
Abstract. The theoretical description and survey of the physical
properties of superconducting states in uranium ferromagnetic
materials are presented. On the basis of microscopic theory, we
show that the coupling between electrons in these ferromagnetic
metals by means of magnetization fluctuations gives rise to a
triplet-pairing superconducting state, and establish the general
form of the order parameter dictated by symmetry. The theory
allows explaining some specific observations, including the
peculiar phenomenon of reentrant superconductivity in URhGe

in a magnetic field perpendicular to the spontaneous magnetiza-
tion direction. In addition, we describe several particular topics
related to uranium superconducting ferromagnets: (i) critical
magnetic relaxation in dual localized±itinerant ferromagnets,
(ii) phase transition to the ferromagnetic state in a Fermi liquid
and UGe2, (iii) superconducting ordering in ferromagnetic me-
tals without an inversion center.

Keywords: ferromagnetism, superconductivity

1. Introduction

Superconductivity and ferromagnetic ordering are usually
antagonists of each other. The reason is that the exchange
field exceeds the paramagnetic limit field and destroys
superconductivity by aligning the electron spins directed
oppositely in Cooper pairs. Nevertheless, singlet supercon-
ductivity can coexist with ferromagnetism when the critical
temperature of the transition to the superconducting state is
greater than the Curie temperature, as is the case with so-
called ternary compounds, which were actively investigated in
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the 1980s. The coexistence reveals itself in a form known as
the Anderson±Suhl or crypto-ferromagnetic superconducting
state [1, 2], characterized by the formation of a periodic
domain-like magnetic structure. The structure period or the
domain size l is larger than the interatomic distance, but
smaller than the superconducting coherence length x0, which
weakens the depairing effect of the exchange field, leading to
an effective averaging of it to zero.

The coexistence of superconductivity and ferromagnetism
recently discovered [3±6] in several uranium compoundsÐ
UGe2, URhGe, UCoGe, and UIrÐexhibits quite different
properties. In the first two compounds, the Curie temperature
TC is higher than their critical temperatures for super-
conductivity TSC by more than an order of magnitude
(Fig. 1a, b). In UCoGe, the ratio TC=TSC at ambient pressure
is about four (Fig. 1c). This, together with the fact that the
upper critical field at low temperatures greatly exceeds the
paramagnetic limit field in the first three compounds (see
reviews [7±9]), indicates that we are dealing here with Cooper
pairing in a triplet state. In UIr, the upper critical field is
smaller than the paramagnetic limit field [6]. The reason is
most likely in the low specimen quality: it is known that
impurities and inhomogeneities strongly suppress the upper
critical field in unconventional superconductors.

Ferromagnetism does not suppress the superconductivity
with triplet pairing; hence, there is no reason for the
formation of a cryptomagnetic state. Indeed, no traces of
spatial modulation of magnetic moment directions on a scale
smaller than the coherence length have been revealed [4, 10±
12]. On the other hand, neutron depolarizationmeasurements
of UGe2 down to 4.2 K (that is, in the ferromagnetic but not
superconducting region) establish that the magnetic moment
is strictly aligned along the a axis, with a typical domain size in
the bc plane of the order of 4:4� 10ÿ4 cm [13], about two
orders of magnitude larger than the largest superconducting
coherence length in the b direction, xb � 7� 10ÿ6 cm. A
similar domain size was recently measured in UCoGe [14].

It is therefore natural to assume that these ferromagnetic
superconductors are triplet superconductors similar to super-
fluid phases of He3. It must be kept in mind, however, that
unlike liquid helium, which is a completely isotropic neutral
Fermi liquid, here we are dealing with superconductivity
developing in strongly anisotropic ferromagnetic metals.
Namely, UGe2, URhGe, and UCoGe have an orthorhombic
structure with the magnetic moment oriented along the a axis
in the first of these compounds and along the c axis in the last
two (Fig. 2). UIr has a monoclinic PbBi-type structure (space
group P21) without inversion symmetry, with the magnetic
moment oriented along the �10�1� direction [15].

The magnetic moments in UGe2 [16], URhGe [17], and
UCoGe [18] are mostly concentrated around uranium ions.
At T � 0, they are respectively equal to 1:4mB, 0:4mB, and
0:07mB. Although these values are much smaller than the
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moment per uranium atom deduced from the susceptibility
above TC (2:8mB, 1:8mB, and 1:5mB, respectively), this is still
not sufficient to treat uranium compounds as completely
itinerant ferromagnets. Instead, they are dual localized±
itinerant ferromagnets. The most weakly delocalized mate-
rial is UGe2 [16, 19] and the most itinerant one is UCoGe [20,
21].

The interaction between conduction electrons bymeans of
spin waves in a system of localized moments has been
proposed as the most plausible pairing mechanism. Models
of this type have been applied to the superconducting
antiferromagnet UPd2Al3 [22] and to reentrant superconduc-
tivity in the ferromagnetic URhGe [23].

The general form of the order parameters of super-
conducting states in orthorhombic ferromagnets dictated by
symmetry was found in [24±26]. Subsequently, a microscopic
description of triplet superconductivity was developed based
on the pairing interaction due to exchange of magnetization
fluctuations in orthorhombic ferromagnets with strong
magnetic anisotropy [27, 28]. This approach allowed explain-
ing the interplay of the pressure dependence of the Curie
temperature and the critical temperature of the superconduct-
ing transition and the magnetic field dependence of the
pairing interaction for field orientations parallel or perpendi-
cular to the spontaneous magnetization direction. The latter,
in turn, allows explaining the peculiar phenomenon of
reentrant superconductivity in URhGe in a magnetic field
along the b direction [29].

Here, we present a survey of the theory and the physical
properties of superconducting uranium compounds. Starting
from the symmetry of superconducting states valid for a
multiband orthorhombic ferromagnet, we limit ourselves to
a description of the simplest two-band spin-up, spin-down
superconducting ferromagnet. The structure of the super-
conducting order parameters and the quasiparticle spectrum
are derived. We then explore the corresponding weak-
coupling microscopic theory of pairing due to exchange by
magnetic fluctuations in strongly anisotropic media with
orthorhombic symmetry. The theory reproduces the super-
conducting order parameter dictated by the symmetry. The
assumptions made in the previous treatments are demon-
strated explicitly. We next discuss the low-temperature
specific heat, the upper critical field, and other concrete
properties of uranium ferromagnet superconductors.

Special attention is paid to the peculiar phenomenon of
reentrant superconductivity in URhGe [30]. In the frame-
work of the Landau theory of phase transitions, it is
demonstrated that a magnetic field perpendicular to the easy
magnetization direction decreases the Curie temperature, and
the transition between the anisotropic ferromagnetic and
paramagnetic states becomes a first-order phase transition
in a strong enough field. The pairing interaction increases
significantly in the vicinity of the transition, stimulating the
reentrance to the superconducting state suppressed by the
orbital mechanism.

We show that the magnetic field along the spontaneous
magnetization direction suppresses the longitudinal fluctua-
tions of magnetization. This allows us to explain the peculiar
phenomena of the field-direction dependence of nuclear
magnetic resonance relaxation [31] and the sharp anisotropy
of the upper critical field [9, 32] in UCoGe.

In addition, we describe several particular topics related
to superconductivity in uranium superconductors: (1) the
origin of non-Landau damping of critical magnetic fluctua-

tions in ferromagnets with a dual localized±itinerant nature of
f-electrons [33, 34]; (2) the phase transition to the ferromag-
netic state in UGe2 [35] and in a Fermi liquid; (3) the general
structure of superconducting ordering in ferromagnetic
metals without inversion symmetry, as in UIr.

2. Order parameters, symmetry of states,
and quasiparticle energy spectrum

2.1 Symmetry of superconducting states
in orthorhombic ferromagnets
We consider a two-band ferromagnetic metal with the
respective electron spectra

e"�k� � x"�k� � m ; e#�k� � x#�k� � m �1�

for the spin-up and spin-down bands (Fig. 3), where x" and x#
are the energies measured from the chemical potential m.

The spin-triplet superconducting state arising in a
ferromagnetic metal consists of spin-up, spin-down, and
zero-spin Cooper pairs described by the matrix order
parameter [36]

Dab�k; r� � D"�k; r� D0�k; r�
D0�k; r� D#�k; r�

 !
� D"�k; r�j""i � D0�k; r�ÿj"#i � j#"i�� D#�k; r�j##i

� ÿd�k; r�r�isy� ÿdx�k; r�� idy�k; r� dz�k; r�
dz�k; r� dx�k; r�� idy�k; r�

� �
;

�2�
where D"�k; r�, D#�r; k; r�, and D0�k; r� are the spin-up, spin-
down, and zero-spin amplitudes of the superconducting order
parameter, depending on the Cooper pair center of gravity
coordinate r and the momentum k of pairing electrons;
r� �sx; sy; sz� are the Pauli matrices. Equivalently, the
order parameter can be written as the complex vector

d�k; r� � 1

2

�ÿD"�k; r��x̂� iŷ� � D#�k; r��x̂ÿ iŷ��� D0�k; r�ẑ :
�3�

Here and in what follows, x̂, ŷ, ẑ are the unit vectors along the
corresponding coordinate axes.

e

N"�e� N#�e�

nÿ n�

Figure 3.Density of states for spin-upN "�e� and spin-downN #�e� electron
bands in a ferromagnetic metal.
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We consider a ferromagnetic orthorhombic crystal with a
strong spin±orbit coupling fixing the spontaneous magnetiza-
tion along one of the second-order symmetry axes chosen as
the z direction. Its point symmetry group, or black-white
group, consists of rotation through the angle p around the
z axis and rotations through p around the x and y directions
combined with the operation of time reversal R, which
changes the spontaneous magnetization direction to the
opposite:

D2�C z
2 � � �E;C z

2 ;RC x
2 ;RC

y
2 � : �4�

Because we are not interested in possible translation invar-
iance breaking at the transition to the superconducting state,
we do not consider the full space group of the normal state.
Besides the point operations, the symmetry group of the
normal state includes the U�1� group of gauge transforma-
tions

GFM � U�1� �D2�C z
2 � � U�1� � �E;C z

2 ;RC x
2 ;RC

y
2 � : �5�

Superconducting states with different critical temperatures
are described by the basis functions of different irreducible co-
representations of the symmetry group of the normal state.
There are only two different corepresentations A and B of the
group GFM [24, 26]. The vector order parameters

dA�k; r�; dB�k; r�

of the corresponding states are determined by the amplitudes

D"A�k; r� � k̂xZ"x�r� � ik̂yZ"y�r� ;
D#A�k; r� � k̂xZ#x�r� � ik̂yZ#y�r� ; �6�
D0
A�k; r� � k̂zZ0z�r� ;

D"B�k; r� � k̂zz
"
z�r� ;

D#B�k; r� � k̂zz
#
z�r� ; �7�

D0
B�k; r� � k̂xz

0
x �r� � ik̂yz

0
y �r� :

Here and in what follows, k̂x, k̂y, k̂z are the components of the
unit momentum vector k̂ � k=jkj. For state A, the pair of
scalar complex order parameter amplitudes for spin-up
pairing have the common phase �Z"x; Z"y� � �jZ"xj; jZ"yj� �
exp �ij"�. The spin-down pair also have the common phase
�Z#x; Z#y� � �jZ#xj; jZ#yj� exp �ij#�. The zero-spin amplitude has
its own phase Z0z � jZ0z j exp �ij0�. We assume that the three
phases j", j#, and j0 either coincide, j" � j# � j0 � j, or
differ by�p. The same holds for the spin-up, spin-down, and
zero-spin order parameter components of the B state.

We can verify that the order parameter dA�k; r� is
invariant under all transformations of the group GA that is
isomorphic to the black-white group of the normal state
D2�C z

2 �, but contains the combined elements of time reversal
and gauge transformations:

GA �
ÿ
E;C z

2 ; exp �2ij�RC x
2 ; exp �2ij�RC

y
2

�
: �8�

For instance, the element RC x
2 , combining the transforma-

tions ŷ! ÿŷ, ẑ! ÿẑ, k̂y ! ÿk̂y; k̂z ! ÿk̂z and complex
conjugation of the order parameter, transforms into itself up
to a phase factor exp �ÿij�, such that

exp �2ij�RC x
2 dA�k; r� � dA�k; r� :

The order parameter dB�k; r� is invariant under all
transformations of the group

GB � D2�E�
� ÿE;C z

2 exp �ip�; exp �2ij�RC x
2 exp �ip�; exp �2ij�RC

y
2

�
�9�

that contains the combined elements of time reversal
(complex conjugation) and multiplication by phase factors
(gauge transformations).

It is important to note that the five-component order
parameter of the A state, Z"x, Z

"
y, Z

#
x, Z

#
y, Z

0
z , and the four-

component order parameter of the B state, z"z , z
#
z , z

0
x , z

0
y , found

from pure symmetry considerations include the zero-spin
components. In other words, they are not equal-spin-pairing
states consisting of Cooper pairs with opposite spins. This
fact is explained below in the framework of the microscopic
approach.

Inwriting Eqns (6) and (7), wewere limited by the simplest
form of the superconducting state order parameters. In
general, the following complications must be taken into
account.

(i) Each term in Eqns (6) and (7) can contain k 2
x , k

2
y , k

2
z -

dependent factors invariant under all rotations of the
orthorhombic group [24].

(ii) Equations (6) and (7) are written as they should be for
a two-band spin-up and spin-down ferromagnet. For a multi-
band ferromagnet, the spin-up, spin-down, and zero-spin
parts of the order parameter should consist of several terms
related to different bands.

(iii) Also, if necessary, the higher-order harmonics (higher
powers of k̂ l

xk̂
m
y k̂

n
z ) of the same symmetry as the one linear in

the components of k̂ in Eqns (6) and (7) can be taken into
account [24].

2.2 Superconducting states in UCoGe
Unlike URhGe and UGe2, where the superconducting state
arises only in the ferromagnetic state, the phase diagram of
UCoGe in Fig. 1c includes ferromagnetic (FM+SC) and
paramagnetic (SC) superconducting states [37].1 The symme-
tries of all the states shown in Fig. 1c obey the subordination
rules usual for a second-order phase transition [37]. Namely,
the symmetry group of the ferromagnetic superconducting
state A,

GFM�SC �
ÿ
E;C

z

2
; exp �2ij�RC x

2 ; exp �2ij�RC
y
2

�
; �10�

is a subgroup of the symmetry group of the ferromagnetic
state

GFM � U�1� �D2�C z
2 � � U�1� � ÿE;C z

2
;RC x

2 ;RC
y
2

� �11�
and the symmetry group of the paramagnetic superconduct-
ing state

GSC � �E;C z
2 ;C

x
2 ;C

y
2 �� exp �2ij�R� �E;C z

2 ;C
x
2 ;C

y
2 � : �12�

Both of these groups are, in turn, subgroups of the group of
the paramagnetic normal state

GN � U�1����E;C z

2
;C x

2 ;C
y
2 ��R� �E;C z

2 ;C
x
2 ;C

y
2 �
	
: �13�

1 Any superconductor is a diamagnet; however, here and in what follows,

we call a state that does not have a spontaneous magnetic moment a

`paramagnetic' superconducting state.
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The order parameter of the paramagnetic superconduct-
ing state looks like the order parameter of the superfluid
3HeÿB phase [36]:

d�k; r� � k̂xZ1�r�x̂� k̂yZ2�r�ŷ� k̂zZ0�r�ẑ : �14�
Under the phase transition into a superconducting ferro-
magnet state, the exchange field lifts the Kramers degeneracy
between the spin-up and spin-down electron states. Hence,
unitary order parameter (14) transforms into a type-A
nonunitary order parameter of superconducting ferromag-
netic state (6):

k̂xZxx̂� k̂yZyŷ� k̂zZzẑ

� 1

2

��k̂xZxÿ ik̂yZy��x̂� iŷ���k̂xZx� ik̂yZy��x̂ÿ iŷ���k̂zZzẑ
� 1

2

�ÿD"�k��x̂� iŷ� � D#�k��x̂ÿ iŷ��� D0�k�ẑ

�) 1

2

ÿ
k̂xZ"x�r� ÿ ik̂yZ"y�r�

��x̂� iŷ�

� 1

2

ÿ
k̂xZ#x�r� � ik̂yZ#y�r�

��x̂ÿ iŷ� � k̂zZ0z�r�ẑ: �15�

A similar analysis of the phase symmetry and the order
parameter transformation can also be performed for the
transition from a paramagnetic superconducting state to the
ferromagnetic superconducting state B.

A phase transition from the paramagnetic superconduct-
ing state to the ferromagnetic superconducting state in
UCoGe has never been revealed experimentally.

2.3 Quasiparticle spectrum
in ferromagnet superconductors with triplet pairing
We consider a two-band ferromagnetic metal with the
electron spectra x"�k� and x#�k� for the spin-up and spin-
down bands.

Even in the absence of an external field in a ferromagnet,
there is an internal field Hint acting on the electron charges.
The internal magnetic field in all uranium superconducting
ferromagnets is larger than the lower critical field Hc1 (see,
e.g., [14]). Hence, the Meissner state is absent and the
superconducting state is always the Abrikosov mixed state
with a spatially inhomogeneous distribution of the order
parameter and the internal magnetic field. In this case, to
find the elementary excitation energies, we have to solve the
coupled systems of Gor'kov and Maxwell differential equa-
tions. Some simplifications occur at low temperatures. Here,
because Hint 5Hc2, we can work in the London approxima-
tion, such that the internal magnetic fieldHint�r� � rotA�r� is
a slow function of coordinates. In the inter-vortex space, the
order parameter is constant, and the electron (hole) momenta
acquire aDoppler shift k�mvs�r� due to the nonzero velocity
of the superfluid component,

vs�r� � �h

2m

�
Hj� 2e

�hc
A�r�

�
:

Then the Gor'kov equations become

ion ÿ 1

2
�x"� � x#��s0 ÿ

1

2
�x"� ÿ x#��sz ÿ i�dr�sy

isy�d�r� ion � 1

2
�x"ÿ � x#ÿ�s0 �

1

2
�x"ÿ ÿ x#ÿ�sz

0B@
1CA

� Ĝ ÿF̂
ÿF̂ y ÿ ~Gÿk;ÿo

� �
� s0 0

0 s0

� �
; �16�

where

x";#��k� � x"; #�k�mvs� � x"; #�k� � kvs : �17�

As ion ! E, the equality of the determinant of this system to
zero gives the energy of elementary excitations

E � kvs�
"
1

2
�x 2
" � x 2

# �� �dd���
�
1

4

�
x 2
" ÿ x 2

# � 2i�d� d��z
�2

ÿ ÿi�d� d��z�2 � i�d� d��2
�1=2

#1=2
: �18�

The excitation energies acquire the simplest form in the so-
called equal-spin-pairing state with d0 � 0:

E" � kvs �
�����������������������������������������
x 2
" � dd�� i�d� d��z

q
� kvs �

����������������
x 2
" � D2

"
q

; �19�

E# � kvs �
�����������������������������������������
x 2
# � dd�ÿ i�d� d��z

q
� kvs �

����������������
x 2
# � D2

#
q

: �20�

It is also instructive to write the energy of excitations in the
nonunitary superconducting state [36],

E � kvs �
��������������������������������������������
x 2 � dd� � ��i�d� d����q

; �21�

arising from a paramagnetic normal state with x" � x# � x.
In all the cases, the Kramers degeneracy is lifted.

We next discuss what kind of pairing interaction gives rise
to the A and B superconducting states in ferromagnets with
orthorhombic symmetry.

3. Superconducting states
in microscopic weak-coupling theory

3.1 Triplet pairing by spin-fluctuation exchange
The interaction between two electrons is assumed to be due to
the attraction of one electron by the magnetic polarization
cloud of the other. Unlike superfluid He3, where the pairing
of atoms originates from the magnetic polarization in an
isotropic Fermi liquid, pairing of electrons in a ferromagnetic
metal occurs in an anisotropic medium due to polarization of
the electron liquid and the localized moments.

We therefore consider the pairing originating from the
attraction

Helm � ÿ 1

2
m2BI

2

�
d3r d3r 0 Si�r� wi j�rÿ r 0�Sj�r 0� �22�

between the electrons with magnetic moments mB by means of
the electron±magnon interaction in a ferromagnetic medium
with orthorhombic symmetry. Here,

S�r� � cya�r�rab cb�r�

is the electron spin density operator, wi j�r� is the medium
susceptibility, and I is an exchange constant.

Transforming the interaction Hamiltonian into the
momentum representation and retaining only the odd-parity
terms (with respect to k and k 0), after some straightforward
algebra [38] we obtain the Bardeen±Cooper±Schrieffer (BCS)
Hamiltonian for triplet pairing from Eqn (22):

Hpairing � 1

2

X
kk 0

Vabgd�k; k 0�a ya �k�a yb�ÿk�ag�ÿk 0�ad�k 0� ; �23�
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where

Vabgd�k; k 0� � Vi j�k; k 0��isisy�ab�isjsy�ygd ; �24�

Vi j�k; k 0� � ÿm2BI 2

�
1

2
Tr ŵ u�k; k 0�di j ÿ w u

i j�k; k 0�
�
�25�

is expressed through the odd part of the medium static
susceptibility

ŵ u�k; k 0� � w u
i j�k; k 0� �

1

2

�
wi j�kÿ k 0� ÿ wi j�k� k 0�� :

The critical temperature or the upper critical field is
determined as an eigenvalue of the linear equation for the
order parameter

Dab�k; q� � ÿT
X
n

X
k 0

Vbalm�k; k 0�Glg�k 0;on�

� Gmd�ÿk 0 � q;ÿon�Dgd�k 0; q� : �26�

Here, the matrix of the order parameter in the momentum
representation is

D�k; q� �
�
D�k; r� exp �iqr� d3r � D"�k; q� D0�k; q�

D0�k; q� D#�k; q�

� �
;

�27�

and Glg�k 0;on� is the matrix of the normal-metal Green's
function. In the absence of an external field or when the
external magnetic field is strictly parallel to the spontaneous
magnetization, this Green's function is diagonal,

Gn � G " 0
0 G #

� �
; �28�

where

G "; # � 1

ion ÿ x "; #k

: �29�

Matrix equation (26) is a system of coupled linear
equations for the order parameter components

D"�k; q� � ÿT
X
n

X
k 0

�
V ""�k; k 0�G "G "D"�k 0; q�

� V "#�k; k 0�G #G #D#�k 0; q�
� V "0�k; k 0��G #G " � G "G #�D0�k 0; q�� ; �30�

D#�k; q� � ÿT
X
n

X
k 0

�
V #"�k; k 0�G "G "D"�k 0; q�

� V ##�k; k 0�G #G #D#�k 0; q�
� V #0�k; k 0��G #G " � G "G #�D 0�k 0; q�� ; �31�

D 0�k; q� � ÿT
X
n

X
k 0

�
V 0 "�k; k 0�G "G "D"�k 0; q�

� V 0 #�k; k 0�G #G #D#�k 0; q�
� V 00�k; k 0��G #G " � G "G #�D 0�k 0; q�� ; �32�

where the arguments in the Green's function products are the
same as in matrix equation (26). For instance,

G "G " � G "�k 0;on�G "�ÿk 0 � q;ÿon� :

The pairing amplitudes found from Eqn (25) are

V ""�k; k 0� � Vxx � Vyy � iVxy ÿ iVyx � ÿm2BI 2w u
zz ; �33�

V ##�k; k 0� � Vxx � Vyy ÿ iVxy � iVyx � ÿm2BI 2w u
zz ; �34�

V "#�k; k 0� � ÿVxx � Vyy � iVxy � iVyx

� ÿm2BI 2�w u
xx ÿ w u

yy ÿ 2iw u
xy� ; �35�

V #"�k; k 0� � ÿVxx � Vyy ÿ iVxy ÿ iVyx

� ÿm2BI 2�w u
xx ÿ w u

yy � 2iw u
xy� ; �36�

V 00�k; k 0� � Vzz � ÿ
m2BI

2�w u
xx � w u

yy ÿ wu
zz�

2
; �37�

V "0�k; k 0� � ÿV 0"�k; k 0��� � ÿVxz � iVyz

� ÿm2BI 2�w u
xz ÿ iw u

yz� ; �38�
V #0�k; k 0� � ÿV 0#�k; k 0��� � Vxz � iVyz

� ÿm2BI 2�ÿw u
xz ÿ iw u

yz� : �39�

We see that the equations for D", D#, and D 0 are entangled.
Moreover, the entanglement still exists in the case of a strong
spin-up and spin-down band splitting, which allows us to
omit all the terms that involve the combinations
G #G " � G "G # corresponding to interband pairing.2 Ignor-
ing the inter-band pairing, we find

D"�k; q� � ÿT
X
n

X
k 0

�
V ""�k; k 0�G "G "D"�k 0; q�

� V "#�k; k 0�G #G #D#�k 0; q�� ; �40�
D#�k; q� � ÿT

X
n

X
k 0

�
V #"�k; k 0�G "G "D"�k 0; q�

� V ##�k; k 0�G #G #D#�k 0; q�� ; �41�
D 0�k; q� � ÿT

X
n

X
k 0

�
V 0"�k; k 0�G "G "D"�k 0; q�

� V 0 #�k; k 0�G #G #D#�k 0; q�� : �42�
We see that Eqn (42) for the order parameter component D0

corresponding to the pairing of particles with opposite spins is
still present. According to Eqn (42), the pairing with opposite
spins is induced by the pairing terms with parallel spins.
Hence, in general, a superconducting state in a ferromagnetic
metal is not an equal-spin-pairing state. This property
originates from the spinëorbit coupling. Indeed, we see in
what follows that the pairing amplitudes V 0" and V 0# arise
due to the spinëorbit terms in the ferromagnet gradient
energy, which are presumably small. Therefore, with good
accuracy, we can work with Eqns (40) and (41) corresponding
to equal-spin-pairing superconductivity, ignoring the ampli-
tude D0 induced by the pairing of electrons with upëup and
downëdown spins. In this case, we are dealing with a two-
band superconducting state similar to the A2 state of
superêuid 3He [39]. This property is supported by recent
low-temperature thermal conductivity measurements in a
magnetic éeld [40].

Both the up±up spin �V ""� and the down±down spin �V ##�
pairing amplitudes are determined by the susceptibility
component parallel to the direction of the spontaneous
magnetization w u

zz, which greatly exceeds the susceptibility

2 The case of UCoGe at a pressure of about 1.1 GPa when the Curie

temperature is almost equal to the temperature of the superconducting

transition requires a special treatment.
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along the other crystallographic directions. On the other
hand, the spin-up and the spin-down Cooper pairs interact
with each other due to the susceptibility anisotropy wxx 6� wyy,
which gives rise to a phase transition to an A2-type state
common to the spin-up and the spin-down bands. The
susceptibility anisotropy does not exist in the exchange
approximation and is completely determined by the spin±
orbit coupling. Even in isotropic liquid 3He, the spin±orbit
coupling leads to entanglement between the spin-up and spin-
down order parameters [41]. However, in view of the
smallness of spin±orbit interaction, the entanglement
between the spin-up and spin-down components is practi-
cally absent, which results in two subsequent phase transi-
tions in a magnetic field: first to the spin-up A1 state and then
to the mixed spin-up and spin-down A2 superfluid state [39].

We next find the susceptibility.

3.2 Magnetic susceptibility
of an orthorhombic ferromagnet
We seek the static magnetic susceptibility following the
phenomenological approach in the Landau theory of phase
transitions. The free energy of an orthorhombic ferromagnet
in a magnetic fieldH�r� is

F �
�
dV �FM � FH� ; �43�

where we take the orthorhombic anisotropy into account in
expressions for the condensation energy density

FM � azM 2
z � ayM 2

y � axM 2
x � bzM

4
z � bxyM

2
xM

2
y

� byzM
2
z M

2
y � bxzM

2
z M

2
x ÿMH �44�

and the gradient energy density

FH � g abi j
qMa

qxi

qMb

qxj
�45�

The z direction is always chosen along the spontaneous
magnetization; hence, the x, y, z coordinates are respectively
directed along the a, b, c crystallographic axes in URhGe and
UCoGe, and along the b, c, a axes in UGe2,

az � az0�Tÿ TC� ; ax > 0 ; ay > 0 ; �46�

where TC is the Curie temperature and

ga�bi j �
gaxx 0 0

0 g ayy 0

0 0 g azz

0@ 1A ; a � x; y; z ; �47�

g a 6�bi j � g i ji j �
0 gxy gxz
gxy 0 gyz
gxz gyz 0

0@ 1A: �48�

The corresponding energy density in the exchange approx-
imation is

F exchange
M � F exchange

H � aM 2 � bM 4 ÿMH� gi j
qM
qxi

qM
qxj

;

�49�

where

gi j �
gxx 0 0
0 gyy 0

0 0 gzz

0@ 1A; �50�

and hence the gradient energy is determined only by three
constants instead of the 12 constants that occur when taking
small relativistic interactions into account.

We take themagnetic field as the sum of a constant field in
the direction of spontaneous magnetization and the coordi-
nate-dependent small addition

H�r� � dHx�r�x̂� dHy�r�ŷ�
ÿ
Hz � dHz�r�

�
ẑ : �51�

By varying functional (43) with respect to the magnetization
components, we arrive at the equations

2axMx � 2bxyM
2
yMx � 2bxzM

2
z Mx

ÿ 2gxi j
q2Mx

qxi qxj
ÿ gxy

q2My

qx qy
ÿ gxz

q2Mz

qx qz
� dHx ;

2ayMy � 2bxyM
2
xMy � 2byzM

2
z My

ÿ 2g yi j
q2My

qxi qxj
ÿ gxy

q2Mx

qx qy
ÿ gyz

q2Mz

qy qz
� dHy ; �52�

2azMz � 4bzM
3
z � 2bxzM

2
xMz � 2byzM

2
yMz

ÿ 2g zi j
q2Mz

qxi qxj
ÿ gxz

q2Mx

qx qz
ÿ gyz

q2My

qy qz
� Hz � dHz :

The equilibriummagnetization projections are determined by
the equations

Mx � 0 ; My � 0 ; �53�

M 2
z � ÿ

az
2bz
� Hz

4bzMz
: �54�

The first and last terms in the right-hand side of (54)
correspond to the spontaneous and the induced parts of
magnetization along the z direction.

The total magnetization is the sum of the constant part
and the small coordinate-dependent addition

M�r� �Mzẑ� dMx�r� � dMy�r� � dMz�r� ; �55�
whose Fourier components dM�k� satisfy linear equations
derived from Eqns (52):

2�ax � bxzM
2
z � g xi jki kj�dMx�k� � gxykxkydMy�k�

� gxzkxkzdMz�k� � dHx�k� ;
gxykxkydMx�k� � 2�ay � byzM

2
z � g yi j ki kj�dMy�k�

� gyzkykzdMz�k� � dHy�k� ; �56�
gxzkxkzdMx�k� � gyzkykzdMy�k�

� 2�az � 6bzM
2
z � g zi jki kj�dMz�k� � dHx�k� :

The coupling between the magnetization components in
Eqns (56) is due to the small terms in the gradient energy
originating from the relativistic interactions. Disregarding all
the products of terms such as gxykxkygyzkykz, we obtain a
solution of this system of equations in the form

wxx �
dMx

dHx
� 1

2�ax � bxzM 2
z � g xi j ki kj�

; �57�

wyy �
dMy

dHy
� 1

2�ay � byzM 2
z � g yi j ki kj�

; �58�

wzz �
dMz

dHz
� 1

2�az � 6bzM 2
z � g zi j ki kj�

; �59�
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wxy �
dMx

dHy
� dMy

dHx

� ÿ gxykxky
4�ax� bxzM 2

z � gxi j ki kj��ay� byzM 2
z � g yi j ki kj�

; �60�

wxz �
dMx

dHz
� dMz

dHx

� ÿ gxzkxkz
4�ax� bxzM 2

z � gxi j ki kj��az� 6bzM 2
z � g zi j ki kj�

; �61�

wyz �
dMy

dHz
� dMz

dHy

� ÿ gyzkykz
4�ay� byzM 2

z � g yi j ki kj��az � 6bzM 2
z � g zi j ki kj�

: �62�

The expressions for the susceptibility components depend
on the wave vectors through combinations like gk 2. They are
derived for wave vectors much smaller than the inverse
interatomic distance aÿ1. The corresponding wave-vector-
dependent terms in the susceptibility components found from
an appropriatemicroscopicmodel then contain combinations
of trigonometric functions like g sin2 ka=a 2. These combina-
tions at small k reproduce our phenomenological expressions,
and at k � kF are of the order of g=a 2, as are the phenomen-
ological expressions. This means that our formulas for
susceptibilities are still qualitatively valid at large wave
vector transfers k � kF determining Cooper pairing. The
Fermi wave vectors kF are different at different points of the
Fermi surface; hence, kF is a function of direction in the
reciprocal space with orthorhombic symmetry.

The odd part of the z component of the susceptibility is
found as

w u
zz�k; k 0� �

1

2

�
wzz�kÿ k 0� ÿ wzz�k� k 0��

� 2gi j ki k
0
jÿ

az � 6bzM 2
z � gi j�kikj � k 0i k

0
j �
�2 ÿ �2gi j ki k 0j �2 : �63�

According to Eqns (33) and (34), the pairing interaction is
determined by this formula. The situation is similar to the
case of the weak-coupling singlet pairing, where the zero-
frequency limit of the phonon propagator plays the role of a
potential for the phonon-mediated attraction among elec-
trons. We are interested in the pairing interaction inside the
ferromagnetic state where az � 6bzM

2
z > 0. At the Curie

temperature, this combination is equal to zero and w u
zz�k; k 0�

diverges at coincident arguments corresponding to Cooper
pairing. This is an inevitable property of a model with static
interaction.

To avoid this pairing interaction divergence, Fay and
Appel [42], in their theory of p-wave superconductivity in an
itinerant ferromagnet, introduced a cutoff depending on the
distance from the ferromagnetic phase transition. As a result,
the critical temperature of the phase transition to the super-
conducting state with a finite value in both the ferromagnetic
and the paramagnetic state turned out to be equal to zero at
the transition between them. This misleading property does
not take place in a model taking the retardation effect in
pairing interaction into account.

At a finite value of az � 6bzM
2
z , we can keep only the

angular dependence in the numerator of Eqn (63), ignoring
the angular dependence of kF and the orthorhombic-
symmetry terms g zi j�kikj � k 0i k

0
j � � 2g zk 2

F in the denomina-

tor, as well as all the higher angular harmonics determined by
the last term in the denominator. Calculations without these
simplifications aremuchmore cumbersome but do not lead to
qualitatively different results. Thus, we obtain

wu
zz�k; k 0� �

g zi j k
2
F

a 2
z

k̂i k̂
0
j ; �64�

az � az � 6bzM
2
z � 2g zk 2

F � 2bz�3M 2
z ÿM 2

z0�� 2g zk 2
F ; �65�

where Mz is the solution of Eqn (54) and Mz0 �
Mz�Hz � 0� � �ÿaz=2bz�1=2. At arbitrary temperatures
below the Curie temperature, we can use the known
experimental values of the field-dependent magnetization
Mz�Hz� and its almost temperature-independent sponta-
neous partMz0 �Mz�Hz � 0�.

In a similar manner, we find the odd part of the
susceptibility x and y components:

w u
xx�k; k 0� �

gxi j k
2
F

a 2
x

k̂i k̂
0
j ; w u

yy�k; k 0� �
gyi j k

2
F

a 2
y

k̂i k̂
0
j ; �66�

where

ax � ax � bxzM
2
z � 2g xk2F ; �67�

ay � ay � byzM
2
z � 2g y k 2

F :

All the off-diagonal susceptibility components are linear
in the anisotropy terms determined by the spin±orbit
coupling:

w u
xy�k; k 0� �

gxy k
2
F

4~ax~ay
�k̂xk̂ 0y � k̂ 0xk̂y� ; �68�

w u
xz�k; k 0� �

gxz k
2
F

4~ax~az
�k̂xk̂ 0z � k̂ 0xk̂z� ; �69�

w u
yz�k; k 0� �

gyzk
2
F

4~ay~az
�k̂yk̂ 0z � k̂ 0yk̂z� ; �70�

~ax � ax � bxzM
2
z ; ~ay � ay � byzM

2
z ; �71�

~az � az � 6bzM
2
z � 4bzM

2
z �

Hz

2Mz
:

Here, we completely disregard the fourth order terms in
respect of the products of wave vector components. They
have the same symmetry as Eqns (68)±(70), but seriously
complicate the corresponding expressions.

3.3 Pairing amplitudes
Equations (33)±(39) express the pairing amplitudes through
the susceptibility components in a ferromagnetic metal with
arbitrary symmetry. Explicit formulas for the susceptibility
components in an orthorhombic ferromagnet are found in
Section 3.2. The structure of superconducting states in an
orthorhombic crystal is determined by the angular depen-
dence of pairing amplitudes:

V ""�k; k 0� � V ##�k; k 0� � ÿm2BI 2w u
zz

� ÿ m2BI
2k 2

Fg
z
i j k̂i k̂

0
j

4
�
bz�3M 2

z ÿM 2
z0� � g zk 2

F

�2 � ÿV1i j k̂i k̂
0
j ; �72�

V "#�k; k 0� � ÿV2i j k̂i k̂
0
j � iV3�k̂xk̂ 0y � k̂yk̂

0
x� ; �73�

V #"�k; k 0� � ÿV "#�k; k 0��� ; �74�
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V 00�k; k 0� � ÿW1i j k̂i k̂
0
j ; �75�

V "0�k; k 0� � ÿV 0"�k; k 0���
� ÿW2�k̂xk̂ 0z � k̂zk̂

0
x� � iW3�k̂yk̂ 0z � k̂zk̂

0
y� ; �76�

V #0�k; k 0� � ÿV 0#�k; k 0��� � ÿÿV "0�k; k 0��� ; �77�

where the constants are

V1i j � m2BI
2k 2

F

g zi j
a 2
z

� m2BI
2k 2

Fg
z
i j

4
�
bz�3M 2

z ÿM 2
z0� � g zk 2

F

�2 ; �78�

V2i j � m2BI
2k 2

F

�
g xi j
a 2
x

ÿ g yi j
a 2
y

�
; V3 �

m2BI
2k 2

Fgxy
4~ax~ay

; �79�

W1i j � m2BI
2k 2

F

2

�
gxi j
a 2
x

� g yi j
a 2
y

ÿ g zi j
a 2
z

�
;

�80�
W2 � m2BI

2k 2
Fgxz

4~ax~az
; W3 �

m2BI
2k 2

Fgyz
4~ay~az

:

The pairing interaction between the particles in the same
spin-up or spin-down band plays the most important role.
The corresponding amplitude originates from the odd part of
the magnetic susceptibility component wu

zz, which depends on
the temperature and the magnetic field. The amplitudes V1i j

and W1i j are mainly determined by the exchange interaction.
The amplitude V2i j is equal to zero in the exchange
approximation, but it can have a nonnegligible magnitude
corresponding to a strong orthorhombic anisotropy of the
susceptibility, wxx 6� wyy. The amplitudes V3,W2, and W3 are
determined by the spin±orbit terms in the gradient energy of
an orthorhombic ferromagnet, and we treat them as the
smallest among the amplitudes.

3.4 Critical temperature of the phase transition
to a paramagnetic superconducting state in UCoGe
Equations (30)±(32) are also applicable to finding the critical
temperature of the phase transition from the normal to the
paramagnetic superconducting state observed in UCoGe at
high pressures (Fig. 1c). In this case, the internal magnetic
field is absent; hence, the normal-state Green's functions for
the spin-up and spin-down electrons are equal,G " � G # � G,
and the order parameter is spatially homogeneous. The
equations then take the form

D"�k� � ÿT
X
n

X
k 0

�
V ""�k; k 0�D"�k 0� � V "#�k; k 0�D#�k 0�

� 2V "0�k; k 0�D 0�k 0��G�k 0;on�G�ÿk 0;ÿon� ; �81�

D#�k� � ÿT
X
n

X
k 0

�
V #"�k; k 0�D"�k 0� � V ##�k; k 0�D#�k 0�

� 2V #0�k; k 0�D0�k 0��G�k 0;on�G�ÿk 0;ÿon� ; �82�

D 0�k� � ÿT
X
n

X
k 0

�
2V 0"�k; k 0�D"�k 0� � V 0#�k; k 0�D#�k 0�

� V 00�k; k 0�D 0�k 0��G�k 0;on�G�ÿk 0;ÿon� : �83�

Substituting the paramagnetic-state order parameter compo-
nents (see Section 2.2)

D" � ÿk̂xZx � ik̂yZy ; D# � k̂xZx � ik̂yZy ; D 0 � k̂zZzẑ

�84�

in these equations gives five equations for the three ampli-
tudes Zx, Zy, and Zz. Two of these equations coincide with two
others, and we are left with the system of three independent
equations

�lÿ1 ÿ g1x � g2x�Zx � g3yZy � 2w2zZz � 0 ;

g3xZx � �lÿ1 ÿ g1y ÿ g2y�Zy � 2w3zZz � 0 ; �85�
2w2xZx � 2w3yZy � �lÿ1 ÿ w1z�Zz � 0 :

The pairing coupling constants are

g1x � V1xx



k̂ 2
xN0�k�

�
; g2x � V2xx



k̂ 2
xN0�k�

�
;

g1y � V1yy



k̂ 2
y N0�k�

�
; g2y � V2yy



k̂ 2
y N0�k�

�
;

w1z �W1zz



k̂ 2
z N0�k�

�
; g3x � V3



k̂ 2
xN0�k�

�
;

g3y � V3



k̂ 2
yN0�k�

�
; w2x �W2



k̂ 2
xN0�k�

�
;

w2z �W2



k̂ 2
z N0�k�

�
; w3z �W3



k̂ 2
z N0�k�

�
;

w3y �W3



k̂ 2
y N0�k�

�
:

The angular brackets denote averaging over the Fermi surface
and N0�k� is the angular-dependent density of electronic
states on the Fermi surface. We have

l�T � � 2pT
X
n5 0

1

on
� ln

e
T
;

where e � 2ge0=p, ln g � 0:577 is the Euler constant, and e0 is
the cutoff energy for the pairing interaction. The critical
temperature of the phase transition

TSC � e exp
�
ÿ 1

g

�
�86�

is expressed in terms of the maximal eigenvalue of the matrix
corresponding to system of linear equations (85).

3.5 Phase transition from the paramagnetic
to ferromagnetic superconducting state in UCoGe
Equations (81)±(83) can also be used to determine the critical
temperature of the phase transition that must separate the
paramagnetic superconducting and ferromagnetic supercon-
ducting states in UCoGe (Fig. 1c), but which has not been
discovered experimentally. The Green's function of the
paramagnetic superconducting state must be used here:

G�k;on� � ÿ ion � xk
o2

n � x 2
k � Z 2

x k̂
2
x � Z 2

y k̂
2
y � Z 2

z k̂
2
z

: �87�

Substituting the ferromagnetic-state order parameter compo-
nents (see Section 2.2)

D"� ÿk̂xZ"x� ik̂yZ"y ; D#� k̂xZ#x� ik̂yZ#y ; D 0� k̂zZ0z ẑ �88�

in Eqns (81)±(83) gives five equations for the five amplitudes
Z"x, Z

"
y, Z
#
x, Z

#
y, and Z0z . The maximum eigenvalue of this system

determines the critical temperature of the phase transition
from the paramagnetic to the ferromagnetic superconducting
state.

This phase transition occurs in the itinerant electron
subsystem. Mathematically, it is described by a smooth
development of an inequality in the spin-up and spin-down
amplitudes of the order parameter, that is, by the develop-
ment of a spontaneous magnetic moment of a purely super-
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conducting nature. Simultaneously, magnetization related to
the subsystem of localized moments appears. Its emergence,
induced by the superconducting electronmagneticmoment, is
similar to the crossover between paramagnetic and ferromag-
netic normal states in an external magnetic field. It can be
expected that due to the smallness of the magnetization, the
superconductor remains in the Meissner state below the
transition line.

There is another possible scenario of the phase transition
from the paramagnetic to ferromagnetic superconducting
state. It is realized when the transition driving force is the
ordering in the subsystem of localized moments. In this case,
the subsystem of superconducting electrons is rearranged
under the action of spontaneous magnetization.

The theory of the phase transition from the paramagnetic
to the ferromagnetic superconducting state must include the
effect of the emergence of supercurrents and the field
dependence of the magnetization, which can be important in
view of the divergence of the magnetic susceptibility near the
Curie temperature. A satisfactory treatment of this phenom-
enon is currently absent.3

3.6 Superconducting states in orthorhombic ferromagnets
We now find what kind of superconducting state emerges at
the phase transition from a normal ferromagnetic to the
superconducting ferromagnetic state. Performing the Taylor
expansion of Eqns (30)±(32) in powers of q up to the second
order and then passing to the coordinate representation by
the substitution

q! D � ÿiHr � 2eA�r� ; �89�
we obtain the equations

D"�k; r� � T
X
n

�
d3k 0

�2p�3 V1i j k̂i k̂
0
j

�
�
G "G " � 1

2
G "

q2G "

qk 0l qk 0m
Dl Dm

�
D"�k 0; r�

� T
X
n

�
d3k 0

�2p�3
�
V2i j k̂i k̂

0
j ÿ iV3�k̂xk̂ 0y � k̂ 0xk̂y�

�
�
�
G #G # � 1

2
G #

q2G #

qk 0l qk 0m
Dl Dm

�
D#�k 0; r�

� T
X
n

�
d3k 0

�2p�3
�
W2�k̂xk̂ 0z � k̂zk̂

0
x� ÿ iW3�k̂yk̂ 0z � k̂zk̂

0
y�
�

�
�
G "G # � 1

2
G "

q2G #

qk 0l qk 0m
Dl Dm � G #G "

� 1

2
G #

q2G "

qk 0l qk 0m
Dl Dm

�
D0�k 0; r� ; �90�

D#�k; r� � T
X
n

�
d3k 0

�2p�3
�
V2i j k̂i k̂

0
j � iV3�k̂xk̂ 0y � k̂ 0xk̂y�

�
�
�
G "G " � 1

2
G "

q2G "

qk 0l qk 0m
Dl Dm

�
D"�k 0; r�

� T
X
n

�
d3k 0

�2p�3 V1i j k̂i k̂
0
j

�
�
G #G # � 1

2
G #

q2G #

qk 0l qk 0m
Dl Dm

�
D#�k 0; r�

� T
X
n

�
d3k 0

�2p�3
�ÿW2�k̂xk̂ 0z � k̂zk̂

0
x� ÿ iW3�k̂yk̂ 0z � k̂zk̂

0
y�
�

�
�
G "G # � 1

2
G "

q2G #

qk 0l qk 0m
Dl Dm � G #G "

� 1

2
G #

q2G "

qk 0l qk 0m
Dl Dm

�
D0�k 0; r� ; �91�

D0�k 0; r��T
X
n

�
d3k 0

�2p�3
�
W2�k̂xk̂ 0z� k̂zk̂

0
x�� iW3�k̂yk̂ 0z� k̂zk̂

0
y�
�

�
�
G "G " � 1

2
G "

q2G "

qk 0l qk 0m
Dl Dm

�
D"�k 0; r�

� T
X
n

�
d3k 0

�2p�3
�ÿW2�k̂xk̂ 0z � k̂zk̂

0
x� � iW3�k̂yk̂ 0z � k̂zk̂

0
y�
�

�
�
G #G # � 1

2
G #

q2G #

qk 0l qk 0m
Dl Dm

�
D#�k 0; r�

� T
X
n

�
d3k 0

�2p�3 W1i j k̂i k̂
0
j

�
G "G # � 1

2
G "

q2G #

qk 0l qk 0m
Dl Dm

� G #G " � 1

2
G #

q2G "

qk 0l qk 0m
Dl Dm

�
D0�k 0; r� : �92�

Here, as before, the arguments in the products of the Green's
functions are

G "G " � G "�k 0;on�G "�ÿk 0;ÿon� ;

G "
q2G "

qk 0l qk 0m
� G "�k 0;on� q

2G "�ÿk 0;ÿon�
qk 0l qk 0m

; . . . :

In a single-domain ferromagnet in the absence of an
external field, H � 0, or in an external field directed along
the spontaneous magnetization axis ẑ, the order parameter
components are independent of z, and the operators of so-
called long derivatives are

Dx � ÿi q
qx

; Dy � ÿi q
qy
� 2e

c
�H�Hint�x : �93�

Here, we introduce an internal electromagnetic field corre-
sponding to the spontaneous magnetization Hint � 4pM and
ignore the difference between the external field and the
magnetic field induced inside the medium by the external
field.

With the dependence of the pairing interaction in
Eqns (90)±(92) on the wave vector taken into account, we
can choose the superconducting order parameter as the linear
combinations

D"�k; r� � k̂xZ"x�r� � ik̂yZ"y�r� � k̂zz
"
z�r� ;

D#�k; r� � k̂xZ#x�r� � ik̂yZ#y�r� � k̂zz
#
z�r� ;

D0�k; r� � k̂xz
0
x �r� � ik̂yz

0
y �r� � k̂zZ0z�r� :

Substituting these expressions in Eqns (90)±(92) leads to two
independent systems of differential equations

Za�r� � AabZb�r� ; za�r� � Babzb�r� ; �94�

for the components of the vectors

Za�r� �
ÿ
Z"x�r�; Z#x�r�; Z"y�r�; Z#y�r�; Z0z�r�

�
; �95�

za�r� �
ÿ
z"z�r�; z#z�r�; z 0x �r�; z 0y �r�

�
; �96�

3 However, see Ref. [109], which appeared after this review was written.
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which correspond to two different superconducting states with
different critical temperatures pertaining to corepresentations
A and B. Thereby, the derived microscopic equations confirm
the conclusions that were made in Section 2 based on pure
symmetry considerations.

3.7 Equal-spin-pairing states
We next simplify the problem and work with Eqns (40) and
(41) that correspond to superconducting states of pairs of
different-spin electrons. Then state A is described by the four-
component order parameter

D"�k; r� � k̂xZ"x�r� � ik̂yZ"y�r� ; �97�
D#�k; r� � k̂xZ#x�r� � ik̂yZ#y�r� ; �98�

and state B by the two-component order parameter

D"�k; r� � k̂zz
"
z�r� ; �99�

D#�k; r� � k̂zz
#
z�r� : �100�

Equations (94) for the critical temperatures of phase
transitions to these states are determined by the 4� 4 and
2� 2 matrices

Aab

�
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ÿg"3xlÿiL"2yxÿL"3x ÿiL#1yx g"2yl� L"2yÿ iL"3xy g#1yl� L#1y

0BBBBB@

1CCCCCA;

�101�
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Here,
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F
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is one of the pairing interaction constants, the angular
brackets mean averaging over the Fermi surface, and N "0 �k�
is the angular-dependent density of electronic states on the
Fermi surface of the band ". Accordingly,

g#2x � V2xx



k̂ 2
xN

#
0 �k�

�
; g#3x � V3



k̂ 2
xN

#
0 �k�

�
: �104�

All the other pairing interaction constants are obtained by the
obvious substitutions x$ y and "$# or x! z. We have

l�T � � 2pT
X
n5 0

1

on
� ln

e
T
; �105�

where e � 2ge0=p, ln g � 0:577 is the Euler constant, and e0 is
the cutoff energy for the pairing interaction. We assume here
that it has the same value for both bands.

The differential operator
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2
V1xxT

X
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xG
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and the operator L#2y and other operators with the same
structure are obtained by the obvious substitutions x! y; z,

1! 2, and "!#, but a similar operator with the index 3 is
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where
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Operators of the second type are

L"1xy �
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and L"2yx and other operators of this type are obtained by the
obvious substitutions x! y, 1! 2, and "!#. A similar
operator with the index 3 has the form

L"3xy �
1
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X
n

�
d3k

�2p�3 k̂xk̂yG
"�k;on�
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3.8 Equal-spin-pairing states near the critical temperature
As noted in Section 2, the internal field acting on the electron
charges in uranium ferromagnets is much weaker than the
upper critical field at zero temperature. In this case, the
gradient terms produce only small corrections of the order
O�Hint=�Hc2�T � 0��� to the eigenvalues of linear differential
equations (94). Neglecting these, we arrive at the system of
algebraic equations

Z"x � �g "1xZ"x � g #2xZ
#
x � g #3yZ

#
y �l ;

Z #x � �g "2xZ "x � g #1xZ
#
x ÿ g "3yZ

"
y �l ; �111�

Z "y � �g "1yZ "y � g #2yZ
#
y ÿ g #3xZ

#
x �l ;

Z #y � �g "2yZ "y � g #1yZ
#
y � g "3xZ

"
x �l ;

for the A state and

z "z � �g "1zz "z � g #2zz
#
z �l ; �112�

z #z � �g "2zz "z � g #1zz
#
z �l

for the B state. Taking into account that the coupling
constants with indices 1 and 2 significantly exceed the
constants with index 3 originating from the spin±orbit terms
in the gradient energy of a ferromagnet,

g1; g2 4 g3 ;

we obtain three independent systems of equations for the x, y,
and z components of the order parameter:

Z "x � �g "1xZ "x � g #2xZ
#
x �l ; �113�

Z #x � �g "2xZ "x � g #1xZ
#
x �l ;

Z "y � �g "1yZ "y � g #2yZ
#
y �l ; �114�

Z #y � �g "2yZ "y � g #1yZ
#
y �l ;

z "z � �g "1zz "z � g #2zz
#
z �l ; �115�

z #z � �g "2zz "z � g #1zz
#
z �l :
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Thus, in the exchange approximation for the energy of
magnetic inhomogeneity, we have three different supercon-
ducting states �k̂xZ "x ; k̂xZ #x �, �k̂yZ "y ; k̂yZ #y �, and �k̂zz "z ; k̂zz #z �
with different critical temperatures determined by the vanish-
ing of the determinants of Eqns (113)±(115).

4. Physical properties

4.1 Critical temperature
Assuming that the highest critical temperature corresponds to
the �k̂xZ "x ; k̂xZ #x � superconducting state and equating the
determinant of system (113) to zero, we obtain the BCS-type
formula

T � e exp
�
ÿ 1

g

�
; �116�

where the coupling constant

g�T � � g "1x � g #1x
2

�
�������������������������������������������
�g "1x ÿ g #1x�2

4
� g "2xg

#
2x

s
�117�

is a function of temperature. Thereby, formula (116) is in fact
an equation for the critical temperature of the transition to
the superconducting state. We now discuss the simplest case
of a single-band (say, spin-up) superconducting state with
g � g "1x.

In URhGe, the transition to the superconducting state
occurs at a temperature much lower than the Curie tempera-
ture. Hence, the temperature dependence of the coupling
constant can be ignored. Then the critical temperature is
determined by the relation

ln
e

TSC
� 1

g "1x
/ �a0zTC � gzk

2
F�2

m2BI 2g zxxk
2
F



k̂ 2
xN

"
0 �k�

� ; �118�

where we have used Eqns (54) and (103) for g"1x in the absence
of amagnetic field. TheCurie temperatureTC inURhGe is an
increasing function of pressure (Fig. 1b). The pressure
dependence of all other quantities in the right-hand side of
this equation is unknown. Assuming that the right-hand side
as a whole also increases with pressure, we see that this should
be accompanied by a slow decrease in the temperature of
transition to the superconducting state. And, vice versa, when
the right-hand side decreases with pressure, the temperature
TSC�P� increases. The first case obviously corresponds to the
observed pressure dependencesTC�P� andTSC�P� inURhGe;
the second corresponds to the situation in UCoGe (Fig. 1c).
In the latter case, of course, this argument is only applicable in
the region where TSC is significantly smaller than TC.

Here, we do not consider UGe2, where the superconduct-
ing state arises in the phase diagram region below the line of
the first-order phase transition from the paramagnetic to the
ferromagnetic state.

4.2 Upper critical field parallel to the c axis in UCoGe
The upper critical field Hc2�T � parallel to the spontaneous
magnetization axis in UCoGe [43] exhibits a peculiar bent
upward (Fig. 4). A natural explanation of this phenomenon is
that the critical temperature itself is a function of themagnetic
field. Indeed, near TSC, the temperature dependence of the
upper critical field is

Hc2 � ATSC�TSC ÿ T � ; �119�

whereA � f0=v
2
F is a constant and the critical temperature of

the �k̂xZ"x; k̂xZ#x� state in the single-band approximation with
H 6� 0 is given by

ln
e

TSC
� 1

g "1x
/ �bz�3M 2

z ÿM 2
z0� � g zk 2

F

�2
: �120�

At temperatures well below the Curie temperature, the
magnetization is almost temperature independent. On the
other hand, the UCoGe magnetic moment in a field directed
parallel to the c axis rapidly increases [44]. In fields of about
1 T,Mz �Mz�H� is about twice as big asMz0 �Mz�H � 0�.
Hence, in accordance with (120), increasing themagnetic field
leads to a decrease in the coupling constant g "1x and the critical
temperature TSC�g "1x�.

The temperature dependence of the upper critical field can
be rewritten as a dependence of the transition temperature
T orb
SC on the magnetic field, determined by the orbital effect

and by the field dependence of the pairing interaction
g "1x � g "1x�H�:

T orb
SC � TSC�g "1x� ÿ

H

ATSC�g "1x�
: �121�

Obviously, the field dependence TSC�g "1x�H�� not only shifts
the linear field dependence Torb

SC �H� down but also creates an
upward curvature, in accordance with the experimental
temperature dependence of the upper critical field shown in
Fig. 4.

In URhGe, the dependence Hz
c2�T � does not reveal an

upward curvature [45] (Fig. 5). Unlike the magnetization
change in UCoGe, the change in the magnetic moment in the
field Hz smaller than 1 T is negligibly small in URhGe [46].
Hence, the field dependence of the pairing constant plays no
role.

4.3 Upper critical field in URhGe
The superconducting critical temperature in all uranium
ferromagnets increases with improving the sample quality,
as it should in unconventional superconducting states where
the TSC�l � dependence on the electron mean free path at
l > x0 is described by [36]

TSC � TSC0 ÿ pvF
8l

; �122�
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Figure 4. (Color online.) The upper critical field Hc2 in UCoGe extracted

from resistivity and thermal conductivity measurements. (M Taupin,

unpublished (2016).)
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and the zero-temperature upper critical field increases with
the sample purity as the square of the critical temperature:

Hc2 � f0

px 2
0

/ T 2
SC : �123�

The last relation has been demonstrated by measurements of
the upper critical field in URhGe in samples of differing
quality [45] (see Fig. 5).

Another peculiar property revealed by Hardy and Huxley
[45] is the temperature dependence of the upper critical field
anisotropy. The ratio ofHc2�T � along the c axis to that along
the b axis is independent of the temperature. But the ratio of
Hc2�T � parallel to the a and b axes (or a and c axes) increases
linearly by approximately 20% as the temperature decreases
from Tc to zero (Fig. 6). This is consistent with the
temperature behavior of the upper critical field in the single-
band phase with the order parameter atH � 0:

D"�k; r� � Z"xkx :

It can be shown in this case [47] that the solutions of the linear
Gor'kov equations corresponding to the maximal upper
critical field for the different crystallographic directions are

D"�k; r� � A�H;T ��kx � ikz�c0�x; z�
� B�H;T ��kx ÿ ikz�c2�x; z� ; H k b ; �124�

D"�k; r� � A�H;T ��kx � iky�c0�x; y�
� B�H;T ��kx ÿ iky�c2�x; y� ; H k c ; �125�

D"�k; r� � kxc0�y; z� ; H k a ; �126�
where cn�x; y� are the Landau functions of a particle with the
charge 2e in a magnetic field, n is the Landau level number,
and A�H;T � and B�H;T � are functions of the magnetic field
and temperature. We see that the solutions for the field along

the c and b axes have the same structure and differ from the
solution for the field along the a axis, which naturally explains
the observed temperature dependence of the upper critical
field anisotropy.

This property is still valid in a multi-band superconductor
with equal-spin-pairing if we assume (as we did in the single-
band case) that our superconducting state is an A state whose
order parameter components in a zero field are

D"�k; r� � Z"xkx ; D#�k; r� � Z #xkx : �127�

Thus, the observed temperature dependence of the upper
critical field anisotropy strongly points to the preferable order
parameter structure for the superconducting state in URhGe.

4.4 Zeros in the spectrum and specific heat
at low temperatures
As we have already noted, even in the absence of an external
field in a ferromagnetic superconductor, there is an internal
field Hint acting on the electron charges. The internal
magnetic field in all uranium ferromagnets is larger than the
lower critical field Hc1. Hence, the Meissner state is absent
and the superconductor is in an Abrikosov vortex state with
spatially inhomogeneous distributions of the order parameter
and the internal magnetic field. At low temperatures, when
due toHint 5Hc2 the distance between vortices is much larger
than the core radius, contributions to the specific heat on the
Fermi surface from the vortex cores and the inter-vortex
space can be separated.

It is customary to operate not with the specific heat but
with the ratio C=T � g, which, in a normal metal, is directly
proportional to the electron density of states on the Fermi
surface. The core contribution to the specific heat is due to the
almost gapless excitations localized in the vortex cores.
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Figure 5. Temperature dependence of the applied field at which super-

conductivity is destroyed for two URhGe crystals with RRR � 34 and
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Hence, due to the vortex cores, g preserves a finite value in the
limit T � 0:

gv �
Hint

Hc2
gN ; �128�

where gN is the normal-state value of g.
Another contribution to the density of states originates

from the so-called Volovik effect [48] taking place in the inter-
vortex space. In this case, the energy of excitations is given by
Eqns (19) and (20). In the absence of additional phase
transitions, there are either A or B superconducting states
with the respective order parameters (97), (98) and (99), (100).
The A-state order parameter vanishes at isolated points
kx � ky � 0; hence, the inter-vortex space contribution to
the density of states is given by [48]

gAiv �
Hint

Hc2
ln

�
Hc2

Hint

�
gN : �129�

The B-state order parameter vanishes on the line kz � 0;
hence, the inter-vortex space contribution to the density of
states is given by [48]

gBiv �
���������
Hint

Hc2

r
gN : �130�

As shown in Section 3, the mixing of the x and y
components of the order parameter in the A state is in fact
quite small, owing to the smallness of the V3 amplitude of
pairing. Therefore, the gap in the A-state spectrum is almost
equal to zero either on the line kx � 0 or on the line ky � 0.
Hence, the inter-vortex contribution to the density of states in
the A state can be given by the same square-root formula as
for the B state.

Equations (129) and (130) are applicable to defect-free
superconducting crystals. In the presence of inhomogeneities
created by impurities, dislocations, and domain walls, the gap
in the quasiparticle spectrum is suppressed in a finite vicinity
of the order parameter zeros [36] as well as in a finite vicinity
of the inter-domain walls. As a result, the zero-energy density
of states acquires a field-independent contribution. At a high
enough impurity concentration, the square-root field depen-
dence can also be modified [49].

Qualitatively, the low-temperature dependence of g on the
magnetic field at moderate amounts of impurity is described
by

g0 � gdw � giv � gv �
�
a�

���������
Hint

Hc2

r
�Hint

Hc2

�
gN �131�

with a constant a5 1.
We can estimate the magnitude of the internal field as

Hint � const
mU
a 3
UU

; �132�

where mU is the magnetic moment per uranium atom at zero
temperature and aUU is the distance between nearest-
neighbor uranium atoms. The inter-uranium distances in
UCoGe, URhGe, and UGe2 are close to each other. But the
corresponding magnetic moments 0.05mB, 0.4mB, and mB are
quite different, which determines the difference in Hint in
these materials. An indeterminacy is also introduced by the
unknown prefactors in Eqn (132). Another way to determine
the internal field is to set it equal to the external field along the
direction of spontaneous magnetization that suppresses the
ferromagnet multi-domain structure.

The internal fields estimated in review [9] are about 100 G
for UCoGe, 800 G for URhGe, and 2800 G for UGe2, in
accordance with the higher value of themagneticmoments mU
in these materials. The zero-temperature upper critical field
directed along the spontaneous magnetization is 1.2 T in
UCoGe [43] and approximately 2.2 T in UGe2 [19]. The
known value 0.6 T ofHc2 for URhGe has been measured [45],
albeit in a single crystal with a low relative residual resistance,
equal to 21. We can therefore expect that the real value of the
low-temperature upper critical field in URhGe is roughly the
same as in UCoGe. Then the part of the ratio g0=gN that
depends on the field and is found from Eqn (131) is
approximately 0.1 for UCoGe, 0.3 for URhGe, and 0.5 for
UGe2. The corresponding experimentally established values
are presented in Fig. 7.

5. Reentrant superconductivity in URhGe

URhGe has a peculiar property. At a sufficiently low
temperature, a magnetic field of about 1.3 T directed along
the b axis suppresses the superconducting state [45], but in a
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much stronger field of about 10 T, superconductivity is
restored and exists in the fields up to 13 T [30]. The maximum
critical temperature in this field interval is � 0:4 K. In the
same field interval, the material transfers from the ferromag-
netic to the paramagnetic state via a first-order phase
transition. The superconducting state exists not only inside
the ferromagnetic state but also in the paramagnetic state
separated from the ferromagnetic state by a first-order phase
transition (Fig. 8).

The observation of an abrupt collapse of spontaneous
magnetization in a sufficiently strong external field along the
b axis was already reported in the first publication on
magnetic-field-induced superconductivity in the ferromag-
net URhGe [30]. Recently, the first-order character of the
transition has been confirmed by the direct observation of
hysteresis [50] in the Hall resistivity in the vicinity of the
transition field HR � 12:5 T.

In Sections 5.1±5.4, we develop a phenomenological
description of the ferromagnetic±paramagnetic phase transi-
tion in an external magnetic field perpendicular to the
spontaneous magnetization direction. We find the magnetic
susceptibility and show that the magnetic susceptibility
corresponding to longitudinal magnetic fluctuations
increases greatly in the vicinity of the first-order phase
transition, stimulating the reentrance of the superconducting
state.

5.1 Phase transition in an orthorhombic ferromagnet
in a magnetic field perpendicular
to spontaneous magnetization
The Landau free energy of an orthorhombic ferromagnet in a
magnetic fieldH�r� is

F �
�
dV �FM � FH� ; �133�

where, in writing

FM � azM 2
z � bzM

4
z � dzM 6

z � ayM 2
y � axM 2

x

� bxyM
2
xM

2
y � byzM

2
z M

2
y � bxzM

2
z M

2
x ÿMH ; �134�

we took the orthorhombic anisotropy and the sixth-order
term in powers of Mz into account. The density of the

gradient energy is taken in the exchange approximation,

FH � gi j
qM
qxi

qM
qxj

; �135�

where x, y, z are the coordinates along the respective a, b, c
crystallographic directions, and

az � az0�Tÿ TC0� ; ax > 0; ay > 0 ; �136�

gi j �
gxx 0 0
0 gyy 0

0 0 gzz

0@ 1A : �137�

In the constant magnetic field H � Hyŷ, the equilibrium
magnetization projections along the x and y directions are
obtained by minimizing free energy (134) with respect to Mx

andMy:

Mx � 0 ; My � Hy

2�ay � byzM 2
z �
: �138�

Substituting these expressions in (106), we obtain

FM � azM 2
z � bzM

4
z � dzM 6

z ÿ
1

4

H 2
y

ay � byzM 2
z

; �139�

which, after the expansion of the denominator in the last
term, gives

FM � ÿ
H 2

y

4ay
� ~azM 2

z � ~bzM
4
z � ~dzM 6

z � . . . ; �140�

where

~az � az0�Tÿ TC0� �
byzH

2
y

4a 2
y

; �141�

~bz � bz ÿ
byz
ay

byzH
2
y

4a 2
y

; �142�

~dz � dz �
b 2
yz

a 2
y

byzH
2
y

4a 2
y

: �143�

We see that in the magnetic field perpendicular to the
spontaneous magnetization direction, the Curie temperature
decreases as

TC � TC�Hy� � TC0 ÿ
byzH

2
y

4a 2
y az0

: �144�

The coefficient ~bz also decreases withHy and reaches zero at

H cr
y �

2a 3=2
y b 1=2

z

byz
: �145�

In this field, under the condition

az0byzTC0

aybz
> 1 ; �146�

Curie temperature (144) is still positive and at Hy > H cr
y the

phase transition from the paramagnetic to the ferromagnetic
state becomes a first-order transition (Fig. 9). The point
�H cr

y ;TC�H cr
y �� on the paramagnetic±ferromagnetic phase

transition line is a tricritical point.
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Minimizing the free energy in Eqn (140) gives the value of
the order parameter in the ferromagnetic state,

M 2
z �

1

3 ~dz

�
ÿ~bz �

����������������������
~b 2
z ÿ 3~az~dz

q �
: �147�

Minimizing the free energy in the paramagnetic state

Fpara � ayM 2
y ÿHyMy �148�

with respect to My gives the equilibrium value of the
magnetization projection on the y axis in the paramagnetic
state:

My � Hy

2ay
: �149�

Substituting this in Eqn (148) yields the equilibrium value of
the free energy in the paramagnetic state

Fpara � ÿ
H 2

y

4ay
: �150�

On the line of the first-order phase transition from the
paramagnetic to ferromagnetic state determined by the
equations [51]

FM � Fpara ;
qFM

qMz
� 0 ; �151�

the order parameterMz experiences a jump (Fig. 10) from

M � 2
z � ÿ

~bz
2~dz

�152�

in the ferromagnetic state to zero in the paramagnetic state.
Substituting (152) in the equation FM � Fpara gives the
equation of the first-order transition line

4~az~dz � ~b 2
z ; �153�

that is,

T � � T ��Hy� � TC0 ÿ
byzH

2
y

4a 2
y az0
�

~b 2
z

4az0~dz
: �154�

The corresponding jump ofMy (see Fig. 10) is given by

M �
y �M ferro

y ÿM para
y � Hy

2�ay � byzM � 2
z �
ÿ Hy

2ay
: �155�

5.2 Susceptibilities
In a field perpendicular to the magnetization direction,
magnetic susceptibility components can be found in the
same manner as in Section 3.2 in the case of a parallel field.
In the ferromagnetic state at T < T �, they are

w f
xx�k� �

�
2�ax � bxzM

2
z � bxyM

2
y � gi j ki kj�

�ÿ1
;

w f
yy�k� �

�
2�ay � byzM

2
z � gi j ki kj�

�ÿ1
; �156�

w f
zz�k� �

�
2�az � 6bzM

2
z � 15dzM 4

z � byzM
2
y � gi j ki kj�

�ÿ1
� �2�4bzM 2

z � 12dzM 4
z � gi j ki kj�

�ÿ1
;

and in the paramagnetic state at T > T �,

w p
xx�k� �

�
2�ax � bxyM

2
y � gi j ki kj�

�ÿ1
;

w p
yy�k� �

�
2�ay � gi j ki kj�

�ÿ1
; �157�

w p
zz�k� �

�
2�~az � gi j ki kj�

�ÿ1
� �2�az0ÿTÿ TC�Hy�

�� gi j ki kj�
�ÿ1

:

The spin-triplet pairing interaction is expressed through
the odd part of the susceptibility components:

w u
ii �k; k 0� �

1

2

�
wii�kÿ k 0� ÿ wii�k� k 0�� ; i � x; y; z : �158�

Hence, for the ferromagnetic state at T < T �, we have

w fu
xx�k; k 0� �

gi j k
2
F

�a f
x�2

k̂i k̂
0
j ; w fu

yy�k; k 0� �
gi j k

2
F

�a f
y�2

k̂i k̂
0
j ;

w fu
zz �k; k 0� �

gi j k
2
F
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with

a f
x � ax � bxzM

2
z � bxyM

2
y � 2gk 2

F ;

a f
y � ay � byzM

2
z � 2gk 2

F ; �160�
a f
z � 4bzM

2
z � 12dzM 4

z � 2gk 2
F ;

where Mz�Hy� and My�Hy� are equilibrium values of the
magnetization components. It is instructive to compare the
expressions obtained for the odd parts of the susceptibility
components with Eqns (64)±(67) found at dz � 0;Hy � 0, but
Hz 6� 0.

For the paramagnetic state at T > T �,

w pu
xx �k; k 0� �

gi j k
2
F

�a p
x �2

k̂i k̂
0
j ; w pu

yy �k; k 0� �
gi j k

2
F

�a p
y �2

k̂i k̂
0
j ;

w pu
zz �k; k 0� �

gi j k
2
F

�a p
z �2

k̂i k̂
0
j ;

�161�

a p
x � ax � bxyM

2
y � 2gk 2

F ;

a p
y � ay � 2gk 2

F ; �162�
a p
z � 2az0

ÿ
Tÿ TC�Hy�

�� 2gk 2
F :

Thus, under the first-order transition from the paramagnetic
to the ferromagnetic state, the susceptibility components
change their values jump-wise.

As we saw in Section 3.1, the pairing interaction in the
ferromagnetic state is mostly determined by the odd part of
the z component of the susceptibility:

w fu
zz �k; k 0� �

gi j k
2
F

4�2bzM 2
z � 6dzM 4

z � gk 2
F�2

k̂i k̂
0
j : �163�

The equilibriummagnetizationMz�Hy� decreases with the
magnetic field Hy (see Fig. 10). It can be expected that the
jump of Mz at the first-order transition is much smaller than
the low-temperature magnetization at the zero field Hy � 0:

Mz

���
Hy�0;T�0

4M �
z : �164�

In this case, according to Eqn (163), the susceptibility w fu
zz on

the first-order transition line substantially exceeds its initial
value at Hy � 0, which stimulates the reentrance of super-
conductivity.

5.3 Superconducting state
in the vicinity of the first-order transition
The suppression of the Curie temperature by the magnetic
field perpendicular to spontaneous magnetization leads to an
effective increase in pairing interaction. This effect can in
principle compensate the suppression of superconductivity by
orbital depairing. In URhGe, the Curie temperature is much
higher than TSC. Hence, the orbital effect succeeds in
suppressing the superconducting state �Hb

c2�T � 0� � 1:3 T
(see [45])) well before the effect of decreasing the Curie
temperature and the stimulation of pairing intensity mani-
fests itself. But at fields higher than 10 T, the last effect starts
to overcome the orbital depairing and the superconducting
state is restored. The critical temperature of the super-
conducting transition begins to increase and approaches the
line of the first-order transition from the ferromagnetic to
paramagnetic state and intersects it [30, 50]. Here, we discuss

what happens to the superconducting phase transition line at
the intersection with the line of the first-order ferromagnet±
paramagnet phase transition T ��Hy�.

In the external field oriented along the b axis, which is
perpendicular to the exchange field h (Fig. 11), it is natural to
choose the spin quantization axis along the direction of the
total magnetic field hẑ�Hyŷ. The normal-state matrix
Green's function then retains its diagonal form

Ĝn � G " 0
0 G #

� �
; �165�

where

G "; # �
�
ion ÿ x "; #k � mB

������������������
h 2 �H 2

y

q �ÿ1
: �166�

We can use the formulas obtained in Section 3.1, but with the
susceptibility tensor written in the new coordinate system,

wi j ! ~wi j � Ril wlmRjm ; �167�

where

R �
1 0 0
0 cosj ÿ sinj
0 sinj cosj

0@ 1A �168�

is the matrix of rotation around the x̂ direction through the
angle given by tanj � Hy=h.

For simplicity, we can work with the equal-spin-pairing
superconductivity, ignoring the amplitude D0. Also, the
gradient energy of the orthorhombic ferromagnet in
Eqn (135) was taken in the exchange approximation such
that the pairing amplitudeV3 � 0. In contrast to the case of a
parallel field,we here disregard the orbital effects, ignoring the
order parameter coordinate dependence. In this case, the
critical temperature TSC�Hy� of transition to the super-
conducting state is determined from the self-consistency
equations

D"�k� � mBI
2T
X
n

X
k 0

n�
w fu
zz �k; k 0� cos2 j

� w fu
yy�k; k 0� sin2 j

�
G "1G

"
2D
"�k 0�

� �ÿw fu
xx�k; k 0� ÿ w fu

yy�k; k 0�
�
cos2 j

� ÿw fu
xx�k; k 0� ÿ w fu

zz �k; k 0�
�
sin2 j

�
G #1G

#
2D
#�k 0�

o
; �169�
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j

Figure 11. Magnetic field Hy directed perpendicular to the exchange

field h.
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D#�k� � mBI
2T
X
n

X
k 0

n�ÿ
w fu
xx�k; k 0� ÿ w fu

yy�k; k 0�
�
cos2 j

� ÿw fu
xx�k; k 0� ÿ w fu

zz �k; k 0�
�
sin2 j

�
G "1G

"
2D
"�k 0; q�

� �w fu
zz �k; k 0� cos2 j� w fu

yy�k; k 0� sin2 j
�
G #1G

#
2D
#�k 0�

o
;

�170�

where G "1 � G "�k 0;on� and G "2 � G "�ÿk 0;ÿon�, and simi-
larly for the Green's functionsG #1 andG #2 given by Eqn (166).
In the ferromagnetic state near the first-order transition, the
angle is j � p=4, and the susceptibilities are determined by
Eqns (159) and (160).

In the paramagnetic state, the susceptibilities are deter-
mined by Eqns (161) and (162). The angle is j � p=2,

G "; #para �
1

ion ÿ xk � mBHy
; �171�

and the equations for D" and D# are independent of D 0 [27]:

D"�k; q� � mBI
2T
X
n

X
k 0

n
w pu
yy �k; k 0�G "1G "2D"�k 0�

� ÿw pu
xx �k; k 0� ÿ w pu

zz �k; k 0�
�
G #1G

#
2D
#�k 0; q�

o
; �172�

D#�k; q� � mBI
2T
X
n

X
k 0

nÿ
w pu
xx �k; k 0� ÿ w pu

zz �k; k 0�
�

� G "1G
"
2D
"�k 0; q� � w pu

yy �k; k 0�G #1G #2D#�k 0; q�
o
: �173�

As we have mentioned, the susceptibility components
undergo a finite jump at the first-order phase transition
from the ferromagnetic to paramagnetic state. The Fermi
surfaces of split spin-up and spin-down electron bands and
the corresponding densities of states also undergo jumpwise
changes. The equations for the superconductivity onset
temperature TSC�Hy� are quite different on the different
sides of the ferromagnet±paramagnet phase transition.
Hence, TSC�Hy� should undergo a jump at crossing the first-

order phase transition line T ��Hy�, which is indeed observed
in experiment [30].

5.4 Concluding remarks
Using the phenomenological description of the phase dia-
gram in URhGe in a magnetic field directed along the
crystallographic b axis perpendicular to the spontaneous
magnetization direction, we have found that the phase
transition between the ferromagnetic and paramagnetic
states becomes a first-order transition in a sufficiently strong
field. The reentrance of superconductivity is explained by a
significant increase in the magnetic susceptibility in the
vicinity of the first-order transition in comparison with its
zero-field value. The reentrant superconductivity near the
first-order transition line T ��Hy� exists in both the ferromag-
netic and paramagnetic states. The critical temperature of the
transition to the superconducting state undergoes an abrupt
fall at the intersection with the ferromagnet±paramagnet
phase transition line.

The decrease in the Curie temperature in a magnetic field
perpendicular to the spontaneous magnetization direction
enhances the pairing interaction. This effect compensates the
suppression of superconductivity by the magnetic field. In
UCoGe, where the Curie temperature does not greatly exceed
the temperature of the transition to the superconducting
state, this mechanism stimulates the increase in the upper
critical field along the b axis, which is observed in the fields
above 5 T and is shown in Fig. 12. The superconductivity
enhancement in UCoGe is accompanied by an enhancement
of the nuclear relaxation rate caused by the increase in the
magnetic susceptibility in approaching the Curie temperature
in the magnetic field parallel to the b axis [52].

The crystallographic a direction is magnetically much
harder than the b direction. Hence, the decrease in the Curie
temperature due to themagnetic field directed along the a axis
is much less pronounced and practically unobservable in
available magnetic fields [52]. However, we can expect a
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Figure 12. (Color online.) Field±temperature phase diagramof (a)URhGe and (b)UCoGe for the field directed along the b axis. SC, FM, andRSCdenote

the superconducting, ferromagnetic, and reentrant superconducting states [9].
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similar development of superconductivity stimulation at
much higher fields along the a direction.

If, in the vicinity of the first-order phase transition, we
activate the fieldHx directed along the a axis in addition to the
field Hy � 12 T, thus increasing the total magnetic field to
H � �H � 2y �H 2

x �1=2, this would introduce negligible changes
to the pairing interaction that was in the absence of a field
along the hard a axis. At the same time, the orbital upper
critical field in the a direction is larger than that in the
b direction by a factor of 1.5 [45]. This roughly explains the
stability of reentrant superconductivity in URhGe up to the
fieldsH � �H � 2y �H 2

x �1=2 � 30 T [53].
It is known that in the presence of an external field along

the spontaneous magnetization direction ẑ, the first-order
transition line T ��Hy� spreads to two first-order transition
surfaces T ��Hy;�Hz�. On these surfaces, the jump in the
spontaneous magnetization decreases with an increase in jHzj
and disappears completely on lines beginning at the tricritical
pointTC�H cr

y ;Hz � 0�. It was suggested in [53] that these lines
terminate at the zero temperature at some quantum critical
points on the �Hy;Hz� plane and that quantum critical
magnetic fluctuations stimulate superconductivity in the
vicinity of the ferromagnet±paramagnet first-order phase
transition line. This idea looks promising. It can be noted,
however, that in general the tricritical line T cr�Hy;Hz� can
never reach the zero temperature or simply be located far
from the superconducting region on the phase diagram.
Motivated by the desire to find critical fluctuations, the
recent measurements in [54] demonstrated a huge increase in
the NMR relaxation rate in URh0:9Co0:1Ge at Hy � 13 T.
These experiments have been performed at a temperature of
1.6 K, that is, in the region near the second-order phase
transition between the ferromagnetic and the paramagnetic
states. The reentrant superconductivity occurs at much lower
temperatures near the first-order transition line, where the
role of critical fluctuations is certainly less important.

Here, we have demonstrated that the reentrant super-
conductivity in URhGe can arise even in the absence of
critical fluctuations due to a drastic increase in the long-
itudinal susceptibility in the vicinity of the first-order
transition line from the paramagnetic to the ferromagnetic
state.

6. Critical magnetic relaxation
in ferromagnetic uranium compounds

6.1 Critical magnetic relaxation in ferromagnets
Excitations in magnetic systems are measured by neutron
scattering. The inelastic magnetic neutron scattering intensity

I�Q;o� � A�ki; kf��dab ÿ Q̂aQ̂b�
��F�Q���2Sab�q;o� �174�

is related to the dynamical structure factor

Sab�q;o� �
�1
ÿ1

dt exp �iot�
Maq�t�Mbÿq�0�
�
;

which is a correlation function of magnetic moments [55],
related by the fluctuation±dissipation theorem to the imagin-
ary part of susceptibility:

Sab�q;o� � 2

1ÿ exp �ÿo=T � w
00
ab�q;o� : �175�

The total transferred wave vector is Q � q� s, where s is a
reciprocal lattice vector and q lies in the first Brillouin zone;
Q̂a is the direction cosine ofQ along the a direction; and F�Q�
is the magnetic form factor measured by elastic neutron
scattering. We put the Planck constant equal to unity, �h � 1.

For each crystallographic direction, we can take the
imaginary part of the susceptibility as the function

w 00�q;o�
o

� A

o2 � G 2
q

; �176�

that depends on the experimentally measured amplitude A
and width Gq of the scattering intensity. Then the Kramers±
Kronig relation allows finding the real part of the suscept-
ibility:

w�q� � w 0�q; 0� � 1

p

�
w 00�q;o�

o
do � A

Gq
: �177�

In the absence of walls and spin±orbit coupling, the
magnetization is a conserved quantity; hence, in a Heisen-
berg ferromagnet above the Curie temperature, the only
mechanism leading to magnetization relaxation is the spin
diffusion, which results in [55, 56]

S�q;o� � 2ow�q�
1ÿ exp �ÿo=T �

Gq

o2 � G 2
q

; �178�

where the linewidth of quasi-elastic scattering

Gq � Dq 2 �179�

is determined by the diffusion coefficient D. The q 2 depen-
dence of Gq has been observed in a wide temperature range
above the Curie temperature in Ni and Fe (see Ref. [57] and
the references therein); near TC, it is superseded by a
G / q 2:5 dependence, according to predictions of the
mode±mode coupling theory [58].

In weak itinerant ferromagnets at T > TC, another
mechanism of dissipationless relaxation dominates, with the
structure factor given by the same Eqn (178) but with the
linewidth determined by the equality [59, 60]

w�q�Gq � wPo�q� ; �180�

where wP is the Pauli susceptibility in the free-electron gas and
o�q� is the Landau damping, equal to �2=p�qvF for a spherical
Fermi surface. A line width linear in the wave vector was
observed in MnSi [61]; however, in other weak itinerant
ferromagnets MnP [62] and Ni3Al [63], the dependence of
the linewidth on the wave vector is closer to the dynamical
scaling theory predictions [58].

6.2 Magnetic relaxation
in ferromagnet uranium compounds
The magnetic susceptibility along the easy axis in uranium
ferromagnets is much larger than in the directions perpendi-
cular to it. In UGe2, the easy axis is along the a crystal-
lographic direction. Neutron scattering measurements
reported in [33] with the scattering wave vector q parallel to
the a axis revealed no extra scattering relative to the back-
ground, while for q parallel to the c axis, a strongly
temperature-dependent contribution was found, as it should
be according to Eqn (174). Magnetic relaxation measure-
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ments in UGe2 in [33, 64] show that Gq does not vanish as
q! 0 at temperatures different from TC. The same result was
found for UCoGe [65] for scattering with q parallel to the
a axis, because the easy axis in this material is along the
c direction.4 Hence, there is a mechanism of the uniform
magnetization relaxation to equilibrium in uranium ferro-
magnets.

The magnetization in an electron gas relaxes due to spin-
flip processes caused by spin±orbit coupling, either between
the electrons [66] or between the itinerant Bloch electron spins
and the potential of ions in a vibrating crystal lattice [67, 68].
Both mechanisms produce such a tiny homogeneous relaxa-
tion rate that it is unobservable in ferromagnetic materials,
while the relaxation rate Gq�0 found in UGe2 [33] is of the
order of several Kelvins. In what follows, to be specific, we
discuss UGe2.

The magnetic susceptibility of single UGe2 crystals has
been measured in [69±72]. The easy-axis magnetization at
zero temperature was found to be 1:43 mB=f.u., which, in the
case of itinerant ferromagnetism, corresponds to a single
completely polarized electron band. On the other hand,
neutron scattering measurements of the magnetic form
factor M�q� [16] show that (i) the shape of M�q� is not
distinguishable from that of free U3� or U4� ions, (ii) at low
temperature, M�q! 0� coincides with the magnetization
measured by a magnetometer with an accuracy of the order
of 1%. Thus, practically the whole magnetic moment in both
the paramagnetic and ferromagnetic state is concentrated in
uranium atoms.5

The static magnetic properties of UGe2 are described well
[71] in terms of the crystal-field splitting of the U4� state,
which is the 3H4 term of the 5f 2 configuration of localized
electrons. Itinerant electron states filling the bands are formed
by two 7s, one 6d, and one 5f uranium orbitals, as well as by
germanium orbitals. Thus, local and itinerant states of
f-electrons coexist in UGe2. The

3H4 term of each atom of
UGe2 in the paramagnetic state mostly consists of a super-
position of three quasi-doublets and three singlets arising
from the state with the total momentum J � 4 split by the
crystal field [71]. The temperature decrease causes a change in
the populations of these states, leading to a temperature
dependence of the magnetic moment. The degeneracy
removal for the ground state formed by the lower quasi-
doublet allows the system to order magnetically with the
spontaneous magnetic moment � 1:5mB per uranium atom,
which is twice smaller than the Curie±Weiss moment deduced
from susceptibility in the paramagnetic state. The itinerant
electron subsystem formed by 7s, 6d, and partly 5f electrons is
also present, making a contribution of 0:02mB to the
ferromagnetic ordering, as was demonstrated by muon spin-
relaxation measurements [72, 73]. All the mentioned experi-
mental observations as well the theoretical treatment in [71]
unequivocally point to the local nature of the UGe2
ferromagnetism. This means that quasielastic neutron scat-
tering occurs mostly on magnetization fluctuations in the
localized moment subsystem.

The interaction between localized and itinerant electron
subsystems leads to the magnetization relaxation measured
by neutron scattering in paramagnetic and ferromagnetic
states of UGe2. This type of relaxation can be considered an
analog of spin±lattice relaxation well known in the physics of
nuclear magnetic resonance [74]. In our case, the magnetiza-
tion created by the local moments of uranium atoms making the
dominant contribution to neutron scattering plays the role of the
`spin' subsystem, whereas the itinerant electrons represent the
`lattice' degrees of freedom absorbing and dissolving êuctua-
tions of magnetization. Unlike the NMR relaxation deter-
mined by the nucleus and electron magnetic moment
interaction, the spin±lattice relaxation between localized and
conducting electrons is determined by spin±spin exchange
processes and has no relativistic smallness typical of NMR
relaxation. Deviations of magnetization from the equilibrium
value relax to equilibrium by the transfer to itinerant
electrons. According to this, we treat the magnetization that
is almost completely determined by the local moments of
uranium atoms as a nonconserved quantity [34].

The process of the easy-axis magnetization relaxation to
equilibrium is described by the Landau±Khalatnikov kinetic
equation [75]

qM
qt
� ÿA dF

dM
; �181�

where

F �
�
dV

�
a0�Tÿ TC�M 2 � gi j

qM
qxi

qM
qxj
ÿMH

�
�182�

is the energy of the order parameter fluctuations in the
paramagnetic region in a quasistationary magnetic field
along the easy axis. The gradient energy in an orthorhombic
crystal written in the exchange approximation is determined
by three nonzero constants gxx, gyy, gzz. The coordinate axes x,
y, and z are directed along the b, c, and a axes. The kinetic
equation can be rewritten as

qM
qt
� Hi ji � ÿMa

t
� AH ; �183�

where tÿ1 � 2Aa0�Tÿ TC� and

ji � ÿ2Agi j
qM
qxj

�184�

are the components of the spin diffusion currents. Substitut-
ing

M � mqo exp
�
i�qrÿ ot�� ;

H � hqo exp
�
i�qrÿ ot��

in Eqn (183), we obtain the susceptibility

w�q;o� � mqo

hqo
� A

ÿio� Gq
: �185�

The width of quasielastic scattering for qkc is
Gq � 2A

�
a0�Tÿ TC� � gyyq

2
c

�
: �186�

Below the Curie temperature TC in the ferromagnetic
state, the equilibrium magnetization M �M0�T � and the

4 A small residual linewidth G0 � 0:02 meV has also been registered in

ferromagnet MnP [62].
5 The same property of the strong localization of magnetization in U

atoms has been revealed in URhGe [17] and in UCoGe [18]. In the latter

case, there are alsomore recent data [20, 21] partly contesting the results in

[18].
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energy of fluctuations are given by

F �
�
dV

�
2a0�TC ÿ T ��MÿM0�2

� gi j
qM
qxi

qM
qxj
ÿ �MÿM0�H

�
: �187�

The expression for the susceptibility has the same form as in
(185) and the quasielastic scattering linewidth is

Gq � 2A
�
2a0�TC ÿ T � � gyyq

2
c

�
: �188�

6.3 Concluding remarks
Experimentally, two independent values were determined: the
width Gq and the amplitude A � w�q�Gq of distribution (178)
(Fig. 13). Calculations show that (1) the linewidth of
quasielastic neutron scattering near the Curie temperature is
a linear function of Tÿ TC; (2) the absolute value of the
derivative jdGqc=dT j in the ferromagnetic region is roughly
twice as large as in the paramagnetic region; (3) the
dependence on the wave vector qc is parabolic. All of these
findings are in qualitative correspondence with the experi-
mental observations reported in [33] (see Fig. 14a, b).

At the same time, it has been found experimentally [33]
(see the inset in Fig. 14c) that the product w�q�Gq is
independent of temperature for T > TC but rapidly
decreases for T < TC. Such behavior means that the decrease
in the UGe2 susceptibility w�q� with temperature below TC is
much faster than the mean-field theory predicts.

Many experimental observations point to the local nature
of magnetism in ferromagnetic uranium compounds. The
interaction between localized and itinerant electron subsys-
tems gives rise to a specific mechanism of magnetization
relaxation similar to the `spin±lattice' relaxation known in
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beam monitor count) shown as a function of energy transfer at
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the physics of NMR. This relaxation, determined by the
exchange spin±spin coupling, is much faster than the NMR
relaxation supported by themuchweaker interaction between
electron and nucleus magnetic moments. The phenomenolo-
gical description of quasielastic magnetic relaxation is based
on the specific property of uranium compounds that the
magnetization supported by the moments located at ura-
nium atoms is not a conserved quantity. As a result, the
linewidth of quasielastic neutron scattering at q! 0 acquires
a nonvanishing value at all temperatures except the Curie
temperature.

This conclusion has been confirmed by the microscopic
calculations [76] of magnetic relaxation near the transition to
the ferromagnetic state in a system consisting of localized and
itinerant electrons.

7. Anisotropy of nuclear magnetic relaxation
and the upper critical field in UCoGe

Nuclear magnetic resonance measurements with the 59Co
nuclei in UCoGe show that the magnetic field along the
crystallographic c axis strongly suppresses magnetic fluctua-
tions along this direction [31, 77]. It was also revealed that the
upper critical field value in this superconducting material
drops abruptly at small field deviations from both the a and
b axes toward the spontaneous magnetization direction c [9,
32]. Therefore, the magnetic field component along the c axis
very efficiently suppresses the superconducting state. As we
have seen, triplet pairing in uranium ferromagnet super-
conductors is mostly determined by longitudinal fluctua-
tions of magnetization with the amplitude proportional to
the odd part of the susceptibility w u

zz. Here, we demonstrate
that bothmentioned phenomena have the same origin and are
explained by a strong increase in magnetization [44, 78] and
the corresponding decrease in differential susceptibility (59)
of UCoGe in the magnetic field directed along the c axis.

7.1 Nuclear magnetic relaxation
The nuclear spin±lattice relaxation rate measured in a field
along the a direction is expressed in terms of the imaginary
part of the dynamical susceptibility along the b and g
directions perpendicular to a as

1

T a
1

/ T
X
k

�
jA b

hfj2
w 00b �k;o�

o
� jA g

hfj2
w 00g �k;o�

o

�
: �189�

At low temperatures withHkc, 1=T1 is more than an order of
magnitude smaller than the relaxation rate measured in the
other two field directions [77]. Therefore, if we are interested
in the relaxation rate in a field tilted at an angle y to the b axis
in the bc plane, such that y is noticeably smaller than p=2, we
can use the expression

1

T1�y� / T
X
k

jAz
hfj2

w 00zz�k;o�
o

cos2 y : �190�

Assuming that fluctuations of the hyperfine electromag-
netic field at the Co sites are determined by fluctuations of the
magnetization of the subsystem of localized moments, as we
did in discussing the neutron scattering relaxation rate, we
can use the formula

w 00zz�q;o�
o

� A

o2 � G 2
k

; Gk � 2A�a� gi j ki kj� ; �191�

where

a � az � byzM
2
y � 6bzM

2
z � 2bz�3M 2

z ÿM 2
z0� : �192�

To obtain the last equality, as in Eqn (65), we used the
equilibrium condition

2az � 2byzM
2
y � 4bzM

2
z �

Hz

Mz
;

where

Mz�Mz�Hy;Hz� �Mz�H cos y;H sin y� ; Mz0�Mz�H; 0�
�193�

are the equilibrium magnetization components in the field

H � Hyŷ�Hzẑ � H cos y ŷ�H sin y ẑ : �194�

At all temperatures below the Curie temperature, experi-
mental values can be used for the magnetizationMz�Hy;Hz�.

The NMR measurements are performed at frequencies
o5Gq; hence, the relaxation rate is determined as

1

T1
�y� / T jAhfj2A cos2 y

�
d3k

�2p�3G 2
k

: �195�

For simplicity, we can calculate the converging integral in the
spherical approximation,�

d3k

�2p�3G 2
k

�
�1
0

4pk 2 dk

�2p�3�2A�2�a� gk 2�2 �
1

32pA2
�������
ag 3

p :

Then, keeping only the field-dependent part in Eqn (195), we
obtain

1

T1
�y� / cos2 y���

a
p � 1ÿH 2

z =H
2�����������������������������������

2bz�3M 2
z ÿM 2

z0�
q : �196�

Measurements of the NMR relaxation rate dependence
on the magnetic field orientation were performed in relatively
small fields H < 3:5 T [31]. In this case, Mz0 �Mz�H; 0� is
almost independent of the field H � Hy, and it can be set
approximately equal to the spontaneous magnetization
Mz0�0; 0�. On the other hand, Mz �Mz�Hy;Hz� �
Mz�0;Hz� rapidly increases with an increase in Hz. For
instance, in the field Hz � 1 T, the magnetization Mz�0;Hz�
is twice as large as at Hz � 0 [44]. Hence, according to
Eqn (196), takingH � 3:5 T andHz � 1 T, we obtain

1

T1
�Hz � 1 T� � 0:4

1

T1
�Hz � 0� : �197�

The measured relaxation rate 1=T1 [31] as a function of the
magnetic field Hz (Hc in Fig. 15) decreases faster than this
estimate. This is not surprising in view of the roughness of our
approximations made in deriving Eqn (196).

Thus, the NMR relaxation rate dependence on the
magnetic field along the easy magnetization axis originates
from the corresponding field dependence of the longitudinal
magnetic susceptibility component.

7.2 Upper critical field anisotropy
The anomalous upper critical field anisotropy in UCoGe [9,
32] also finds a natural explanation in terms of the strong field

142 V P Mineev Physics ±Uspekhi 60 (2)



dependence of the longitudinal susceptibility determining the
pairing coupling constant. In Section 4.2, we already derived
this dependence in the case of a magnetic field parallel to the
spontaneous magnetization direction (the c axis). If the
magnetic field is directed along the crystallographic b axis,
the critical temperature, ignoring orbital effects, is deter-
mined by Eqns (169) and (170). In a field directed in the
bc plane, H � Hyŷ�Hzẑ, Eqns (169) and (170) retain their
form, but the Green's functions become

G "; # �
h
ion ÿ x "; #k � mB

��������������������������������
�h�Hz�2 �H 2

y

q iÿ1
; �198�

and the angle j is found from tanj � Hy=�h�Hz�. The
susceptibilities are

w u
zz�k; k 0� �

gi j k
2
F

4
�
bz�3M 2

z ÿM 2
z0� � gk 2

F

�2 k̂i k̂
0
j ; �199�

w u
yy�k; k 0� �

gi j k
2
F

�ay � byzM 2
z � 2gk 2

F�2
k̂i k̂

0
j ; �200�

where

Mz �Mz�Hy;Hz� �Mz�H cos y;H sin y�; Mz0 �Mz�H; 0�
are the equilibrium magnetization components in the field
H � Hyŷ�Hzẑ.

As usual, we can neglect w u
yy in view of its smallness

compared to w u
zz. Then, as in Section 4.2, assuming that the

highest critical temperature corresponds to the �k̂xZ "x ; k̂xZ #x �
superconducting state, in the single-band approximation we
have

ln
e

TSC
� 1

g "1x
/
�
bz�3M 2

z ÿM 2
z0� � gzk 2

F

�2
cos2 j

: �201�

There are no experimental data on the low-temperature
behavior of Mz �Mz�Hy;Hz� as a function of both of its
arguments. All measurements have been performed in the
field directed along the crystallographic axes a, b, c [44, 78].
However, judging by the data in [78], where the phenomenon
of strong upper critical field anisotropy has been revealed, we
can expect that the increase in Hz at a fixed Hy would
significantly increase Mz. A decrease in Hy, causing an
increase in the Curie temperature TC�Hy�, increases Mz as
well. Thus, amagnetic field deflection from the bor adirection
toward the c axis leads to an increase in Mz �Mz�Hy;Hz�
and hence to a sharp drop in the pairing coupling constant
described byEqn (201). This explains the strong anisotropy of

the upper critical field observed in UCoGe at low tempera-
tures in strong magnetic fields [9, 32] (Fig. 16).

8. First-order phase transition
to the ferromagnetic state in UGe2

The pressure±temperature phase diagrams of several weak
ferromagnets exhibit similarity. The transition from the
paramagnetic to ferromagnetic states at ambient pressure
occurs via a second-order phase transition. The phase
transition temperature decreases as the pressure increases
such that it reaches the zero value at some pressure P0. In a
pressure interval below P0, magnetic ordering vanishes
discontinuously. Hence, at high pressures and low tempera-
tures, the ferromagnetic and paramagnetic states are sepa-
rated by a first-order phase transition, whereas at higher
temperatures and lower pressures this is a second-order
transition. Such type of behavior is typical of MnSi [79±82],
UGe2 [83, 84] (Fig. 17), and ZrZn2 [85]. The same behavior
has been established in the ferromagnetic compounds
Co�Si1ÿxSex�2 [86] and (Sr1ÿxCax)RuO3 [82], where the role
of pressure is played by the concentration of Se or Ca.

8.1 Phase transition to the ferromagnetic state
in the Fermi liquid theory
The phase transition from the paramagnetic state to the
itinerant ferromagnetic state is usually considered in the
framework of the Stoner theory, where it is a second-order
transition [59]. Some time ago, Belitz, Kirkpatrick, and Vojta
(BKV) argued that in clean itinerant ferromagnets at low
temperatures, this must be a first-order transition, due to the
correlation effects that lead to a logarithmic term in the free
energy density expansion in powers of the dimensionless
magnetization M [87]:

E � E0 � aM 2 � bM 4 � vM 4 ln jMj � . . . : �202�

Indeed, at a positive coefficient v, the effective fourth-order
term in this formula is negative at smallM, and the transition
to the ferromagnetic state is a first-order one.
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The logarithmic correction to the fourth-order term has a
long history. It was first calculated in 1970 by Kanno [88] in
the dilute Fermi gas model in the second order with respect to
the dimensionless gas parameter kFa, where kF is the Fermi
momentum related to the total particle density

n � n" � n # � k 3
F

3p2
;

and a > 0 is the s-wave scattering length. In general, to solve
the phase transition problem at T � 0, we must calculate the
Fermi-gas energy density

E�x� � 3

5
neF f �M�

as a function of the dimensionless spin polarization (magne-
tization)

M � n" ÿ n #

n" � n #

at a fixed kFa. Here, eF � k 2
F=�2m�.

In the first order in kFa, the phase transition to the
ferromagnetic state is of the second order and occurs at
kFa � p=2 [89]. The second-order perturbation theory pre-
dicts a first-order phase transition [90±92] at kFa � 1:054,
consistent with the BKV argument. But because the critical
gas parameter is expected to be of the order of unity,
perturbative predictions may be unreliable. Nonperturbative
effects have been studied in [93] by summing particle±particle
ladder diagrams to all orders in the gas parameter. The theory
predicts a second-order phase transition at kFa � 0:858,
which is in good agreement with the recent quantum Monte
Carlo result kFa � 0:86 [94]. This indicates that the ferromag-
netic transition to the Fermi liquid does not occur by the BKV
scenario.

Thus, the first-order phase transition in UGe2 cannot be
explained in the framework of the isotropic Fermi liquid
theory even if we forget that this compound is a strongly
anisotropic ferromagnetic metal with magnetization mostly

supported by the magnetic moments localized at uranium
atoms.

We also note that an isotropic ferromagnetic Fermi liquid
is unstable with respect to transverse inhomogeneous deflec-
tions of magnetization [95, 96]. Therefore, the question of the
isotropic Fermi liquid phase transition to the ferromagnetic
state is only of academic interest.

8.2 Magneto-elastic mechanism
of the development of first-order instability
Themagneto-elastic mechanism of the development of a first-
order instability has been proposed in [97], where it was
demonstrated that the change in the transition order from
second to first occurs at high compressibility and at a quite
acute steepness of the exchange interaction dependence on the
interatomic distance. This can easily be demonstrated in the
framework of the Landau theory of phase transitions. Indeed,
neglecting the shear deformation, the free energy density near
the phase transition in an Ising-type ferromagnet has the form

F � a0�Tÿ TC�M 2 � bM 4 � K

2
e 2 ÿ qeM 2 ; �203�

whereM is the magnetization density, e is the relative volume
change, andK is the bulk modulus. The coefficient q is related
to the Curie temperature pressure dependence as

q � a0
dTC

de
� ÿa0K dTC

dP
: �204�

At a fixed pressure, that is, when changes in the specimen
volume are not accompanied by pressure changes in the
ambient medium, qF=qe � 0, the deformation is determined
by the magnetization squared, e � �q=K �M 2, whence

F � aM 2 �
�
bÿ q 2

2K

�
M 4 : �205�

Therefore, the phase transition changes its order from second
to first at q 2=�2K � > b. The last inequality can be rewritten in
terms of measurable parameters as

KDC
TC

�
dTC

dP

�2

> 1 ; �206�

where we use the formal expression DC � a 2
0 =�2b�TC for the

specific heat jump at a second-order phase transition.
The magneto-elastic interaction also produces another

general mechanism for the instability of a second-order phase
transition to the discontinuous formation of a ferromagnetic
state from a paramagnetic one. This was first noted by Rice
[98], who demonstrated that at a very small distance from a
volume-dependent critical temperature TC�V�, where the
specific heat Cfl�t� � tÿa, with t � T=TC�V� ÿ 1, tends to
infinity due to critical fluctuations, the system bulk modulus

K � ÿV qP
qV
� V

q2FV
qV 2

;

expressed in terms of the free energy density F � F0 � Ffl,
Ffl � ÿTCt 2ÿa, becomes negative,

K � K0 ÿ A
Cfl�t�V 2

TC

�
qTC

qV

�2

� K0 ÿ AK 2
0

Cfl�t�
TC

�
qTC

qP

�2����
t!0

< 0 ; �207�
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which contradicts the thermodynamic stability of the system.
In reality, as the temperature decreases but before the
temperature corresponding to K � 0 is reached, the system
undergoes a first-order transition, jumping over the instabil-
ity region directly to the ferromagnetic state with a finite
magnetization and the corresponding striction deformation.
This transition is similar to the jump over the region with
qP=qV > 0 on the van der Waals isotherm at the liquid±gas
transition.

The condition of first-order instability (207) can be
written similarly to Eqn (206):

K0Cfl�t�
TC

�
qTC

qP

�2

> 1 : �208�

Unlike Eqn (206), this formula demonstrates that the first-
order instability is inevitable due to the infinite increase in the
fluctuation specific heat.

The striction interaction can change the form of the
free energy compared with its form at a fixed volume. A
more elaborate treatment [99] taking this effect into
account leads to the following condition for the first-order
instability:

1

TC

4mK
3K� 4m

f 00�x�
�
qTC

qP

�2

> 1 : �209�

Here, the function f �x� determines the fluctuation part of
free energy F � ÿTC f ��Tÿ TC�=TC�, and m is the shear
modulus.

Usually, the left-hand side of Eqn (208) is quite small and
a first-order transition occurs at a temperature T � close to the
critical temperature, where the fluctuation specific heat is
large enough. This means that the temperature difference
T � ÿ TC is much smaller than the critical temperature TC.
The latent heat

q � Cfl�T � ÿ TC� �210�

is extremely small in this transition, and hence the first-order
phase transition is practically indistinguishable from a
second-order one; it is called a weak first-order phase
transition or a phase transition of the first order close to the
second order.

According to Eqns (206) and (208), the magneto-elastic
mechanism effectively leads to a first-order transition when
the critical temperature is highly pressure dependent. This
is the case with all the materials mentioned above. To
check criteria (206) and (208), we must calculate the mean-
field jump and the fluctuation part of the specific heat near
the Curie temperature for each particular material. In
Sections 8.3 and 8.4, we do these calculations for UGe2 [35]
characterized by strong magnetic anisotropy and by a
precipitous drop in the critical temperature with a pressure
increase near 14±15 kbar [3].

8.3 Specific heat near the Curie temperature
UGe2 is an orthorhombic material that exhibits a transition
to the ferromagnetic state at ambient pressure at TC � 53 K.
Magnetic measurements reveal a very strong magnetocrystal-
line anisotropy [100] with a being the easy axis (which we take
to be the z direction). As in Section 7, we take only the easy-
axis order parameter fluctuations into account. Above the
Curie temperature, they are determined by deviations of the

system free energy

F �
�
d3r

�
aM 2 � bM 4 � gi jHi MHjM

ÿ 1

2

q2M�r�
qz 2

�
M�r 0�
jrÿ r 0j d

3r 0
�

�211�

from the equilibrium value a � a0�Tÿ TC�. The gradient
energy is determined by three constants gxx, gyy, and gzz. The
coordinates x; y; z correspond to the crystallographic axes
b; c; a. The last nonlocal term in Eqn (211) corresponds to the
magnetostatic energy [101] ÿMHÿH 2=8p of the internal
magnetic fieldH created by magnetization and is related to it
by the Maxwell equations

rotH � 0 ; div �H� 4pM� � 0 :

We use the following estimates for the coefficients in the
Landau functional:

a0 � 1

m 2n
; �212�

b � TC

2�m 2n�2n ; �213�

gx � gy � gz �
TCa

2

m 2n
: �214�

Here, m is the magnetic moment per uranium atom at zero
temperature, m � 1:4mB at ambient pressure [16], and
n � aÿ3 is the density of uranium atoms, which can be
approximately taken to be the cube of the inverse nearest-
neighbor uranium atom separation a � 3:85 A

�
[19].

The mean-field magnetization and the jump in the specific
heat are

M 2 � ÿ a
2b
� �mn�2 TC ÿ T

TC
; �215�

DC � TCa 2
0

2b
� n : �216�

The experimentally found specific heat jump DCexp �
10 J molÿ1 Kÿ1 � 1 per uranium atom [19] is in remarkable
correspondence with Eqn (216).

To calculate the fluctuation specific heat, we use the
Fourier representation of the part of Eqn (211) that is
quadratic in the order parameter:

F �
X
k

�
a� gi j ki kj �

2pk 2
z

k 2

�
MkMÿk ; �217�

where Mk �
�
M�r� exp �ÿikr� d3r. The last term in this

expression corresponds to the magnetostatic energy [35,
101]. The corresponding thermodynamic potential and the
specific heat found in a similar uniaxial segnetoelectric model
are [102]

F fl � ÿT

2

X
k

ln
pT

a� gi j ki kj � 2pk 2
z =k

2
; �218�

Cfl0 � T 2a 2
0

2�2p�3
�

dkx dky dkz

�a� gi j ki kj � 2pk̂ 2
z �2

: �219�
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Passing to spherical coordinates and integrating over the
modulus k, we arrive at

Cfl0 � T 2a 2
0

32p2

� 1

0

dz
� 2p

0

dj

�a� 2pz 2�1=2�g? � z 2�gz ÿ g?�
�3=2 ;
�220�

where g?�j� � gx cos
2 j� gy sin

2 j. At the critical tempera-
ture, a � 0 and the integral diverges. Integrating over z with
logarithmic accuracy, we obtain

Cfl0 � T 2
Ca

2
0

32p
������
2p
p

g 3=2
ln

2p
a
� n

32p

���������������
TC

2pm 2n

r
ln

2pm 2n

Tÿ TC
; �221�

where

1

g 3=2
� 1

2p

� 2p

0

dj

g 3=2? �j�
:

The condition a5 2p atTC � 10K used here is realized at

Tÿ TC

TC
<

2pm 2n

TC
� 0:015 : �222�

In view of the roughness of the parameters, the region of the
logarithmic increase of specific heat can in fact be broader.

Calculations taking the interaction of fluctuations into
account in the formally similar uniaxial segnetoelectric model
were performed by Larkin and Khmelnitskii [103]. In our
notation, the expression for the fluctuation specific heat at
constant pressure obtained in that paper is

Cfl � 31=3T 2
Ca

2
0

16pg 2=3LK g 3=2

�
ln

2p
a

�1=3

; �223�

where gLK � 3TCb=�
��������
32p
p

g 3=2� is the effective coupling
constant. Using Eqns (212)±(214), we can rewrite Eqn (223) as

Cfl � n

10

�
TC

2pm 2n

�1=6�
ln

2pm 2n

Tÿ TC

�1=3

: �224�

The power of the logarithm fln �a=�2p��g1=3 is a very slowly
varying function slightly exceeding unity; hence, in the
temperature range defined by inequality (222) we can
estimate the fluctuation specific heat as

Cfl � n

5
: �225�

We see that the fluctuation specific heat is smaller than the
mean field jump given by Eqn (216). Hence, criterion (206)
can be used to check a tendency to the first-order phase
transition in UGe2.

8.4 Second-order transition instability
The Curie temperature in UGe2 decreases monotonically
with increasing pressure: from 53 K at ambient pressure to a
precipitous decrease above 15 kbar [3]. The average value of
the critical temperature derivativewith respect to pressure can
be estimated as

qTC

qP
� 40 K

14 kbar
� 4� 10ÿ25 cm3 : �226�

For the bulk modulus, we obtain

K � rc 2 � 1011 erg cmÿ3 ; �227�

where we use the speed of sound c � 105 cm sÿ1 typical for
metals and the known [104] density r � 10:26 g cmÿ3. Hence,
for the combination in Eqn (206), we have

Kn

TC

�
qTC

qP

�2

� 0:2 : �228�

At TC � 10 K, the pressure derivative of the critical
temperature is much higher (and its square is even higher)
than its average value given by Eqn (226). We therefore
conclude that at a critical temperature of the order of 10 K,
criterion (206) is fulfilled, and the phase transition to the
ferromagnetic state becomes a first-order transition.

8.5 Concluding remarks
The magneto-elastic interaction contributes to the develop-
ment of the first-order instability at the phase transition to the
ordered state in any ferromagnet. But the actual temperature
range where this instability develops is typically very small,
and the first-order transition is almost indistinguishable from
a second-order one. In the anisotropic ferromagnet UGe2, the
precipitous drop in the Curie temperature as a function of
pressure near 14±15 kbar is sufficient for the second-order
phase transition to the ferromagnetic state to be replaced by a
first-order transition.

At low temperatures, according to the Nernst law and the
Clausius±Clapeyron relation

dTC

dP
� v1 ÿ v2

s1 ÿ s2

����
T!0

!1 ; �229�

the decrease in the first-order transition temperature with
pressure becomes infinitely fast, meaning that even a weak
first-order transition tends to be stronger as the temperature
approaches the absolute zero. Hence, the effect of the
magneto-elastic interaction in ferromagnets or, more gener-
ally, of the order parameter interaction with elastic degrees of
freedom at an arbitrary type of ordering raises doubts about
the existence of quantum critical phenomena.

9. Superconducting order in ferromagnetic UIr

UIr has a monoclinic PbBi-type structure without inversion
symmetry, as shown in Fig. 18. At ambient pressure, it is an
Ising-like ferromagnetwith theCurie temperatureTC � 46K.

�10�1�

b

[010]

Ir

U

c
[001]

a
[100]

Figure 18. Monoclinic structure of UIr. The arrows indicate the sponta-

neous magnetization direction [105].
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The magnetic susceptibility follows the Curie±Weiss law with
the effective moment meff � 2:4mB per uranium atom, while
the orderedmoment at low temperatures is 0:5mB per uranium
atom. The pressure±temperature phase diagram of UIr
consists of a low-pressure phase FM1, a high-pressure
magnetic phase FM2, and a superconducting phase as
shown in Fig. 19a. The discrete change in the ordered
moment indicates that the FM1±FM2 transition is of the
first order. The FM2±nonmagnetic transition is of the second
order [106].

For UIr, it is still not clear whether superconductivity
coexists with magnetic ordering [106]. However, if this is the
case, we are dealing with a unique situation where the
superconducting state arises in a material with broken space
and time parity. We here describe the symmetry and order
parameter of this type of superconductivity.

The symmetry group of the normal nonmagnetic state of
UIr

GN � �E;C2b� �R�U�1� �230�

includes the point symmetry group C2 � �E;C2b�, where C2b

is the rotation around the b axis through the angle p (see
Fig. 19), the time reversal R, and the gauge groupU�1�. In the
FM2 state, the time reversal is broken and the symmetry
group

GF � �E;RC2b� �U�1� �231�

includes a combination of the rotation C2b and the operation
R reversing the direction of spontaneous magnetization lying
in the �a; c� plane. Finally, in a superconducting state

coexisting with the FM2 state, the gauge symmetry is broken
and the symmetry group is

GFSC �
ÿ
E; exp �2ij�RC2b

�
: �232�

The space parity is broken; hence, the magnetic pairing
interaction inevitably includes the Dzyaloshinskii±Moriya
coupling [38]. As a result, the superconducting order para-
meter is the sum of triplet and singlet parts:

D̂ � i�dr�sy � id0sy : �233�

The triplet part has the usual form

d�k; r� � 1

2

�ÿ�x̂� iŷ�D"�k; r� � �x̂ÿ iŷ�D#�k; r��� D0�k; r�ẑ ;
�234�

but in contrast to the coordinate axes in orthorhombic
crystals discussed in Section 2, the coordinate axes of
nonunitary superconducting ordering do not coincide with
monoclinic crystallographic directions. Namely, here, the
unit vector ẑ is aligned parallel to the spontaneous magnetiza-
tion in the �a; c� plane (direction �1; 0; �1�), x̂ is the unit vector
directed along the b axis, and ŷ � ẑ� x̂:

D"�k; r� � kxZ"x�r� � ikyZ"y�r� ;
D#�k; r� � kxZ#x�r� � ikyZ#y�r� ; �235�
D 0�k; r� � kzZ0z�r� ;

where kx, ky, kz are momentum projections on the axes x̂, ŷ, ẑ
defined above. The singlet part of the order parameter is

d0�k; r� � FZ0�r� ; �236�

where F is a function of k 2
x , k

2
y , k

2
z .

10. Conclusion

The treatment of the properties of uranium compounds
developed in this paper is based on the symmetry of super-
conducting states with triplet pairing in orthorhombic ferro-
magnets. The phenomenological considerations are sup-
ported by microscopic calculations performed in the frame-
work of the weak-coupling superconductivity theory with
pairing interaction expressed through the frequency-indepen-
dent magnetic susceptibility of an anisotropic ferromagnetic
medium. This approach reproduces the structure of super-
conducting states found on purely symmetry grounds and
allows us to qualitatively explainmany experimental observa-
tions.

A topic outside the scope of this paper is ARPES
experiments and band structure calculations, which are still
not in complete agreement. We can recommend two recent
papers reporting the ARPES studies in URhGe [107] and in
UGe2 and UCoGe [108], a comparison with band structure
calculations, and a long list of references to previous studies.
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