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Abstract. New studies of the phase transition and phase dia-
gram of the chiral MnSi magnet are reported. New results are
obtained in the course of analysis of experimental data on heat
capacity, thermal expansion, elastic properties, electrical resis-
tance, neutron scattering, and theoretical modeling.
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1. Introduction

MnSi—a helical itinerant magnet—is crystallized in the
structure type B20 belonging to the space group P23, which
has no center of symmetry. Although it has been studied
intensively for several decades, this magnetic material still
remains at the center of attention of many researchers. This
circumstance is due to a whole series of reasons, some of
which are as follows.

(1) MnSi is an example of a substance with a helical
magnetic structure caused by the Dzyaloshinskii-Moriya
interaction [1].

(2) Studies of the physical properties of MnSi at high
pressures have revealed a number of intriguing features, such
as a quantum phase transition [1, 2], non-Fermi-liquid
behavior [3, 4], and ‘partial’ helical order [5], which still await
further study.

(3) The so-called phase A, appearing in MnSi in a magnetic
field, which was identified as a skyrmion crystal [1, 6], has
proven to be extremely sensitive to various kinds of actions and
is considered a promising material for spintronics [7].
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(4) The phase transition in MnSi at a temperature of 29 K
and normal pressure from the paramagnetic state into the
helical state has finally been acknowledged as a first-order
phase transition [8], which casts doubts upon early assertions
about the shape of the phase diagram of MnSi at high
pressures [9].

(5) Finally, which is of great importance, MnSi constitu-
tes a simple binary compound synthesized from elements that
allow deep purification. MnSi possesses a comparatively low
temperature of congruent melting (~ 1500 K), which facil-
itates growing large crystals. To date, large and sufficiently
perfect MnSi single crystals of high purity have been grown in
anumber of laboratories, and thus have become accessible for
diverse physical studies.

This article comprises a survey of new data obtained in the
course of studies on heat capacity, thermal expansion, elastic
properties, electrical resistance, and neutron scattering in
MnSi, in particular, at high pressures and in strong magnetic
fields.

2. Magnetic phase transition in MnSi

Let us first examine the magnetic phase transition in MnSi at
atmospheric pressure in a zero magnetic field. The analysis of
a phase transition in any system, as a rule, begins from the
mean-field approximation, which disregards fluctuations.
The most popular approximation is the phenomenological
Landau model based on symmetry considerations, in which
the expansion of the thermodynamic potential @ in powers of
the order parameter 5 is used. In the simplest case, the Landau
expansion is written out as follows:

O(P,T,n) = Do+ An* + Cn* + By* + ..., (1)

where the coefficients 4, B, and C are functions of pressure P
and temperature 7. In view of the symmetry relative to time
reversal, C = 0 in the case of magnetic phase transitions, and
relationship (1) takes on the following form:

&(P,T,n) = Do+ An*+ Bp* + ... (2)
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Figure 1. (Color online.) Helicomagnetic phase transition in MnSi at 29 K according to data from neutron experiments [16]; ¢, and ¢, are the coordinates
in the momentum space. It can be seen that, during a phase transition in the temperature interval of 28.8-29.1 K, the discrete Bragg peaks corresponding
to the helical magnetic order, are replaced by diffuse magnetic scattering, which is concentrated on the surface of a sphere in the reciprocal space. These
effects reflect the existence of helical magnetic fluctuations in the immediate proximity to the temperature of the phase transition.

At the point of the second-order phase transition, one has
A=a(T—T.)=0 and the coefficient B > 0. For B < 0, a first-
order phase transition takes place in the system. In this case, a
sixth-order term Dy® with D >0 should be added to
expansion (2) to stabilize the system. The available experi-
mental data indicate a certain lability of the coefficient B in
different systems; as a result, the phase transition can alter its
nature with a change in the ambient conditions with the
appearance of the so-called tricritical point [10].

There are internal reasons for which some phase transi-
tions are first-order in spite of the absence of symmetry
limitations. First, there are striction effects, which can arise
in real compressible lattices [11, 12]. Competition among two
or more order parameters caused by different interactions, if
accompanied by strong fluctuations, can also lead to a first-
order phase transition. In essence, these factors renormalize
the coefficient B and even lead to the appearance of nonzero
third-order terms (see the Halperin—Lubensky—Ma effect
[13]). No one should be embarrassed by the fact that we are
discussing here the evolution of the Landau expansion
coefficients, which are the mean-field parameters, together
with the fluctuation effects, which seemingly violate the
mean-field picture of the phase transition. In reality, the
fluctuations are concentrated in a relatively narrow tempera-
ture range determined by the Levanyuk—Ginzburg criterion
[10], and beyond this range the mean-field picture remains
valid; therefore, we can consider fluctuations as a factor that
can affect both the sign and the value of the coefficients of the
Landau expansion.

Further on, turning to the subject of our study it should be
noted that the fluctuational nature of the first-order phase
transition in MnSi was indicated for the first time by Bak and
Jensen [14], who carried out relevant calculations, apparently
influenced by the work of Hansen [15], who revealed an
abrupt change in the intensity of the line of superlattice
scattering at the point of the phase transition. By the way,
Hansen’s work was not published in the contemporary
scientific literature and remained unknown, until it was
mentioned as a reference cited in paper [16].

At present, the fluctuational model of the phase transition
in MnSi, based on Brazovskii’s theory [17], is becoming

popular; here, the role of fluctuations in systems with a
fluctuation spectrum possessing a low absolute minimum
with a nontrivial value of the moment is emphasized. The
authors of Ref. [16] have analyzed the experimental data on
small-angle neutron scattering in the vicinity of the phase
transition in MnSi and developed a theory which, in their
opinion, describes well the totality of the experimental data
(Fig. 1).

It is necessary to recall that an important feature of the
magnetic phase transition in MnSi is the presence of a
secondary gently sloping maximum or a shoulder in the
curves of the heat capacity, thermal expansion, thermal
resistance, and sound absorption, as is evident, for example,
from Fig. 2. The shoulder is located in the existence domain
boundaries of the paramagnetic phase but is characterized by
powerful chiral fluctuations, as follows from the data on
neutron scattering [18]. According to the authors of paper
[16], they obtained a successful description of this feature of
the phase transition in MnSi, although their graphic proof of
the existence of a shoulder (see Fig. 2) is by no means
convincing.

3. Vollhardt ‘invariant’

Let us say several words about the so-called Vollhardt
invariant. In 1997, D Vollhardt revealed that the curves of
the heat capacity of a number of highly correlated systems
measured at different values of the thermodynamic para-
meters (for example, pressure, magnetic field, etc.) intersect at
almost the same temperature [19]. This effect is distinctly
visible in the curves of heat capacity, thermal expansion,
elastic moduli, and sound absorption (Fig. 3) [20]. The very
term ‘Vollhardt invariant’” was apparently first used in
Ref. [21], where the data on the heat capacity of MnSi, Mn
(Co)Si, and Mn(Fe)Si were analyzed.

The presence of this invariant is connected with the
existence of a specific characteristic energy determining the
population of helical magnetic fluctuations, which naturally
indicates the occurrence of the Dzyaloshinskii—-Moriya
interaction [21]. This conclusion is supported in Ref. [16],
where it is asserted that the appearance of the Vollhardt
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Figure 2. (Color online.) Comparison of the results of theoretical
calculations based on the Brazovskii model [16] and experimental data,
which characterize (a) the magnetic susceptibility y, and (b) the heat
capacity Cmag of MnSi according to the data from Ref. [16]. The solid
curves correspond to the theoretical calculations; the circles show experi-
mental data.

invariant directly follows from the Brazovskii model [17]. A
simulation of the situation with the aid of Gaussian functions
performed in Ref. [20] shows that the appearance of a
pseudoinvariant temperature should always be expected
when a magnetic or some other field broadens the appro-
priate maxima and decreases their amplitudes in such a
manner that their integral values remain unaltered (Fig. 4).

Thus, in Ref. [20] we reached the conclusion that the
‘point of intersection’ or the Vollhardt invariant cannot serve
as an indicator of the existence of some specific energy, and
the very ‘invariant’ in general simply represents an approx-
imate point of the intersection of the corresponding curves
rather than an invariant, as can be seen from Fig. 3. The very
maxima or minima, illustrated in Fig. 5, are identified in Ref.
[20] as smeared phase transitions.

4. Phase transition in MnSi according
to simulations by the Monte Carlo method

Here, we should pay special attention to paper [22], which is
devoted to an analysis of the properties of a three-dimen-
sional lattice system of spins with the aid of the classical
Monte Carlo method. Together with the ferromagnetic
exchange interaction (J), the authors of Ref. [22] take into
account the anisotropic Dzyaloshinskii—-Moriya interaction
(D). Figure 6, borrowed from Ref. [22], demonstrates an
excellent agreement of the results of simulations with the
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Figure 3. (Color online.) (a) Heat capacity, (b) elastic modulus ¢y,
(c) coefficient of thermal expansion, and (d) coefficient of sound absorp-
tion as functions of temperature and magnetic field in a phase transition in
MnS:i [20]; u, is the permeability of vacuum.
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Figure 4. (Color online.) Simulation of the effect of the Volkhardt
intersection with the aid of a Gaussian function and a variation of the
width a [20].

experimental data for MnSi in a zero magnetic field. In
Ref. [23], a study of the same system of spins was carried out
by the same numerical method but with a variable ratio
between the exchange interaction and the Dzyaloshinskii—
Moriya interaction (J/ D). The use of the J/ D ratio should not
be misleading, since the terms containing J and D enter into
the Hamiltonian as summands, and the zeroing of the
corresponding terms does not lead to divergence.

As it turns out, the shoulder in the curve of the heat
capacity of the model system of spins appears as a result of a
perturbation of the ferromagnetic second-order phase transi-
tion by helical fluctuations caused by the Dzyaloshinskii—
Moriya interaction. With an increase in the contribution of
this interaction, a first-order phase transition occurs in the
system, and at J/D ~ 1 the behavior of the heat capacity of
the system becomes similar to that experimentally observed in
the cases of MnSi and Cu,0SeOj (see Section 6): a sharp peak
appears, which corresponds to a first-order transition, as does
a gently sloping maximum or a shoulder at temperatures that
somewhat exceed the temperature of the phase transition
(Fig. 3).

As follows from the calculations carried out, the observed
maxima in the temperature dependences of the physical
quantities (Fig. 7) are connected with the ‘smeared’ second-
order phase transition, which is in complete agreement with
the conclusion made in Ref. [20]. However, it was assumed in
Ref. [20] that the smearing is connected with a natural
imperfection of the MnSi crystal, whereas it follows from
the calculations performed by the Monte Carlo method that
the degradation of the ferromagnetic second-order phase
transition is a result of helical fluctuations.

Thus, the region of the maximum possesses a complex
structure, which corresponds to the interaction of two
fluctuating order parameters; as a result, the system cannot
pass into the ordered state continuously, but does so
jumpwise, via a first-order transition.

5. Phase transition in MnSi in a magnetic field

Let us now turn to studies of the phase transition in MnSiin a
magnetic field. In Ref. [24], detailed measurements of the heat
capacity of MnSi in magnetic fields were carried out, which
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Figure 5. (a) Heat capacity, (b) coefficient of thermal expansion, (c) bulk
modulus K, and (d) coefficient of sound absorption as functions of
temperature in a phase transition in MnSi [20]. The sharp peaks caused
by the first-order phase transition are removed to more distinctly show the
anomalies, which, apparently, are characteristic of the smeared phase
transition.

revealed a nontrivial behavior of the heat capacity in the
vicinity of the phase transition (Fig. 8). The authors of
Ref. [24] assume that the results presented in Fig. 8 indicate
the existence of a tricritical point at a temperature of 28.5 K
and a magnetic field of 340 mT (Fig. 9). Simultaneously, the
authors emphasize that the observed anomalies in the
behavior of heat capacity at the boundaries of the skyrmion
phase indicate their thermodynamic nature.

The results of ultrasonic studies of the phase diagram of
MnSi in a magnetic field are presented in Figs 10 and 11 [25].
Notice that the studied MnSi sample had the shape of a disk,
which affected the value of the demagnetization factor at
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Figure 6. (Color online.) Heat capacity and the magnetic susceptibility in
the phase transition in a three-dimensional system of Heisenberg spins
with the Dzyaloshinskii-Moriya interaction according to data calculated
by the Monte Carlo method [22]. Experimental data for MnSi were
borrowed from Ref. [16].
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Figure 9. (Color online.) Magnetic phase diagram of MnSi. The oval
contour outlines the region of the location of the supposed tricritical point
(TCP) [24].
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Figure 7. (Color online.) Behavior of the heat capacity at the phase
transition in a three-dimensional system of Heisenberg spins with the
Dzyaloshinskii-Moriya interaction with a variation in the Dzyaloshins-
kii-Moriya coupling constant D and the exchange interaction constant
J = 1 according to data of simulations by the Monte Carlo method [23].
Temperature is given in units of J; the heat capacity, in dimensionless
units. In the insets, the magnetic susceptibility y(7") is shown at different
values of D.

various orientations of the sample in the magnetic field. As a
result, the magnetic scale of the corresponding dependences
proves to be somewhat different (see Figs 10 and 11). Notice
also that the higher the uniformity of the magnetic field in the
sample, the less the domain of existence of the phase of the

skyrmion crystal (in the k 1 H configuration, the magnetic
field is directed parallel to the plane of the disk and is
distributed more uniformly than in the case of k || H).

As can be seen from Fig. 10, an abrupt change in the
elastic moduli ¢;; and ¢33 in the magnetic phase transition in
MnSi upon the imposition of a magnetic field first diminishes
rapidly, reaching practically zero values in the domain of
existence of the skyrmion phase, then grows in the region of
magnetic fields and temperatures indicated in Ref. [24] as the
tricritical coordinates, and further decreases to negligibly
small values. All this is illustrated in Fig. 12, which
demonstrates the dependence of the jumps of the moduli
and the amplitude of the attenuation factor on the magnetic
field at different orientations. Let us emphasize that at the
tricritical point a divergence is expected of heat capacity and
compressibility, and, therefore, of such quantities as 1/c;;
[10]. However, nothing similar is observed in Figs 10 and 12.
Nor is divergence observed in Fig. 8. Nevertheless, a specific
anomaly, which manifests itself in the appearance of max-
imum jumps of elastic constants and of the coefficient of
ultrasound absorption, is observed in the 0.3-0.4 T region of a
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Figure 8. Heat capacity divided by the temperature at the phase transition in MnSi depending on the magnetic field [24]. According to the assumption of
the authors of Ref. [24], a tricritical transition takes place in a magnetic field of 340 mT.
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that the domain of the existence of the skyrmion phase depends on the
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magnetic field. It is precisely here that the line of the minima
of the elastic moduli corresponding to the smeared phase
transition touches the line of phase transitions, which makes
this region similar to an end critical point, at which the line of
second-order phase transitions is joined with the line of the
first-order transition [25] (see Fig. 11).

Additional information on the evolution of the magnetic
phase transition in MnSi can be extracted from the data on
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Figure 12. (Color online.) (a) Values of the jumps in elastic moduli, and
(b) partial amplitudes of the attenuation coefficients at the phase transition
in MnSi as functions of the magnetic field. The difference between the two
systems of data given in figures (a) and (b) is connected with the difference
among the magnitudes of the demagnetization factor [25].

the thermal expansion [26]. Some results of thermal expan-
sion measurements are shown in Figs 13 and 14. It can be seen
that in a magnetic field of 0.48 T the bulk anomalies disappear
almost completely, which disagrees with the existence of a
tricritical point in the magnetic field of 0.4 T in the case of the
occurrence of a second-order phase transition for
ugH > 04 T.

Figure 15 displays the results of measurements of jumps in
the sample lengths and in the heights of the peaks of the
thermal expansion coefficient in the [100] direction at the
phase transition in MnSi at various values of the magnetic
field.

It can be seen that the anomaly of the coefficient of
thermal expansion decreases with increasing magnetic field
(see Figs 14, 15); a pronounced dip in the middle of the range
corresponds to the region of the skyrmion phase (see Fig. 15).
However, nothing indicates a tricritical behavior of the
coefficient of thermal expansion. At the same time, the jump
in the thermal expansion, decreasing to very low, but finite
values (1077) with increasing magnetic field suddenly
becomes zero. In reality, the jump is simply smeared, so that
the measurement of its value becomes impossible. In Ref. [26],
we concluded that the phase transition in MnSi is always a
first-order transition, whose discontinuous picture is violated
by heterophase fluctuations.

6. Phase diagram of MnSi at high pressures

In this section, we discuss the situation with the phase
diagram of MnSi at high pressures. In papers [27, 28],
Pfleiderer et al. stated, based on the measurements of
magnetic susceptibility, that in the curve of the phase
transition at a pressure of 1.2 GPa and a temperature of
12 K there is a tricritical point at which the continuous phase
transition becomes a first-order transition. This idea found
theoretical support [29]. And although the interpretation of
the results of the measurements of the magnetic susceptibility
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Figure 13. Linear thermal expansion of an MnSi crystal as a function of
temperature at various values of a magnetic field. The curves are shifted
relative to each other along the ordinate axis. It can be seen that the
anomaly connected with the magnetic phase transition disappears in
strong magnetic fields [26].
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Figure 14. Temperature dependence of the linear thermal expansion
coefficient of the MnSi crystal. The curves are shifted relative to each
other along the ordinate axis. Degradation and disappearance of peaks of
the coefficient of thermal expansion with an increase in the magnetic field
are clearly visible. In the lower curve, a peak corresponding to the
skyrmion phase is also noticeable [26].

of MnSi at high pressures was criticized (see review [1]), the
‘tricritical idea’ continued living. The measurements of bulky
effects in the limit of low temperatures seemingly indicated

H | [110]
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Amplitude of the peak of thermal expansion (x 103)
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0.5
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()
| | | | 0
0 0.1 0.2 0.3
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Figure 15. Dependence of the jumps in thermal expansion and values of the
peaks of the thermal expansion coefficient of an MnSi crystal on the
magnetic field. Both quantities decay with increasing magnetic field. The
local anomaly in the middle of the range corresponds to the skyrmion
phase. The jumps suddenly effectively decrease to zero in fields of 0.27—
0.3 T (see the main text) [26].

the discontinuous nature of the volume change upon a phase
transition in MnSi [30, 31]. In Ref. [32], this problem was
analyzed in connection with the results of the measurements
of the electrical resistance of MnSi. First of all, notice that the
‘tricritical idea’ was intensely popularized until the phase
transition in MnSi was considered as a second-order one. At
present, the situation, as we saw above, is fundamentally
different, which, however, does not prevent us from examin-
ing the issue.

Figure 16 illustrates the dependence of the thermal
expansion of MnSi on the temperature at atmospheric
pressure. It can be seen that the weak first-order phase
transition is hardly noticeable against the background of the
extensive bulky anomaly. It is obvious that this transition
could not be detected in the relatively rough experiments at
high pressures [30, 31]. The authors of Refs [30, 31] apparently
observed the bulky anomaly (Fig. 16), which, to a consider-
able extent, is localized as a result of ‘freezing’ thermal
fluctuations at low temperatures and high pressures. This
situation is illustrated in Fig. 17, where the isotherms of the
electrical resistance of MnSi at different temperatures are
plotted. It is clearly seen that the region of anomalous
scattering of carriers on magnetic fluctuations shrinks with
decreasing temperature and increasing pressure. At tempera-
tures on the order of 2-5 K, the region of the anomalous
scattering, one way or another connected with the volume
anomaly [20], becomes too narrow to imitate the situation
with the smeared first-order transition. However, these
reasons do not force the authors of different concepts to
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Figure 18. (Color online.) Temperature derivative of the resistivity dp/dT
at a phase transition in MnSi at high pressures.
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Figure 17. Isotherms of the electrical resistance of MnSi, which demon-
strate the evolution of the fluctuation region in the vicinity of the phase
transition [32].
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Figure 19. (Color online.) Heat capacity in the vicinity of the phase
transition in MnSi at various pressures [33].

reexamine their views. For example, the existence of a
tricritical point in the curve of the phase transition in MnSi
was discussed in recent review [8], although its authors
encountered some difficulties, since they recognize that the
phase transition in MnSi is a first-order transition in two
limiting cases: at atmospheric pressure and at high pressure
and low temperatures. But then, what can we say about the
tricritical point? The authors of Ref. [8] suggest a ‘Solomon’
solution: the tricritical point corresponds to a passage from a
weak first-order transition to a strong transition! This
suggestion resembles the joke about a dispute between two
museums in the USA about which of them possesses the
authentic skull of the hero of the Mexican revolution Pancho
Villa.! The skulls were different in sizes, and the museums
came to an agreement that one of the skulls belonged to the
young Pancho Villa and the other skull to the adult Pancho
Villa.

I Three years after Pancho Villa was assassinated, his grave was uncovered
and his head was stolen.

Measurements of the electrical resistance [32] and heat
capacity [33] at high pressures made it possible to draw
specific conclusions about the phase diagram of MnSi
(Figs 18, 19) (the temperature derivative of the electrical
resistance in the case of phase transitions in magnetic metals
behaves analogously to that of the heat capacity [34]). It can
be asserted that the explicit signs of the first-order transition
in MnSi [the sharp peak and the shoulder (see Fig. 3)]
disappear with an increase in the pressure and a decrease in
the temperature.

This may be connected with the suppression of thermal
fluctuations, if we assume that the first-order transition in
MnSi has a fluctuational origin. On the other hand, it cannot
be ruled out that the phase transition is simply smeared at low
temperatures and high pressures as a result of emerging the
nonhydrostatic stresses.

Nevertheless, the results of work [32, 33] apparently
indicate the absence of a strong first-order transition in
MnSi as T — 0. The phase diagram of MnSi proposed in
Refs [32, 33] is shown in Fig. 20.
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Figure 20. Supposed phase diagram of MnSi at high pressures. The gray
region corresponds to the domain of strong helical fluctuations in the
paramagnetic phase. The insets illustrate the evolution of the heat capacity
and temperature derivative of resistivity dp/dT depending on pressure.
The circle at the beginning of the gray region can correspond to a tricritical
point, if the phase transition in MnSi at high pressures is indeed
continuous [32].
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Figure 21. Magnetic susceptibility and heat capacity upon a phase
transition in the chiral magnets (a) Cuy,OSeOs3, and (b) MnSi. The
similarity between the behavior of the itinerant magnet and the magnet
with localized spins is obvious [33].

7. Conclusion

This article is a kind of supplement to our earlier article [1]
and does not pretend to an illumination of all achievements
and difficult aspects of the problem. As a definite achieve-
ment, note the following: at present, it is already universally
recognized that the magnetic phase transition in MnSi at

atmospheric pressure and zero magnetic field is a first-order
phase transition. However, this fact comes into conflict with
early presentations of the shape of the phase diagram of MnSi
at high pressures and low temperatures and the character of
related quantum phenomena [27-29]. Progress in this field
requires the development of new experimental techniques for
studies at high pressures, which is a question for the future.
Nor should we forget the uncommon phenomena that appear
upon a phase transition in MnSi in strong magnetic fields [26].
And, finally, let us present Fig. 21 [33], which illustrates the
close analogy between the itinerant and Heisenberg magnets,
MnSi and Cu,0SeOs, respectively, with the Dzyaloshinskii—
Moriya interaction, which, apparently, indicates the insignif-
icant role of longitudinal spin fluctuations in the course of
magnetic phase transitions [35].
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