt angle in the
magnetic field, unlike small-period oscillations. This allows
assuming that the large-period oscillations are associated
with the Landau quantization of the 3D Fermi surface.
Fourier analysis of the oscillations indicated the presence of
two frequencies, Fb and Fs, corresponding to 3D and 2D
contributions to the conductivity. At y � 0, Fb � 39 T and
Fs � 287 T.

Figure 15 shows the results of the Fourier analysis of SdH
oscillations Drxy, which illustrate the dependence of oscilla-
tion frequencies on the angle y, shown in Fig. 14. It is clear
that the bulk oscillation frequency Fb does not change with y,
which corresponds to weak anisotropy of the 3D Fermi
surface in the plane of the y variation. On the other hand,
the frequency Fs changes with the y variation and, as shown in
the inset in Fig. 15, the values of Fs at different angles (dots)
follow the dependence � 1= cos y (solid curve). This means
that these oscillations depend only on the perpendicular
component of the magnetic field B?, and they are related to
the Landau levels of the 2D Fermi surface.

The results in [86] showed that the topological insulator
Bi2ÿxCuxSe3 with n � 2:8� 1019 cmÿ3 supports SdH oscilla-
tions with two frequencies that correspond to both bulk and
two-dimensional Fermi surfaces. If we recall the conclusions
in [82±85] about the change in the Fermi surface shape in
Bi2Se3 with the increase in the bulk carrier concentration and
about the possible coexistence of closed ellipsoidal and open
cylindrical Fermi surfaces, then it is reasonable to assume the
existence of these Fermi surface shapes in one of the samples
in [86], which is quite unlikely.
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Using the SdH oscillation period allows finding the carrier
concentration n2D in a 2D layer from the Lifshitz±Onsager
relation [60]. For 2D states, with the Landau level degeneracy
taken into account [76], the concentration can be expressed as
n2D � 2eF=h. For example, in [86], measurements of the
Bi2ÿxCuxSe3 sample with n � 1019ÿ1020 cmÿ3 resulted in the
values n2D � 14� 1012ÿ16� 1012 cmÿ2. By comparing these
valueswith the carrier concentration n in the bulk obtained from
Hall measurements, we can calculate the effective thickness of
the 2D layer d2D � n2D=n. The values specified above were used
to calculate the 2D layer thicknesses, which was 4.9 nm for the
sample with n � 3� 1019 cmÿ3, and this value is approximately

the thickness of five `quintuple layers' in the crystal structure,
each being 1 nm thick [53]. At the same time, in the case of
samples with a higher carrier concentration, n � 1� 1020 cmÿ3,
the obtained thickness was d2D � 1:3 nm, which approximately
corresponded to a single quintuple layer.

Following the conventional procedure of the SdH oscilla-
tion analysis and using their temperature dependence
(Fig. 16), the authors of [86] calculated the values of TD, tD,
the effectivemobility m 2D

eff ,m
2D
eff , lF, kF, and vF for a 2D surface

layer. The specified parameters of a 2D system in the samples
studied are shown in Table 1. The values of these parameters
are very close to the ones obtained previously for the 2D
surface conductivity in undoped and copper-doped Bi2Se3
samples [76, 82]. It is clear fromTable 1 that, just as in [82], the
values of vF, tD, and lF remain almost unchanged as the bulk
carrier concentration increases by an order of magnitude as a
result of doping with copper. This fact indicates that the
copper doping does not affect the band structure of the initial
Bi2Se3 material, and conduction electrons are located in the
linear Dirac band.

When studying transport properties of Bi2Se3 epitaxial
films with thicknesses � 10ÿ200 nm in magnetic fields up to
14 T, Taskin and coauthors [87] observed 2DSdHoscillations
with a frequency of 106.8 T, which were used to calculate the
kinetic parameters of the system given in Table 1. The phase
parameter was also calculated as b � 0:4� 0:04, with the
Berry phase equal to 0:8p. It is now easy to conclude that in
single crystal Bi2Se3 3D TIs, both pure and copper-doped, as
well as in thin Bi2Se3 films, the topological surfaces have very
close fundamental kinetic parameters.
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Similar results were obtained when studying more
complicated TI: Bi2Te2Se [71, 73, 88], Bi2Se2:1Te0:9 [89],
Tl1ÿxBi1�xSe2 [90], and Bi2ÿxSnxTe2Se [91].

We first discuss papers [71, 88], where SdH oscillations
were studied in Bi2Te2Se TIs. It was mentioned above that
according to theory, 3D TIs should be insulators in the bulk,
while Bi2Te3 and Bi2Se3 are semimetals. Usually, their Fermi
level is located at the edge of the conduction band, and they
demonstrate high conductivity. As a result, the bulk current
in them always prevails over the surface current [62±65, 67,
69]. Ren and coauthors [71] found that with a slight Se
surplus, Bi2Te2Se crystals can be obtained with a large bulk
resistance and the Fermi level located inside the bulk band
gap. In this hybrid material, the Se ions are located in the
deepest `sublayer' in each quintuple layer. Thus,
Bi2Te1:95Se1:05 samples with thicknesses up to 260 mmdemon-
strated clearly pronounced SdH oscillations associated with
the surface state, which is confirmed by the data in Table 2.
The experiments by Ren and collaborators were followed by

paper [88], where quantum oscillations were studied in
Bi2Te2Se samples with an even larger bulk resistance in
magnetic fields up to 45 T. The obtained results, except for
the 2D mobility value m 2D

eff � 3200� 300 cm2 Vÿ1 sÿ1, turned
out to be similar to the ones obtained earlier with the
Bi2Te2Se sample [73]. The obtained large value of m 2D

eff was a
strong argument supporting the assumption that the oscilla-
tions were associated with surface states.

Recently, in [89], 2D SdH oscillations were observed in p-
type Bi2Se2:1Te0:9 single crystals, despite a high carrier
concentration in the bulk (2� 1018 cmÿ3) and the `metallic'
dependence of the resistance on the temperature. Results of a
Fourier analysis of the oscillations showed a strong peak at
the frequency F � 23 T with a sideband on the right-hand
side of the peak, which was visible at low temperatures. As the
temperature increased, this sideband disappeared. As the
authors of [89] believe, this could indicate a small contribu-
tion of high-frequency oscillations, as was observed in other
topological systems with complicated Fermi surfaces [62, 72].
As the angle y of the sample tilt to the magnetic field
increased, the oscillation amplitude rapidly decreased and
vanished at large angles. The angular dependence of the
oscillation maxima positions was in good agreement with
the function 1= cos y, as it should be in the case of 2D
quantum oscillations associated with topological surface
states [63]. The oscillation frequency was used to calculate
the values of kF and the surface carrier concentration. The
value of kF turned out to be slightly smaller than the values of
kF obtained for other TIs, both p-type and n-type [63, 64, 71,
72], which indicates that the Fermi level is close to the Dirac
point in the samples studied. Using the Lifshitz±Kosevich
theory and the linear Dirac dispersion vF � �hkF=m

2D
eff , the

authors of [89] calculated the main kinetic parameters (see
Table 2).

In [90], the SdH effect was investigated in two
Tl1ÿxBi1�xSe2 single crystals with hole conductivity and
the bulk carrier concentrations 3:4� 1016 cmÿ3 and
1:7� 1016 cmÿ3 in fields up to 9 T. The quantum oscillation
amplitude dependences on the magnetic field component
perpendicular to the sample surface were in good agreement
with the expression 1=B? � 1=B cos y. The oscillation fre-
quency F was 209� 3 T. Assuming, in accordance with [92],
the Fermi surface cross section to be round, the authors of [90]
used the expressions F � �hSF=�2pe�, SF � pk 2

F, and SF �
�2p2� n2D to calculate kF and the surface carrier concentra-
tion n2D, which turned out to be comparable with the ARPES
data [93]. The values of vF, TD, tD, `2D, m 2D

eff , and m SdH
2D were

also obtained, and they are shown in Table 2.
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Table 2. Parameters of 2D systems for samples from [71, 89±91].

Sample
Parameter

Bi2Te2Se [71] Bi2Se2:1Te0:9 [89] Bi2ÿxSnxTe2Se [91] Tl1ÿxBi1�xSe [90]

n, cmÿ3

Fs, T
n2D, cmÿ2

kF, cmÿ1

m 2D
eff =me

TD, K
tD, s
m 2D
eff , cm

2 Vÿ1 sÿ1

vF, m sÿ1

`F, nm
g

2:4� 1017

64
1:5� 1012

4:4

0:11

25:5

4:8� 10ÿ14

760
4:6� 105

22
�0:44� 0:24� p

2� 1018

23
5:8� 1011

2:7

0:08

12
1:0� 10ÿ13

2200
3:9� 105

39
p

� 1018

ì
2:8� 1012

5:9

0:13

12:5

ì
1300

4:6� 105

ì
�0:8� 0:2�p

2:5� 1016

209� 3

5:1� 1012

8.0
�0:03� 0:01�

4.2
2:9� 10ÿ13

2200
4:1� 105

120
�0:94� 0:12� p
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The influence of Sn atom doping on the transport
properties of Bi2ÿxSnxTe2Se TI with 04 x4 0:02 was
studied in [91]. The undoped n-type compound (x � 0)
demonstrated a metallic temperature dependence of the
resistance with the Fermi level located inside the conduction
band. The introduction of Sn shifted this level inside the bulk
band gap and for x5 0:004 the temperature dependence of
resistance demonstrated a semiconducting character. The
analysis of SdH oscillations directly proved that surface
transport is dominant in massive Sn-doped Bi2Te2Se samples
with a thickness of several micrometers (see Table 2).

In [91], besides the considered simple case, the authors
observed a more complicated picture. For example, a Fourier
analysis of the SdH oscillations in the sample with x � 0:01
indicated two frequencies: F1 � 70 T and F2 � 132 T,
which corresponded to the respective wave vectors kF �
4:6� 106 cmÿ1 and kF�6:3� 106 cmÿ1 and concentrations
n2D�1:7�1012 cmÿ2 and n2D�3:2� 1012 cmÿ2. Due to the
complicated character of these oscillations, the authors of [91]
did not calculate the effective carrier masses or Dingle
temperatures for every component.

Summarized data on the difference between the Fermi
level energy EF and the Dirac point energy ED obtained over
recent years from 2D SdH oscillations in 3D TIs [63, 64, 71,
72, 88, 90, 93] is shown in Fig. 17 [90]. As can be seen, there is
only one case with the Fermi level located below the Dirac
point, when the spins are carried by holes (the image also
schematically shows the Dirac cone).

From the data presented above, it can be concluded that
the ARPES experiments and magnetotransport experiments
confirm the existence of 2D surface states in 3DTIs.However,
until recently, the question regarding the value of the Berry
phase inTIs remained open, because therewas no reliable data
on both the ARPES experiments and the transport experi-
ments in the literature [63, 64], although the phase term in 2D
SdH oscillations allows us to make sure once again that the
observed oscillations are associated with Dirac fermions.

When both 2D and 3D carriers coexist in a sample, the
indexN of the field BN in SdH oscillations plays a key role for
the calculation of the Berry phase [1, 49]. However, the
literature still does not give convincing answers to two
questions. First, should BN be chosen using the minima or
the maxima of the SdH oscillation amplitude? And second,
should the magnetoresistance or the magnetoconductance be
used when calculating the Berry phase?

The importance of the N index definition in the phase
analysis of SdH oscillations is clear from [71], where the
Bi2Te2Se 3D-TI was studied. The authors of [71] defined
the N indices using the rxx resistance minima and obtained
the value of the phase parameter b � 0:22� 0:12 [see
expression (3)]. Later, these results were processed again in
[2] and theN indices were determined using the minima of the
conductivity sxx. The same experimental data resulted in the
value b � 0:5 and consequently the Berry phase g � p, which
corresponds to the SdH oscillation theory associated with
Dirac fermions. This means that the approach developed in
[63, 87] should be used in calculating the Berry phase.
Obviously, the overlap of the Fermi level with the Landau
level leads to a maximum in the electron density of states and
hence to a conduction maximum. If the Fermi level is located
between the Landau levels, where there are no electrons, then
the density of states and conduction are minimal. In that case,
some Landau levels below the Fermi level are filled and the
next level is empty. This minimum in sxx can then correspond

to a specific index N, while the maximum would correspond
to the index N� 1=2.

Because the 2D and 3D conductivities are additive in a 3D
TI, the measured resistances can be transformed into the
conductivities sxx � rxx=�r 2

xx � r 2
xy�. Figure 18a shows the

positions of sxx minima in the inverse magnetic field 1=B as a
function ofN (a fan diagram of Landau levels) for the sample
with n � 2:8� 1019 cmÿ3 [86]. The value of sxx shown in the
upper part of the inset in Fig. 18a is calculated using the data
from the resistance measurements (shown in Fig. 13b) at
y � 0. Arrows indicate the indicesN of the Landau levels. It is
clear that the values N in Fig. 18a can be well fitted with the
line with a fixed tangent, which also follows from the
dependence of F=BN on N, where F � 287 T is the result of
the Fourier analysis of oscillations, shown in the lower inset in
Fig. 18a. The dashed line in Fig. 18a intersects the N axis at
the point 0.5. The conductivity of the TI oscillates in the
magnetic field according to expression (3), which means that
as 1=B! 0, the intersection of the straight line and theN axis
give the phase parameter b � g=�2p� and the Berry phase
g � p. Figure 18b [86] shows fan diagrams of Landau levels in
the sample with n � 1:1� 1020 cmÿ3 for two tilt angles with
respect to the magnetic field direction. The data correspond
to the sxx minima. To verify the validity of the BN choice
according to [63, 88], the figure also shows the data that
corresponds to the N� 1=2 maxima of the conductivity sxx.
Straight lines (data extrapolation to 1=B! 0) intersect the x
axis at the point b � 0:45, which leads to the phase g � 0:9p.
Similar data was obtained for the sample with n�
1:2�1020 cmÿ3 at the angles y � 0; 22�; 36� [86]. Based on
this, we can conclude that the Berry phase in the studied
samples is g � p and does not depend on the direction of the
magnetic field. The data on g are shown in Table 1.

3. Conclusions

Currently, the study of TIs is themost rapidly developing field
of solid state physics. A list of more than 30 TIs based on Bi,
Sb, Se, Te, Tl, Sn, and Pb that were studied experimentally is
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given in [2], although there are many more materials that are
topological insulators according to theoretical predictions,
but have not been studied experimentally yet. Although the
fundamental properties of TIs seem to be identified, the TI
research field is at the early stage of development. Great effort
will be needed to realize the unique possibilities of these
interesting materials [8].

Not long ago, it was believed that TIs should be ideal
insulators with the bulk carrier concentration n91017 cmÿ3,

but it was shown recently that in 3D materials with high
carrier concentration n � 1019ÿ1020 cmÿ3, surface transport
can dominate over the bulk transport at low temperatures. In
the nearest future, researchers will hopefully discover new
materials with larger band gaps, which would demonstrate TI
properties at room temperature. As was shown in [91], a tin-
doped Bi2Te2Se sample remains a TI even at the temperature
of 100 K. An important task is also the growth of relatively
pure material samples with the Fermi level located near the
Dirac point of the surface state.

The quantum spin Hall effect allows the spin current to
flow dissipationlessly andmakes it possible to control the spin
degrees of freedomwith the electric field without themagnetic
field. These properties can be used to create promising
spintronic devices with low losses. The dependence of the
electron spin on its momentum allows using these devices for
memory storage in quantum computers, where the data cell
unit will be the electron spin. Manipulations with spins are
less energy consuming than charge variations in solid state
storage devices. On the other hand, it is difficult to randomly
change the electron spin in the surface layer of a TI, which
prevents unwanted data loss [8].

Because superconductors have a band gap on the Fermi
level, in some sense they turn out to be similar to insulators
and can give rise to the fabrication of topological super-
conductors whose topological invariance is protected by the
presence of a band gap [1, 94].
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