
Abstract. The electrodynamics of active continuous media is
applied to theoretically examine collective spontaneous emis-
sion regimes of dipole oscillator ensembles. Recent experiments
in which the superfluorescence phenomenon has been observed
are reviewed. The focus is on propagation and interaction
effects experienced by the inhomogeneous waves of active cen-
ter polarization and electromagnetic fields. The superradiant

laser dynamics is examined and prospects for the realization of
superradiant lasers using low-Q cavities are discussed.
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1. Introduction.
From the quantum Dicke superradiance problem
to the classical dissipative instability problem

1.1 Various aspects of the superradiance concept
Quite a spectacular term `superradiance', initially proposed
by Dicke [1] to describe a well-manifested phenomenon of
collective spontaneous emission of a lumped ensemble of
dipole oscillators, is applied in many contemporary studies
for a considerably more diverse class of problems, has a
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variety of shades, and as a whole carries a broader and, hence,
a less specific implication. The only thing that remains
invariable in different contexts is its meaning characterizing
the phasing of emission from elements of some systems:
nuclear spins or atoms, simple or organic molecules,
impurity centers in glasses or quantum dots in semiconduc-
tor crystals, Josephson junctions ormicrolaser chips, nano- or
macroelements of aerial arrays, etc.

The coherent emission mechanism based on the phasing
of elements of different microwave arrays or generators was
extensively used and studied in the middle of the 20th century
even before the appearance of Dicke's paper. A well-known
example is radar, where the directivity diagram of a phased
array is controlled by changing the amplitude±phase distribu-
tion of excitation currents in emitting elements.

In this review, we will use both the broad and the
specialized meaning of the term `superradiance', separating
problems in which the coherent dynamics of dipole oscillators
interacting via their own radiation field is fundamentally
important (various aspects of terminology are discussed in
Refs [2±5]). Moreover, we will assume that the radiative
interaction dominates in transitions of separate active
centers between energy levels and, in particular, determines
the spontaneous transition time both for an isolated excited
center�T1� and for an ensemble of excited centers as a whole
�T1c < T1�. In the case of spontaneous emission, the super-
radiant behavior appears in a quite dense ensemble of excited
active centers with close or equal transition frequencies under
conditions when quantum oscillations of emitting dipole
moments of active centers acquire a cooperative nature also
affecting quantum oscillations of the total electromagnetic
field (see Section 2).

Under these conditions, it is impossible to calculate the
spontaneous transition time based on Fermi's golden rule and
to interpret spontaneous transitions in active centers from
high-energy levels to lower levels by the action of some
combination of independent vacuum (quantum) fluctuations
of their dipole moments and the surrounding electromagnetic
field. Notice, however, that, as in the case of spontaneous
emission of an isolated dipole oscillator (cf., for example,
Refs [6±9]), such an interpretation is unnecessary, because the
nature of spontaneous emission, including collective emis-
sion, can be readily explained classically [3, 10±15]. As was
done 30 years ago [16], we will use below namely this
circumstance, which was often emphasized in our conversa-
tions with V L Ginzburg, to whom this review is devoted on
the 100th anniversary of his birth.

1.2 Method of the electrodynamics of continuous media
The nature of any, in particular, spontaneous emission of an
individual active center in a dense ensemble significantly
differs from that in a vacuum, i.e. in the limit of a strongly
rarefied ensemble when active centers are in fact isolated. It
happens so because the structure, dispersion, and decay or
growth rate (decrement or increment) of self-consistent
natural oscillations or waves of dipole oscillations and the
electromagnetic field in dense ensembles considerably differ
from those in rarefied ensembles. Such a significant change in
natural electromagnetic excitations appears, of course, not
only when a dense ensemble is placed in a vacuum but also
when it is placed into a medium or an electrodynamic system
(waveguide, cavity) where waves and oscillations are also
modified by the self-consistent oscillations of active-center
dipoles. Such an `outside medium' in superradiance problems

can usually be considered passive (like a vacuum) and
characterized by the positive permittivity e0 and the non-
negative ohmic conductivity s0.1 It is assumed in this case that
external electromagnetic waves are absent, i.e., the emission
field is spontaneously produced by active centers excited at
the initial instant and (or) upon continuous incoherent
(nonresonant) pumping.

Under these conditions, collective spontaneous emission
with the characteristic lifetime T1c considerably shorter than
T1 takes place when the self-consistent oscillations and waves
mentioned above have growth rates �� Tÿ11c � considerably
exceeding the incoherent relaxation rate T ÿ12 of free (partial)
oscillations of the dipole moment of an individual active
center determined by the phase decay time of these oscilla-
tions, T2 9T1. It is critical that collective spontaneous
emission can originate from the quantum or thermal noise
level, and then in the absence of continuous (CW) pumping it
is called superfluorescence. In general, when there exist initial,
even small, phased oscillations of dipole moments of active
centers produced, for example, by a trigger pulse from an
external resonance electromagnetic field, such a process is
called superradiance. Finally, in the case of continuous
pumping, superradiant lasing takes place. It is important
that in all these situations the nature of the process is the
same and can be related from the quantum point of view to
the induced emission of quanta of self-consistent oscillations
or waves by active centers. From the classical point of view,
the process is reduced to a well-known multifaceted problem
of either active quasistatic systems (lumped generators) in the
case of a localized cluster or a small number of active centers
occupying a region smaller in size than the emission
wavelength l0 or the electrodynamics of continuous active
media (distributed amplifiers and generators) in the case of
many active centers occupying an extended region of size
B0l0 [3, 7, 18±20].

The classical approach based on the electrodynamics of
continuous active media applied to the superradiance
phenomenon was developed in the 1980s. It was first
presented in review [3], although its efficacy could hardly be
doubted even in the 1970s after the quantum analysis of both
single-pulse superfluorescence in a lumped model and
oscillating superfluorescence in a distributed sample per-
formed in these years (see, for example, papers [10, 11, 21]).
In the 1950s±1960s, the possibility of spontaneous phasing of
dipole oscillators in a dense ensemble did not receive proper
attention, and the theoretical analysis of superradiant
processes, following Dicke's work [1], predominantly con-
cerned the features of collective spontaneous emission of one
or another system of two-level active centers prepared in
phased states by a pulse from an external electromagnetic
field. Notice that this situation, applied to collective sponta-
neous radio emission of a lumped spin ensemble, first of all
nuclear spins, was well known for a long time and was
qualitatively discussed even before Dicke's work (see
Refs [22±26], although the first distinct experiments [27±34]
in this field were performed after the first reliable optical
experiments on superfluorescence of atoms and molecules
[35±42]).

1 If an active `outside medium' amplifying the electromagnetic field at

oscillator frequencies is located at the sites or near dipole oscillators (so

that s0 < 0), near-field effects can cause the instability of the ground state

of active centers even in the absence of amplifiable electromagnetic waves,

thereby making impossible the standard formulation of the spontaneous

emission problem [17].
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Most of these experiments, like Dicke's initial problem,
concerned ensembles with weakly inhomogeneously broad-
ened transition frequencies of active centers and were
described in the mean-field model or unidirectional super-
radiance model (see, for example, reviews and books [12, 14,
43±47] and also Sections 2 and 3). In all such cases, as shown
in Refs [3, 16, 48], collective spontaneous emission is based on
the dissipative (radiative) instability of self-consistent polar-
ization oscillations or polarization waves having negative
energy and inducing the accelerated synchronous emission
of the internal energy of dipole oscillators. We will demon-
strate in Section 2 that this approach allows us not only to
study the semiclassical dynamics of collective spontaneous
emission but also to construct the efficient quantum descrip-
tion of many classically formulated problems on super-
radiance, initiated by Dicke's quantum calculations in 1954
and by the work of his followers in the 1960s±1970s [21, 49±
55].

The developed approach provides a qualitative interpreta-
tion of recent experimental studies of collective spontaneous
emission in various ensembles of dipole oscillators (see, for
example, Refs [56±68, 315*]. Some of these experiments will
be considered in Section 4. Of special interest are experi-
mental studies of phase transitions in systems of radiatively
interacting dipoles, including nonequilibrium dipoles, but not
necessarily possessing an inverse population of energy levels
[69±73].

The example of an open system demonstrating the
nonequilibrium phase transition is presented in Ref. [74].
The system is composed by an ensemble of multilevel atoms
placed into an optical cavity and involved in Raman
transitions in the presence of an external controling laser
field. The presence of the latter is crucial for the existence of
the Dicke phase transition to a state with a nonzero intensity
of the optical emission of atoms.2 Recently, various analogs
of this open system allowing phase transitions were also
studied, and the first experimental proof of their existence is
presented in Refs [70, 71]. Such phase transitions, including
the hypothetical Dicke quantum phase transition [15, 83±86],
are not related to the collective generation of radiation pulses
discussed in our review, and therefore relevant recent
investigations will only be mentioned in the conclusions.

1.3 Some challenging problems
In this review, we will consider experimental attempts to
obtain superradiance (or superfluorescence) in dipole ensem-
bles with strongly inhomogeneously broadened spectral lines
and theoretical concepts about the conditions required for
obtaining superradiance, when collective spontaneous emis-
sion is impossible without the selection of emitted electro-
magnetic modes or modification of the energy eigenstates of
dipoles and their distribution over these states. These
attempts are related to promising applications and the
expected rich generation dynamics of various superradiant
modes, both in the initial formulation of the problem about
the emission of preliminarily excited dipoles and in the
presence of continuous pumping. In the latter case, we are
dealing with superradiant lasers which can be created based
on recently developed active media and can open new

prospects not only for spectacular fundamental experiments
on the border of quantum and classical physics of many-
particle systems but also for the development of important
applications, for example, in information technologies and
spectroscopy.

It should be noted that various manifestations of
collective spontaneous emission for ensembles of dipole
oscillators with inhomogeneously broadened spectral lines
may not be confined to the generation of polarization waves
or polariton modes with negative energy, or may not include
them at all. They can be described by the excitation and
nonlinear interaction of a broader set of electromagnetic
modes or waves related to oscillations of dipole oscillators in
some parts of a spectral line and having positive energy.
Nevertheless, superradiance is always characterized by the
presence of rather fast transient or correlation effects towhich
a spectral band corresponds. This band covers the natural
frequencies of dipole oscillators forming the corresponding
electromagnetic waves or modes, which predetermines the
radiation-induced self-phasing of dipole oscillations and
therefore the collective effects of their behavior.

The review outline is as follows. Section 2 is devoted to the
description of collective spontaneous emission in the simplest
mean field models. In Section 3, we consider the more
advanced models of distributed systems with homoge-
neously broadened spectral lines for simplicity. In Section 4,
we discuss observations of the superfluorescence of waves in a
continuous spectrum in various nonequilibrium media, the
main attention being paid to collective electron±hole recom-
bination in semiconductors. Section 5 considers the dynamics
of discrete modes and describes the expected superfluores-
cence regimes upon pulsed pumping and superradiant lasing
upon continuous (CW) pumping of active media in combined
low-Q cavities. Final Section 6 contains general conclusions
and concerns problems of superradiant lasers and collective
states in many-particle systems with radiative and nonradia-
tive interactions.

2. Mean field model, quantum fluctuations,
and classical analogs of superfluorescence

2.1 Semiclassical two-level model equations
For definiteness, we will use, unless otherwise stated, the
efficient two-level approximation of point active centers in
the form of dipole oscillators at frequencyo21 with the dipole
transition moment d (possible level degeneracy is ignored for
simplicity). Then, in our approach based on the electrody-
namics of continuous active media [3, 20, 53, 87±89], the main
properties of collective quantum-electrodynamic phenom-
ena, including Dicke superradiance, are described by Max-
well's equations for electric and magnetic fields EE and BB and
semiclassical equations for polarization PP (the dipole
moment of a unit volume), and the population difference
N � N2 ÿN1 of the upper and lower energy levels of active
centers in a unit volume:

rot EEE � ÿ 1

c

qBB
qt

; rotBB � ÿ 1

c

q�e0 EE � 4pPP�
qt

� 4ps0
c
EE ; �1�

q2PP
qt 2
� 2

T2

qPP
qt
� �o2

21 � T ÿ22 �PP � ÿ
o2

c

p
EE ; �2�

qN
qt
�NÿNp

T1
� 2

�ho21
EE qPP

qt
; �3�

* Paper [315] is added in proof reading. (Editor's note.)
2 Note that such a Dicke phase transition in a closed atomic system

predicted in Refs [75±77] is impossible because the Hamiltonian contains a

term proportional to the vector field potential squared (see Refs [78±82]).
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where c is the speed of light in a vacuum. In general, it is
assumed that active centers are located with density N0�r� in
an isotropic matrix with the real permittivity e0�r� and ohmic
conductivity s0�r� and are nonresonantly pumped. The
pumping produces the population inversion Dp �
Np�r; t�=N0�r� in each active center with the rate Tÿ11 also
taking into account the contribution of its individual
spontaneous relaxation (both nonradiative and radiative
with the rate Tÿ101 � 4d 2o3

21

����
e0
p

=�3�hc 3� for an isolated
center).

Equations (1)±(3) should be supplemented with initial
conditions and boundary conditions at the boundaries of the
active medium, the matrix, and additional electrodynamic
constructions, for example, the waveguide and cavity walls.
Formally, the inhomogeneous distribution N0�r� of active
centers is taken into account by the coefficient of the electric
field in Eqn (2)Ð the square of the `cooperative frequency'
depending on the population inversion:

o2
c �

2pd 2o21N0D

�h
; �4�

which is positive for the positive inversion D � N�r; t�=N0�r�
�jDj4 1�. For simplicity, here and in many cases below we
ignore possible differences between frequencies of active
centers, i.e., the inhomogeneous broadening of their spectral
line, and omit in the cooperative frequency the factor � 1=3
related to averaging over the orientation of active dipoles,
thus assuming that dkEE for all them. Thus, Eqns (2) and (3)
are in fact written for quantum-mechanical averages of the
dipole moment and the inversion of one immobile active
center hdi � PP=N0 and hDi, respectively (here, angle brack-
ets denote quantum-mechanical averaging rather than
spatial averaging, as everywhere below). Of course,
Eqns (1)±(3) do not carry information on quantum self- or
cross-correlations in the behavior of individual active centers
or on nonclassical quantum properties of the electromag-
netic field, which are also of interest and have recently been
studied in Refs [15, 90±96].

If the characteristic size B of a total system is small
compared to the so-called cooperative length c=oc (usually
determined forD � 1 and independent of e0), the delay effects
for collective spontaneous emission and the distribution
inhomogeneity of active centers can usually be disregarded
and the mean field model can be applied. This model is
equivalent in many respects to the Dicke grain model 3 [47,
106±110].

2.2 Spatial averaging of fields
There are two main variants of moving to the mean field
model. The first one is the averaging of the field amplitudes in
Eqns (1)±(3) over the volumeV occupied by the ensemble and
the exclusion of spatial derivatives from Eqn (1) taking into
account radiative losses, i.e., by replacing ohmic losses s0 by
the effective quantity s � s0 � srad, including radiative losses
srad through all facets of the sample. The second variant
considers only one certain spatial mode of the electrodynamic
system under study with frequency ~o close to o21, and the
finite photon lifetime TE � �2ps�ÿ1 in the mode. This also
allows us to ignore spatial derivatives and restrict ourselves to
the analysis of only the time dynamics of the field amplitudes
of the chosen mode with the field-matched polarization and
inversion. In the latter case, to take into account only partial
possible occupation of the mode volume by the active
medium and the difference between its profile and the density
profileN0�r� of active centers, the averaged occupation factor
~G4 1 is usually introduced [5, 111, 112]. Along with the
homogeneous permittivity e0 of the matrix, this factor can be
readily excluded from the initial system of Eqns (1)±(4) by
making the substitution

~BB � BB����
~G
p ; ~EE � EE

�����
e0
~G

r
; ~PP � PP

�����
~G
e0

s
;

�5�
c0 � c����

e0
p ; ~s0 � s0~G

e0
; ~o2

c �
o2

c
~G

e0
;

which leads to Eqns (1)±(3) for the mode with the chosen
profile with e0 � 1, ~G � 1 and the renormalized speed of light,
ohmic losses, and cooperative frequency.

The mean field model qualitatively correctly describes
many properties of collective spontaneous emission and their
physical meaning for most of the experiments and theoretical
problems considered (see, for example, Refs [4, 5, 14, 47, 113,
114]). (The mean field model also explains many features of
the superradiant dynamics of ensembles of other dipole
oscillators, for example, three-level or quasiclassical oscilla-
tors [58, 60, 110, 115±125, 315] for which cascade super-
fluorescence involving two or more transitions between
active-center levels is possible.) We will not repeat here the
known particular conclusions, especially since we return to
some of them in Sections 3±5. The general conclusion
mentioned in the Introduction is that collective spontaneous
emission (both superfluorescence and initiated superradi-
ance) having a classical nature, in the case of negligible
inhomogeneous broadening of spectral lines, is caused by
the instability of the so-called hot polariton modes (or
polarization waves) possessing negative energy and growing
due to superradiant emission with the growth rate exceeding
the relaxation rate of dipole oscillations of an individual
active center: Imo>Tÿ12 [3, 48]. This inequality serves as a
criterion for collective spontaneous emission and can be
fulfilled for a quite high cooperative frequency (4):
oc�~G=e0�1=2 > Tÿ12 . The additional condition is that the
photon lifetime for corresponding so-called cold modes (or
electromagnetic waves) for the zero inversionN � 0 must not
greatly exceed the time of dipole oscillations of individual
active centers, TE 9T2, to avoid the transformation of
superfluorescence or superradiance to the quasiperiodic
energy exchange between active centers and field modes, i.e.,
optical nutation of each active center under the action of the
field of other active centers.

3 It is well known [3, 89, 97] that the random motion of atoms (molecules)

in a gas inevitably interacting with each other as two dipoles (inWeisskopf

collisions) leads to a strong relaxation of polarization. Thus, the dipole

moment of a unit volume in the medium relaxes with the rate

Tÿ12 ' N0d
2=�h, making impossible superradiance in grains (samples with

volume V < l30) predicted by Dicke, where l0 � 2pc0=o21 is the emission

wavelength and c0 � c=
����
e0
p

is the speed of light in thematrix. According to

experimental facts and theoretical considerations [20, 98±104], the super-

radiance of an ensemble of active centers in such a grain is possible only in

the case of their certain spatial and orientational ordering, which weakens

the incoherent polarization relaxation caused by the interaction of dipoles

and makes accounting for differences between the acting and mean fields

important, which we ignore here for simplicity. The important role of these

differences is illustrated by the model of the antiferroelectric Dicke phase

transition predicting the possibility of spontaneous formation of a

quasistatic polarization structure in the thermodynamically equilibrium

gas of interacting two-level dipole molecules [105].
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It should be noted that in a sample with well-reflecting
faces or in a closed circular optical fiber, where the spatial
mode structure is uniform enough and radiation escape is
strongly hindered, the fast collective relaxation of inverted
active centers caused by dissipative instability is possible in
the presence of ohmic or diffraction losses of the field. Its
oscillogram, as in the case of superfluorescence, demonstrates
either a single-pulse process of superabsorption with a
duration of � ps=o2

c�t � 0� (for ps0oc�t � 0�4Tÿ12 ) or a
slowly relaxing oscillatory process of optical nutation of the
Bloch vector in a self-consistent field with period oÿ1c �t � 0�
(for oc�t � 0�4 ps;Tÿ12 ) [126]. The oscillatory type of this
process, as with collective spontaneous emission in the mean
field model [4, 14, 112, 114, 127±129], is caused by the
nonadiabatic interaction of polariton and electromagnetic
modes in a sample with the rapidly changing inversion N�t�.
If active centers are located in a plasma (for example, atoms
in a partially ionized gas or impurity centers in a semicon-
ductor) and a plasma-dipole resonance takes place, o21 '
4pe 2Ne=�me

����
e0
p �, where e,me, andNe are the electron charge,

mass, and density, respectively, then, along with the ohmic
superabsorption of the stored inversion energy, the collective
spontaneous transfer of this energy to long-wavelength
quasihomogeneous electron oscillations is possible due to
the absolute dissipative instability of polarization waves with
negative energy and their connection with plasma waves
carrying positive energy. The maximum growth rate of this
instability has the form4

max Imo �
�
o2

c

e0
�
�
ps0
e0
ÿ 1

2T2

�2�1=2
ÿ ps0

e0
ÿ 1

2T2
:

A similar nonlinear process, both single-pulse and oscillatory,
is considered in work [131], where the possibility of its
realization in partially ionized gases and semiconductors is
discussed in the mean field model, which is natural in this
case. Such problems dealing with the superradiance of
plasmons, which are excited, for example, in a metal
nanoparticle under the action of inverted active centers
(organic molecules or quantum dots), by phasing their dipole
oscillations and rapidly transferring the inversion energy
stored in them to heat and partially to electromagnetic
radiation, were considered in papers [64, 132±137]. In
addition, the authors of these papers also considered the
superradiance of two-dimensional gratings of such nanopar-
ticles with active centers (so-called spasers from the first
letters of words surface plasmon amplification by stimulated
emission of radiation). Such questions have recently come to
the fore in connectionwith rapid progress in nanoplasmonics.

In this case, several polaritonmodes (or polarizationwave
packets) can be self-excited during the same process and all of
them will be `hot', i.e., different from cold modes (or
electromagnetic wave packets) due to inclusion of the
nonzero inversion, N 6� 0, and the dispersion of the active
medium of dipole oscillators according to Eqns (1)±(3). The
linear stage of the development of all such hot polariton
modes having different frequencies, growth rates, profiles,
and occupation factors can be adequately described in the
mean field model. However, a description of the nonlinear

stage of the process and the interaction between these modes
often requires going beyond the framework of this model,
because the structure of hot modes depends on the spatial
distribution of the active center inversion. The inversion
rapidly changes at the nonlinear stage and, as a rule, does
not allow the application of the adiabatic approximation of
slowly varying noninteracting hot modes, which is implied in
fact in the mean field model for each individual mode. In this
respect, superfluorescence and superradiance differ qualita-
tively from the known superluminescence phenomenonwhich
usually concerns the boundary stationary problem of ampli-
fication of intrinsic incoherent emission (luminescence) of
noninteracting active centers in the medium formed by them.
From the point of view of an individual isolated active center,
superluminescence constitutes the quasistationary emission
of a `partial' photon induced by an incoherent wave field
independently produced and amplified by other active centers
in the absence of external radiation sources, exclusively due to
vacuum fluctuations of the electromagnetic field and the
dipole moment of an individual active center.

2.3 Quantization of modes with negative energy
and superfluorescence fluctuations
The quantum properties of collective spontaneous emission,
for example, the statistics of delay times of emitted pulses,
their propagation directions, and electric field polarization in
them, are in fact predetermined by quantum fluctuations of
hot modes (or waves) at the linear stage of their growth. They
begin to dominate at that time in quantum-correlation
characteristics of particle states, whereas initial quantum
correlations in a many-particle ensemble are `forgotten', and
effective `quantum-mechanical' fluctuation forces in semi-
classical equations prove to be insignificant [3, 13, 15, 16, 21,
53, 126, 138±140]. These properties can be elucidated with the
help of the mean field model adapted to describe all
m � 1; . . . ;M of hot modes involved in the superradiance
process and having growth rates Imom � o 00m on the order of
the maximum T ÿ11c . In the quantization of this model and
more general equations like (1)±(3), the dissipative character
of the instability governing superfluorescence as a result of
interaction between quantum oscillators (modes or waves)
with opposite energy signs is the most important. This feature
in the dynamics of developing fluctuations of collective
excitations from the micro- to macrolevel is expressed in the
use of the HermitianHamiltonian operator Ĥ in the quantum
theory, which is not positively defined (in the linear approx-
imation). Such an approach allows us to take into account the
frequency and spatial dispersions, nonlinearity and inhomo-
geneity, anisotropy, and sources in the active medium.

The simplest variant is illustrated by progressing the
dynamic dissipative instability of two coherently interacting
oscillators with different quantum energy signsÐpartial
polarization oscillations of active centers �o�0�1 � o21�,
and the electromagnetic field in a vacuum �o�0�2 � ck� in the
single-mode superradiance model ignoring relaxation:

Ĥ � ÿ�ho�0�1 â�1 â1 � �ho�0�2 â�2 â2 �
1

2
�hoc�â1â2 � â�2 â

�
1 � ; �6�

dâj
dt
� ÿi�hÿ1�âj; Ĥ � ; �âj; â�j 0 �� djj 0 ; �â�j ; â�j 0 �� �âj; âj 0� � 0 :

The Hamiltonian of interest providing the law of conserva-
tion d�n̂1 ÿ n̂2�=dt � 0 for the difference in the numbers of
quanta n̂j � â�j âj of partial oscillators is reduced to the

4 Hereinafter, the dispersion of the permittivity e0 and conductivity s0 of
thematrix itself containing active centers is disregarded, although it can be

significant for a number of analogs of the Dicke superradiance (see, for

example, Refs [3, 20, 130]).
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diagonal form

Ĥ � �ho1 ~̂a�2 ~̂a�1 � �ho2 ~̂a1 ~̂a2 � �ho�0�1 ;
�7�

o1; 2 � 1

2

�
o�0�1 � o�0�2 � i

�jocj2 ÿ �o�0�1 ÿ o�0�2 �2
�1=2�

;

by going from the indicated partial creation â�j and annihila-
tion âj operators � j � 1; 2� to the noncommuting normal
operators

~̂a�1 � â�1 ÿ â2oc

�
2�o1 ÿ o�0�2 �

�ÿ1
;

�8�
~̂a2 � ÿioc

n
â�1 oc

�
2�o1 ÿ o�0�2 �

�ÿ1 ÿ â2

o
�
n
2
�jocj2 ÿ �o�0�1 ÿ o�0�2 �2

�1=2oÿ1
:

These evolve independently of each other and satisfy cross
commutative relations [141±143]

d~̂a�j
dt
� ÿioj ~̂a�j ;

�
~̂a�1 ; ~̂a

�
2

� � 1 ;
�
~̂a�j ; ~̂aj 0

� � 0 : �9�

From this, we can readily obtain the main quantum
effect of the oscillation excitation of even initially unex-
cited coupled oscillators, i.e., the spontaneous creation of
quantum pairs from the vacuum state when the average
number of quanta increases from the zero initial value:
�n�t� � joc=2o 001 j2 sinh2 �o 001 t�. Here, we assume for definite-
ness that o 001 � Imo1 > 0. In the t!1 asymptotics, the
statistical distribution of the number n of quanta proves to be
exponential, r�n; t� � �nÿ1 exp �ÿn=�n�, which corresponds to
theGaussian statistics of the field amplitude fluctuations. For
a `start' from thermal fluctuations with temperature T, the
asymptotic form of r�n; t� is the same, but with a greatermean
number of quanta:

�n�t� �
���� oc

4o 001

����2�12 coth
�ho�0�1

2kBT
� 1

2
coth

�ho�0�2

2kBT

�
exp �2o 001 t� ;

�10�

where kB is the Boltzmann constant.
The inclusion of relaxation leads to a different variant of

the dissipative instability realized in the interaction of a
dynamic subsystem having negative energy (of the quantum
oscillator â1) with a thermostat consisting of a continuum of
uncoupled oscillators b̂k with positive energy:

Ĥ � ÿ�ho�0�1 â�1 â1 �
X
k

�hokb̂
�
k b̂k

� 1

2

X
k

�h�bkâ1b̂k � b �k b̂
�
k â
�
1 � : �11�

The correctness of applying this model to quantization of the
initial classical dynamic system [144] is justified by the
independence of macroscopically observed results from the
choice of microscopic parameters bk � b�o� and g�o� within
the continuous spectrum of frequencies ok, whenP

k . . . ' � do g�o� . . . . In this limit, the Weisskopf±Wigner
approximation allows us to find analytically the (observable)
complex frequency o1 � o�0�1 � Do 01 � io 001 of a dynamic
oscillator changed by the thermostat (see Ref. [3]) and to
show that the dissipative instability has an irreversible

character and spontaneously develops even from the unex-
cited vacuum state, giving an exponential law of increasing
the average number of quanta: �n�t� � exp �2o 001 t�ÿ 1 �t5 0�.
Generally, for a `start' from spontaneous and/or thermal
fluctuations, the asymptotic form like (10) is again valid:

�n1�t� � coth
�ho�0�1

2kBT
exp �2o 001 t� ; t!1 : �12�

The quantization variants presented above were general-
ized in Refs [3, 139] and combined into a closed scheme of the
phenomenological quantum electrodynamics of active media
(PQEDAM). This scheme includes both the coherent inter-
action of dynamic oscillators (modes or waves) with energies
of different signs and the irreversible relaxation or incoherent
excitation of these oscillators coupled with a thermostat
consisting of a continuum of oscillators with energies of
both signs. Such approach was used for the systematic
analysis of macroscopic manifestations of quantum fluctua-
tions in superradiance studied earlier experimentally [40, 52,
59, 62, 63, 100, 103, 145, 146] and theoretically [49, 50, 91, 113,
147, 148] for different concrete cases with the help of special
particular methods.

As an example of such analysis, consider the statistics of
the delay time td of superradiance of discrete hot modes with
growth rates o 00 and numbers of quanta nm �m � 1; . . . ;M�,
which are independent random quantities with the same
asymptotic probability distribution and the average �n�t� �
neff exp �2o 00t� like Eqns (10), (12). By writing the probability
distributions of the total number of quanta, i.e.

nS �
XM
m�1

nm ; r�nS� �
�
nS
�n

�Mÿ1��Mÿ 1�!�n�ÿ1 exp�ÿ nS
�n

�
;

�13�

we will use the known criterion for finding the maximum of a
superradiance pulse [12, 51, 149±152]. According to this
critertion, the probability of emitting a superradiance pulse
in the time interval 0 < t < td is equal to the probability that
the total number of quanta by the time td will exceed half the
number N0V=2 of inverted active centers. By differentiating
this condition with respect to td and assuming o 00 �
max �o 00� � T ÿ11c , we obtain the required distribution of the
normalized delay time [138]:

f

�
2td
T1c

�
� uM

�Mÿ 1�! exp
�
ÿM 2 2td

T1c
ÿ u exp

�
ÿ 2td
T1c

��
;

u � N0V

2neff
4 1 :

�14�

Thus, the statistics of the superradiance delay time depend
on the sample shape via the number of unstable polariton
modes. Therefore, for a cylinder with the cross section S,
length B, and Fresnel number F � S=�l0B�, it follows
according to estimates [12] that M � �F 2 � 1� 1=F �=3,
and for a sphere with radius r0 4 l0, the number of modes
is M � �2pr0=l0�2. For an arbitrary three-dimensional
sample with a large Fresnel number and not too strong
reflections from the boundaries, superradiance is formed by
statistically independent filaments (cf. the Van Cittert±
Zernike theorem) and the number of `diffraction' modes
formed by them is M � F 2 (such modes are discussed in
Refs [152±156]). The greater the number M of modes, the
smaller the mean delay time �td � T1c ln

����������
u=M

p
and the

350 Vl V Kocharovsky, V V Zheleznyakov, E R Kocharovskaya, V V Kocharovsky Physics ±Uspekhi 60 (4)



smaller its fluctuations:

s 2�M� � t2d ÿ ��td�2
��td�2

�
�
p2

6
ÿ
XMÿ1
m�1

1

m 2

��
ln

u

M

�ÿ2
�Mÿ1

�
ln

u

M

�ÿ2
: �15�

This result, consistent with the results of known experi-
ments [157, 158], is applied to active samples both with
partially reflecting boundaries ensuring the existence of
discrete hot modes and in the absence of noticeable
reflections when the unidirectional superradiance of the
continuous-spectrum waves forming these `diffraction
modes' appears.

A similar quantum analysis based in fact on the linear
stage of the superradiant instability of modes in a short
enough active-medium sample with length B5 c=oc allows
determining the statistics of various parameters of collective
spontaneous emission pulses, for example, the propagation
directions or orientations of the polarization ellipse and the
degree of radiation field ellipticity. However, for samples with
lengths on the order of the cooperative length c=oc or more,
when collective spontaneous emission is reabsorbed and the
nonlinear interaction between spatially inhomogeneous
modes makes them poorly defined and considerably affects
the parameters of output pulses, the calculation and investi-
gation of quantum-statistical properties of the generated field
are fraught with difficulties. For such distributed samples, as
we will show in Section 5, the use of modes with a fixed spatial
structure of the field is severely restricted and the description
of even semiclassical (nonquantum) dynamics of superradi-
ant pulses proves to be far from trivial, often requiring
intricate numerical simulations.

2.4 Classical analogs of collective spontaneous emission
The quantum analysis of the superradiance of modes
discussed above also concerns ensembles of more compli-
cated oscillators, in particular, quasiclassical ones, in which
several (or many) energy levels are involved in the formation
of collective spontaneous emission and nonlinearity differs
from the saturating two-level nonlinearity.We have noway to
discuss here such ensembles in detail and will only mention
some of them discussed in the literature theoretically and/or
studied experimentally.

The best known examples of weakly anharmonic oscilla-
tors with almost equidistant energy levels are highly excited
oscillating molecules, Rydberg atoms, and cyclotron electron
oscillators both in a vacuum (where the nonequidistance of
Landau energy levels is caused by the velocity dependence of
the relativistic mass) and in crystals (where the nonequi-
distance of energy levels is mainly caused by band nonpar-
abolicity, i.e., the dependence of the quasiparticle mass on the
wave vector of a state in the Brillouin zone). The simplest
effect in a dense ensemble of such `classical' oscillators
coherently excited by a pulse of an external resonance field
and oscillating in phase is the collective superradiant decay of
their oscillations (see, for example, Refs [125, 159±161]),
similar to the radiative decay of phased spins and the Dicke
superradiance of synchronously oscillating two-level atoms
mentioned in Section 1.2. However, of most interest is the
possibility of superfluorescence or initiated superradiance
(i.e., an exponential growth in the collective emission of an
ensemble of such oscillators due to self-phasing under the
action of their own field) beginning with quantum or thermal

noise or a very weak (triggering) resonance signal, respec-
tively. It is important that, due to the difference between the
nonlinearity of weakly anharmonic oscillators and the
saturation nonlinearity of two-level oscillators, the super-
radiance dynamics and the superfluorescence pulse shape in
these two case are considerably different.

Such classical analogs of the Dicke superradiance have
been theoretically studied for more than a quarter of a
century [118, 119, 122, 125, 130, 162] (mainly qualitatively
but also quantitatively in the mean field model). Experi-
mental studies of the superradiance of highly excited
oscillating molecules or Rydberg atoms still lie ahead (this
is favored by large dipole moments of resonance transitions
and the possibility of populating an individual high-energy
level, as already demonstrated in experiments [38, 39, 163±
168]). Successful experiments and detailed numerical calcu-
lations of different variants of collective spontaneous
emission have been performed in vacuum electronics for
bunches of weakly anharmonic electron oscillators, where,
depending on the properties of the waveguides and the
driving magnetic field used in experiments, superfluores-
cence is provided by the bremsstrahlung, Cherenkov, or
cyclotron radiation mechanism [169±175]. The regime of
amplified spontaneous emission in a free-electron laser with
a considerable electron velocity dispersion, which is close to
superradiance, was considered and compared with super-
fluorescence in Refs [19, 117, 120, 176±181].

The first proposed classical analog of Dicke superradi-
ance was collective spontaneous emission in a `superluminal'
flow (bunch) of cyclotron electron oscillators moving along a
magnetic-field vector in a decelerating electromagnetic
system (waveguide) or a medium with e0 > 1 at a velocity
exceeding c0 � c=

����
e0
p

[130, 182, 183]. In this case, super-
fluorescence in an ensemble of initially nonrotating electrons
originates due to the radiative (dissipative) instability of slow
cyclotron waves (modes) possessing negative energy. The
transverse velocity of the self-consistent (cyclotron) rotation
of electrons appears and increases due to a decrease in their
kinetic energy and the longitudinal (translational) velocity.
Due to such a cooperative transition to higher Landau levels,
a considerable part, say, a few percent of the electron kinetic
energy can transform into a runaway coherent emission pulse.
(The relation of superradiance to the dissipative instability of
waves with negative energy in plasma beam systems is
discussed, for example, in Refs [3, 20, 184].) A similar effect
is possible for any electromagnetically active oscillators with a
quasiequidistant energy spectrum bounded from below.

In a superluminal sample which comprises two-level
active centers and is elongated in the direction of their
motion, two counter running trains of superfluorescence
pulses with different frequencies can be spontaneously
generated [130]. In this case, for inverted active centers, a so-
called fast polarization wave with the phase velocity exceed-
ing c0 (normal Doppler effect) has negative energy and can
experience dissipative instability, whereas for noninverted
centers, a slow polarization wave with the phase velocity
smaller than c0 (anomalous Doppler effect) possesses these
properties. Therefore, the unidirectional superradiance pro-
cess can alternately repeat many times involving fast and slow
polarization waves due to the change in the sign of the
population difference N2 ÿN1, taking place each time after
the emission of a next superfluorescence pulse due.

Notice that for all classical analogs of the Dicke super-
radiance considered above, the introduction and quantiza-
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tion of hot modes or normal waves within the framework of
the PQEDAM taking into account the nonequilibrium
character of active oscillators allow us to effectively study
the quantum-statistical properties of collective spontaneous
emission and to assign a close analogy with an ensemble of
two-level oscillators considered in this review.

3. Features of cooperative emission
in distributed systems

3.1 Grounds for the one-dimensional approximation
Experiments and numerical simulations of collective sponta-
neous emission [36, 56, 59, 111, 112, 115, 116, 140, 157, 158,
185±193] show that, in an extended active sample with the
characteristic length B0 c=oc and the large Fresnel number
F � S=�Bl0�0 1 specified by the characteristic cross section
S of the sample, a strongly inhomogeneous anisotropic
stochastic field is produced. Its structure considerably
changes with each new pumping `shot' due to quantum or
thermal fluctuations of the effective initial conditions,
determining in which directions the waves will grow most of
all, thereby removing the pumping-driven population inver-
sion of energy levels of active centers. As a rule, upon uniform
pumping, highest-power pulses are emitted along the longest
paths in a sample and can be qualitatively described in the
one-dimensional approximation taking into account coop-
erative emission only from active centers falling within a
cylinder with the cross section S1 � Bl0 surrounding the
given path of length B, i.e., with the Fresnel number
S1=�Bl0� � 1. This gives the limiting superradiance intensity
(for any, not necessarily two-level active centers) ISR �
cg�ho21N0=�4 ����

e0
p �, where g is the quantum yield. Thus, for

optical superradiance in rarefied gases and activated crystals,
for example, at N0 � 1011 cmÿ3, typical pulse durations are
about a few nanoseconds, and pulse intensities are about
10 W cmÿ2, with g ' 1 for two-level active centers.

The one-dimensional approximation is quite rigorously
substantiated for an oblong cylindrical sample with the
Fresnel number � 1 or for the case of excitation of only one
transverse mode in the presence of special waveguides, for
example, in single-mode fiber amplifiers and lasers or
semiconductor heterolasers. This approximation can be
applied for the quantitative analysis of experiments.

Based on this approximation, we will consider in
Sections 3.2±3.5 some features of superradiance in extended
systems and various factors affecting formation of the
radiation field, in particular, the possibility of attaining the
oscillatory superradiance regime in the conditions of rather
weak polarization and field relaxations, when complicated
nonlinear oscillatory energy exchange occurs between the
medium and field. This process can proceed both locally
(according to the mean field model, in particular, due to the
interaction of counterpropagating waves) and with a spatial
transfer (propagation effects) or frequency transfer (beats of
hot modes with different frequencies).

3.2 Semiclassical one-dimensional equations
The corresponding semiclassical Maxwell±Bloch equations
can be obtained from system (1)±(4).We represent them in the
so-called truncated form, assuming that B4 l0 and all the
dipole moments of active centers have the same orientation,
and using the complex amplitudes of counterpropagating
waves of the field A� and of polarization spectral densities

P� in expansions [13, 46, 192, 194±200]:

E �
����
~G
e0

s
Re
n�

A��z; t� exp �ik0z�

� Aÿ�z; t� exp �ÿik0z�
�
exp �ÿio0t�

o
; �16�

P�D� �
�����
e0
~G

r
Re
n�

P��z; t;D� exp �ik0z�

� Pÿ�z; t;D� exp �ÿik0z�
�
exp �ÿio0t�

o
fL�D� ;

and two components of the population inversion density
related to them:

N�D� � N0

n
n�z; t;D� � Im

�
nz�z; t;D� exp �i2k0z�

�o
fL�D� :
�17�

We will take into account the inhomogeneous broadening of
the spectral line, describing its normalized profile with a
Lorentzian fL�D��D0�p�D2� D2

0��ÿ1, where D��oÿ �o21�=nc
is the normalized detuning of the transition frequencyo of the
active center from the central line frequency �o21, and
D0 � �T �2 nc�ÿ1 is the normalized line half-width. Here, the
cooperative frequency

nc �
����������������������������
2pd 2 �o21N0

~G
e0�h

s
; �18�

independent of inversion, was introduced, which differs
from oc used earlier in Eqn (4) by the absence of the
factor D and the presence of the factor ~G=e0 taking into
account redefinition of quantities (5). We will often use it
below. Both inversion components n�D� and nz�D� and the
dipole moment d�D� � P�D�=�N0 fL� are related to active
centers located in the spectral line at the frequency D.
Notice that max d�D� � d, min d�D� � ÿd, max n�D� � 1,
and min n�D� � ÿ1 (at nz � 0). For simplicity, we will
assume that the matrix, sample, and occupation of the
transverse mode with active centers are homogeneous (e0,
s0, N0, ~G � const), and diffraction or waveguide radiation
losses along the sample �ÿB=24 z4B=2� include local
ohmic losses s0.

We will analyze the selection of longitudinal electromag-
netic modes, which is essential, for example, for attaining
superradiance in ensembles of active centers with inhomo-
geneously broadened spectral lines, assuming the presence of
the distributed feedback (DFB) of waves due to the weak
(with the amplitude �b5 1) harmonic modulation (with the
period p=k0) of the real part of the matrix permittivity eM �
e0 Re �1� 4�b exp �2ik0z��. The same effect gives the modula-
tion of the waveguide walls (theDFB in lasers is discussed, for
example, in Refs [201±207]). Finally, we introduce the
normalized detuning F� �o0 ÿ �o21�=nc of the spectral line
center �o21 from the Bragg resonance frequencyo0 � k0c=

����
e0
p

used in expression (16) for moving to complex wave
amplitudes. Then, one-dimensional integro-differential equa-
tions of the spatio-temporal dynamics of superradiance may
be written out in the form�
q
qt
� S0 � q

qz

�
a� � ib ���a� � i

�
p��D� fL�D���

I
p dD ;�

q
qt
� G2 � i�Dÿ F�

�
p��D�� ÿ

��
I
p �

in�D�a� � n ���z �D�
a�
2

�
;
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�
q
qt
� G1

�ÿ
n�D� ÿ np�D�

� � ÿ ��
I
p

Im
ÿ
a�p ���D� � aÿp �ÿ�D�

�
;�

q
qt
� G1z

�
nz �

��
I
p ÿ

a �ÿ p��D� ÿ a� p �ÿ�D�
�
; �19�

where � denotes complex conjugation and a superscript ���
means no superscript for the upper sign and complex
conjugation for the lower sign in the terms with a� factors.
Here, the following dimensionless quantities were introduced:
I � n 2c =�o2

21 5 1, S0 � 2ps0=nc, b � �b=
��
I
p

is the normalized
amplitude of the Bragg modulation of the matrix permittivity
(determining the ratio of the half-width of the photonic
bandgap [201, 202, 204, 206] to the cooperative frequency);
t � tnc and z � z=Bc are the time (normalized to the
cooperative frequency) and the longitudinal coordinate
(normalized to the cooperative length Bc � c=�nc ����

e0
p � �

l0=�2p
��
I
p ��; G1; 1z; 2 � 1=�ncT1; 1z; 2� are the normalized rates

of inversion and polarization relaxation, p� � P��D�=�dN0�
and a� � A�=�2pdN0� are the normalized amplitudes of the
spectral density of polarization and the field of counter-
propagating waves; L � B=Bc is the normalized length of
the sample, and np�D� is the inversion of an individual two-
level active center with the transition frequency �o21 � ncD
produced by continuous pumping (np � ÿ1 in the absence of
pumping, max jnpj � 1). For definiteness, we assume that
pumping is incoherent because, in the opposite case of
coherent laser pumping, its properties will considerably
govern the coherent properties of superradiance (as was
pointed out in Refs [208±210]).

Wemake no distinction between frequencieso0 and �o21 in
normalization coefficients and use the wavelength l0 �
2pc=��o21

����
e0
p � ' 2p=k0, which is twice the Bragg structure

period in the matrix or waveguide. The inversion modulation
with the period l0=2 caused by the self-consistent beats of
counterpropagating waves can reach max jnz�z; t;D�j � 1 (at
n�D� � 0), considerably affecting the Bragg selection of hot
modes or waves and their nonlinear evolution by implicitly
adding complex dynamic quantities �n ���z �~o�=D0 to the
specified quantities b ��� in the first equation of system (19).
The complex dynamic quantities are determined by the local
value of nz at the frequency ~o of the mode or wave under
study.

The estimate of the dynamic coupling of counterpropa-
gating waves presented above corresponds in fact to a spatial
amplification grating [201, 204, 206, 211±213], i.e., to the
modulation of the imaginary part of the active medium
permittivity rather than a Bragg grating related to the
refractive index modulation, i.e., to the real part of the
permittivity, as the coupling coefficient b of counterpropa-
gating waves. This estimate is written for wave frequencies ~o
at the spectral line center j~oÿ �o21j5 1=T �2 in the case of
large inhomogeneous broadening �D0 4 10G2�, the most
important for superradiant selection, and the spectrally
broad modulation of inversion nz�D� with the characteristic
width Dz within the limits G2; jFj5Dz 5D0 (we assume that
nz�D� ' 0 in the line wings). In the case of homogeneous
broadening, when 1=T2 > 1=T �2 , the corresponding dynamic
coupling coefficients on the amplification grating for
frequencies in the central part of the line j~oÿ o21j5 1=T2

will be �n ���z =�2G2�. Outside the spectral line for
j~oÿ o21j4 1=T2, counterpropagating waves are coupled
on the refraction index grating in the active medium and
this coupling is characterized by the coefficient bz �

ÿinznc=�2�~oÿ o21��, which in fact is added to the coefficient
b in the first equation of system (19).

These coupling coefficients implicitly contained in system
(19) and caused by the active medium, are consistent with the
mode dynamics and depend on the coordinate z and time t,
whereas the coupling coefficient b of counterpropagating
waves specified by the matrix does not evolve in time, and
for simplicity we assume that b � const in space. (In general,
it is complex, b � jbj exp �ij�, where the phase j � ÿ2k0dz
reflects the displacement ÿdz of the symmetry point of the
Bragg structure with respect to the sample center at z � 0.)
The distributed reflection and selective amplification of
counterpropagating waves affect the mode dispersion and
growth rates in the frequency band jDEj � j~oÿ o0j=nc 9
jbj � jnzj=�D0 � 2G2�. Notice that in the case of the refractive
index grating for jb� bzjL0 1, a `forbidden' photon fre-
quency bandgap jDEj9 jb� bzj appears in which waves do
not propagate in fact.

3.3 Dispersion of waves and modes
Generally, the development of superradiance depends on the
dispersion of the permittivity of the active medium:

e�~o� � e0 � i4ps0
~o
ÿ 4pd 2N0

�h

�
n�oÿ �o21� fL�oÿ �o21�

oÿ ~oÿ iT2
do ;

�20�
i.e., on the dependence of the real part of the permittivity
Re e on the monochromatic field frequency ~o, and takes into
account the self-consistent spectral profile of the smoothly
inhomogeneous inversion component n�z; t;D�. This disper-
sion is interrelated with the imaginary part of expression
(20), which directly determines the growth rate (or the gain)
of the field. If spectral dips in the inversion component
n�oÿ �o21� are smooth, at least on the Tÿ12 scale, then, for
1=T �2 4 nc 4 1=T2 dispersion proves to be weak at the
spectral line center, and we can routinely assume that
Re e ' e0 and

Im e�~o� � 4ps0
�o21
� 4pd 2N0T

�
2

ÿ
�Dÿ 2njo�~o

�
�h

;
�21�

j~oÿ �o21j5 1

T �2
;

according to the Sokhotski formula and ignoring the poles of
a smooth function n�oÿ �o21�. In this approximation, the
field instability (amplification) at frequency ~o is possible if
Im e < 0, i.e., only if the population inversion of the levels of
active centers at this frequency o � ~o is decreased by less
than half compared to the mean spectral line inversion
�D � � �N�D�=N0� dD specified by the initial pumping pulse
(for superfluorescence) or maintained by continuous pump-
ing (for a superradiant laser). Numerical simulations often
demonstrate a considerable irregularity of the spectral
inversion profile n�D� at the nonlinear stage, which compli-
cates analysis of the instability or amplification of monochro-
matic waves. The latter, linearized analysis, however, is not
very relevant due to the nonlinearity of the superradiance
process.

It should be noted that both the instability (amplification)
of waves ormodes and their nonlinear dynamics considerably
depend on the field decay rate GE � 1=�ncTE� in a cold cavity
(i.e., at the zero inversion N�D� � 0). The corresponding
lifetime TE is not explicitly present in equations (19) but is
determined (as in Eqns (20) and (21)) by both ohmic and
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diffraction (waveguide) losses s0 and Bragg distributed
reflections b of waves and boundary conditions. For the
one-dimensional problem under study in the general case of
a sample with differently reflecting facets (or in a nonsym-
metric Fabry±Perot cavity), the boundary conditions at its
ends, z � �L=2, correspond to the ratio between amplitudes
of counterpropagating waves equal to the reflection coeffi-
cients R1; 2 of the facets. In the limit of a purely Bragg cavity
�R1; 2 � 0� and, in particular, in the nonreflection limit
�b � 0�, the boundary conditions correspond to the free
field emission: a��ÿL=2� � 0 and aÿ�L=2� � 0. If s0 is small
enough, then for open samples or samples in low-Q cavities
with small DFB parameters �bL9 1� and/or reflection
coefficients of faces, say, R9 1=2, the time TE is deter-
mined, accurate to a logarithmic factor of about unity, by
the travel time of light in the sample 5: TE � B

����
e0
p

=c.
It is known [3, 214, 215] (see also Section 5) that in low-Q

cavities with TE 9T2 the superradiance of discrete modes
dominating over continuous-spectrumwaves is possible if the
condition

n 2c TE 0
1

T2
� 1

T �2
�22�

is fulfilled, whereas the unidirectional superradiance and
superfluorescence of continuous-spectrum waves and also
the oscillatory superradiance of discrete modes in higher-Q
systems with TE 4T2 are possible when the milder condition

n 2c T2 0
1

T2
� 1

T �2
; �23�

independent of the field decay, is fulfilled.
These and more detailed conditions for the emergence of

mode superradiance, as well as the characteristic spectra and
growth rates of hot modes (presented in Fig. 1 for homo-
geneous and inhomogeneous broadenings) are obtained from
linearized equations (19) for the specified inversion n � const
of the active medium (spatially and spectrally homogeneous).
The mode spectrum is determined by the well-known
dispersion equation for the medium and the characteristic
cavity equation [197, 198] following from the system of
equations (19):

k 2 � jbj2 �
�
O� n

O� F� i�D0 � G2�
�2

; �24�

O� n

O� F� i�D0 � G2� �
R1b� R2b

�

1� R1R2

� k�1ÿ R1R2�
1� R1R2

1� exp �2ikL�
1ÿ exp �2ikL� : �25�

The dispersion relation is local and link the complex
frequency detuning O � �~oÿ o0�=nc and the wave-vector
detuning k � �kÿ k0�Bc of the mode in the presence of
Bragg wave rescattering. The characteristic cavity equation
is dictated by boundary conditions and singles out the discrete
wave numbers k of counterpropagating waves. The left-hand
side of Eqn (25) contains, in fact, the quantity��k 2 � jbj2�1=2
with signs chosen according to the solution of equations (24)
and (25), so as to exclude redundant nonphysical roots for
which a wave having an increment (decrement) decays
(grows) in its propagation direction.

If the polarization relaxation rate 1=T2 proves to be
smaller than the mode growth rate ~o 00 � Im ~o, the active
centers related to this mode are inevitably phased during the
development of the instability. Therefore, they emit collec-
tively or, in other words, emit superradiance, so that the
intensity of their combined emission exceeds by many times
the sum of emission intensities of each of them.

In the case of a homogeneously broadened spectral line,
when nc > 1=T2 > 1=T �2 , active centers qualitatively change
the dispersion properties of unstable (amplifiable) electro-
magnetic waves and modes, which transform into polariza-
tionwaves and polaritonmodes [3, 16, 48, 88, 139]. According
to Eqns (1)±(4) or (19), the permittivity (20) determining them
has the form

e�~o� � e0 � i
4ps0

~o
ÿ 4pd 2N0D

�h�~oÿ o21 � iT ÿ12 �
�26�

near the resonance �~o � o21� and, in amediumwith inversion
D > 0, leads to initiation of unstable polarization waves with
dispersion properties considerably different from conven-
tional polaritons in a noninverted medium [216±219]. They
produce collective spontaneous emission possessing a growth
rate up to

����
D
p

nc. If the inhomogeneous broadening dom-
inates, when 1=T �2 > nc > 1=T2, as follows from formulas
(20) and (21), the dispersion of electromagnetic waves or
modes is weakly changed by active centers, while the
maximum growth rate decreases to the so-called effective
cooperative frequency [215, 220±223]

�nc � n 2c T
�
2 �

nc
D0

; �27�

determined by the cooperative frequency of not all but only a
part of the active centers with close frequencies occupying a
spectral band with width 2�nc and having no time to dephase
during the formation time of a superradiant pulse dt � �nÿ1c ,
i.e., dt � D0. This minimal duration of expected field pulses
can be achieved due to a special mode selection and is almost

5 In the mean field model for a sample in the Fabry±Perot cavity at b � 0,

as follows from the first equation of system (19), TE � �2p�~s0 � ~srad��ÿ1,
where 2p~srad � �c=B ����

e0
p � ln jR1R2jÿ1=2.
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Figure 1. Typical dependences of growth rates ImO (triangles) and

frequency shifts ReO (circles) on the shift of the wave number k for the

branch of unstable polariton modes in an inverted medium with the

homogeneous line broadening G2 � 0:02 (a) and the branch of unstable

electromagnetic modes in an inverted medium with large inhomogeneous

broadeningD0 � 4 (b) for the same combined Fabry±Perot resonator with
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independent of the coupling parameter b of counterpropagat-
ing waves and relaxation times T1; 2 until dt9T2, i.e., for
D0 9Gÿ12 (see Section 5).

It is obvious that for obtaining collective spontaneous
emission with the highest-power pulses without strong
oscillations the active samples are needed with length
L � B=Bc on the order of the optimal length L � 2 and
L � 2D0 4 1 determined in the cases of homogeneous and
strongly inhomogeneous broadenings by the respective
cooperative length Bc and the effective cooperative length
�Bc � BcD0 (determined by effective cooperative frequency
(27)). In the estimates and calculations presented below, we
assume that the inversion given initially or specified by
pumping (np�D� or Dp) is on the order of unity. Otherwise, it
is necessary to take into account that maximal growth rates
are obtained by the multiplication of �nc by nc, and the
cooperative lengths by the division of �Bc and Bc by the
inversion and the root from it, respectively.

3.4 Nonlinear wave interactions
Let us illustrate the influence of some of the factors pointed
out above by the results of numerical simulations mainly
performed for samples with optimal dimensions. In the
examples presented below, equations (19) were solved, as a
rule, under the following initial conditions [incoherent
simultaneous (transverse) pumping of all active centers]:
n � 1, nz � 0, a� � 0, j p�j � 10ÿ3. Polarization was taken
in the form of a strongly inhomogeneous function of the
coordinate z and frequency D. Numerous verifying calcula-
tions showed that superfluorescence pulses obtained in the
absence of continuous pumping are almost independent of
variations in small initial wave amplitudes j p�j; ja�j9 10ÿ3,
while the characteristics of stable lasing in the presence of
continuous pumping are, as a rule, insensitive to the initial
conditions, remaining the same for other initial conditions,
for example, with zero inversion or in the presence of small
`external' noise of the electromagnetic field (cf. Ref. [224]).

At the same time, a spontaneously appearing standing
inversion grating nz�z; t;D� with the wave number 2k �
2�o21

����
e0
p

=c causes in a number of cases considerable distrib-
uted reflections and discrimination in the amplification of
counterpropagating waves with the wave numbers �k [197,
198, 200, 213, 225±227]. This grating may be metastable,
retaining the initially specified or sporadically established
profile for long times. Its relaxation rate G1z in gas and
especially in a condensed medium can noticeably differ from
the inversion production rate G1 upon quasiuniform pump-
ing, for example, due to the spread of small-scale structures of
active centers in their thermal motion or diffusion in a matrix
(below, we assume for definiteness that G1z � G1).

Strictly speaking, there is also a similar polarization
grating of active centers with wave numbers �3k, oscillating
at the field frequency ~o ' �o21, which is caused by the
nonlinear scattering of electromagnetic waves on a standing
inversion grating. However, the lifetime T2z of this polariza-
tion grating is, as a rule, shorter than the lifetime T2 of dipole
oscillations of an individual active center because of various
dephasing factors, which are especially significant for
inhomogeneously broadened spectral lines, and T2z can be
small compared to the lifetime T1z of the inversion grating. In
addition, the large amplitude of the polarization grating can
be achieved only for short time intervals under the action of
superradiant pulses in the conditions when their Rabi
frequencies exceed the inverse lifetime T ÿ12z , which is difficult

to achieve. Finally, the polarization grating is not directly
involved in the formation of the polarization and electro-
magnetic wave fields but only strains the inversion grating
due to nonlinear backscattering of electromagnetic radiation.
Therefore, the polarization grating usually plays a secondary
role, and we will ignore it below for simplicity. (The possible
case of its influence on the instability of some multimode
lasing regimes in quantum-cascade lasers in the presence of
collective spontaneous emission was recently indicated in
work [228].)

The propagation effects and a possible role of self-
consistent distributed reflection and selective amplification
of waves are illustrated in Figs 2 and 3 presenting the results
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Figure 2. Superfluorescence of a sample of length L � 2 with negligibly

small reflections at the ends �R � 10ÿ3� in the case of weak continuous

pumping �np � 1� and almost homogeneous spectral line broadening:

G2 � 2G1 � 0:024D0 � 0:002. (a) Oscillograms of the normalized out-
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consistent inversion gratings nz. (b, c) Spatio-temporal evolutions of the

inversion n�z; t� and the inversion grating amplitude jnz�z; t�j.
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of the solution of the system of equations (19) for a
distributed sample with optimal length L � 2 without the
DFB �b � 0� and the negligibly small reflection coefficient at
facets �R � 10ÿ3� for a continuously pumped �np � 1�
virtually homogeneous spectral line: D0 � 0:0025G2 �
2G1 � 0:02. For convenience, the output emission intensity
in these and following figures is represented by the dimension-
less quantity I ja�j2 � �oR�=nc�2 equal to the square of the
normalized amplitude of the Rabi frequency oR� � d jA�j=�h
in the field of the corresponding wave A� of this emission.

At the initial stage of superfluorescence, continuous
pumping does not play any important role, and collective

spontaneous emission pulses (in fact identical at both ends of
the sample) (Fig. 2a) are formed in the course of developing
radiative instability of polarization waves and removal of the
initially stored inversion by the wave's field (Fig. 2b). The
propagation effects of coherent emission increase the dura-
tion of the main unidirectional superradiance pulse to a few
inverse cooperative frequencies, and its reabsorption leads to
the emission of a repeat, weaker pulse. The inversion grating
nz�z; t� appears only in the central part of the sample (Fig. 2c)
where counterpropagating waves with comparable ampli-
tudes at the saturation stage of the main pulse exist. The
grating has no time to strongly affect themain pulse; however,
it noticeably (by approximately 10%) changes the parameters
of the repeated pulse (Fig. 2a).

Figure 3 displays a typical episode of the established
quasi-monochromatic superradiant lasing, which is also in
fact the same at opposite ends of the sample. Lasing would
be monochromatic (accurate to the spectral line width) in
the absence of the inversion grating (see the dashed line in
Fig. 3a) since then the counterpropagating waves are
amplified according to the local value of the stationary
inversion profile (Fig. 3b) strictly within the framework of
the unidirectional approximation. However, the inversion
grating appearing in the central part of the sample (Fig. 3c)
causes instability of monochromatic lasing due to a small
redistribution of counterpropagating waves changing their
amplification and providing the inversion increase in the
sample center. This is accompanied by the quasiperiodic
development of sporadic weak superradiant pulses alter-
nately in one or another counterpropagating waves (solid
curves in Fig. 3a), their concrete oscillograms being sensitive
to quantum, thermal (and numerical) noises and, as a whole,
greatly depending on the sample length L and the pumping
rate G1.

It should be noted that the wave a� propagating to the
right (Fig. 3d) has an almost constant amplitude in the left
part of the sample, ja��z < 0�j � Rjaÿ�z � ÿL=2�j, and is
amplified only in the right part of the sample, `eliminating'
there all the inversion produced by pumping and reducing it
in fact to zero. The wave aÿ propagating to the left behaves
symmetrically after the right> left change. The spectra of
both waves are the same and contain, along with the
quasimonochromatic component, a pedestal whose width is
about some fraction of the cooperative frequency caused by
the sporadic superradiant pulses mentioned above.

If the length of a sample containing active centers with a
homogeneous spectral line is much greater than the coopera-
tive length, L4 1, even a weak metastable inversion grating
nz will not appear during superfluorescence or superradiant
lasing because of the irregular reabsorption of superradiant
pulses in regions with lengths on the order of the cooperative
length. In this case, the output emission would be oscillating
and weakly coherent (quasichaotic, taking into account real
noises and stochastic initial conditions) with the spectral
width � nc or even noticeably narrower due to the decrease
in the field pulse steepness and its elongation in the sample
caused by many reabsorptions. Because the effective rescat-
tering of counterpopagating waves is absent, such dynamics
can be adequately described in the unidirectional super-
radiance approximation [3, 12±14, 43, 46, 229].

For very short samples, L5 1, superradiant lasing is
difficult to obtain, while superfluorescence is coherent and
oscillatory (following, under certain conditions, the self-
similar law [3, 230±232]). Its main part, in the form of an
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elongated pulse with a duration of � �n 2c TE� � �ncL�ÿ1 is
described well by the mean field model for the Bloch angle [4,
14, 46, 87, 110, 129, 233] (similar to a strongly decaying
pendulum) giving a narrowed spectrum � ncL in width. The
comparatively small amplitude of the field of counterpropa-
gating waves, despite its quite regular character, excludes the
formation of a noticeable inversion grating in the sample, and
the unidirectional approximation can again be formally
applied, although oscillograms of emission from opposite
sample ends can significantly differ from each other, being
nonsymmetrical. This is caused by differences in quantum
and thermal fluctuations (initial and accompanying pump-
ing) of the field and polarization at these ends and by the
amplification of counterpropagating waves due to the
common reservoir of inversion of active centers, resulting in
their strong competition with each other.

3.5 Manifestations of the emission dynamics
The consideration of ohmic or diffraction (waveguide) losses
in equations (19), which is important for S0 0Lÿ1, leads to
an additional decrease in the emission intensity, elongation of
pulses, and narrowing of the superradiance spectrum. Notice
that, for L � 1, the dynamic inversion grating can play a
prominent role only forS0 9 1, while forL4 1 the formation
of individual pulses inside a sample is greatly modified due to
these losses only for S0 0 1, remaining in fact unidirectional
and losing their oscillatory character at large losses S0 4 1.
The features of the influence of such distributed losses on the
superradiance of waves with a continuous spectrum in the
unidirectional approximation (in the absence of any reflec-
tions), including a passage from oscillatory superradiance to
the single-pulse one, were considered in Refs [3, 87, 112, 233].
We will not discuss these losses further, assuming thatS0 � 0,
because most of the interest is in emission itself through
sample ends. This emission also plays the role of losses for the
dissipative instability of polarization waves, and produces a
strong inhomogeneity of the field and polarization in the
sample under conditions of high amplification of waves in the
active medium of oscillators during superradiance.6

As pointed out in many experiments and the super-
radiance theory, even weak reflections from sample ends,
R5 1, which barely reduce the output radiation, can
considerably affect the field, polarization, and inversion
dynamics in the sample and, therefore, the properties of
collective spontaneous emission pulses [3, 13, 36, 38, 40, 108,
115, 116, 127, 128, 194, 195, 224, 234±237]. Leaving aside until
Section 5 the discussion of the influence of reflections on the
field structure and the output pulse shape during super-
fluorescence and superradiant generation of discrete-spec-
trum modes, we note here only that, as in Refs [37, 197, 198,
238, 239], this influence will be levelled in fact by the
unidirectional superradiance of continuous-spectrum waves
in very long samples with

L4 nÿ1=2p ln jRjÿ1; i:e: nc �����
np
p

4T ÿ1E > T ÿ12 ; �28�

L4D0n
ÿ1
p ln jRjÿ1; i:e: �ncnp 4T ÿ1E > T ÿ12 ; �29�

in the case of homogeneous �D0 < G2� and strongly
inhomogeneous �D0 4 10G2� broadening, respectively. In
this case, assuming for definiteness the use of strong
continuous pumping, we can show that already near the
first lasing threshold �np � np1� even for strong reflections
�ln jRjÿ1 � 1�, local superradiant processes in separate
regions of length dL � 1 and dL � D0, respectively, are
typical (for inversion about unity). Pulses appearing in a
variety of such regions will be weakly coherent between
themselves and poorly separated, in particular, due to
absorption in adjacent regions. As a result, the inversion
supplied by pumping will be removed more or less uniformly
over all the superradiant laser, producing noise-like low-
coherent emission over all the spectral line, homogeneous
�2=T2� or inhomogeneous �2=T �2 �. In the latter case, even for
samples with a smaller length for L4Dÿ10 , the superradiant
lasing regime will simultaneously involve many modes,
because the intermode interval pc=�B ����

e0
p � � 1=TE for such

samples is small compared with the width 2=T �2 of the
inhomogeneous line broadening.7 Then, at a considerable
excess over the lasing threshold, lasing will be quasichaotic,
not containing any noticeable separate superradiant mode
pulses, while the difference in frequencies of active centers in
the lasing band of each mode will facilitate the dephasing of
their radiation and suppression of its collective character.

In such strongly nonstationary lasing regimes of a super-
radiant laser with a Fabry±Perot cavity, the emission
spectrum has both a discrete component and a continuous
component because of the nonlinear broadening and overlap
of mode spectra and the overlap of spectral dips in the
population inversion burnt by them (Fig. 4). To obtain
separated collective spontaneous emission pulses in super-
radiant lasers with the inhomogeneous broadening of a
spectral line, mode selection is required, i.e., an additional
increase in the growth rate or gain in one or a few modes (see
Section 5). It is important that for this purpose, as in the case
of a homogeneously broadened spectral line, a low-Q cavity is
quite useful, which facilitates the realization of superradiance
and provides its efficient outcoupling. However, the field in
this cavity proves to be strongly inhomogeneous and, as a
rule, multimode and, therefore, does not allow the correct
description in the mean field model.

4. Observations of superfluorescence
of dipole ensembles and the collective
recombination of electrons and holes

4.1 Experiments are continued
The first experiments on superfluorescence were performed in
the 1970s±1980s in the infrared and optical regions mainly
with gases and activated crystals (see reviews [12, 14, 44, 45,
149, 210]). New recent experimental studies of the properties
of the collective spontaneous emission of inverted active
centers of various types, first of all, semiconductor struc-
tures, are presented in Refs [56±60, 62±68, 98±101, 103, 146,
193, 240±253]. These experiments are partially discussed in
recent reviews [4, 5, 15, 47, 223]. We will present only several

6 According to formulas (21) and (26), for a sample with homogeneous

inversion and occupation factor of order �D�1 and ~G�1, respectively, the

total gain of the monochromatic field varying as / exp �ÿi~ot� ikz� with
the complex wave number k in the line center at ~o � �o21 is large:

ÿB Im k � �B=Bc�� �D=~G�nc=�T ÿ12 �T �ÿ12 �01 for both homogeneous

�T2 5T �2 � and strongly inhomogeneous �T24T �2 � broadenings if L01

and L0D0 � �ncT �2 �4 1, respectively.

7 For very short samples with B � T �2 c=
����
e0
p

and ln jRjÿ1 0 1, i.e. contain-

ing only one mode within the spectral line and being opened for super-

radiance outcoupling, the production of collective spontaneous emission

requires too high a density of inverted active centers with nc � 1=T �2 ,
which is difficult to achieve in available active media.
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examples from them, focusing our attention on the features of
the superradiance phenomenon whose description is beyond
the scope of themean fieldmodel of a homogeneous ensemble
of active centers and requires the consideration of its spectral±
spatial inhomogeneity or the effects of propagation, distrib-
uted reflection, and interaction between counterpropagating,
both electromagnetic and polarization waves.

Unfortunately, experimental data on the spatio-temporal
dynamics of superradiance are scarce, and because of this we
will illustrate our qualitative analysis by numerical simula-
tions. Notice that the one-dimensional equations (19) that we
use are practically universal and provide an adequate picture

of superradiance phenomenon for most experiments, despite
the variety of active centers studied. These include atoms and
molecules in gases, molecular centers and activated dye
centers in various matrices, molecular J and H aggregates
and impurities in thin polymer films, quantum dots and
nanocrystals, and electron±hole pairs and excitons in hetero-
structures and various traps. In some cases, it is necessary to
discard the two-level approximation and take into account
the coherent collective dynamics of transitions between many
energy levels in active centers, as, for example, in the
description of cascade superfluorescence of pulses at differ-
ent frequencies upon laser pumping of the high-lying energy
levels of Ca and Rb atoms in experiments considered below.

4.2 Example of the superfluorescence study in gas
Consider experiments [56] on superfluorescence at the 2-mm
3d4s 3DJÿ4s4p 3PJÿ1 transition in Ca vapors at temperatures
of about 900 K and the Ca density 5� 1014 cmÿ3. Excitation
was performed by a 6-ns, 100-kW pulse from a 0.4-mm dye
laser through higher-lying energy levels from which `pulsed'
pumping of this transition occurred for � 100 ns mainly due
to spin-changing collisions with Ar atoms of a buffer gas with
a partial pressure of 100±800 Torr. Inversion was produced
by transverse laser excitation of the Ca and Ar gas mixture in
a cylindrical volume with length B � 50 cm and cross section
S � �0:01ÿ0:5� cm2, so that the Fresnel number fell in the
range 19F9 10 and the length estimated by the authors
exceeded by ten times or more the cooperative length:
B=Bc 0 10.

As far as we know, this is the first detailed experiment 8 in
which the influence of `transverse' multimode properties of
radiation and the `longitudinal' reabsorption of superfluor-
escence was studied quantitatively in such long samples with
the high density of active centers and their narrow spectral
line, when the cooperative frequency nc reached � 109 sÿ1

and could exceed the linewidth (mainly collisional) several-
fold: nc02=T203�108 sÿ1 � 2=T �2 (the inhomogeneous
Doppler broadening was partially suppressed by colli-
sions).9 Parameters of the same order of magnitude were
also achieved in experiments [222] on the superfluorescence
of Ca atoms at the 5.5-mm 4s4p 1P1ÿ3d4s 1D2 transition
observed as a precursor during the cascade relaxation of Ca
excitations down to the 3d4s 3DJ level, which is the upper
working level for forming collective spontaneous emission.
The delay time of the latter was within 30±100 ns and was
the sum of the `cooperative' time � 10nÿ1c required for the
formation of the first pulse of this collective spontaneous
emission in the end part of the sample with length � 2Bc

(i.e., about one or a few centimeters), the finite pumping
pulse duration (a few dozen nanoseconds), and the sub-
sequent time of inversion production at the working
3d4s 3DJÿ4s4p 3PJÿ1 transition after a series of cascade
transitions between energy levels in Ca atoms caused by
collisions with Ar atoms.
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Figure 4. (Color online.) Quasichaotic dynamics of a multimode super-

radiant laser with a strongly inhomogeneously broadened spectral line

and a low-Q Fabry±Perot cavity: R � 0:1, L � 10, D0 � 4, G2 �
2G1 � 0:02, np � 1. (a) Oscillogram of the normalized output radiation

intensity I jaj2. (b) Spectral power jaoj2 of the radiation field. (c) Dynamic

spectrum of the population inversion n�t;D� of active-center levels at the
end z � L=2.

8 The pioneering experiment on superfluorescence of Ca atoms was

performed in Ref. [37] with F � 1 and B9 3Bc, where the dominating

mechanism of polarization relaxation restricting collective spontaneous

emission was Doppler broadening.
9 These unique conditions nc > 2=T2, nc > 2=T �2 for B > Bc were also

achieved in experiments [60, 123] with a dense rubidium gas nonresonantly

pumped by 100-fs laser pulses. The single-oscillatory regime of cascade

picosecond superfluorescence achieved in these experiments can be

correctly described only beyond the framework of the unidirectional

superradiance approximation.
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The duration of the main (first) pulse was 5±50 ns, i.e.,
one±two orders of magnitude shorter than the radiative
lifetime (� 3 ms) of the upper working 3d4s 3DJ level of an
individual Ca atom. The total duration of collective sponta-
neous emission was on the order of the delay time and reached
100 ns, because fluorescence was maintained through all its
way by additionally supplying Ca atoms inverted to the
3d4s 3DJ level mainly due to the collisions mentioned above.
In this case, the oscillatory superradiance regime was usually
reached, i.e., several coherent pulses were observed. They
were either formed at different depths in layers with a
thickness of about a few cooperative lengths Bc in the sample
and reached its ends after a number of reabsorptions or (for
F0 3) arrived at slightly different angles and were formed by
weakly intersected beams producing thinner cylinders with
the Fresnel number about unity in the inverted sample. As a
Fresnel number F of the whole sample was increased, the
number of reoscillations observed was increased and their
amplitude decreased, while for F � 10 superfluorescence
oscillations completely disappeared after averaging over
many laser shots. In this case, superfluorescence from
opposite ends was in all cases approximately the same and
corresponded to unidirectional superradiance, considered in
Section 3.

4.3 Cooperative recombination of free electrons and holes
Let us consider now experiments [59, 146, 193, 248, 252] on
the collective spontaneous recombination of free, unbound
electrons and holes 10 initially produced by an incoherent
150-fs pumping pulse from a Ti:sapphire laser in barriers of a
multilayer quantum-well heterostructure cooled to 4±150 K
in a transverse quantizing magnetic field B0 � 4ÿ17:5 T. The
heterostructure consisted of 15 layers of 8-nm In0:2Ga0:8As
quantum wells separated by 15-nm GaAs barriers. The laser
beam spot on the sample was � 0:5 mm in diameter and the
laser pulse energy density was about 10 mJ cmÿ2. Taking into
account the local neutrality, i.e., the equality between the
electron and hole densities, equations for the difference
between their populations at the corresponding Landau
levels N�K�, polarization P�K�, and the superfluorescence
field in the recombination frequency band for each Landau
level nL � 0; 1; 2; . . . are quite similar to equations (19) for the
unidirectional superfluorescence of two-level active centers. It
is important that the magnetic field weakens the polarization
relaxation for electron±hole pairs, T ÿ12 , and increases their
dipolemoment d � de; h, which is contained in the cooperative
frequency (18) and is determined by the matrix element of the
interband transition between the states of magnetized elec-
trons and holes with energies (in the parabolic band
approximation)

Ee; h � �
Eg � �2nL � 1��hoBe; h

2
� �h 2K 2

2me; h
; �30�

where Eg is the bandgap energy, oBe; h
� eB0=�cme; h� are

gyrofrequencies, me; h are the electron and hole masses,
respectively, and K is their wave number in the Brillouin
zone along the magnetic field B0.

The spectral line shape fnL�D� as a function of the
normalized detuning D � �h 2K 2�mÿ1e �mÿ1h �=�2nc� of the
recombination frequency from the minimal value for the
given Landau level nL is specified by the pumping and the
relaxation of carriers. It seems unlikely that this shape is
described by a Lorentzian `bell'; rather, it should be similar to
a blurred Fermi step and should depend on the density of
electron±hole pairs and their departure from equilibrium
state. The exact shape of this line is not of special interest,
because, according to estimates, its width is smaller than the
cooperative frequency for all recombination transitions
between the corresponding Landau levels of electrons and
holes �0; 0�, �1; 1�, . . . (up to �9; 9� depending on the pumping
level, magnetic field, and temperature) demonstrating super-
fluorescence pulses.

Pulses were emitted in random directions, but always in
the plane of quantum wells, because along them the gain is
highest and additional waveguide properties exist which are
caused by the presence of electron±hole plasma produced by
pumping. Theminimal pulse durations and the depletion time
of an individual Landau level were� 10 ps, corresponding to
the cooperative length Bc on the order of the laser spot
diameter and cooperative frequency nc 0 1011 sÿ1 exceeding,
according to estimates, the inverse relaxation time of dipole
oscillations of a magnetized electron±hole pair (T2 0 10 ps).
The pulse-emission delay time fluctuated within their dura-
tion from shot to shot, being � 50 ps for the highest Landau
levels and reaching 300 ps for the lowest Landau levels. In this
case, each lower �nL; nL� transition emitted a pulse at once
after the emission of a superfluorescence pulse from the
preceding higher �nL � 1; nL � 1� transition. This corre-
sponds to a step decrease in the electron and hole Fermi
quasilevels near which, as is known [257], the electron±hole
recombination rate increases due to the Coulomb interaction
of carriers.

In a weak magnetic field B0 < 0:4 T or temperatures
above 150 K, superfluorescence was not observed because
Landau levels were not spectrally isolated and, for the density
of electron±hole pairs � 1012 cmÿ2 providing the condition
nc > T ÿ12 , the width of the inhomogeneously broadened
spectral line exceeded the cooperative frequency, i.e., super-
radiance conditions (23) were not fulfilled. This experiment
confirms the general conclusion [3, 198, 215, 258, 259] that in
the absence of selection of electromagnetic modes, in
particular, in the regime of unidirectional superradiance of
continuous-spectrum waves considered here, the superfluor-
escence of a homogeneous ensemble of inverted active centers
with the inhomogeneous broadening of the spectral line
exceeding cooperative frequency (18) is impossible. To
obtain collective spontaneous emission under these condi-
tions, it is necessary to modify considerably the spectral line
of dipole oscillators, for example, to detach a subensemble
with the spectral linewidth smaller than the cooperative
frequency calculated for the active centers of this subensem-
ble. Another possibility not requiring the spectral line split-off
consists in a considerable increase in the transition dipole
moment and the spectral density of states in a narrow enough
frequency band of inverted active centers, which is smaller
than their cooperative frequency. In this case, their enhanced
interaction via the self-consistent radiation field can over-
come its decay caused by the dephasing of groups of spectrally
adjacent active centers, inverted or noninverted.

This possibility was realized in experiments [65] on
superfluorescence observed due to collective recombination

10 The first proposals and theoretical grounds for these and other possible

experiments on collective spontaneous emission upon the recombination

of electrons and holes in semiconductors can be found in Refs [215, 254±

256].
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of free electrons and holes in a two-dimensional degenerate
gas at a frequency determined by the difference between their
Fermi quasilevels in 8-nm thick semiconductor quantum
wells with the carrier density of � 1012 cmÿ2 mentioned
above.11 It is for electron±hole pairs formed by carriers with
energies close to the corresponding jumps in the Fermi
distribution that the Coulomb amplification of the radiative
interaction takes place [257]. This provides the increase in the
self-consistent field from the level of quantum or thermal
noises and leads to the accelerated loss of field-producing
electron±hole pairs due to their induced recombination. The
Fermi quasilevels of electrons and holes approach each other
during this process and the increase in the interaction due to
Coulomb correlations is transferred to electron±hole pairs
with lower recombination frequencies. For this reason, the
total superfluorescence pulse emitted in random directions
along quantum wells proves to be rather long (up to 200 ps),
its dynamic spectrum shifts to the red (the difference between
carrier frequencies at the pulse onset and its end amounts to
10%), and the superfluorescence lifetime at a fixed frequency
is rather small (10±50 ps).

Wewill not further discuss themodification of the spectral
line of active centers and only assume it to be smooth, single-
scale, and without any specific features, i.e., being close to a
Lorentzian or some other similar profile. Consider now the
selection of electromagnetic waves involved in collective
spontaneous emission, which is possible due to the inhomo-
geneous distribution of active centers in an extended sample,
thematrix structure, or the presence of some boundaries or an
electrodynamic system around the sample.

4.4 Problems of the physics of exciton superfluorescence
As a rather illustrative and pithy experiment, we consider
recent observations in Refs [67, 68] of the signs of super-
fluorescence of nonequilibrium excitons (electron±hole pairs
bound by Coulomb forces) located near 60 triplets of
monolayer InAs quantum wells (separated by a pair of
10-nm thick GaAs barriers), which are assembled into a
heterostructure with the repetition period l0=2 � 120 nm,
approximately half the emission wavelength at the exciton
recombination frequency (�ho21min � 1:47 eV) in GaAs with����
e0
p � 3:523 (at a temperature of 5 K). Carriers in the
heterostructure were produced at an initial density of
� 3� 1015 cmÿ2 by a femtosecond laser pulse (with the
surface energy density up to wp � 1:5 mJ cmÿ2 and photon
energy of about 1.54 eV) in a laser spot 150±200 mm in
diameter and created excitons that were cooled during a
time interval 9 400 ps (depending on temperature in the
interval of 5±100 K), in particular, due to stimulated
scattering. Then, with the delay of9 300 ps (depending on
the pumping level and temperature) and the same decay time,

the accelerated recombination of electron±hole pairs was
observed, which was most distinct for photon escape angles
a � 30ÿ70� with respect to the normal to the heterostructure
in the energy range �h~o � �1:475ÿ1:495� eV. According to
Snell's law, sin a � ����

e0
p

sin y, these angles correspond to the
wave vectors in the structure forming angles y � 8ÿ15� with
the normal. As the angle y was changed, the maximum of the
emission spectrum approximately followed the Bragg reso-
nance law

�h~o ' 2p�hc

l0
���������������������
e0 ÿ sin2 y

p ; �31�

and the observed intensity increased superlinearly (approxi-
mately as w 1:7

p ) as pumping increased.
For small angles, y9 5�, when a9 20�, superfluorescence

was not observed probably because of the presence of a
narrow background incoherent luminescence line of the
main amount of cooled excitons in the energy range from
1.470 to 1.475 eV.12 The spectral position of this line was
almost independent of the pumping and observation angle,
and its intensity linearly increased with increasing pumping
and did not exceed the integrated intensity of the higher-
energy emission only at the highest temperatures (50±100 K)
and the maximum pumping wp � 1:5 mJ cmÿ2. The higher-
energy emission was difficult to observe at angles y close to
the total internal reflection angle y � 15ÿ16:5�, because the
reflection coefficient from the heterostructure surface was
close to unity, 1ÿ R9 0:1 (for normal incidence, R � 0:56).

In the absence of information on radiation propagating
along quantum wells and detailed data on the spatial and
spectral distributions and dynamics of electrons, holes, and
excitons, we can only make rather general assumptions
about the fulfillment of conditions for the existence and
realization of collective electron±hole recombination in
experiments. The presence of the large inhomogeneous
broadening 2=T �2 � �0:01ÿ0:02��o21 (related, in particular,
to the motion of particles and the inhomogeneity of the
bandgap energy Eg near quantum wells due to the presence
of In and electron±hole pairs at the high density), which is
probably not smaller than the cooperative frequency of the
exciton ensemble, which can be optimistically estimated as
nc � �10ÿ3ÿ10ÿ2��o21, and the presence of a much smaller
homogeneous broadening 2=T2 0 2=T1 � 10ÿ3 �o21 (mainly
nonradiative and depending on the temperature and density
of electron±hole pairs) means that superfluorescence should
be dynamically determined by the effective cooperative
frequency �nc � n 2c T

�
2 and, according to formula (23), can

exist in a homogeneous sample for �nc > T ÿ12 . According to
estimates [67, 68], superfluorescence can be described in the
unidirectional approximation, because the Bragg rescattering
of counterpropagating waves is almost absent due to a weak
spatial modulation of the heterostructure permittivity (even
probably taking into account the resonance contribution of
the electron±hole plasma and excitons located near quantum
wells).

The spectral selection of electromagnetic waves making a
coherent contribution to emission at the given angle y,
required for superfluorescence, can be provided [218, 260±

11 We also mention paper [253] in which the IR emission band about

14 meV in width was observed in the energy interval from 100 to 200 meV

at a temperature of � 300 K upon continuous thermal (current) pumping

of 50� 50-mm2 plane samples with 18.5-nm- and 100-nm thick InGaAs

quantum wells in AlInAs barrier plates with the carrier density of

1:5� 1013 cmÿ2 and 8� 1013 cmÿ2, respectively. The authors of

Ref. [253] interpret this emission as a manifestation of collective sponta-

neous emission caused by electron±hole recombination with a character-

istic time of no less than 100 fs (which was not measured in experiments).

This interpretation based on the plasma emission mechanism is far from

obvious in the case of an inhomogeneously broadened line observed in

experiments (15±30 meV, depending on temperature) and should be

verified, in particular, taking into account the features of superradiant

lasing discussed in Section 5.

12 The delay and decay times of this luminescence were 0.5±1 ns and 1±

32 ns, respectively (depending on the pumping and temperature), i.e., were

two±three times longer than these times for the higher-energy emission. As

pointed out below, this luminescence observed across quantum wells can

also contain part of the scattered superfluorescence developing along

quantum wells.
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265] by the periodic arrangement of layers of recombining
electron±hole pairs, i.e., quantumwells in the direction across
the heterostructure. The nondephasing coherent contribution
to collective spontaneous emission in the vicinity of frequency
(31) can be made only by electron±hole pairs with recombina-
tion frequencies in a narrow interval not exceeding, say, the
carrier frequency divided by the quadruple number of the
structure periods, Do9 �o21=240. This frequency interval is
only half the observed inhomogeneous broadening and,
therefore, is greater than or on the order of the effective
cooperative frequency: Do0�nc. In the case of Do4�nc, the
selection of waves for unidirectional superradiance becomes
inefficient and superfluorescence would be suppressed, which
allows us to estimate the cooperative frequency of all
electron±hole pairs involved in cooperative recombination
in the case of its occurrence: nc � �1ÿ5� � 10ÿ3 �o21 '
�0:2ÿ1� � 1013 sÿ1.

The corresponding effective cooperative frequency �nc �
�1ÿ50� � 10ÿ4 �o21 is higher than or around the experimental
nonradiative exciton decay rate T ÿ11 ' 5� 10ÿ4 �o21 and
greatly exceeds the radiative decay lifetime � 3� 10ÿ5 �o21.
Therefore, collective recombination could make the radiative
lifetime of excitons subpicosecond (instead of 10±20 ps for an
isolated exciton), shorter than or on the order of the
nonradiative lifetime T1 � 1 ps. However, this can be
prevented in fact (within the uncertainty of parameters) by
a small thickness of the layer with quantum dots
(B � 7:5 mm) compared to the effective cooperative length
�Bc � c=� ����e0p �nc� � �400ÿ7:5 m�m, i.e., a small value of the
parameter �L � B= �Bc � 0:02ÿ1:00, which elongates a super-
fluorescence pulse many times compared to the temporal
scale �nÿ1. As follows from numerical estimates, a super-
fluorescence pulse virtually disappears already for �L9 0:3
and its duration increases to a few picoseconds or more, i.e.,
up to a value considerably exceeding themaximumadmissible
duration � T1. Therefore, the collective recombination
considered is possible only for the maximum values of the
indicated cooperative frequencies: nc � 2�nc � 5� 10ÿ3 �o21 �
1013 sÿ1. The equipment available with a time resolution of
about 20 ps could not ensure the observation of super-
fluorescence pulses.

The dynamic times 0 100 ps detected in experiments,
which greatly exceed the oscillation relaxation time of an
individual exciton, T2 9T1 � 1 ps, cannot be directly related
to collective recombination and are determined first of all by
the dynamics of formation, scattering, cooling, and nonra-
diative decay of excitons, as well as free electrons and holes.
However, collective recombination in a certain part of the
spectral line can repeat many times if cooled electron±hole
pairs arrive rapidly enough, thereby accelerating the incoher-
ent, as a whole, radiative decay of some excitons and the
cooling of other excitons, producing a superlinear depen-
dence of the recombination emission intensity on the
pumping pulse energy.

The possibility of collective recombination of excitons can
also occur due to the development of superfluorescence along
quantum wells. Although the cooperative frequency for this
process can be half the value of nc presented above, because of
the differences in the occupation factors of superradiant
modes and the different orientation of the exciton dipole
moments in the plane of quantum wells, the decreased
effective inhomogeneous broadening 2=T �2 9 3� 10ÿ3 �o21

and the increased spectral density of states and the dipole
moment of the recombination transition in the main low-

frequency part of the exciton spectral line and also a long path
with electron±hole pairs excited by the pumping (150±
200 mm, i.e., L � 10) can facilitate the proceeding of such a
process, despite the presence of the inhomogeneous high-
frequency wing of the exciton line and the absence of the
superradiant Bragg selection for waveguide or `diffraction'
modes. The duration of a collective recombination event is
again restricted by � T1, i.e., by several picoseconds.
However, due to the rapid arrival of new cooled excitons at
the low-frequency part of the exciton line, for example,
because of stimulated scattering from the nonequilibrium
(heated) portion, the collective recombination events with
emission of superfluorescence pulses along quantum wells (as
in the event of emission across them considered above) can
repeat many times, introducing a contribution, albeit small,
to exciton losses with energies of 1.470±1.474 eV at long times
(� 1 ns), as well, until the number of electron±hole pairs
produced by pumping pulses capable of populating this low-
frequency part of the exciton line is exhausted.

It should be noted that superfluorescence photons propa-
gating along quantum wells can be reabsorbed and thus
retained in the heterostructure, whereas photons in the same
energy range resonantly scattered or spontaneously emitted
during collective recombination in the transverse direction to
the wells readily escape and can make a considerable
contribution to the intensity of observable long-lived exciton
luminescence line. The numerical simulation of this not one-
dimensional but, in fact, three-dimensional problem, which
also requires consideration of the spatio-temporal dependence
of the shift of the bandgap energy Eg proportional to the local
carrier density, involves significant difficulties and has not
been performed so far.

4.5 Superfluorescence simulation
in a half-open Fabry±Perot cavity
We assume now that superfluorescence along quantum wells
considered in Section 4.4 does not occur for some reason or is
excluded by electrodynamic conditions, for example, by the
formation of a two-dimensional Bragg grating creating a
forbidden band for photons with energies of interest to us.13

We will demonstrate the typical properties of superfluores-
cence in the direction across quantum wells using equations
(19) at np � 1 for a one-dimensional layer of inverted dipole
oscillators with thickness B4 l0, having one negligibly
weakly reflecting boundary, say, with R1 � 0:001, and
another boundary reflecting moderately with R2 � 0:1ÿ0:9.

For simplicity, we restrict ourselves to the case of a weak
inhomogeneous broadening of the spectral line with the high
cooperative frequency nc 4 1=T �2 ' 2T ÿ12 . Then, to obtain
superfluorescence (unidirectional in fact, as in the experiment
discussed in Section 4.4), no additional electrodynamic mode
selection is required (for example, superradiant Bragg
selection), whereas such dynamic selection was performed in
this experiment. Taking into account this circumstance, we
will assume that a layer of initially inverted two-level centers
is spatially homogeneous with the occupation factor ~G � 1
and will use the following typical normalized parameters,
which would be characteristic for this experiment in the case
of a small inhomogeneous broadening of the exciton line:

13 The quantum and classical features of collective spontaneous emission

of a two-dimensional layer of inverted two-level active centers placed in a

planar waveguide with a resonant two-dimensional Bragg structure

admitting low-Q (leaky) superradiant modes are considered in Refs [259]

and [266], respectively.
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I � 10ÿ4, L � 0:56, R2 � 0:3, D0 � 0:046, G2 � 0:0026, and
G1 � 10ÿ4.

According to calculations (Fig. 5), the wave field and
polarization are amplified many times when passing both
from the nonreflecting facet to the partially reflecting facet
and during the passage back. After the delay time td ' 150,
they begin to rapidly remove the inversion of active centers,
first near the nonreflecting facet of the sample, where the field
is maximal, and then also in its central part. Because
reflection coefficients R1 and R2 are considerably different
(in calculations, R2=R1 � 300), the intensity of emission
escaping from the partially reflecting facet is a few dozen
times lower than the emission intensity near the opposite
facet, where superfluorescence reoscillations are stronger.
In this case, the dynamic spectrum of the field is analogous
to the dynamic spectrum of polarization and its width
reaches a quarter of the cooperative frequency for the main
output pulse with duration dt ' 20 (see Fig. 5). By the
superfluorescence end time �t ' 300�, the inversion aver-
aged over the sample and spectral line remains positive
�h�ni � 0:1�, but the mean inversion of the spectral line in
the region adjacent to the nonreflecting facet is almost

completely lost �1� �n5 1�. Therefore, the polarization of
active centers in the main part of the inhomogeneously
broadened line turns to be close to zero (as in the periods of
the maxima of the main pulse and reoscillation pulses). In
the half of the sample adjacent to the partially reflecting
facet, the inversion expense is small ��n0 0:5� and there in
the regions of counterpropagating waves with comparable
amplitudes �ja�j � jaÿj� a noticeable inversion grating
appears �jnzj9 0:3�. Nevertheless, it does not significantly
change the gain of counterpropagating waves, leads only to
weak reflections compared to the value of R2, and does not
considerably affect superfluorescence pulses.

The possible change in superfluorescence caused by the
DFB of counterpropagating waves in a strongly nonsymme-
trical cavity and repeated pulses of collective spontaneous
emission upon prolonged pumping of a separated spectral
line will be considered in Section 5.

To conclude this rather limited discussion of superfluor-
escence experiments, we point out the remarkable observa-
tion in paper [267] of the so-called superradiant decay of an
ensemble of iron nuclei in an 57FeBO3 crystal excited by a
resonance 5-fs pulse 11-meV wide from a free-electron X-ray
laser in the case of Bragg reflection from the �1; 1; 1� plane at
the 14,412-eV MoÈ ssbauer transition line. The coherent
excitation of Nnuc � 70 nuclei with a lifetime of about 100 ns
was achieved in experiments and all X-ray photons emitted by
nuclei were detected with a time resolution of about 1 ns. In
accordance with Dicke [1], the mean time of collective
spontaneous emission of the first photon proved to be Nnuc

times smaller than the mean time of spontaneous emission for
one isolated nucleus, and the common time profile of
emission of all photons by Nnuc nuclei coincides with the
spontaneous decay curve for one nucleus.

The measured probabilities of these and other multi-
photon observations, say, related to the probability distribu-
tion of the arrival time of the second or, for example, tenth
photon were successfully reproduced analytically [267] based
on simple statistics without the inclusion of the dynamics and
propagation effects. The authors of Ref. [267] reasonably
assumed that excited nuclei do not interact with each other
and emit photons independently and spontaneously, but
coherently, because their phase can be controlled by the
coherent pumping pulse. In this connection, it is appropriate
to repeat that, unlike the phenomenon observed in the given
paper, in general the superradiance phenomenon is far from
being exhausted by the coherence of emitters, but contains
their coherent radiative interactions as the main component,
which provides their spontaneous phasing under certain
conditions via the self-consistent radiation field. We empha-
sized this effect in the description of experiments without
cavities on unidirectional superfluorescence in this section,
and we will discuss it in more detail in Section 5 for a number
of problems on superradiance in low-Q cavities using the
language of waves and their instability and interactions.

5. Superfluorescence of modes
upon pulsed pumping and superradiant lasing
upon continuous pumping in a low-Q cavity

5.1 Hot modes in the case
of a homogeneously broadened spectral line
Most experiments on the collective spontaneous emission of
ensembles of two-level active centers, as illustrated by
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Figure 5. (Color online.) Oscillatory superfluorescence of a sample of

lengthL � 0:56 in a Fabry±Perot cavity with negligibly weak reflections at
one end �R1 � 10ÿ3� and strong reflections at the other end �R2 � 0:3� in
the case of very small inhomogeneous spectral line broadening:

D0 � 0:046, G2 � 2G1 � 0:0026. (a) Oscillograms of normalized output

radiation intensities I ja�j2 (the upper and lower solid curves correspond

to aÿ and a�, respectively) and the inversion h�ni averaged over the sample

(dotted curve). (b) Dynamic polarization spectrum j pÿ�D; t�j at the facet
with negligibly weak reflections.
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examples presented in Section 4, are related to continuous-
spectrum waves and are rather adequately interpreted in the
unidirectional approximation taking into account nonlinear
effects of radiation propagation in the active medium. This
interpretation is mainly based on semiclassical equations like
(19) for weakly interacting counterpropagating waves sup-
plied from the same energy reservoirÐ the inverse popula-
tion of the energy levels in active centers. An example is the
calculation of oscillatory superfluorescence [148] performed
for parameters of experiments [189, 190] on the collective
spontaneous emission of the gas of inverted Te2 molecules.

However, it has been becoming clear recently that the use
of low-Q cavities, which do not really prevent the escape of
radiation but often make important the interaction between
counterpropagating waves, can considerably loosen require-
ments on the realization of superradiance and strongly enrich
the spectral, temporal, and correlation features of these
phenomena (see, for example, Refs [3, 12, 13, 38±40, 43, 48,
88, 108, 110, 114±116, 139, 194, 237]). As a result, the question
arises as to the advantages and salient features of the
realization of the instability and the superradiant dynamics
of discrete hot modes of the field and polarization of the
active medium filling a low-Q cavity with a length smaller
than or on the order of a few cooperative lengths Bc or �Bc

[cf. formulas (28) and (29)] determined by the cooperative
and effective cooperative frequencies (18) and (27) in the
cases of homogeneous and inhomogeneous broadening of
spectral lines, respectively. These modes in the simplest one-
dimensional geometry include inhomogeneous self-consis-
tent counterpropagating waves, which are nonlinearly self-
modulated due to the coherent dynamics of two inversion
components: smoothly inhomogeneous n�z; t;D� and small-
scale nz�z; t;D�.

At the linear stage of superfluorescence and the initiated
superradiance processes, the mode amplitudes increase
exponentially in time, � exp �o 00mt�, with their growth rates
o 00m which under certain conditions can be close to the
maximum values equal to cooperative frequencies nc and �nc
(depending on the type of spectral line broadening). There-
fore, discrete modes having the largest growth rates can
dominate over continuous-spectrum waves 14 and will be the
first to reach the nonlinear stage, ensuring the removal of
population inversion in the active medium. Such a process in
the case of the homogeneously broadened line was described
for an active single-mode waveguide with a small feedback
coefficient closed in a circle [3], and was also analyzed in a
Fabry±Perot cavity in Refs [43, 195, 236, 237, 268]. It was
found that even weak reflections jRj0Rc, where Rc is
determined by the relation

lnRÿ1c � ln �N0SB�1=4

1�
����������������������������������������������
1� �1=4� ln �N0SB�1=4

q ; �32�

at the ends of a cylindrical sample with the Fresnel number
F � S=�l0B� � 1 corresponding to the model of a one-
dimensional Fabry±Perot cavity, lead to the synchronous
emission of counterpropagating superfluorescent waves in
the form of discrete modes whose field considerably exceeds

the field of continuous-spectrum waves (in most real experi-
ments, Rc 9 0:1).

Recall that, according to Eqns (1)±(3), the polariton
spectrum of homogeneous plane waves, � exp �ÿiot� ikz�,
Im k � 0, in a homogeneous two-level medium with the
homogeneously broadened spectral line and homogeneous
inversion n contains two waves: an electromagnetic wave and
a polarization wave with complex frequencies

oe;p � o21 ÿ i

T2
� 1

2

�
c0kÿ o21 � i�Tÿ12 ÿ 2p~s0�

�
�
(
1�

�
1ÿ 4nn 2c�

c0kÿ o21 � i�T ÿ12 ÿ 2p~s0�
�2�1=2

)
: �33�

Standard concepts in laser physics about the induced
instability of an electromagnetic wave, Imoe > 0, and the
incoherent superluminescence process described by balance
equations are related to the case of strong polarization
relaxation. In this case, T ÿ12 > nc

���
n
p

> 2p~s0 (see definitions
(4) and (5) and system of equations (19) while ignoring the
derivative qp�=qt). In the case of weak polarization relaxa-
tion of interest to us,15 whenT ÿ12 < 2p~s0, the instability takes
place (for 2p~s0 < nn 2c T2) only for the polarization wave,
Imop > 0, which has a negative energy and leads to the
process of coherent superfluorescence or initiated super-
radiance. Here, as explained in Refs [3, 125], collective
spontaneous emission is the induced emission of the internal
energy of active centers under the action of the self-consistent
field of the polarization wave.

The above is also valid for polariton modes in a low-Q
cavity. In this case, it is necessary, in accordance with the
boundary conditions, to take into account the consistence of
counterpropagating waves by choosing certain discrete wave
numbers and the presence of radiative losses by making the
substitution ~s0 ! ~s � ~s0 � ~srad in formula (33) and in the
inequalities presented below [197, 198] (as was indicated in
Section 2 in the discussion of the mean field model). For a
Fabry±Perot cavity with the reflection coefficients R1; 2 of the
end mirrors, we have ~srad � �c0=4pB� ln jR1R2jÿ1 and fre-
quencies (33) correspond to hot modes, each of them being
produced by two inhomogeneous counterpropagating waves.
The amplitudes of these waves depend on the coordinate z
and exponentially increase 1=

��������������jR1R2j
p

times after passage
through the sample, while the real parts of wave numbers are
described as k � lp=B, l � 1; 2; . . . . The most unstable mode
having the maximum growth rate Imopl0 � o 00pl0 is the one
with the number l0 giving the value c0k � l0pc0=B closest
to the resonance frequency �o2

21 � T ÿ22 �1=2 of active centers.
For a short inverted sample with l0 5B5Bc and
Rc 9 jR1; 2j9 1=2 for

���
n
p

nc 4T ÿ12 and 2p~s0 5 2p~srad '
T ÿ1E 5 nn 2c T2, the radiative (dissipative) instability is devel-
oped in fact only for this single polariton mode having the
growth rate

o 00pl0 �
nn 2c

2p~srad
ÿ 1

T2
� nn 2c TE ÿ 1

T2
: �34�

14 The coherent increase in these waves in the invertedmedium is restricted

from above by the self-similar law � exp � ��������������
o2

czt=c
p � [230±232] in the case

of the homogeneously broadened line and is completely impossible in the

case of large inhomogeneous broadening.

15 Expression (33) and everything said based on it about the instability of a

polarization wave and a polariton mode, including expression (34), are

also correct for the case of the Lorentzian inhomogeneous line for

1=T2 9 1=T �2 <
���
n
p

nc, if the substitution T ÿ12 ! 1=T2 � 1=T �2 is made

everywhere. We will use this below, beginning with expression (46). For

1=T �2 >
���
n
p

nc, only electromagnetic waves and modes prove to be

unstable, and without their special selection superfluorescence and super-

radiant lasing become problematic.
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This directly follows from the characteristic and disper-
sion equations (24) and (25) and remains qualitatively
valid for a combined Fabry±Perot cavity with a small
integrated Bragg reflection coefficient bL � �bBo0=c0 9 1.
In particular, the growth rate for this resonance polariton
mode is still determined by expression (34) if ln jRjÿ1 in
the expression for the radiative lifetime TE of a photon
(see footnote 5) is replaced by the approximate expression
ln jRÿ ibL= ln jRjÿ2jÿ1, where we assume for simplicity
that R1 � R2 � R (for jRj5 bL=2, the replacement
ln jRjÿ1 ! ln jbL=2jÿ1 should be made).

5.2 Analytic inversion `unloading' theory
in a Fabry±Perot cavity
The nonlinear stage in the crude adiabatic mean field
approximation (with the replacement of the inhomogeneous
inversion n�z; t� by the instantaneous value hn�t�i averaged
over a sample) is described by the solution of equations (19).
By disregarding relaxation processes in the medium (for
D0;G1 9G2 5 1) and the inversion grating �nz � 0�, this
solution represents single-pulse superradiance with the field
amplitude jEj / 1=cosh �o 00pl0�tÿ td��, where the growth rate
contains the initial inversion n�t � 0). The ratio of the delay
time td to the pulse duration t ' 1=o 00pl0 is a multiple of the
logarithm of the ratio between the maximum and initial
emission intensities: td ' t ln jEmax=E�t � 0�j.

In paper [237], a more accurate and general equation was
obtained for mode superfluorescence in a Fabry±Perot cavity
also by ignoring the spectral line broadening, but taking into
account the development of the `unloading wave' of the
inversion of active centers, having a strongly inhomogeneous
profile. Approximate analytic solutions show that this
`unloading' begins from the ends of the sample and moves
inside it with the velocity determined by the group velocity of
inhomogeneous polarization waves. This equation and its
solutions are written out in Ref. [237] for a symmetric Fabry±
Perot cavity uniformly filled with an active medium �~G � 1,
e0 � const� and featuring real reflection coefficients �R1 �
R2 � R� for the so-called amplitudeY�t� of the Bloch angle f
represented approximately in the factorized form

f�t; z� ' Y�t�
�������������������������������������������������������������������������
sin2

o21�z� B=2�
c0

� sinh2
�lnRÿ1�z

B

s
�35�

for an active sample with a length falling within the limits

pc0
o21R

�1� lnRÿ1�5B9Bc�1� lnRÿ1� ; �36�

i.e., many times exceeding the wavelength but smaller than or
around the cooperative length. Spatial structure of angle (35)
corresponds to the profile of the most unstable polariton mode
only at the linear stage of superfluorescence for smallY.

At the nonlinear stage, the Bloch angle (35) completely
describes the inversion structure, D � cosf, and determines
to a great extent the wavy form of the polarizationP and field
E, which no longer correspond to any mode. We will not
present here cumbersome expressions for them and only note
that, according to the law of conservation of the Bloch vector
length and the law of Rabi oscillations, the amplitudes of
inhomogeneous polarization and field waves are specified by
the quantities dN0 sinf and ��h=d� dY=dt, respectively. For
simplicity, we will present the equation for the evolution of
the Bloch angle amplitude `starting' from a small value
Y�0�5 ����

R
p

(virtually the completely inverted medium) only

in the case of predominantly single-pulse superfluorescence:16

dY
d�tnc� ' ÿ

4

Bc�Rÿ1 ÿ R�
� B=2

ÿB=2

q cosf�t; z�
qY

dz : �37�

According to formula (35), the right-hand part of
equation (37) considerably depends on the reflection
coefficient R and for no value of R is reduced to the
function sinY declared in the mean field model [10, 11, 13,
43, 51, 225, 226, 268]. However, for R0 1=2, it proves to be
close to the Bessel function J1�Y� similar to sinY and
leading to the implicit solution in the form

t�Y� � pc0 lnRÿ1

4n 2c B

�Y

Y�0�

dY 0

J1�Y 0� : �38�

The assumption about single-pulse superfluorescence, as in
equation (37), means that, according to the right inequality in
expression (36), the factor �lnRÿ1�c0=B � Tÿ1E , equal to the
inverse photon lifetime in a cold cavity (see footnote 5),
exceeds the cooperative frequency nc, so that the pulse
duration is determined by the growth rate of the polariton
mode and is described by the expression dt � �n 2c TE�ÿ1. In
such a low-Q cavity, even forR > exp �ÿ2� at which the right-
hand side of equation (37) as a function of Y still has
noticeable oscillations, collective spontaneous emission
weakly oscillates and reaches a maximum in the first, main
pulse at the Bloch angle amplitude Y � Yd ' p=2 corre-
sponding to the delay time td � dt ln �N0B

2l0R�.
In the limit of a very low-Q cavity for R9 exp �ÿ2�, the

right-hand side of equation (37) is approximately described
by the monotonic MacDonald function K0�Y�, so that the
superfluorescence pulse duration and its delay time td increase
logarithmically as d~t / lnRÿ1. The pulse reaches its max-
imum for lower Y � ~Yd ' pR 1=2 and corresponds to the
maximum density of the electromagnetic energy flux (from
one end) logarithmically dependent on the reflection coeffi-
cient:

F�td� � c0
e0

�
dN0Bo21

c0 lnRÿ1

�2

: �39�

Under these conditions, the temporal shape of the field pulse
jE�t�j / dY=dt, which exponentially increases at the linear
stage of superfluorescence forY�0�4Y9R 1=2p=2, changes
to hyperbolically decreasing function / �tÿ ti�ÿai , first with
the index a1 9 3=2 for pR 1=2 9Y9 1 and then with the
index a2 � 1. As the reflection coefficient increases for
Rcr 9R9 exp �ÿ2�, the superfluorescence pulse shape
greatly sharpens, and for R0 1=2, it is almost independent
of the reflection coefficient, although, as R approaches unity,
the pulse duration continues to decrease, while the super-
luminesence field continues to increase until the correspond-
ing quantities reach their minimum, min �dt� ' 2=nc, and
maximum, max �F�td�=�1ÿ Ropt�� � �ho21N0c0=3, values for
the optimal reflection coefficient, determined by the boundary
between the single-pulse and oscillatory regimes, i.e., by the
condition TE �

���
2
p

=nc:

lnRÿ1opt �
Bnc���
2
p

c0
� B���

2
p

Bc

: �40�

16 Excluding high-Q cavities in which oscillatory superradiance is possible

[114, 126, 194, 225, 226, 237].
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If, along with the single-pulse superfluorescence regime,
the oscillatory regime is taken into account, the universal
estimate of the maximum density of the electromagnetic
energy flux in the first, main pulse takes the form17 [237]

F�td� � c0�1ÿ R�
e0

�dD0N0Bo21=c0�2
�lnRÿ1�2 � �B=�2Bc�

�2 ; �41�

where the possibility of incomplete initial inversion of active
centers,D0 9 1, is also taken into account. It follows from the
above consideration that the use of weakly reflecting mirrors
with reflection coefficients Rcr 9R9Ropt for short samples
of lengthB9Bc considerably increases the superfluorescence
intensity and reduces its duration compared to its intensity
and duration in the unidirectional regime in the absence of
mirrors. The produced multimode superfluorescence cannot
be described by the mean field model and is single-pulse,
unlike unidirectional superfluorescence of the oscillatory self-
similar type. For very short samples with B5Bc, i.e., for
L5 1, the employment of mirrors with the optimal reflection
coefficient R � Ropt ' exp �ÿL= ���

2
p � ' 1ÿ L=

���
2
p

trans-
forms unidirectional superfluorescence into almost single-
mode, as predicted by the mean field model, and gives the
limiting pulse intensity and duration, which can be achieved
in the unidirectional regime (without mirrors) only in long
samples with B � 2Bc (for the same parameters of the active
medium).

Even for a sample with the optimal length (at n � 1)
B � 2Bc, i.e., L � 2, the use of an open Fabry±Perot cavity
with the mirror reflection coefficients R � Ropt ' 0:3 can
weaken oscillations and make the superfluorescence pulse
more compressed andmore powerful. This is demonstrated in
Fig. 6 for the case of L � 2, R � 0:37, in which the Rabi
frequency of the pulse field in the pulse maximum region is on
the order of the cooperative frequency,

��
I
p ja�j � 1, the pulse

spectrum width is close to the double cooperative frequency,
d~o � 2nc, and its duration is about three inverse cooperative
frequencies, dt � 2p=d~o � 3nÿ1c . Numerical calculations
confirm that on such short time scales neither the appearance
of a self-consistent inversion grating nor the presence of
pumping with G1 9 0:01 at np � 1 affect the shape of the
superfluorescence pulse or the inversion evolution in the
sample (lasing in this case is demonstrated in Fig. 13 in
Section 5.6).

Notice that, to completely realize the advantages of mode
superradiance, the reflection coefficients of the sample ends
need not necessarily be the same, but both should have values
close to optimal. If the reflection coefficient of one of the ends
is too small, as in the numerical example in Fig. 5, where
R1 � 0:001 < Rcr and R2 � 0:3 � Ropt=2, superfluorescence
will not differ much from unidirectional, and the pulse
duration will exceed by many times the cooperative fre-
quency, even in the case ofL � 2, and evenmore so forL5 1.

5.3 Low-Q cavity with distributed feedback of waves
The presence of a low-Q cavity required for improving the
mode superfluorescence can be provided by the resonance

DFB of counterpropagating electromagnetic waves (for
simplicity, we assume here that the parameter b is real). In
the simplest case of weak integral Bragg reflection with the
coefficient tanh bL < 1=2, the DFB can replace the local
coupling of wave amplitudes due to reflections from the
sample ends, which will lead to the same photon lifetime
TE � B=fc0 ln �1� p=�bL��g as in a Fabry±Perot cavity,
TE � B=�c0 ln jR1R2jÿ1=2�, if the Bragg wave coupling coeffi-
cient, i.e., the DFB coefficient, satisfies the condition
b ' p

��������������jR1R2j
p

=L9 1=L. As a result, general qualitative
conclusions about mode superfluorescence made in Sec-
tions 5.1 and 5.2 for an open Fabry±Perot cavity can also be
applied to a great extent to an open purely Bragg cavity,
despite the absence of the corresponding detailed analytic
nonlinear theory of inversion `unloading' in the active
medium of the cavity.

However, it is important that for short samples with
L5 1, the creation of a Bragg cavity providing the maximum
superfluorescence pulse intensity and the minimal pulse

17 The inversion grating nz produced by the first pulse plays a secondary

role for the pulse itself, but can considerably affect the next pulses

generated by the active medium in a low-Q cavity (Fabry±Perot, Bragg,

or combined). We will consider this question in Sections 5.6 and 5.7 in the

case of continuous pumping, i.e., for superradiant lasers, where it is of

special interest.
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Figure 6. (Color online.) Superfluorescence of a sample of lengthL � 2 in a

Fabry±Perot cavity with moderate reflection at laser ends �R � 0:37� in
the case of slow continuous pumping �np � 1� and a homogeneously

broadened spectral line: G2�2G1� 0:024D0� 0:002. (a) Oscillograms of

the normalized output radiation intensity I ja�j2 and the inversion h�ni
averaged over the sample (dotted curve). (b) Spatio-temporal evolution of

the inversion n�z; t� over the sample. (c) Spatio-temporal evolution of the

amplitude ja��z; t�j of the wave running to the right.
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duration �0nÿ1c �, similarly to condition (40), where
Ropt � exp �ÿL= ���

2
p � is close to unity, requires that the

integrated reflection coefficient tanh bL be close to unity
(and, therefore, the parameter bL4 1) and the photonic
bandgap be large. The latter has a width of 2bnc 4 nc=L �
c0=B4T ÿ12 , and collective spontaneous emission in it is
impossible. Therefore, based on the mean field model (see
Section 2), the effective mode superfluorescence can naturally
be related to cold modes at the edge of this forbidden band,
for which the normalized complex frequency detuning
OE � �~oÿ o0�=nc satisfies the equation [199]

O 2
E � k 2 � b 2 ; k � �kÿ k0�c0

nc
' pm

L

�
1ÿ i

bL

�
;

m � �1;�2; . . . ;� �M9
bL
p
;

�42�

and photon lifetimes are described by the expression

TEm '
�
bL
pm

�2
B

c0
0

B

c0
; bL4 1 : �43�

Under these conditions, low-Qmodes withT ÿ1Em 0nc required
for single-pulse superfluorescence have numbers
jmj0bL

����
L
p

=p and, in particular, the first mode is a low-Q
one for bL9 p=

����
L
p

. By tuning the spectral line, for example,
to this first mode, setting jFj ' B�1� �p=bL�2=2�, and
choosing the optimal Bragg coupling bopt for counterpropa-
gating waves, from condition TE1 �

���
2
p

=nc (40), i.e.,

bopt �
p
L

�����������
2
p

L

s
; �44�

then, due to the spontaneous growth of the most unstable
hot polariton mode, we can again obtain, in fact, single-
pulse superfluorescence with the ultimate pulse intensity
and minimum pulse duration �� nÿ1c � without consider-
able oscillations, because the adjacent electromagnetic
mode of the cold cavity is detuned under condition (44)
by a frequency exceeding the cooperative frequency:
jOE2 ÿ OE1j ' 3p2=�2bL2� � p=

����
L
p

> 1.
Everywhere below, except in one example of `exotic'

multimode superradiant lasing presented in Section 5.8 in
Fig. 20, we will consider only weak Bragg reflections with
bL9 p leveling the inhomogeneity of counterpropagating
waves along the active sample but not especially preventing
the appearance of collective spontaneous emission. In
particular, for an active sample, with the optimal length
L � 2, the value of b � 1 corresponds to the best DFB level
providing the most rapid and powerful single-pulse super-
fluorescence. In this case, when the Bragg resonance is tuned
to the spectral line center �F � 0�, the photonic bandgap is
not formed yet, as for bL4 1, and Bragg rescattering does
not prevent but, on the contrary, facilitates the formation of a
high-power superfluorescence pulse. The corresponding
example at bL � 2 is presented in Fig. 7, where all the time
and spectral scales of the inversion dynamics of active centers
and the evolution of the emitted field differ by no more than
two±three times18 from those for superfluorescence in an
open Fabry±Perot cavity �R � 0:37� with the same active
sample and the same photon lifetime TE � 2=nc, equal for

chosen Fabry±Perot and Bragg cavities (see Fig. 6). Two of a
few qualitative differences caused by the DFB are the larger
homogeneity of each of the counterpropagating waves of the
field during main superfluorescence emission and the more
noticeable difference between pulses escaping from opposite
ends of the sample, which experience a different action of the
self-consistent inversion grating.

The introduction of a moderate DFB leveling the
inhomogeneous profile of partial waves forming an unstable
mode responsible for superfluorescence improves, as a rule,
the characteristics of the pulse that would be emitted without
application of the wave feedback by increasing its energy and
power, decreasing the pulse duration and delay time and

18 Frequency detunings O 01; 2 and growth rates O 001; 2 differ two±three times

for two unstable polariton modes responsible for superfluorescence in two

compared cases.
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Figure 7. (Color online.) Superfluorescence of a sample of lengthL � 2 in a

Bragg cavity with the DFB coefficient b � 1 in the case of weak

continuous pumping �np � 1� and a homogeneously broadened spectral

line: G2 � 2G1 � 0:024D0 � 0:002, F � 0. (a) Oscillograms of the

normalized output radiation intensity I ja�j2 (the upper and lower solid

curves correspond to aÿ and a�, respectively) and the inversion h�ni
averaged over the sample (dotted curve). (b, c) Spatio-temporal evolution

of the amplitudes jaÿ�z; t�j and ja��z; t�j of a wave running to the left and

right, respectively.
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suppressing reoscillations after the main pulse. Thus, if we
apply a rather weak resonance DFB19 with b � 0:9 at F � 0
in the example of unidirectional superfluorescence of an
active sample of length L � 0:56 in a strongly asymmetric
Fabry±Perot cavity with R1 � 0:001 and R2 � 0:3 � Ropt,
where TE � 0:135=nc (see Fig. 5 in Section 4.5), the mode
superfluorescence pulse power (Fig. 8a) will increase 2.5 times
and its duration dt decrease from � 20 to � 10 (i.e., will
become only three times longer than the minimal pulse
duration in a symmetric Fabry±Perot cavity with R1 �
R2 � Ropt). In this case, the intensities of output pulses from
the opposite ends of the sample differ only two times (rather
than a few dozen times, as in Fig. 5a), because the field and
polarization in the sample become more homogeneous and
inversion, as a whole, is removed more completely. As is seen
from the dynamic spectrum of one of the polarization
components pÿ�t;D� taken at the virtually nonreflecting end
of the sample (Fig. 8b), active centers in the main part of the
inhomogeneously broadened line jDj9D0 completely give to
the superfluorescence pulse all their energy stored on the
upper energy level, and therefore their dipole oscillations are
absent (cf. Fig. 5b in which the spectral band with polariza-
tion close to zero, p�t;D ' 0�, is narrower and dipole
oscillations in this band appear again after the reabsorption
of repeated pulses). Outside this spectral band, the number of
active centers is small, but they give information on the
spectrum of the emitted rapid superfluorescence pulse cover-
ing a broader frequency region in Fig. 8b than that in Fig. 5b
and leaving the memory about itself in free dipole oscillations
with long lifetimes � T2 � 500=nc.

5.4 Superfluorescence in a combined cavity in the case
of a moderately inhomogeneously broadened spectral line
Consider now the problem of exploiting low-Q cavities to
overcome inhomogeneous spectral line broadening, which is
one of the main obstacles in the way of obtaining intense
collective spontaneous emission.20 As noted, an increase in
the density of active centers, which is natural for heightening
the cooperative frequency [see formulas (4) and (18)] and
emission power and, therefore, for shortening the super-
fluorescence pulse duration, usually enhances some incoher-
ent interactions of dipole oscillators and leads to dispersion in
their partial oscillation frequencies preventing superradiance.
Thus, if we raise the inhomogeneous broadening several-fold
in the example considered at the end of Section 5.3 (see Fig. 8),
taking, for example, D0 � 0:25, superfluorescence in the
unidirectional regime without the DFB will be virtually
impossible in a short sample with length L � 0:56 and
TE � 0:135=nc.

However, one can see from Fig. 9 that the presence of a
moderate DFB with bL � 0:5 increasing the photon lifetime
by 2.5 times in a low-Q cavity �TE � 0:32=nc� preserves
superfluorescence, although an order of magnitude weaker.
The DFB also ensures the existence of an unstable hot
polariton mode for any position of the spectral line in the
region of a weakly manifested photonic bandgap � 2b � 1:8

in width. For the parameters chosen, the growth rate of this
mode o 00=nc � 0:1ÿ0:2 (depending on the value of jFj9b)
exceeds the homogeneous spectral line width 2G2 by several
dozen times, providing distinct superfluorescence, but at the
same time this growth rate is several times smaller than the
cooperative frequency and the inhomogeneous linewidth 2D0,
which leads to the long pulse duration (dt � 20 in Fig. 9a). As
a result, only a small fraction of active centers in the central
part of the line (jDj9 0:1, Fig. 9b) are involved in super-
fluorescence, whereas others do not emit the stored energy,
which makes the level of the residual mean inversion high in
the sample �h�ni ' 0:8� and the delay time long21 �td ' 180�.

The general analysis of mode instability for not too large
Lorentzian inhomogeneous spectral line broadening, when
1=T2 5 1=T �2 9nc, i.e., G2 5D0 9 1, is identical to that
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Figure 8. (Color online.) Superfluorescence of a sample of length L � 0:56
in a combined Fabry±Perot cavity with negligibly weak reflections at one

end �R1 � 10ÿ3� and strong reflections at the other end �R2 � 0:3�with the
DFB coefficient b � 0:9 in the case of very small inhomogeneous spectral

line broadening: D0 � 0:046, G2 � 0:0026, G1 � 0:001, F � 0. (a) Oscillo-

grams of normalized output radiation intensities I ja�j2 (the upper and

lower solid curves correspond to aÿ and a�, respectively) and the inversion
h�ni averaged over the sample (dotted curve). (b) Dynamic polarization

spectrum j pÿ�D; t�j at the end with negligibly weak reflections.

21 However, due to general distributed reflection of counterpropagating

waves �ja�j � jaÿj�, a pulse escaping through the partially reflecting facet

of the sample becomes quite comparable to a similar pulse in the

unidirectional superfluorescence regime without the DFB for a very small

inhomogeneous broadening D0 � 0:046 (Fig. 5a).

19 An order of magnitude smaller than the optimal DFB (44) for F � 10,

but nonetheless providing the integrated reflection coefficient bL � 0:5 �
Ropt � exp �ÿL= ���

2
p �, and the 2.5 times longer photon lifetime TE �

0:32=nc.
20 Theoretical and experimental studies of superfluorescence of spin

ensembles with the large inhomogeneous broadening of spectral lines, in

particular, in the presence of a cavity, are considered in Refs [269±271].
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presented after expression (33) in the case of homogeneous
broadening with the substitution 1=T2 ! 1=T2 � 1=T �2 '
1=T �2 in expressions indicated there (see Refs [197, 198]). By
excluding samples that are too long (28) and of no interest for
mode superfluorescence, we will consider only comparatively
short open active samples in a symmetric low-Q combined
cavity with R1 � R2 � R and bL � 1 and with the compara-
tively short photon lifetime

TE ' B=c0

ln
��Rÿ ibL= ln jRjÿ2��ÿ1 9

1���
n
p

nc
: �45�

Then, the existence of mode superfluorescence is provided by
the presence of an unstable resonant polariton mode with the
growth rate exceeding the relaxation rate of individual dipole
oscillations of active centers:

o 00pl0 ' nn 2c TE ÿ 1

T �2
>

1

T2
: �46�

This requirement represented in the form nn 2c TE 0
1=T2 � 1=T �2 coincides, in fact, with the earlier-used condi-
tion (22) of emerging mode superradiance. Under these
conditions, which can be reduced as a whole to the form

G2 � D0 <
n

GE
' nL

ln
��Rÿ ibL= ln jRjÿ2��ÿ1 9

���
n
p

; �47�

mode superfluorescence has the single-pulse character (with
the pulse duration � 1=o 00pl0 ) and is developed only when the
inhomogeneous line broadening D0 � �ncT �2 �ÿ1 does not
exceed the value on the order of the normalized length
L�Bnc=c0 of the sample. In this case, most of the active
centers will be involved in collective spontaneous emission
only if the growth rate exceeds not only homogeneous but
also inhomogeneous broadening, i.e., when inequality (46) is
enhanced to o 00pl0 > 1=T �2 and, consequently, in fact the left-
hand side of inequality (47) is doubled:

2D0 < nncTE ' nL

ln
��Rÿ ibL= ln jRjÿ2��ÿ1 9

���
n
p

: �48�

Otherwise, mode superfluorescence cannot be strong and will
lead in the best case to the formation of a narrow dip of width
� o 00pl0 < 1=T �2 in the inversion spectrum n�D�, as shown in
the example in Fig. 9.

For an active sample with the optimal length L � 2 (for
n � 1), the efficient superfluorescence related to the radiative
instability of polariton modes is possible even for inhomoge-
neous broadening on the order of the cooperative frequency,
when G25D0�1. Figure 10 shows the example for a purely
Bragg cavity with F � 0 and the photon lifetime TE � 2=nc
for the two highest-Q cold modes, which is the same as in
Figs 6 and 7 where the inhomogeneous broadening is
negligibly small �D0 � 0:002�. Compared to single-pulse
superfluorescence in Fig. 7, the superfluorescence demon-
strated in Fig. 10 is an order of magnitude weaker in intensity,
slightly delayed in development, much longer, and more
oscillatory. At first glance, it represents the spatially inhomo-
geneous (Fig. 10b) and symmetric (with respect to the cavity
center) (Fig. 10b) beats of two initial unstable polariton
modes with large growth rates 22 �� nc=3� and symmetric
frequency detunings from the Bragg resonance �� �nc=3�
and two nonadiabatically excited by them electromagnetic
modes with the same wave numbers but with larger frequency
detunings from the Bragg resonance �� �nc� (see also the
discussion of Fig. 19 in Section 5.7). In this case, the emission
of active centers in the central part of the spectral line was very
weak, as in the central part of the sample, where the field of
collective spontaneous emission is considerably weaker
(Figs 10b, c). As a whole, superfluorescence carried away
only 1=5 of the energy stored in the sample, rather than 2=3, as
in the case of the homogeneous broadening shown in Fig. 7.
The spontaneous symmetry breaking caused by the difference
between counterpropagating waves became less manifested,
in particular, due to the more symmetric and uniform action
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Figure 9. (Color online.) Restricted superfluorescence of a sample of

length L � 0:56 in a combined Fabry±Perot cavity with negligibly weak

reflections at one end �R1 � 10ÿ3� and strong reflections at the other end

�R2 � 0:3� for the DFB coefficient b � 0:9 in the case of inhomogeneous

spectral line broadening: D0 � 0:254 G2 � 0:0026, G1 � 0:001, F � 1.

(a) Oscillograms of normalized output radiation intensities I ja�j2 (the

upper and lower solid curves correspond to aÿ and a�, respectively) and
the inversion h�ni averaged over the spectral line and the sample (dotted

curve). (b) Dynamic polarization spectrum j pÿ�D; t�j at the end with

negligibly weak reflections.

22 In the case of the homogeneous spectral line broadening shown in Fig. 7,

the growth rates of two such polariton modes responsible for super-

fluorescence were approximately three times smaller. However, due to the

higher power and, hence, the higher Rabi frequency of the collective

spontaneous emission field, its resulting spectrum had the width on the

order of the cooperative frequency and overlapped all the photonic

bandgap of the Bragg resonance of width � b � 1.
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of a self-consistent inversion grating appearing at the initial,
nonlinear superfluorescence stage and leveling the amplifica-
tion asymmetry of counterpropagating waves due to its
spectral alternation and efficient averaging over the spec-
trum during the formation of output emission pulses.

5.5 Superfluorescence in the case
of a strongly inhomogeneously broadened spectral line
In the case of the large inhomogeneous broadening of a
spectral line D0 0 14G2, the most important property of a
low-Q Bragg cavity with bL � 1 or a related combined cavity

(in the case of finite reflections R from the ends of a sample)
for obtaining superfluorescence is a possibility of creation
and control of the considerable difference between the growth
rates of the most unstable modes via line tuning to the Bragg
resonance, when jFj9D0. The point is that for D0 0 1, as
mentioned above, superfluorescence is impossible in the
unidirectional regime, and for obtaining it a mode selection
is required, which suppresses the interaction of electromag-
netic waves with some of the active centers in certain intervals
of their partial frequencies and enhances this interaction in
other spectral parts of the inhomogeneously broadened line.

By excluding cavities that are too long and of no interest
for mode superradiance and satisfy condition (29), we
consider only low-Q cavities with rather short photon life-
times restricted by the same inequality (45), but making the
substitution nc ! �nc

���
n
p

:

TE 9
1

n�nc
< T2 : �49�

Then, the mode selection preventing the dephasing of
dipole oscillations of active centers during collective
spontaneous emission is optimal if, for spectral regions
with enhanced interaction with the electromagnetic field,
the formally calculated cooperative frequency (see for-
mula (4) or (18)) of active centers from a separated
spectral region singled out by a particular cold mode will
be about the relaxation rate T ÿ1E of this mode and will
considerably exceed the relaxation rate T ÿ12 of their
individual dipole oscillations. In other words, the growth
rate of the corresponding resonance hot electromagnetic
mode, which has the form (33)

o 00el0 � nn 2c T
�
2 ÿ 2p~s � n�nc ÿ T ÿ1E ; �50�

should be on the order of the relaxation rate T ÿ1E of the initial
cold mode, which, taking into account the inequality
TE < T2, gives

2D0 � nncTE ' nL

ln
��Rÿ ibL= ln jRjÿ2��ÿ1 �51�

(cf. formula (48)), and then mode superfluorescence will be
maximally fast and powerful.

However, for extended samples with the optimal length on
the order of the effective cooperative length B � 2 �Bc � 2c0=�nc
(i.e., L � 2D0 for n � 1), required in the latter case, a great
number ofmodes� D2

0 will be excited in a Fabry±Perot cavity
without the frequency dispersion. Therefore, without taking
special precautions, a superfluorescence pulse will be a
superposition of the same number of incoherent random
emission pulses of separate modes, i.e., it will be referred to
the quasichaotic type with a broad spectrum.

Figure 11 demonstrates the spectrum of such low-
coherence superfluorescence pulse with duration dt � 50
and delay time td � 100 for a sample with length
L � 2:5D0 � 10 placed into an open Fabry±Perot cavity
with R � 0:15 and the photon lifetime TE' 5:5=nc. We see
that the superfluorescence of inhomogeneously broadened
line is caused by approximately ten equidistant electromag-
netic modes with comparable amplitudes and growth rates
o 00e 4 0:06nc ' �nc=4. By the way, returning to Fig. 4, we see
that, in the presence of continuous pumping due to the
nonlinear interaction of modes in a similar sample with even
two thirds of the reflection coefficients of the ends, a greater
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Figure 10. (Color online.) Oscillatory superfluorescence of a sample of

lengthL � 2 in a Bragg cavity with theDFB coefficient b � 1 in the case of

weak continuous pumping �np � 1� and inhomogeneous spectral line

broadening: D0 � 14G2 � 2G1 � 0:02. (a) Oscillograms of the normal-

ized output radiation intensity I jaÿj2 (solid curve) and the inversion h�ni
averaged over the spectral line and sample (dotted curve). (b) Spatio-

temporal evolution of the amplitude jaÿ�z; t�j of the wave running to the

left. (c) Spatio-temporal evolution of the inversion �n�z; t� averaged over

the spectral line.
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number of modes are involved in the steady superradiant
lasing.

The application of the DFB into an active sample even
with a small integrated reflection coefficient bL � 1 consider-
ably changes the growth rates of modes at frequencies in the
photonic bandgap, even weakly manifested. Depending on
the reflection coefficients at the sample ends, this change can
be nonsymmetric, differently increasing or decreasing mode
growth rates on different sides of this band. Such a selection
makes is possible to obtain highly coherent single-mode
superfluorescence in a rather broad range of parameters by
using the highest-Q modes with the maximum growth rate
and suppressing the emission of other modes.

A corresponding example is presented in Fig. 12 for the
same active sample as in Fig. 11 with the additional DFB
coefficient b � 0:06, i.e., with the parameter bL � 0:6. In
addition, the reflection coefficient of the ends in the Fabry±
Perot cavity is decreased by two third toR � 0:1 (as in Fig. 4)

to retain the photon lifetime in the highest-Q modes at the
previous level: TE � �6ÿ5�=nc. Superfluorescence in this
combined cavity is caused by only one mode with the growth
rate increased too 00e � 0:08nc � �nc=3, whereas all the adjacent
modes with reduced growth rates at the level of 0:05nc proved
to be noncompeting. In this case, only about 10% of active
centers are involved in collective spontaneous emission.
This emission acquired a highly coherent and distinct
oscillatory character, retaining the same total duration
dt � 50 and delay time td � 100, but the maximum main
pulse intensity decreased by approximately an order of
magnitude (Figure 12 shows the Rabi frequency squared at
the end normalized to the cooperative frequency).

5.6 Superradiance upon continuous pumping
and laser dynamics
Selective properties of low-Q Bragg cavities and combined
Fabry±Perot cavities with the DFB are especially important
for superradiant lasers using collective spontaneous emission
upon continuous (CW) pumping of active media with
inhomogeneous spectral lines. Lasers of this type have the
richest dynamics. Prior to their discussion, we will briefly
recall the classification of lasers in the two-level model of the
active medium and demonstrate the simplest operating
regimes of superradiant lasers with these cavities in the limit
of the homogeneously broadened spectral line of active
centers (see details in Refs [197, 198]).23 We will consider
mainly the dynamic aspect of the problem concerning the
dissipative instability of waves and the coherent type of
interaction of active centers with the self-consistent field
inherent in collective spontaneous emission, and first of all
the pulsed dynamics of the Dicke superradiance as a whole.
Therefore, we will still use semiclassical equations (19) as the
initial model of a two-level laser, by assuming for simplicity
that S0 � 0, G1z � G1, and b � Re b, F � 0, R1 � R2 � R,
and R � ReR (if not specially specified).

The various quantum-mechanical models of lasers are
presented in Refs [95, 102, 278±284] mainly devoted to quasi-
stationary single-mode lasing, in particular, to the influence
of collective spontaneous emission of active centers on the
laser line width, which can be much narrower than the
spectral width of a laser mode in a low-Q cavity. It is known
that in conventional lasers this is the main factor limiting the
narrowing of a single-mode laser line. Hopes for obtaining
quasistationary single-mode superradiant lasing in low-Q
cavities with a homogeneous spectral line are based on the
promising results of experiments with rare-earth and alkali
metal atoms in cooled gases [285±288] and with dipolar
excitons in cooled semiconductor heterostructures with open
traps [242, 244, 246, 289].

Depending on the relation between the inversion, polar-
ization, and field relaxation parameters, four dynamic classes
of lasers are considered [198, 215, 290, 291] (see Table 1). In
most lasers, except class A ones, the relaxation rateT ÿ11 of the
population inversion of levels in the active medium is the
lowest. The polarization relaxation rate �T ÿ12 � for active
centers is most often highest, including most semiconductor
lasers, and such lasers belong to class B lasers. To obtain
lasing in them, high-Q cavities are required, in which the field
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Figure 12.Oscillatory superfluorescence of a sample with length L � 10 in

a combined Fabry±Perot cavity with small reflection coefficients R � 0:1
at the ends and the DFB coefficient b � 0:06 in the case of large

inhomogeneous spectral line broadening: D0 � 44G2 � 10G1 � 0:02,
F � 0. (a) Oscillograms of normalized output radiation intensities I ja�j2
(curves 1 and 2 correspond to a� and aÿ, respectively). (b) Spectral power
jaoj2 of the radiation field at the end z � L=2.

23 Because of the limited scope of this review, we omit other possible

schemes of superradiant lasers, for example, based on the nonlinear, say,

Raman (Mandelstam±Brillouin) scattering of pumping and generated

waves [272, 273] or on wave feedback due to scattering by random

inhomogeneities of the active medium or its matrix [274±277].
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Figure 11. Low-coherence superfluorescence spectrum of a sample of

length L � 10 in a Fabry±Perot cavity with weak reflections at the ends,

R � 0:15, in the case of large inhomogeneous spectral line broadening:

D0 � 44G2 � 10G1 � 0:02.
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relaxation rate T ÿ1E is low, and therefore the field (along with
the active-medium inversion) determines the dynamics
adiabatically traced by polarization, i.e., by the density of
high-frequency dipole moments of active centers.

The intrinsic polarization dynamics begin to develop
already in the intermediate case of T ÿ1E � T ÿ12 , i.e., for class
C lasers (see Refs [199, 290]). However, this dynamics play an
important role only for T ÿ1E > T ÿ12 , i.e., in class D lasers,
where, however, the dynamic role of the electromagnetic field
is not passive either. This role is not reduced to the adiabatic
tracing of polarization because, due to superradiance for long
time intervals, the field amplitude E is so large that the field
relaxation rate T ÿ1E in the cavity proves to be lower than the
Rabi frequency oR � djEj=�h and, therefore, than the rate of
induced transitions between the energy levels of active
centers [290]. Then, adiabatic field exclusion is impossible,
as a rule, the coherent interaction of modes occurs, the fields
in them rapidly change, and nonstationary lasing is typical.
In this case, a major part of the field appearing in a class D
laser has time to escape from the cavity (because of the
low Q-factor) for a transit time B=c0 in the cavity.

In a class C laser, where by definition the times TE and T2

do not greatly differ, the coherent dynamics of modes are also
possible; however, they are of self-modulation type with
period � TE � T2, do not change the inversion sign in the
medium, and are not accompanied by distinct emission pulses
similar to collective spontaneous emission pulses. These lasers
were studied experimentally and numerically for the case of
small inhomogeneous broadening, 1=T �2 9 1=T2 (see, for
example, Refs [292±296]).

The emission dynamics in class D lasers are even more
diverse and the dynamic mode spectrum is very sensitive to
changes in the cavity and/or pumping parameters, which
provides the possibility of efficiently controling spectral,
temporal, and correlation characteristics of the emission
obtained. This circumstance gives hope that class D lasers,
which have not been created yet, will be essential for solving
problems of data processing and in the spectroscopy and
diagnostics of various media and processes proceeding in
them. Class D lasers can probably be created by modifying
semiconductor lasers based on heterostructures containing
many layers of closely packed quantum dots with the lateral
modulation of facing waveguide layers providing the DFB for
waves [297±299]. By varying the values of parameters of a class
D laser, one can efficiently control the number of longitudinal
lasing modes, their spectral width and mutual phase differ-
ence, the pulse andpulse train duration andamplitude, and the
coherence degree of laser pulses (and modes).

It is known that lasing appears with increasing pumping
level or changing the active-medium and cavity parameters
when one of the hot modes acquires a growth rate under
conditions of decay of other modes. Above this threshold,
which is called the first lasing threshold, lasing, as a rule, is

stationary and single-mode. However, as pumping is further
increased or laser parameters are changed, lasing can become
nonstationary (in particular, two- or three-mode), which is
called the excess over the second lasing threshold. In class D
lasers with a short photon lifetime TE 9 �nc �����

np
p �ÿ1 or

TE 9 ��ncnp�ÿ1 (see formula (45) or (49), respectively),24 there
is also another one the superradiance threshold, above which
collective spontaneous emission pulses with a small duration
dt9T2 appear. As a rule, this threshold can be related to the
fulfillment of the superradiance condition o 00pl0 > T ÿ12 for the
most unstable hot mode.

This condition for not too large inhomogeneous broad-
ening 1=T2 < 1=T �2 < nc

�����
np
p

formally coincides with the
superfluorescence condition (46), (47) discussed above if the
inversion level specified by pumping is chosen. In this case, as
in the case of the homogeneous broadening of a spectral line,
pulsed lasing is due to the development of the radiative
instability of polariton modes rather than electromagnetic
modes. Polariton modes have negative energy and, according
to characteristic and dispersion equations (24) and (25), for
the specified inversion n � np lie in the spectral interval of the
width which does not exceed the value

dop ' 2npn 2c TE �52�
and can exceed the spectral line width doL � 2=T �2 � 2=T2

only by the number of times equal to the ratio between
dop=doL and its value �� 1� at the first lasing threshold.
This conclusion and expression (52) are also qualitatively
correct for a set of quasistationary lasing modes (in the
absence of superradiant pulses) if the inversion np specified
by pumping is replaced by the average inversion h�ni of the
active medium in the laser.25

The strong nonlinearity of the laser is manifested, of
course, already in the quasistationary lasing regime, and the
self-consistent spatial structure of the field, polarization, and
inversion can considerably differ from the structure of hot
modes and/or their superposition in a homogeneous active
sample. In particular, the steady lasing can correspond to the
strongly nonsymmetric structure of the field, polarization,
and inversion in a laser with identically reflecting ends
�R1 � R2� and a homogeneous or, as a whole, symmetric
(with respect to the center z � 0) active medium and
pumping. An example of such a spontaneous symmetry
breaking in the steady regime is presented in Fig. 13, where
the fields of counterpropagating waves significantly differ
and are not mirror-symmetric with respect to each other, in
accordance with the nonsymmetric profiles of the smoothly
inhomogeneous inversion component �n and inversion grating
nz pressed to one of the ends of the sample (to which one

24 These inequalities exclude too long active samples, in which chaotic

superradiance is inevitable, as, for example, in cases (28) and (29) for a

Fabry±Perot cavity.
25 Strictly speaking, the interpretation of nonstationary laser dynamics

based on the concept of hot modes is restricted and requires at least the

consideration of the dependences of their frequencies, growth rates,

structure, and nonadiabatic and/or nonlinear interaction on the spatial

and spectral inhomogeneity of the inversion and its possible rapid

variations in time. The nonstationary and possibly superradiant lasing

dynamics can be more efficiently analyzed with the help of so-called

spatio-temporal empirical modes. These modes are determined by the

eigenvectors of the time-averaged covariance matrix of the complex

amplitudes of the fields on a large enough set of points inside the sample

with a rather small time step [300]. Nevertheless, the conditions for the

development of various lasing regimes and their qualitative features can be

determined by analyzing hot polariton and/or electromagnetic modes.

Table 1.Dynamic classes of lasers.

Class Relations between
relaxation rates

Adiabatically excluded
variables

A T ÿ1E 5T ÿ11 ;T ÿ12 Polarization, inversion

B T ÿ11 5T ÿ1E 5T ÿ12 Polarization

C T ÿ11 5T ÿ1E � T ÿ12

D T ÿ11 ;T ÿ12 5T ÿ1E Electromagnetic éeld if
oR < T ÿ1E
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depends on the initial conditions) and experiencing a slow
self-modulation with the period specified by the pumping
rate: tM ' Gÿ11 � 100.

It should be noted that, according to Fig. 6, the mutual
mirror symmetry of the amplitude profiles of counterpropa-
gating waves ja��z�j and jaÿ�z�j and the symmetry of the
spatial inversion distribution in this laser with the total initial
inversion of the active medium are well preserved during the
main part of the superfluorescence process. The symmetry
breaking occurs during the long stage of moving to steady
lasing.

In general, in any, even strongly, nonstationary super-
radiance regime, a dynamic spontaneous symmetry breaking
takes place (atR1 � R2) for the profiles of mode fields and the
consistent inversion profile averaged over a long enough time
interval dT4T1 containing several characteristic sets of
pulses of all lasing modes. The appearing asymmetry can be
metastable and the regions of the maximum inversion of the
medium and the minimum intensity of the mode field can
displace alternately to one side or another from the cavity
center. Such spontaneous switchings of metastable laser
states can cause temporal changes in the average (over dT )
emission intensity and in the correlation properties of pulses,
these averages being considerably different for opposite ends
of the laser.

Above the superradiance threshold, which can slightly
differ from or even coincide with the second laser threshold,

the repeating sporadic or quasiperiodic generation of short
(with duration < T2) pulses of collective spontaneous emis-
sion occurs in one or several modes, and the spectral width of
the emitted field can exceed (and greatly exceed in the
developed superradiant regime) the homogeneous line width
2=T2. In the case of small inhomogeneous line broadening,
2=T2 < 2=T �2 < nc, i.e., G2 < D0 < 1=2, the width of the
lasing spectrum can exceed 2=T �2 . In this case, the lasing
dynamics not too far away from the superradiance threshold
are still mainly determined by one, two, or several hot modes
which are coupled with the highest-Q cold modes of a low-Q
cavity, but are modified and nonstationary due to the
presence of the time-dependent inhomogeneous inversion
profile and self-consistent inversion grating. However, con-
tinuous-spectrum waves also can be essential, because the
cavity is open, and lasing in class D lasers is nonstationary
and nonlinear, unlike usual class B andA lasers inwhich high-
Q cavities are used.

5.7 Pulsed lasing in superradiant lasers
Besides themechanisms26 of quasistationary lasing instability
inherent in class A, B, and C lasers, class D lasers have
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Figure 13. (Color online.) Weakly modulated superradiant lasing of a sample of length L � 2 in a Fabry±Perot cavity with moderately reflecting ends

�R � 0:37� in the case of weak continuous pumping �np � 1� and an almost homogeneously broadened spectral line: G2 � 2G1 � 0:024D0 � 0:002.
(a) Oscillograms of normalized output radiation intensities I ja�j2. (b, c) Spatio-temporal evolution of the inversion �n�z; t� and the inversion grating

amplitude jnz�z; t;D � 0�j. (d, e) Spatio-temporal evolution of the amplitudes of the waves running to the right, ja��z; t�j, and left, jaÿ�z; t�j.

26 For example, intermode scattering by a self-consistent inversion grating,

the parametric decay of a lasing mode to adjacent modes due to its Rabi

splitting, or the so-called Risken±Nummedal±Graham±Haken mechan-

ism [290, 291].
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another unique mechanism of mode generation instability
caused by the initiated collective spontaneous emission from
the central region of the laser sample. In this mechanism, due
to the low Q-factor of the cavity, the noticeable (possibly
manifold) inversion excess is produced over the average level
corresponding to steady lasing. This makes it possible to `take
off' very rapidly the energy of active centers, i.e., to decrease
the population inversion of their energy levels to negative
values, which is followed by the temporary loss of amplifying
properties in a greater part of the active medium of the laser.
This leads to nonstationary pulsed lasing upon stationary
pumping: the field rapidly decreases due to its escape from the
open cavity and begins to increase only after the pumping
restores a high enough inversion level for a time of about T1.

An example of such dynamics is presented in Fig. 14
showing themean inversion and laser radiation intensity for a
combined cavity encompassed by a DFB loop with the
integrated reflection coefficient bL � 0:5 and highly nonsym-
metricmirrors �R2 � 300R1 � 0:3�. As it should be for typical

superradiant lasers, the laser pulses have considerably
different amplitudes, durations (dt � 20 on average), and
delay times �td � 50ÿ100�. This is explained by the fact that
the superradiant instability initiating them greatly depends on
the inversion distribution, and each time `starts' with new
configurations of the self-consistent inversion grating and
weak fields and polarization remained in the cavity after the
previous pulse. Notice that the large width of the quasi-
continuous lasing spectrum, about nc=4, is caused first of all
by the polarization dynamics, because the field dynamics are
damped by its large relaxation rate GE ' 3 (this is also valid
for unidirectional (see Fig. 5) and mode (see Fig. 8) super-
fluorescences of this laser system in the absence of pumping).

This circumstance and the laser dynamics complexity are
confirmed by the fact that, as the homogeneous broadening is
increased to the inhomogeneous broadening level, G2 �
D0 � 0:046 (other parameters being invariable (Fig. 15)),
quasichaotic lasing gives way to strictly periodic lasing
corresponding to the self-modulation of one effective polar-
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Figure 14. (Color online.) Nonstationary superradiant lasing of a sample

of length L � 0:56 in a combined Fabry±Perot cavity with negligibly

small reflections at one end �R1 � 10ÿ3� and moderate reflections at the

other �R2 � 0:3� and the DFB coefficient b � 0:9 in the case of strong

pumping �np � 1� and small inhomogeneous spectral line broadening:

D0 � 0:046 > G2 � G1 � 0:02, F � 0. (a) Oscillograms of the normalized

output radiation intensity I jaj2 from the nonreflecting end (solid curve)

and inversion h�ni averaged over the spectral line and sample (dotted

curve). (b) Spatio-temporal evolution of the inversion grating amplitude

jnz�z; t�j over the sample.
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Figure 15. (Color online.) Periodic superradiant lasing of a sample of

length L � 0:56 in a combined Fabry±Perot cavity with negligibly small

reflections at one end �R1 � 10ÿ3� and moderate reflections at the other

�R2 � 0:3� and the DFB coefficient b � 0:9 in the case of strong pumping

�np � 1� and the same homogeneous and inhomogeneous spectral line

broadenings: D0 � G2 � 0:046, G1 � 0:02, F � 0. (a) Oscillograms of

normalized output radiation intensities I ja�j2 from nonreflecting and

reflecting ends (thin �a�� and thick �aÿ� solid curves) and inversion h�ni
averaged over the spectral line and sample (dotted curve). (b) Spatio-

temporal evolution of the inversion grating amplitude jnz�z; t�j.
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iton mode and the inversion grating consistent with it.27

Generated regular laser pulses have a superradiant nature,
their intensity varies within an order of magnitude, and the
repetition period exceeds their duration dt ' 23 by approxi-
mately four times. Due to the DFB, the intensities of laser
pulses escaping from the opposite ends with quite different
reflection coefficients differ only twice, as similar super-
fluorescence pulses in Fig. 8. If the DFB coefficient is
decreased to one fifth or less for the parameters indicated (as
in Fig. 16), by taking b9 0:2 (i.e., bL9 0:1) and, therefore,
making the sample in fact open �GE � 5�, although with a
highly nonsymmetric output of counterpropagating waves,
the self-consistent inversion grating will weaken �jnzj9 0:1�
and lasing will be monochromatic and stationary, with
radiation intensities from the opposite ends differing by
several dozen times, and almost independent of the DFB.

Another example of broadband superradiant lasing is
presented in Fig. 17 for a Bragg cavity with the DFB
parameter bL � 2 in the absence of reflections from the
sample ends, when TE ' 25T2 � 50. We see that, com-
pared to the superfluorescence pulse from the same sample
in Fig. 7, superradiant laser pulses are several times longer
and their intensity is an order of magnitude smaller. Their
inverse normalized Rabi frequencies � ��Ip jaj�ÿ1 � 3ÿ10, as
they should be, are several times smaller than the duration
dt � 10ÿ30 and the width of the total lasing spectrum
reaches half the cooperative frequency and covers all the
central part of the photonic bandgap. When the pumping
level np was decreased from 1 to 0.25 and the homogeneously
broadened line shifted to the edge of the photonic bandgap,
F � 1, the quasichaotic pulsed superradiant lasing gave way
to the single-mode self-modulation regime with a period
tM ' 80 � Gÿ11 (Fig. 18). The efficient control of the lasing
regime in a class D laser illustrated by the last example can
also be performed by changing the parameters of the cavity
and active medium in it, including the sample length.

However, upon passing from homogeneous to inhomoge-
neous line broadening, especially in the case of the large
linewidth exceeding the cooperative frequency,D0 > 1, super-
radiant lasing in such Bragg and related combined cavities
with bL9 p, as a rule, proves to be nonstationary and, for the
required long sample lengths L0 1, also multimode. As is
clear from the discussion of an analogous superfluorescence
problem in Sections 5.3 and 5.4, the appearance of super-
radiance upon continuous pumping and its realization in a
quite regular `few-mode' regime with distinct collective
spontaneous emission pulses are determined to a great extent
by the selection of unstable hot electromagnetic modes due to
DFB dispersion properties, which are absent in a Fabry±
Perot cavity.
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Figure 16. (Color online.) Going to stationary superradiant lasing of a

sample of length L � 0:56 in a combined Fabry±Perot cavity with

negligibly small reflections at one end �R1 � 10ÿ3� and moderate reflec-

tions at the other �R2 � 0:3� and the small DFB coefficient b � 0:18 in the

case of strong pumping �np � 1� and the same homogeneous and

inhomogeneous spectral line broadenings: D0 � G2 � 0:046, G1 � 0:02,
F � 0. (a) Oscillograms of normalized output radiation intensities I ja�j2
from nonreflecting and reflecting ends (upper �a�� and lower �aÿ� solid
curves) and inversion h�ni averaged over the spectral line and sample

(dotted curve). (b) Spatio-temporal evolution of the inversion grating

amplitude jnz�z; t�j.

27 By ignoring the inversion grating, i.e., at nz � 0, equations (19) lead in

the case considered to purely monochromatic (single-mode) lasing.

0.10

Ijaj2

0.05

0
3000 3300 3600 t

a

jaoj2

50

25

0
ÿ0.50 ÿ0.25 0 0.25 0.50

D

b

Figure 17.Broadband superradiant lasing of a distributed sample of length

L � 2 in aBragg cavity with theDFB coefficient b � 1 in the case of strong

pumping �np � 1� and homogeneous spectral line broadening: G2 �
2G1 � 0:024D0 � 0:002, F � 0. (a) Oscillogram of the normalized out-

put radiation intensity I jaj2. (b) Spectral power jaoj2 of the radiation field

at the end of a sample.
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However, as a consequence of deep spectral dips produced
in the population inversion of energy levels of active centers
and its drastic spatio-temporal evolution caused by the whole
prehistory of moving to steady lasing it often turns out that
the concept of electromagnetic and polariton modes with a
fixed spatial structure becomes invalid in principle and
inefficient for the quantitative description of the nonlinear
dynamics of superradiant lasing. Therefore, although we use
below the mode language, in particular, in the discussion of
Figs 19±24, we do it only to explain qualitatively the
phenomenon, to invoke some analogies, or for the identifica-
tion of isolated components of the lasing spectrum. Such a
nonstrict mode language was also used above in a number of
cases.

We will illustrate the complexity of the mode description
of the superradiant laser dynamics by considering the
intermediate case of D0 � 1 presented in Fig. 19 for a
typical Bragg cavity with the DFB parameter bL � 2 and
TE ' 25T2 � 50. Superfluorescence, as an initial stage of
lasing in this case, was considered above in the discussion
concerning Fig. 10. Its spectrum consisted of two symmetric
bands, each of which could be interpreted as the result of
the nonadiabatic evolution and nonlinear interaction of two
modes: a polariton mode with frequency near the inner edge
of bands �D ' �0:3�, and an electromagnetic mode with
frequency near the external edge �D ' �1�, if such hot
modes are to be calculated for a homogeneous completely
inverted sample. Oscillatory superradiance pulses obtained
in the course of steady lasing (Fig. 19a) are quite similar to
oscillatory superfluorescence pulses (Fig. 10a) and could
also be qualitatively interpreted as a result of the interaction
and beats of a few excited and slowly decaying modes, for
example, two modes resembling polariton modes and two
modes resembling electromagnetic modes. Their amplitudes
should be half as large, and frequencies one and a half times

higher than for the corresponding modes forming a super-
fluorescence pulse, because the intensity of the two-band
spectrum decreased and its width increased namely in this
way upon moving from superfluorescence process to lasing.

However, such an interpretation of the shape and
spectrum of both superfluorescence and especially super-
radiant laser pulses appears very naõÈ ve due to the complexity
of the spatio-temporal and spectral structures of the field,
polarization, and inversion (including the inversion grating)
in the sample, which follow from the numerical solution of
equations (19). A description of such structures with the aid of
four or some other small number of modes determined by
irregular instantaneous inversion profiles would require more
time-consuming calculations without any guarantee that
disregarding other modes or continuous-spectrum waves is
justified. It seems that in this case the method of empirical
modes with the unfixed spatio-temporal structure, developed
in Ref. [300], is more convenient, but its description is beyond
the scope of this review.

5.8 Superradiant lasers with a strongly inhomogeneously
broadened spectral line
In the case of very strong inhomogeneous spectral line
broadening, D0 4 1, the concept of hot electromagnetic
modes and their selection during lasing is partially more
justified, at least for the low-Q cavities of interest to us with
the optimal photon lifetime and length (51) indicated in
Section 5.5 in the discussion of the corresponding super-
fluorescence problem. In this case, electromagnetic modes are
well separated in frequencies and do not experience any
strong nonlinear interaction with each other or rapid
nonadiabatic evolution, although they do not give the
general solution to the `unloading' problem for the pulsed
collective spontaneous emission process in an extended
sample without involving continuous-spectrum waves (cf.
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Figure 18. Superradiant lasing in the single-mode self-modulation regime

of a sample of length L � 2 in a Bragg cavity with the DFB coefficient

b � 1 in the case of weak pumping �np � 0:25� and homogeneous spectral

line broadening: G2 � 2G1 � 0:024D0 � 0:002, F � 1. (a) Oscillogram

of the normalized output radiation intensity I jaj2. (b) Spectral power jaoj2
of the radiation field at the end of a sample.
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Figure 19. Two-band superradiant lasing of a sample of length L � 2

in a Bragg cavity with the DFB coefficient bL � 2 in the case of

strong pumping �np � 1� and inhomogeneous spectral line broad-

ening: D0 � 14G2 � 2G1 � 0:02, F � 0. (a) Oscillograms of the normal-

ized output radiation intensity I jaj2 at the end. (b) Spectral power jaoj2 of
the radiation field at the end of a sample.
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analytic theory (35)±(41) for a similar inversion `unloading'
problem for superfluorescence in the active medium with a
homogeneous spectral line broadening in a Fabry±Perot
cavity).

Superradiant lasing regimes in a Bragg cavity with the
DFB parameter bL9 p upon continuous pumping were
recently analyzed in Ref. [199] and we will not repeat it here.
We present only one representative example of multimode
lasing in which three types of mode dynamics coexist:
superradiant, self-modulation, and quasistationary, and
then move at once to a general qualitative description of the
features and possible operating regimes of superradiant lasers
with open combined cavities, including, in particular, a Bragg
cavity.

Figure 20a plots the steady lasing spectrum of a very long
laser (L � 20, I � 0:25� 10ÿ4) containing an active medium
with the strong inhomogeneous broadening �D0 � 44
G2 � 0:03� placed into a comparatively high-Q Bragg cavity
with the DFB parameter bL � 6. Such a cavity has two cold
high-Q modes at the edges of the photonic bandgap for
D ' �b � �0:3 with frequency detunings OEm � 1=3,
m � �1 and the photon lifetime TE ' 90=nc > T2 � 33=nc
(Fig. 20c) [see formulas (42) and (43)]. The two corresponding
hot electromagnetic modes at the complete inversion n � 1
have the maximum growth ratesO 00e;�1 � o 00e;�1=nc ' 0:25 and
almost unshifted frequency detunings O 0e;�1 ' �0:3. Upon
continuous pumping, they provide the generation of two
quasimonochromatic fields with the highest spectral ampli-
tudes jao;�1j � 20 (Fig. 20a), forming two broad spectral dips
in the inversion spectrum, as usual during quasistationary
generation of modes in a class B laser. The next cold modes
OEm, m � �2;�3; . . . with frequencies lying on the slopes of
the spectral line of the Bragg cavity adjacent to the photonic
bandgap have the photon lifetime TE < T2 (Fig. 20c), so that
the generation of the corresponding hot modes, due to a large
enough growth rate O 00em 0G2 [for the complete inversion
n � 1 (Fig. 20b)], corresponds to class C lasers (for close
values of TE and T2, as with m � �2) or class D lasers (when
T2 considerably exceeds TE, as with m � �3;�4; . . .). There-
fore, as is clear from the right inset to Fig. 20a,m � �2modes
emit in the self-modulation regime, not producing isolated
pulses, while m � �3;�4; . . . modes emit in the superradiant
regime with quite distinct collective spontaneous emission
pulses, thereby having considerably larger spectral broad-
ening. Finally, cold modes with TE � D0=nc � 1=�nc at the line
wings jDj > D0=2 � 2 correspond to hot modes with small
growth rates O 00em 9G2 (Fig. 20b) and, for the low pumping
rate G1 � 0:01, lie below the superradiant threshold, i.e., they
are generated in the quasistationary regime with low intensity
(see the left inset to Fig. 20a). Of course, in the presence of
several dozen laser modes, whose total number is estimated as
M9bL=�p exp �ÿnL=D0��, according to formulas (33), (49)
for R5 bL, the lasing regime for an individual mode can be
determined only using spectral filters, because the oscillogram
of the total emission field is quasichaotic.

Consider now some general properties of class D lasers
with low-Q combined cavities in which the photon lifetime
(see formula (45)) is shorter than the relaxation time of
individual dipole oscillations of active centers: TE < T2. For
definiteness, we will rely on lasers with the optimal length
L � 2D0 (see formula (51)) in which collective spontaneous
emission effects are manifested most distinctly. We can
distinguish [197, 198] at least five qualitatively different
operation regimes of such lasers: quasistationary, self-mod-

ulation, regular pulsed, irregular pulsed with quasiperiodic
pulse trains, and quasistochastic. Under typical conditions,
the field of each superradiantmode a�t� generated by the laser
is coherent and the spectral width of the mode is determined
by the corresponding Rabi frequencyoR � nc

��
I
p jaj, which at

strong enough pumping can reach the effective cooperative
frequency �nc � n 2c T

�
2 , resulting in the overlapping of spectra

of adjacent modes. Therefore, the emission spectrum of a
class D laser can be both quasidiscrete and quasicontinuous
(see, for example, Figs 4, 20±24). Notice that many special
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Figure 20.Mixed generation of superradiant and quasistationarymodes of

a sample of length L � 20 in a high-Q Bragg cavity with the DFB

coefficient b � 0:3 in the case of strong pumping �np � 1� and large

homogeneous spectral line broadening: D0 � 44G2 � 3G1 � 0:03,
F � 0. (a) Spectral power jaoj2 of the radiation field at the end; the left

inset shows quasimonochromatic modes at the lasing band edge; the right

inset illustrates superradiant modes near the photonic bandgap.

(b) Calculated spectrum of growth rates of hot modes. (c) Calculated

spectrum of photon lifetimes TE of cold electromagnetic modes.
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superradiant lasing regimes have not in fact been studied so
far.

Unlike a class B laser, a class D laser does not actually
allow the stationary mode generation, i.e., the second laser
threshold is very close to the first threshold having a pumping
level of approximately n th

p ' 2D0=L. Because lasing condi-
tions depend in oneway or another onmany laser parameters,
by varying any of them it is possible to pass through the first,
second, and superradiant thresholds and to control the lasing
regime as a whole or its individual modes, thereby changing
the spectral and correlation properties of emission. Examples
of the influence of the pumping level np, the active sample
length L, and the homogeneous broadening G2 on the laser
operation (the osilllogram and its emission spectrum) for
other parameters fixed are presented in Figs 21±23.

We see that all five lasing regimes are realized, and the
superradiance of some modes often coexists with the self-
modulation or quasistationary generation of other modes if
the spectral inhomogeneous bands of active centers respon-
sible for maintaining the field of corresponding modes do not
overlap. In this case, the spectral bands of superradiant
modes are especially broad due to the broad spectrum of the
field of their collective spontaneous emission pulses. This
pulsed emission in an individual spectral band is mainly
proceeds similar to that for the superfluorescence of a sample
with a homogeneously or slightly inhomogeneously broa-
dened spectral line and sometimes causes drastic decreases in
the inversion level to negative values (cf. Figs 2, 4, 6, and 10).
Spectral inversion dips produced in this case are compensated
for by the pumping for the time � T1, which ensures the
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Figure 21. Influence of the pumping level on the lasing regime of a sample of length L � 10 in a combined Fabry±Perot cavity �R � 0:1� with the DFB
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repeated emission of the superradiant mode pulse. Depending
on the number of superradiant modes, the generated train of
superradiant pulses can be quasiperiodic, regular nonperio-
dic, or completely irregular.

The origin of superradiant pulses can be analyzed with the
help of dynamic inversion spectra at the working transition,
which are completely consistent with the temporal dynamics
of the field spectrum [197, 198, 301]. A comparison of
dynamic inversion spectra and field intensity at the laser end
in a broad range of parameters shows that these pulses are
generated and emitted independently, each in its spectral
interval, forming trains containing, generally speaking,
several pulses in the frequency band of each superradiant
mode. Due to the broad spectrum, superradiant pulses from
different spectral channels related to adjacent hot modes or
even separated by the photonic bandgap can be emitted
synchronously during a number of pulse trains. Several
simultaneously emitted coherent pulses from different spec-
tral regions at the sample edge interfere and can produce
higher-power and short-emission pulses.

The presence of a fairly weak modulation of the inversion
grating nz�t; z;D� in class D lasers leads to the loss of strict
periodicity of superradiant pulse trains. The appearing local
amplification, absorption, or distributed reflection, which are
different for counterpropagating waves, are nonstationary
and affect the phase properties of emission, decreasing its

coherence, by introducing the randomness to the formation
and emission of each individual pulse and the train as a whole.
It can also be shown that, when the superradiant threshold is
greatly exceeded, independent collective spontaneous emis-
sion pulses have time to form in relatively short parts of the
sample. These pulses propagating in the sample are many
times reabsorbed by active centers and nonlinearly interact
with each other, producing weakly modulated and low-
coherent emission of continuous-spectrum waves, which is
typical for unidirectional superradiance in long samples (see
formulas (28), (29)) and suppresses mode superradiance.
According to formula (51), this bounds from above the
optimal length of a superradiant laser.

5.9 Mode interaction effects
in multimode superradiant lasers
Even in the case of a weak, seemingly insignificant over-
lapping of the spectra of adjacent modes, including super-
radiant modes, in a class D laser, as in a conventional
multimode class B laser, an intermode interaction can exist,
which is maintained by continuous pumping and is especially
efficient in the case of the quasiequidistant mode spectrum.
The two effects of this interaction are illustrated in Fig. 24 for
a class D laser with a long combined cavity possessing the
quasiequidistant spectrum of cold electromagneticmodes and
the active medium with a strong inhomogeneous line broad-
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Figure 22. Influence of the sample length on lasing regimes in a combined Fabry±Perot cavity �R � 0:1 exp �ip=2��with the DFB coefficient b � 0:1 in the
case of strong pumping �np � 1� and large inhomogeneous spectral line broadening: D0 � 44G2 � 2G1 � 0:02, F � 0. At the left of the figure are

presented oscillograms of the normalized output radiation intensity I jaj2 for different active sample lengths L. For the case of L � 5, oscillograms of the

fields of each of the two coherent modes are shown by light curves. (The dark background is caused by frequent intensity oscillations with a frequency on

the order of the cooperative frequency.) At the right of the figure are presented spectral powers jaoj2 of the radiation field at the end of a cavity for the

corresponding sample lengths L.
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ening providing the growth rates only for two of the highest-Q
modes.

First, albeit for the maximum pumping np � 1, other
separate modes decay in the absence of lasing (Fig. 24b),
many of them are involved in quasistationary lasing and have
large amplitudes due to the repeated formation of short
superradiant pulses by the two highest-Q modes. The
dynamic spectrum of these pulses covers adjacent modes.
Such parametric action produces multimode lasing covering
about 30 quasistationary narrowband modes and two
nonstationary broadband modes. Collective spontaneous
emission in these two modes imparts the element of random-
ness to the total emission field (Fig. 24a), representing a
partially coherent superposition of the fields of all generated
modes.

Second, a spectacular intermode interaction effect in a
class D laser with a combined cavity is the partial self-locking
of quasistationary modes in the presence of one or more
superradiantmodes. The numerical solution of equations (19)
shows [197, 198, 300] that it is possible in a broad range of
laser parameters in the absence of both the external modula-
tion of its properties and any absorbers to generate in the laser
a quasiregular train of radiation pulses with durations shorter
than the relaxation times of the population of energy levels
and polarization of the active medium; the superradiant
pulses of modes with the highest growth rates, following

quasiperiodically with the period close to the pumping time
T1, burn out deep dips in the population of the activemedium,
up to removing the population inversion in it, in certain
spectral intervals and in certain time intervals. As a result,
modes with smaller growth rates and frequencies lying farther
from the photonic bandgap are capable of partial locking
maintained by coherent interaction with superradiant modes.
In this case, if the reflection coefficients R from the ends are
not too small compared to bL, then, due to mode-locking of
some modes, another pulsed quasiperiodic component
appears in emission with the period approximately equal to
the travel time of light in the cavity (see the oscillogram of the
field of ten modes in Fig. 24). Superradiant modes can also
make contributions to a mode-locked pulse circulating in the
cavity.

It should be noted that the dynamic spontaneous
symmetry breaking in the inversion distribution and mode
profiles in a laser with a symmetric combined Fabry±Perot
cavity and large inhomogeneous broadening of the spectral
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line is, as a rule, manifested much weaker (and occurs only
during short time intervals) than this effect in the case of a
homogeneously broadened line. One of the manifestations of
such a symmetry breaking is the appearance of a pulse
circulating in the cavity and formed by partially mode-
locked modes.

It is interesting that the mutual coherence of superradiant
pulse trains can be lower than the mutual coherence of
individual mode-locked emission pulses even in widely
separated trains, which is natural for multimode lasing with
partial mode-locking. Moreover, it seems unlikely that many
nonsuperradiant quasistationary modes would appear in
steady lasing in the absence of superradiant modes, because,
according to the linear theory, they would not have the
growth rate, as discussed above in presenting Fig. 24. This
operation regime is promising for generating a quasiregular
train of high-power ultrashort coherent emission pulses upon
continuous pumping in the absence of additional elements or
devices providing mode-locking. Such a laser can be realized,
for example, exploiting a heterostructure with submonolayer
InAs/GaAs quantum dot layers and a lateral Bragg structure
providing the proper selection of longitudinal laser modes
[197, 302].

6. Conclusions

The aim of the present review was to discuss recent
experiments and theoretical advances concerning the collec-
tive spontaneous emission of an ensemble of dipole oscillators
and to attract attention to some physically interesting
problems in the field of studies of coherent radiative
interaction in many-particle systems.

We considered the following issues, which are relevant for
both experimental and theoretical investigations:
� the unified interpretation of various aspects of this

phenomenon, which is classically macroscopic in its manifes-
tation and quantum-mechanical by nature, in ensembles of
active centers of various types;
� the role of propagation effects and nonlinear spatio-

temporal correlation effects in the dynamics of collective
spontaneous emission;
� the influence of low-Q cavities on the realization and

development of superfluorescence and initiated superradi-
ance.

In the last case, we are dealing in fact with an important
experimental and theoretical problem in this field of physics:
the development and adequate description of superradiant
lasers in which the collective spontaneous emission of
continuously pumped active centers leads to the generation
of coherent emission with a variety of spectral correlation
properties. The study of these properties is necessary for the
numerous applications, from information optics and
dynamic spectroscopy to diagnostics of the states of many-
particle systems and the development of the concepts of
quantum-dynamical and nonequilibrium phase transitions.

Despite more than a half-century history of studying this
scope of problems associated with Dicke superradiance, the
issues mentioned above andmany other ones remain far from
exhausted. Moreover, recently the superradiance phenom-
enon has been extensively studied. We can expect in the near
future the experimental demonstration of various schemes
and practical applications of superradiant semiconductor
lasers based on special multilayer heterostructures with
quantum dots or excitons as active centers. The investigation

of these and other ensembles of active centers with dominat-
ing radiative interaction is promising, and it will undoubtedly
lead to the formulation of profound new questions and the
discovery of unexpected physical effects.

In this review, we have shown by numerous examples that,
when superradiance plays a dominant role in the pulsed
dynamics of an initially inverted sample and in the laser
dynamics upon continuous pumping, unique possibilities
appear for controling qualitative and quantitative lasing
characteristics, such as the spectral width, duration, and
coherence degree of various pulsed components of output
radiation. In other words, by controling the parameters of the
ensemble of particles and the set of hot modes determined by
the cavity and pumping, we can control the output radiation.
On the other hand, by studying changes in spectral correla-
tion properties of the output radiation, we can judge the
reconstruction of collective states of a many-particle system,
in particular, detect phase transitions in it.

No less exciting are recently initiated extensive studies of
collective states in many-particle systems experiencing, along
with the radiative interaction, other interactions of compar-
able strength, for example, the Coulomb, magnetic dipole
(spin), phonon interactions, or interactions related to some
other scattering of particles or their quantum statistics.

Various analogies or relations with the superradiance
phenomenon are highly sought after, beginning with the
similarity of model Hamiltonians to the Dicke Hamiltonian
and ending with the similarity of spatio-temporal, spectral,
and correlation characteristics of the collective behavior of
particles or simply the statement of their phased contribu-
tion to some self-consistent field determining the properties
of the states in a many-particle system. Although problems
of this type have not been discussed in the review, we
mention briefly some recent work in this area, especially
devoted to quite open many-particle systems in which the
excessive, sometimes undesirable, accumulation of the field
in the cavity inherent in conventional lasers is absent, and
the `exotic' states of active centers can be formed due to their
collective interaction with the self-consistent field. Notice
that different manifestations of collective spontaneous
emission, first of all nonstationary, can be characterized, on
the one hand, by quite unusual physical properties and, on
the other hand, can be used for studying other, nonradiative
interactions and related `exotic' states of active centers.

Examples of various corresponding experimental results
include:

(1) The discovery of spontaneous symmetry breaking in
the Dicke quantum phase transition in a Bose±Einstein
condensate of rubidium atoms placed into the central region
of a high-Q Fabry±Perot cavity pumped by a continuous-
wave laser [71].

(2) The demonstration of a so-called paired superradiance
upon coherent two-photon emission from the first vibrational
level of molecular hydrogen in the radiation field of two lasers
[303].

(3) The use of superfluorescence of cesium atoms dis-
tributed along a quasi-one-dimensional photonic-crystal
waveguide for studying the features of the radiative interac-
tion between atoms [304].

(4) The observation of a so-called single-photon super-
fluorescence from a quantum dot, opening the possibility of
studying quantum effects of the Coulomb interaction
between electrons and holes in low-dimensional semiconduc-
tor structures [305].
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(5) The creation and study of a subemitting coherent state
in a large cloud of cold rubidium atoms (� 109 atoms in a
3 mm3 volume) with a radiative decay time two orders of
magnitude longer than the spontaneous emission lifetime of
an atom [306].

Among theoretical results, we only mention a few recent
studies generalizing the Dicke phase transition model for
boson and fermion many-particle systems subjected to some
external actions [98, 307±314].

The study of various types of such many-particle states,
transitions between them, and their spatio-temporal
dynamics was initiated only recently and is undoubtedly
promising from both the fundamental and applied points of
view.
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