
Abstract. The current status of the problem of electron±ion
collisions in strong electromagnetic fields is presented. The
collision operator is expressed in terms of an integral over test
particle trajectories for an arbitrary alternating field. The
equation for test particles is analyzed. It is shown that none of
the energy processes involved (Joule heating, bremsstrahlung
and fast electron generation) diminishes as the electromagnetic
field amplitude increases. The collision frequency, the momen-
tum distribution of fast electrons, and the electron±ion collision
operator are calculated in the classical framework.

Keywords: electron±ion collisions in plasma, strong electromagnetic
fields, collision operator (integral)

1. Introduction

Recent years have seen considerable progress in the produc-
tion of superstrong laser pulses with focal intensities of

1018ÿ1021 W cmÿ2 and higher. At such field intensities, in
the laser wavelength range the plasma electrons oscillate with
velocities that far exceed their thermal velocities, which opens
up brand-new, previously unexplored possibilities for study-
ing radiation±plasma interactions. In this case, one of the key
issues is the question of the importance of collisions in these
interactions.

Investigations of collisional absorption of superstrong
laser pulses in plasmas are required for several applications.
To the latter one can attribute thermonuclear fusion using
ultrashort high-intensity laser pulses for the fast ignition of
fusion reactions, X-ray lasers, and the conversion of laser
energy to the coherent radiation at fundamental frequency
harmonics in the superstrong laser pulse±plasma interaction.

Theoretical studies of electron collisions in strong electro-
magnetic (EM) fields have been traditionally performed on
the basis of three models: small-angle electron scattering [1±
22], Born [15, 23±30], and low-frequency [14, 31] approxima-
tions. The approximation employed in Refs [3±5] has been
historically referred to as small-angle. However, this approx-
imation would be more properly termed the straight line
approximation, since it implies that the drift trajectories of
scattered particles are nearly straight lines. By drift trajectory
is meant a trajectory resulting from the subtraction of particle
oscillations from the particle trajectory in the laboratory
frame of reference. We note that in drift coordinates the
electron motion unperturbed by the Coulomb potential
describes a straight line and that ions oscillate. By contrast,
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in the laboratory reference system, the ions are at rest and the
electron motion reduces to a slow drift of oscillations.
Calculated in the Born approximation are similar small
corrections to the Volkov wave function, which represents a
plane wave in the drift coordinates. In the low-frequency
approximation, the scattering by an ion is described more
precisely, but the electron impact on the ion is implied to be
unique.

All these approximations have yielded results which differ
only by logarithmic factors. The main reason for this
coincidence supposedly lies with the general assumptions
that the instants of collisions are uncorrelated and that the
electron trajectory cannot twist (be attracted to the ion) in the
course of multiple oscillations in the vicinity of the ion. This
was demonstrated with extraordinary clarity by Silin [32, 33],
who obtained the same logarithmically accurate results
directly from the kinetic equation with the Landau collision
integral. Recall [5] that the derivation of the Landau collision
integral relies on the assumptions of the uniform distribution
of the instants of collisions and the determinative contribu-
tion of distant (almost straight-line, without a change in the
impact parameter) collisions. It is likely that the coincidence
of the three differentÐon the face of itÐapproximations
became the reason why interest in this research area was lost
for more than 30 years.

More recently, attempts have been made to develop
numerical codes for modeling the energy exchange processes
in plasmas with the inclusion of electron±ion collisions in
strong laser fields [34, 35]. In particular, even the results of
Ref. [34] are at variance with traditional ones. At the same
time, experimental data appeared which could not be
explained in the framework of traditional notions.

What effects are, in our opinion, omitted from the
traditional models? Consider how collisions are usually
described. In the absence of a Coulomb ion field, the particle
motion comprises oscillations in the EM wave field with an
oscillatory velocity vosc � eE=�mo0� (where o0 and E are the
frequency and amplitude of the EM wave field, respectively)
superimposed on a slow drift with a constant drift velocity v.
It is commonly assumed [3, 4] that the drift occurs in a straight
line throughout the collision period and merely `delivers' a
particle to the interaction domain. A particle collision then
happens with the ion, which is differently described in
different models. In this case, prior to the collision, the
particles are assumed to be uniformly distributed in space.
After the collision the particle is assumed to have abandoned
the scattering domain forever.

The assumption that particles are uniformly distributed in
the collision phase is justified for fast particles, v4 vosc;o0bv,
when the particle transits the domain bv � e 2Z=�mv 2� of
significant scattering 1 in a time much shorter than the field
oscillation period and never returns to this ion. The formal
transference of this assumption to the case of slow particles,
v < vosc, with the corresponding estimate of the scattering
domain as bosc � e 2Z=�mv 2

osc�, is illegitimate, because the
particle flies over the ion many times (during many field
cycles) and may be pulled closer to the ion. As a consequence,
the assumption of uniform particle distribution may be
inapplicable. In particular, it was shown in Refs [37±44] that
the inclusion of electron returns to the ion entails a significant
change in the scattering pattern.

Numerical simulations do reveal different dynamics of
particle scattering. In a strong field, owing to the large
oscillation radius, rosc � eE=�mo2

0�4 bosc, the particle
repeatedly returns to the same ion to experience many distant
collisions, which are referred as small-angle in total velocity,
during the scattering time. As this takes place, the particle
energy hardly changes, but its drift trajectory twists [37, 38].
Furthermore, a similar picture of the attraction of the
electron wave function to a scatterer ion during many cycles
of the external field variation is also observed in the quantum-
mechanical description of particle collisions in strong fields
[42±44].

Shown in Fig. 1 by way of example is the trajectory of a
particle which was pulled closer to the ion during a half-cycle
of EM field oscillations (during one flight over the ion). As a
result, prior to the last impact, which actually changes the
particle energies, the particles find themselves much closer to
the ion than in the straight drift motion, so the changes in
particle energies in the scattering become much larger and a
wealth of new effects show up, whose consideration is the
concern of our review.

The layout of our review is as follows. In Section 2, we
introduce general notions and give a general form of the
pairwise collision operator in alternating EM fields. It is
shown, in particular, how the kernel of the collision operator
is determined by test particle trajectories. We consider the
relation of the resultant integral to the collision operator in
the straight-line approximation. In Section 3, we analyze the
equations governing the motion of test particles. Discussed in
Sections 4±6 are the features of test particle dynamics in the
high-velocity domain, of the averaged description, and of
multiple returns. Analytical results for point mapping of the
coordinates and momenta of test particles through a cycle are
outlined in Section 7. The integral characteristics of electron±
ion collisions in strong fields are considered in Sections 8 and
9. Section 10 is concerned with collisions in relativistically
strong fields. The final form of the collision operator in strong
EM fields is given in Section 11. Considered in Section 12 are
the applicability conditions for the results obtained.

2. Collision operator
in alternating electromagnetic fields

In this section, we give general relations for the kinetic
equations used for describing nonequilibrium processes in
fully ionized plasmas. These relations were obtained from the
Liouville equation using a method introduced by Bogoliubov
[45]. They permit, first, determining the boundaries of
applicability of the Boltzmann, Landau, and other collision
operators and, second, finding new collision operators in the
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Figure 1. Trajectory of a particle pulled to an ion during one cycle of field

oscillations.

1 Particles moving with velocity v and impact parameter bv � e 2Z=�mv 2�
are scattered through an angle p=2 [36].
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future, when it becomes necessary to take into account fast
processes and describe particle collisions in a plasma
embedded in strong EM fields.

2.1 Kinetic equation in the canonically invariant form
The most complete description of a plasma of N particles is
provided by the N-particle distribution function
DN�t; z1; . . . ; zN�. Here, zi � fri; pig are the coordinates and
momentum of the ith particle. The physical meaning of the
function DN is that the quantity DN dz1 . . . dzN gives the
probability that the parameters of the particles
�i � 1; . . . ;N� fall within the range from zi to zi � dzi. For a
normalization of DN in a closed system, one can choose the
condition

�
DN dz1 . . . dzN � 1. The DN function satisfies the

Liouville equation

qtDN � �HS
N ;DN� � 0 ; �1�

which is reflective of the fact that a variation of the particle
distribution probability in a given phase volume is possible
only due to the transit of particles through its boundaries.
Here, qt f � qf=qt, �. . . ; . . .� are the Poisson brackets:

� f; g� �
X
i

q f
qri

qg
qpi
ÿ q f
qpi

qg
qri

:

If it is assumed that only pairwise interactions occur between
particles,2 the HamiltonianHS

N of a system ofN particles may
be represented as

HS
N �

X
i

Hi �
X
j>i

V i j ; �2�

where Hi is the Hamiltonian of a free particle, and
V i j�ri ÿ rj; t� is the interparticle interaction potential. So
simple a form of the interaction potential takes place only
for nonrelativistic particles. For the sake of simplicity, in the
subsequent discussion we restrict ourselves to precisely this
form. In the relativistic case, the potential would also depend
on the particle momenta (see Section 9.1), which would call
for a slight generalization of derivations.

Equation (1) is complicated, because it defines the
temporal evolution of the function of 6N variables (where
N � 1023 is the total number of plasma particles). On the
other hand, owing to the relative smallness of the average
interaction energy in comparison with the kinetic energy of
the particles, a large role should be played by the notions that
pertain to individual particles. Introduced for their descrip-
tion are s-particle distribution functions:

Ds � V �s�
�
DN dzs�1 . . . dzN ; �3�

whereV is the plasma volume. The equations for each of these
functions, which are referred to as the Bogoliubov chain [45],
originate from the higher-order distribution function:

qtD1 � �H1;D1� � ÿ
�
dz2
V
�V12;D2� ; �4�

qtD2 � �H1 �H2 � V12;D2� � ÿ
�
dz3
V

ÿ�V13;D3� � �V23;D3�
�
;

�5�

etc. It should be emphasized that the EM fields in these
equations are given by sources external to the plasma without
taking into account the plasma action.

Since Dn �
Q n

i�1 D1�zi� in the absence of correlations
(interaction), there is a good reason to explicitly single out in
the functions D2;D3; . . . the terms responsible for correla-
tions:

D1�za� �
V

Na
fa ; D2�za; zb� �

V 2

NaNb

ÿ
fa fb � gab

�
;

�6�
D3�za; zb; zc��

V 3

NaNbNc

ÿ
fa fb fc� fagbc� fbgac� fcgab� dabc

�
:

Hereinafter, the subscripts indicate the coordinate depen-
dence of the corresponding function [for instance,
gab � gab�za; zb�].

We substitute definitions (6) in Eqn (4) to obtain the
kinetic equation for the distribution function fa:

qt fa � �Ha; fa� �
X
b

Stab� fa� � ÿ
X
b

�
dzb �Vab; gab� : �7�

In this case, the Hamiltonian on the left-hand side of Eqn (7)
contains an already self-consistent (acting) field in the
plasma:

Ha � Ha �
X
b

�
fbVab dzb :

The integral on the right-hand side of Eqn (7) is termed the
collision operator Stab� fa� with particles of sort b. Its
determination calls for knowledge of the pair correlation
function gab. The equation for the function gab is obtained by
simple transformations from expression (5) in view of
definitions (6):

qt gab � �Ha �Hb � Vab; gab� � ÿ�Vab; fa fb� : �8�

Omitted in this case were the terms
�
dzc
ÿ�Vac; fa gbc��

�Vbc; fbgac�
�
responsible for dynamic plasma polarization

(Debye screening), which are significant at distances from
the charge exceeding the Debye radius rD, r5 rD �������������������������

T=�8pe 2ne�
p

. The three-particle correlation term dabc in
Eqn (8) was also discarded assuming that the probability of
simultaneous collision of three particles at one point in space
is low.

Equation (8) is of the hyperbolic type, and its solution is
easily found considering the smoothness of the distribution
functions on the collision scale:

qt fa fb � �Ha �Hb; fa fb�5 �Vab; fa fb�

and the feasibility condition limt!ÿ1 gab � 0 indicating the
absence of correlations `prior to the interaction', which was
proposed by Bogoliubov [45]. As a result, we obtain

gab � ÿfa fb
��
tr
� ÿfa

ÿ
z0a�za; zb�

�
fb
ÿ
z0b�za; zb�

�
: �9�

The right-hand-side of expression fa fbjtr should be inter-
preted as the dependence on the `current' coordinates and
momenta z in the trajectory of test particles, which in turn
depend on the `initial' coordinates and momenta z0. To
denote this dependence, in what follows we make use of the
function ~za�za0; zb0; t�. The term test particles is referred to the2 This is knowingly true for nonquantum plasmas [5].
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particles which move in a system with the Hamiltonian
HS � Ha �Hb �Uab.

Substituting expression (9) into expression (7) yields the
collision operator in the form

Stab� fa� �
�
dzb
h
Vab; fa fb

��
tr

i
: �10�

Expression (10) can be brought to the classical form of the
integral operator with the kernel wab�za; z 0a �:

Stab� fa� �
�
f �za0�wab�za; za0; t� dza0 : �11�

Using the Hamiltonian nature of the system, we obtain, in
turn, a rather simple expression for wab [46]:

wab�za; za0; t� �
�
fb�zb0�

d

dt
d
ÿ
~za�za0; zb0; t� ÿ za

�
dzb0 : �12�

Expression (12) has a simple physical meaning: the
variation of the distribution function upon collisions is only
defined by the motion of particles along test particle
trajectories. Accordingly, the momentum distribution comes
out as the integral variation of test particles momenta in their
motion along trajectories. To determine the collision opera-
tor, it is therefore necessary and sufficient to find the particle
trajectories in the scattering and integrate the momentum
variation distribution over all possible initial coordinates and
momenta zb0.

As a matter of fact, formulas (11) and (12) underlie the
method of calculating the binary collision characteristics with
the utilization of test particles. The heart of the method
consists in the mental convergence of all plasma ions of the
same kind into a single point A. In this regard, the totality of
electron±ion collisions comes to sequential collisions of
mutually noninteracting (test) particles with one ion residing
at point A. The averaging over space (over collisions with
different ions) is, in fact, replaced by averaging over time
(sequential collisions with one ion). A sufficiently large
number (107ÿ108 for typical parameters) of test particles is
taken in the numerical simulations. Random initial para-
meters z0 � fr0; p0g are chosen for every particle and its
trajectory is calculated in collision with the ion. The data of
all collisions are then summed up by analogy with what is
done in the Monte Carlo method. Therefore, formulas (11)
and (12) substantiate the applicability of the test particle
method for an arbitrary scattering potential, including a time-
dependent one.

2.2 Kernel of the collision operator
It should be noted that Eqn (12) has a canonically invariant
form, because it includes the displacements of particles in
both momentum and coordinate spaces. Unfortunately, the
direct use of Eqn (12) involves great difficulties, despite its
relatively simple form. To simplify expression (12), we first
ignore the variation of the spatial coordinate (it will be
assumed that ra0 � ra) in the collision owing to the smallness
of collisional scales and concentrate on the momentum part.
This disregard of the variation of particle coordinates upon
the scattering has the effect that the collision operator (11),
(12) loses canonical invariance, since the information about
the scattering event is roughened. As a result, the collision
operator acquires a diffusive character common for the
Boltzmann collision integral.

In Section 2.1, we considered the collision operator for
arbitrary (including relativistic) colliding particles. To avoid
cumbersome mathematical manipulations in the general
case, we consider at first the important special case of
nonrelativistic electron±ion collisions. Practically all formu-
las are generalized to the case of relativistic collisions in a
similar way, accurate to more complex expressions for the
drift coordinates (see Section 9.1).

The Hamiltonian for two charged (test) particles in the
nonrelativistic case is well known:

HS � p 2
a

2ma
� p 2

b

2mb
� eaeb
jra ÿ rbj � E�t��eara � ebrb� :

For practical implementation, however, the Hamiltonian is
conveniently written out in drift coordinates 3 r drifta; b �
r laba; b ÿ r osca; b , p

drift
a; b � p lab

a; b ÿ p osc
a; b :

HS � p 2
a

2ma
� p 2

b

2mb
�Uab ;

�13�
Uab � eaeb��ra � r osca �t� ÿ rb ÿ r oscb �t�

�� :
Here, p osc

a; b �
�
ea; bE�t� dt is the oscillatory momentum,

rosca; b �
�
p osc
a; b=ma; b dt is the oscillatory radius, and ea and eb

are the charges of the particles of sort a and b, respectively.
This representation is convenient in view of the spatial
localization of the scattering potential Uab. This transforma-
tion was achieved at the expense of acquiring explicit time
dependence by the potential Uab. Furthermore, when one
particle (the electron) is far lighter than the other (the ion), the
oscillations r oscb �t� of the heavy particle in the interaction
potential may be ignored in view of the smallness of
parameter ma=mb.

For a Hamiltonian in the form (13), only the relative
distances r � ra ÿ rb are of importance. We also assume that
ion velocity changes in electron±ion collisions are small and
disregard the variation of the coordinate part of the
distribution functions fa, fb due to the change of particle
positions in collisions. As a result, kernel (12) may be
represented as

wab � nb�ra�d�ra ÿ ra0�
�
d

dt
d
ÿ
~pa�r; pa0; t� ÿ pa

�
d3r ; �14�

where nb �
�
fb d

3pb is the concentration of particles of sort b
at point ra. In what follows, we omit d�ra ÿ ra0� in expression
(14) and assume all collisions to be local.

When Ha and Vab are periodic functions of time (for
instance, in the case of collisions in a plane EM wave) with a
period T � 2p=o0, the collision function and, accordingly,
the collision operator should also be periodic functions of
time. It is therefore of interest to find the average value and
amplitudes of harmonics of the collision operator. The time
average of the collision kernel is expressed as



wab�p; p0�

� � nb
T

� t�T

t

w�p; p0; t� dt : �15�

In what follows, the subscripts a of the momenta are omitted.
Let us go over to Cartesian coordinates x, r1, and r2 with

the origin at the point of ion residence and the x-axis aligned

3 In quantum mechanics, this transition is termed the Kramers±Henne-

berger transformation.
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with the initial momentum p0. Using the condition of
Hamiltonian periodicity with a period T, we write down the
expression for the momenta at different points in time as
x! ÿ1:

p�t; x� � p�tÿ T; xÿ z�; z � jv0jT : �16�

Here, the initial velocity v0 is related to the initial momentum
in the ordinary way: v0 � p0=m. Relation (16) for momenta
permits representing function w (15) as


wab�p; p0�
�

� nb
T

X1
n�ÿ1

���n�1�z
nz

h
d
ÿ
~p�t� T � ÿ p

�ÿ d
ÿ
~p�t� ÿ p

�i
dx d2r

� nb
T

lim
X!ÿ1

��X�z

X

X1
n�ÿ1

h
d
ÿ
~p
ÿ
t� �n� 1�T �ÿ p

�
ÿ d
ÿ
~p�t� nT � ÿ p

�i
dx d2r

� nb
T

lim
X!ÿ1

��X�z

X

h
d
ÿ
~p��1� ÿ p

�ÿ d
ÿ
~p�ÿ1� ÿ p

�i
dx d2r ;

where X is the distance between the incident particle and the
scattering center. The initial momentum ~p�ÿ1� is identical to
p0, and so one has



wab�p; p0�

� � nb
T

lim
X!ÿ1

��X�z

X

�
d�p� ÿ p� ÿ d�p0 ÿ p�� dx d2r ;

�17�
where p� � ~p��1�. Therefore, the physical meaning of the
period-averaged kernel of the collision operator lies in it being
the particle velocity distribution density in the problem of
monoenergetic beam scattering.

We revert to formula (11) to obtain the expression for the
collision operator [46]

Stab� f �

�
� nb

T
lim

X!ÿ1

��X�z

X

�
f �p0�

�
d�p� ÿ p� ÿ d�p0 ÿ p�� d3p0 dx d2r ;

�18�
which generalizes the Boltzmann collision integral to the case
of scattering in a periodically time-varying potential. Thus,
the distribution function variation upon collisions is only
determined by the motion of particles along their trajectories.
Accordingly, the momentum distribution results as the
integral change of particle momenta in a trajectory motion.

Similarly, it is possible to find the expression for the
amplitude of the kth harmonic of the kernel of the collision
operator:

wab
k � iko0 lim

X!ÿ1

��X�z

X

�1
ÿ1

d
ÿ
~p�t� ÿ p

�
exp

�
i2ptk
T

�
dt dx d2r :

�19�

We note one more important and more or less obvious
property of expressions (17)±(19). The collision operator (18)
gives the exact solution for the distribution function evolution
over a period in quasimonochromatic EM fields, while
expression (19) permits calculating the spectrum of its

harmonics. Specifically, upon averaging over a period, only
the term

�
qt f dt � f �t� T � ÿ f �t� remains on the left-hand

side of kinetic equation (7), while the collision operator (18)
remains on the right-hand side. This permits constructing
numerical methods (like the particle-in-cell technique) which
fastly and accurately calculate the plasma evolution with a
rather large time step equal to the EM-field cycle.

The collision operator (11) and expressions (17) and (19)
for the function wmake it possible to easily find the collision
characteristics (moments), for instance, for the Joule heating
of the plasma:

dTe

dt
� d

dt

�
p 2

2m
f �p; t� d3p � mv 2osc

2

�
nei�p0� f �p0� d3p0 : �20�

Here, the effective collision frequency nei is introduced as the
cycle-averaged variation of plasma electron energy per unit
time referred to the electron oscillatory energy:

nei�p0� �
2m

p 2
osc

ni
2m

�
p 2


wei�p; p0�

�
d3p ; �21�

where ni is the ion concentration. With the use of formula
(17), it is easy to obtain the expression for the collision
frequency

nei�p0� �
ni

Tp 2
osc

lim
X!ÿ1

�� X�z

X
�p 2
� ÿ p 2

0 � dx d2r : �22�

As shown by this expression, to calculate the energy variation
in collisions, it is sufficient to find the variation in time
�ÿ1;1� of the energies of test particles from one layer with
width z along x.

By changing coordinates j � zx=�2p� � p0Tx=�2pm�, we
represent formula (22) in a more convenient form:

nei�p0� � niv0seff ; seff�p0� � lim
X!ÿ1

�� 2p

0

p 2
� ÿ p 2

0

p 2
osc

dj d2r :

�23�

The effective cross section seff has the dimension of area and
characterizes the ratio of the number of particles that changed
their energy by a value of p 2

osc=�2m� to the incident particle
flux density. It is precisely this quantity that will be employed
for calculating the Joule heating of the plasma.

Similarly, it is possible to find out the electron beam
current determined by collisions:

djei
dt
� e

d

dt

�
p d�pÿ p0� d3p � eni

�
pwei�p; p0; t� d3p : �24�

When expression (19) for the wei function is substituted into
expression (24), we obtain the expression for the Fourier
spectrum of current jei:

jo �
�
jei exp �iot� dt

� eni lim
X!ÿ1

�� X�z

X
po

� X1
n�ÿ1

exp

�
ion

2p
o0

��
dx d2r : �25�

The sum on the right-hand side of expression (25) comprises
the sum of d functions:

jo � e lim
X!ÿ1

�� X�z

X
po dx d2r

X1
n�ÿ1

d�oÿ no0� ; �26�
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since the system's response (in particular, plasma response) to
a periodic perturbation at the frequencyo0 should be periodic
with frequencies that are multiples of o0.

The external field has no effect on the electron±electron
collisions. As a consequence, the electron±electron collision
frequency nee will almost always exceed the electron±ion
collision frequency, and any anisotropy of the distribution
function would be expected to smooth out in a time 1=nee. So
that the electron distribution function may be treated as
isotropic under electron±ion collisions. An exception is
provided by the domain Zvosc > vT > vosc, where the elec-
tron±ion collision frequency is higher than the electron±
electron collision frequency, as shown by Langdon [47, 48].
(Here,Z is the ion-to-electron charge ratio.) As a consequence,
the electron distribution function becomes anisotropic.

It should be noted that, for an isotropic distribution
function f �jpj�, on the strength of the symmetry relation for
x! ÿ1 one obtains

p�t; x; p0� � p

�
t� T

2
;ÿx;ÿp0

�
�27�

and only odd harmonics of the frequencyo0 will remain in the
sum. As a result, formula (26) takes on the form

jo � eniv0vcoh�p0�
X1
n�ÿ1

d�oÿ no0� ; �28�

where we introduced the quantity vcoh, which will be referred
to as the coherent radiation cross section:

vcoh�p0� � lim
X!ÿ1

�� 2p

0

po�X� jra; q� dj d2r : �29�

Similarly, it is possible to derive expressions for other
quantities. The transport cross section, characterizing the
area from which particles are scattered through an angle of
order p=2, has the form

str�p0� � lim
X!ÿ1

�� 2p

0

�
1ÿ p�p0

p�p0

�
dj d2r : �30�

The incoherent radiation cross section, which has the
dimension of area per energy, is defined as

winc�p0� �
4

3c 3
lim

X!ÿ1

�� 2p

0

p 2
o dj d2r : �31�

While expression (26) for the collisional current takes into
account the correlatedness of the powers of radiating
sources, in expression (31) for the incoherent radiation
these powers are summed ignoring possible correlation
between them. This is the commonly accepted method for
calculating the incoherent radiation intensity in the presence
of collisions [49].

2.3 Perturbation method
Unfortunately, the exact analytical solution of the equation
of motion of a test particle is rather hard to find. In some
cases, however, attempts to develop a perturbation theory do
meet with success when the particle trajectory departs only
slightly from the straight one. This approximation is termed
the small-angle or straight line approach [2±4, 15, 26, 31]. In
essence, the approximation reduces to ignoring the term

�Vab; gab�5 �Vab; fa fb� �32�

in equation (8) for the correlation function:

qtgab � �Ha �Hb; gab� � ÿ�Vab; fa fb� : �33�

It should be noted that assumption (32) alone imposes the
rectilinearity condition for particle drift trajectories during
collisions. This approximation is fully justified for high-
energy particles, v4 vosc, which experience a single impact
on an ion and never return to it, or for a repulsive interaction
potential (for instance, in electron±electron or ion±ion
collisions), when each successive collision is weaker than the
previous one. However, for slower particles, v4 vosc, the
situation in electron±ion collisions is not that unambiguous,
because in this case the electron has a chance to return to the
same ion a cycle later and experience a stronger impact. In
particular, it was shown in Refs [38±43] that the inclusion of
electron returns to the ion significantly changes the scattering
picture.

So, let us focus on high-energy particles with v4 vosc. The
solution of equation (33) is easily found in view of the zero
value of the Poisson bracket �Ha; pa� (i.e., for a constant drift
momentum in the particle `trajectory'):

gab � ÿfb
�
�Vab; fa�

���
tr
dt � fb

q fa
qp

�
qVab
qr

����
r!r�vt

dt :

By substituting this expression into operator (11), we obtain
the collision operator, which is expressed in quadratures:

St � fa� � nb

�
d3r

�
Vab; q faqp

�
qVab
qr

����
r!r�vt

dt

�
: �34�

We emphasize that the quadratic dependence on the Cou-
lomb potential (or on the ion charge), which emerged here
only on the strength of approximation (32), is by no means a
consequence (criterion) of binary collision approximation.
Furthermore, a rigorous solution of equation (8) might yield
any degree of its dependence on the ion charge, because the
test particle trajectories depend on it in a transcendental way.

In the nonrelativistic approximation, when the interaction
potential is independent ofmomenta (13), this integralmay be
calculated analytically. It is easily seen, indeed, that the
collision operator in this case may be represented as

Stab � fa� � q
qpj

Bi j
q f �p�
qpi

; �35�

where tensor Bi j is defined by the expression

Bi j �
��

qVab
qrj

����
r!r�vt

dt
qVab
qri

d3r : �36�

Using the Fourier expansion for the Coulomb potential

1

r
� 4p

�
exp �ikr�

k 2

d3k

�2p�3 ;

we obtain

Bi j�t� � 2Z 2e 4

p

�
d3k

k 4
kikj exp

ÿÿikrosc�t��
�
�
exp

ÿ
ikvt 0 ÿ ikrosc�t 0�

�
dt 0 : �37�
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In the laboratory frame of reference, this corresponds to
V P Silin's collision integral [2]

Bi j�t� � 2Z 2e 4

p

��
d3k dt

k 4
kikj exp

�
ik
ÿ
v� vosc�t�

�
t
�
: �38�

The form of integral (38) may be simplified within a
logarithmic accuracy. With this aim, we note that in the
case of high k (significant, for instance, for determining the
efficient collision frequency) it is possible to ignore the
variation of the total particle velocity with parameter
kv=o � kra 4 1 at the instant of scattering:

Bi j�t� � 2Z 2e 4
�
d3k

k 4
kikj d�kV�

� 2pZ 2e 4
di jV 2 ÿ ViVj

V 3
ln

ra
bv
; �39�

where V�t� � v� vosc�t� is the total particle velocity at
the instant of impact, di j is the Kronecker delta, and ra is
the adiabaticity radius. In the domain of small k
�krosc 5 kra 4 1�, the term krosc�t� may be discarded in
expression (37), which corresponds to the lack of the external
field effect on distant collisions:

Bi j � 2Z 2e 4
�
d3k

k 4
kikjd�kv� � 2pZ 2e 4

di jv 2 ÿ vivj
v 3

ln
rD
ra
:

�40�
Finally, for the collision operator in the applicability

domain of the small-angle approximation we obtain

Bi j � 2pZ 2e 4
di jV 2 ÿ ViVj

V 3
ln

ra
bv

� 2pZ 2e 4
di j v 2 ÿ vivj

v 3
ln

rD
ra
: �41�

The first term on the right-hand side of expression (41)
corresponds primarily to the plasma energy variation in the
particle interaction with the external electromagnetic wave
field. The second term does not entail plasma energy
variations and, as a rule, is not considered. It is responsible
only for the transport characteristics of the scattering (by
analogy with the Landau collision operator for electron±
electron collisions).

Expression (41) for tensor Bi j is of a rather general form.
In several specific cases, it becomes significantly simpler and
is brought to some well-known formulas or permits drawing
conclusions about the particle dynamics in these regimes. Let
us consider them.

In the absence of an external field �vosc ! 0�, the total
particle velocity is equal to the drift velocity of the particle:
V�t� ! v. Accordingly, Bi j goes over into the Landau tensor
B 0
i j (40), which appears in the Landau collision integral:

Bi j ! 2pZ 2e 4
di jv 2 ÿ vivj

v 3

�
ln

ra
bv
� ln

rD
ra

�
� 2pZ 2e 4

di jv 2 ÿ vivj
v 3

ln
rD
bv
: �42�

Notice that the integral of a traditional form in the presence of
the nonzero EM field [2] is devoid of such a passage.

For an opaque plasma, o < op , ra > rD, tensor Bi j

takes the form of the Landau tensor with replacement of the

drift velocity by the total particle velocity:

Bi j � 2pZ 2e 4
di jV 2 ÿ ViVj

V 3
ln

rD
bv
: �43�

This tensor form is traditionally employed for defining the
permittivity of opaque plasmas [5].

In the opposite limiting case of high-frequency fields,
ra < bv, tensor Bi j is identical to the Landau tensor (40) in
the problem without the field:

Bi j � 2pZ 2e 4
di jv 2 ÿ vivj

v 3
ln

rD
bv
: �44�

Notice that the same form ofBi j results from integral (37) also
when the oscillatory radius is small in comparison with the
Rutherford radius, rosc 5 bv, irrespective of the drift-to-
oscillatory velocity ratio. In both cases �ra; rosc 5 bv�, the
part responsible only for the variation of particle momentum
direction and not for the variation of particle energy remains
in tensor Bi j. This signifies, in particular, that the transport
cross section remains Rutherfordian in these ranges, towithin a
logarithmic factor. The absence of energy variation in
expression (44) signifies that determining the effective
frequency responsible for plasma energy variation in these
ranges calls for the inclusion of larger-angle scattering [50,
51]. However, this does not necessary mean the absence of
energy exchange in the domains under consideration, as is
stated, for instance, in Ref. [15].

Lastly, in a transparent plasma in the domains

v4 vosc ; bv5 ra 5 rD �45�

tensor Bi j (41) contains both terms. The term responsible for
energy variation [the first term in expression (41)] is of the
form of the tensor first proposed by Silin [2], which is
traditionally used in this domain.

The further generalization of the Silin collision integral
(41) to the low-velocity domain should be performed with the
inclusion of the finite curvature of the characteristics of the
equation for the correlation function, i.e., should overstep the
limits of the straight line approximation.

3. Equation of motion of a test particle.
Numerical integration problems

Let us turn to the low-temperature plasma case, v5 vosc. To
calculate the collision operator (11), (18), one has to describe
the motion of test particles. We consider in more detail the
equation of motion corresponding to Hamiltonian (13). A
uniform monochromatic electric field, which is called the
pump field below, is imposed on plasma:

E�t� � ERe �e0 exp �io0t�� :

The equations of motion may be written down in the
dimensionless form:
� for the laboratory frame

�R � ÿ R

jRj3 �Re
�
e0 exp �iOt�

�
; �46�

� for the drift coordinates R � rÿ rosc

�r � ÿ q
qr

1

jrÿ roscj ; rosc � 1

O 2
Re
�
e0 exp �iOt�

�
: �47�
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Here, we introduced the characteristic scales

rE �
�������
eZ

E

r
; oE �

����������
eE 3

m 2Z

4

r
; vE �

������������
Ze 3E

m 2

4

r
; �48�

whereE is the amplitude of a pump field, and e0 is the complex
vector which characterizes the polarization of the pump field.
In particular, for linear (LP) and circular (CP) polarizations,
it is conveniently taken in the form

eLP0 � f0; 0; 1g ; eCP0 � f1;ÿi; 0g : �49�

In equations (46) and (47), a unique dimensionless
parameter appearsÐ the dimensionless frequency, which
characterizes the pump field [38, 39]:

O � o0

�
m 2Z

eE 3

�1=4

� o0

oE
: �50�

The amplitude E and the frequency o0 enter into parameter
O as the combination E 3=o4

0. This signifies that collisions in
strong high-frequency fields (for instance, of the laser range)
are similar to collisions in weaker low-frequency fields (for
instance, of the microwave range). Therefore, the phase-
space structure and the expected effects are determined only
by the O parameter and are fundamentally different in the
high-frequency, O4 1, and low-frequency, O5 1, field
domains [52].

For high O values, the phase-space structure will appreci-
ably vary only in a small neighborhood of the separatrix
which separates the transit trajectories from the captured
(quasiperiodic) ones. As the field amplitude increases (and
parameter O lowers), the volume of the stochastic layer
increases and becomes of order vosc � 1=O4 1 for O5 1. In
dimensional variables, this corresponds to the oscillatory
radius in coordinate space, and to the oscillatory momentum
in the momentum space. This evolution is qualitatively
depicted in Fig. 2. From the standpoint of the scattering
problem, this signifies that in weak fields �O4 1�, or as long
as the drift (thermal) electron velocity is high in comparison
with the oscillatory one, the particle dynamics are regular and
the energy exchange with the field may be calculated by the
Landau model. By contrast, in the strong field case �O5 1�,
under conditions whereby the oscillatory velocity is far higher
than the drift one, the domain of irregular dynamics becomes
determinative in the phase space of the system. Even these
simple considerations suggest that these effects could not be
adequately included in the early papers of the 1960s±1970s,
because the very notion of stochasticity was still in its infancy.
Furthermore, this problem was also quite difficult from the
standpoint of numerical solution.

The second parameter that determines the collisions of
individual particles is the thermal electron velocity vTe. Since

the external electric field has no effect on electron±electron
collisions, their frequency in strong fields will exceed the
electron±ion collision frequency: nee 5nei; nii. Consequently,
any inhomogeneity of electron velocities (for instance, due to
electron±ion collisions) will be promptly (in parameter nee=nei)
isotropized. Therefore, due to the isotropy of the distribution
function, the directions of individual-electron velocities must
have no effect on the result (averaging should be performed
over them), i.e., the second parameter that defines the
collision dynamics is the modulus of thermal electron
velocity.

Thus, collisions are only affected by two dimensionless
parameters: the frequency O � o0=oE, and the velocity
v � vTe=vE. At the same time, it is possible to introduce
three physically meaningful spatial parameters that affect
the particle trajectory: bv, rosc, and bosc, and the parameter ra
determining the character of particle energy variation by the
pump field.Wewrite them out in dimensional and dimension-
less (in square brackets) forms:

bv � Ze 2

mv 2
�
�
1

v 2

�
; rosc � eE

mo2
0

�
�

1

O 2

�
;

�51�
bosc � Ze 2

mv 2osc
� �O 2� ; ra � v

o0
�
�
v

O

�
:

Parameter bv, which is termed the Rutherford radius,
characterizes the size of a domain, such that an electron with a
velocity v is scattered through the angle of about 1 rad
(disregarding the pump field) on finding itself inside it.
Similarly, bosc � bv�vosc� is the size of a domain, such that
the electron with an oscillatory velocity will be scattered
through the angle of about 1 rad on finding itself inside it.
The oscillatory radius rocs is the electron oscillation radius in
the pump field (disregarding the ion Coulomb field). The
adiabaticity radius ra characterizes the size of a domain in
which the electron motion is not adiabatic, i.e., the time ra=v
taken to transit this domain is much shorter than the field
period 2p=o0. We also give the expression for the normal-
ization scale rE (48) in terms of parameters (51):

rE �
��������������
roscbosc

p
: �52�

By comparing parameters (51) between themselves in the
O� Ov parameter plane, one can single out three domains
(Fig. 3) representing fundamentally different dynamics of
electron motion. We note that only two domains have
traditionally been considered: the weak field domain with
v4 vosc, and the strong field domain with v5 vosc.

We briefly consider all of them.
High-velocity domain. The particle trajectory in the high-

velocity domain �bosc 4 bv , v4 vosc� is close to the Ruther-
fordian one, because the pump field is low, vosc 5 v, and so
the effect of the external field on the trajectory may be
neglected. The motion is regular. There are no particle
captures, and the collisional current is absent. This is the
best-studied parameter domain. Moreover, in the calculation
of energy variation (the effective collision frequency) in the
domain ra 4 bv, use can be made of the small-angle approx-
imation [2] (see Section 2.3). Outside this domain, the small-
angle approximation is inapplicable. In the ra 4 bv domain, a
more accurate calculation of energy variations with the
inclusion of considerable electron attraction by the ion is
required.

z

pz

O5 1, posc 4 1

r � 1

z

pz

O � 1, posc � 1

r � 1

z

pz

O4 1, posc 5 1

r � 1

Figure 2.Variation of the stochasticity domain (shown qualitatively) in the

phase space under variation of parameterO. The separatrix curve is shown
with a dashed line.
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Domain of averaged description. In the averaged descrip-
tion domain, where rosc 5 bosc 5 bv, the effect of external field
on the particle trajectory is significant, but it may be included
by introducing an averaged potential in view of the high
frequency of the pump field [50, 51]. The motion turns out to
be regular once again. The possibility appears that a particle
`falls' on the center because of the nonpoint-like singularity of
the averaged potential. Distant trajectories are close to the
Rutherfordian ones. Correspondingly, close are the cross
sections: the transport and incoherent radiation cross sec-
tions.

Domain of multiple returns. In themultiple return domain,
where bosc 5 rosc; bv and bosc 5 bv , v5 vosc, the electron
trajectory rosc exhibits a slow oscillatory drift. This domain is
most difficult to describe analytically. A wealth of new effects
manifest themselves in this domain: the multiflow state,
stochastic dynamics in the particle scattering, particle
capture by ions, particle grouping (bunching) in the scatter-
ing, etc. It is precisely this domain that will receive the bulk of
our attention below.

Numerical integration problems. The numerical data out-
lined below rely on the calculation of the moments of the
collision operator and of the cycle-averaged collision function
wei (17) by numerical integration. The integration was
performed over the initial coordinates r0 using the Monte
Carlo method. The electron trajectories were calculated by
the Runge±Kutta method. Several difficulties are encoun-
tered in the numerical integration of the moments of the
collision operator.

The first difficulty is due to the fact that a huge number of
trajectories need to be calculated. Owing to a strong
irregularity (see Section 6) of the integrands in formulas (23)
and (29), a large number of trajectories emanating from the
initial coordinates r0 have to be calculated for each point
fp0;Og:

Ntraj � 50

min �O 4; v 4� max

�
20;

1

O 2

�
: �53�

This number was sometimes as high as 108.
The irregularity of the functions arises from the possibi-

lity that a particle acquires a substantial energy variation

Dw � v 2osc � 1=O 2 in comparison with its own energy. This
signifies that a small fraction of particles �� O 2� that changed
their energy up to v 2

osc make an appreciable contribution to
the overall variation of particle energies and, accordingly,
cross sections. To calculate the scattering characteristics
correctly, a small fraction of these particles should also be
taken into account.

Another limiting factor is the computer time required for
calculating an individual trajectory. This applies especially to
low-velocity electrons or a high-frequency pump field. The
computation time (the number of steps in the solution of the
equation of motion) may be estimated as

Nstep � Otpass � X
v
O ; X5 max

�
3v

O
;
4

v 2
;
2

O 2

�
; �54�

where the initial distance X was taken as the longest of all
characteristic scales of the problem.

Therefore, the complexity of numerically solving a
problem with the number of operations on the order of
NtrajNstep at the very least increases with catastrophic speed
with a decrease in parameter OÐas a quantity proportional
to 1=O taken to the seventh power! The limitation of the
computation domain is related to precisely this circumstance.
Numerical simulations for small O �O < 0:1� are practically
lacking.

Mention should be made of two more problems in the
numerical simulation of collisions in very strong (or, con-
versely, low-frequency) fields [52].

The first one shows up in particle-in-cell (PIC) simulations
and is due to the fact that modern computers are capable of
calculating only a finite (on the order of several dozen or
hundred) number of particles in one cell.4 In strong or low-
frequency fields, the electron oscillation radius becomes large
in comparison with the interparticle distance. This requires to
either including a very high number of particles in a cell, which
is so far unreal, or numerically `tearing' the electronmotion to
pieces upon crossing the cell boundaries. The problem with
such a discontinuous trajectory lies in the fact that a
`numerical' electron loses information about the variation of
parameters in the motion in the other cell. At the same time, a
real electron, owing to the continuity of its smooth trajectory,
retains information about the scattering during the previous
oscillation period and, for a sufficiently low drift velocity, will
be able to accumulate the impact parameter variation for a
qualitative change in its dynamics. This brings up the
question: how distinct is this dynamics change? The data of
numerical simulations suggest that it is considerable. This
signifies that the description of particle collisions in plasmas
by any of the existing PIC codes is invalid for a strong field.
Ways of remedying this problem are described in Section 7. It
should be noted that integration by calculating quantities
from the numerically derived smooth trajectory of test
electron scattering is devoid of the above drawback. In this
case, the computer does not introduce random distortions to
the particle trajectory that arise from crossing the cell
boundaries.

The second problem consists in the complexity of a valid
description of a particle motion about the ion and of large-

bosc 5 bv, rosc

rosc 5 bosc 5 bv

bv5 bosc

ra 5 bv

ra 4 bv

lnO

ln �Ov�

Figure 3. Division of �O� Ov� parameter plane into domains of various

electron dynamics.

4 A cell represents an artificially (by the programmer's will) selected space

domain, in which the particle motion is calculated precisely and the

contribution from the outside particles is determined by the mean-field

method.
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angle scattering [53±55]. Specifically, the equations of motion
in the form of expression (46) have a singularity at the point of
ion residence. As the electron approaches the ion, its velocity
increases as

1��
r
p !

r!0
1 ;

which hinders the numerical passage of this vicinity. Further-
more, the characteristic time of velocity variation and, hence,
the maximal step are proportional to

r 3=2 !
r!0

0

and may be much shorter than the pump field period. For a
low frequency of the pump field, O5 1, the ratio between the
time of one impact, � O 3, and the total scattering time
rosc=v � 1=�O 2v� decreases quite rapidly (as O 5) with a
decrease in frequency O! This circumstance compels the
code to unjustifiably narrows the time step, which leads to a
very long computation time or to an incorrect calculation of
the particle motion about the ion and thereby to significant
random data errors. We note that the majority of PIC codes
do not consider this problem at all, assuming that the fraction
of particles that are scattered through large angles is small and
may be ignored. The results presented in our review are
indicative of the opposite: the contribution from particles
scattered through large angles is significant in strong fields.

To eliminate this problem, in the numerical integration of
equation (46) use was made of regularization of the equation
of motion [52], which consisted in the introduction of fictive
time s related to real time t by the differential relationship 5

dt � f �R� ds ; f �R� > 0 : �55�

In this case, the equations of motion take on the forms

R 0 � P f �R� ; P 0 �
�
ÿ R

R 3
� E�t�

�
f �R�; t 0 � f �R� : �56�

Here, the prime denotes differentiation with respect to
parameter s, which is sometimes called the fictive time.
Furthermore, owing to the explicit time �t� dependence of
the equations, an additional equation for the `real' time t
appears.

For a function f �R�, one may choose

f �R� � R 2

1� R 2
: �57�

This function eliminates the explicit singularity in the
equations at R � 0 and turns to unity at infinity, where the
effect of the Coulomb potential is weak. In addition, this
function is rapidly calculated in the numerical simulation.

The purpose of introducing time s is that the system of
equations `selects' the real-time �t� step on its own in the
motion along a trajectory. Away from the ion �R!1�, the
time flows in a normal way. As the ion is approached, the time
`slows down'. This corresponds to the fact that in the course
of numerical integration in the motion with a constant step in
s, the step in real time t automatically splits near the Coulomb
singularity. The momenta themselves, unlike those in the case
of Levi-Civita regularization [52, 56], may turn to infinity, but
they vary slowly on the fictive time scale. This scheme permits

the collision-induced particle momentum variation to be
calculated more quickly and precisely due to the elimination
of explicit singularity from the equations of motion. How-
ever, this is achieved at the expense of raising the dimension of
the system of equations: a new independent variable t
appeared along with the equation for it.

4. High-velocity domain

Let us consider in greater detail the dynamics of electron±ion
collisions in each of the above domains (see Fig. 3). We begin
with the domain of high electron velocities, v4 vosc. In this
case, the influence of an external field E on the particle
trajectory may be disregarded and the particle motion may
only be considered in the Coulomb ion potential:

�r � ÿ r

r 3
: �58�

The solution to the problem of a particle motion in the
Coulomb potential, which is called the Rutherford problem,
is well known [36]. Our concern is only with infinite
trajectories. In this case, the motion occurs over a hyperbolic
trajectory, which is conveniently represented in the para-
metric form:

r � bv�e cosh xÿ 1� ; j � eÿ cosh x
e cosh xÿ 1

; �59�
t � bv

v
�e sinh xÿ x� ;

where e � ���������������������
1� r2=b 2

v

p
is the orbit eccentricity, and para-

meter x assumes values 6 from ÿ1 to 1. The minimum
particle±ion distance is expressed as

rmin � bv�eÿ 1� �
����������������
b 2
v � r2

q
ÿ bv �

r ; r4 bv ;

r2

2bv
; r5 bv :

8<: �60�

The first approximate equality signifies that the impact
parameter is hardly changed for r4 bv, i.e., the particle
describes a nearly straight line. The second one is indicative
of a strong particle attraction by the ion when r5 bv, so that
the minimum approach distance to the ion turns out to be
much shorter than the initial impact parameter. In particular,
by solving the inverse problemÐwhat is the initial impact
parameter (or what is the initial area, which is the same thing)
of the particle whereby it finds its way into the domain of
radius aÐit is easy to obtain the formula

rgr �
�����������������������������
�a� bv�2 ÿ b 2

v

q
'

a5 bv

����������
2abv

p
4 a : �61�

An estimate of the effective cross section at high �ra 5 bv�
frequencies may be obtained even from relation (61):

seff 5 2prabv ; ra 5 bv : �62�

True, only those particles that approach the ion to a distance
less than the adiabaticity radius ra � v=O can change their
energy. From formula (61), for short ra �ra 5 bv� one can see
that particles are collected from an area pr2gr � 2prabv.

5 Since kinetic effects are not described in this section, f in Eqn (55) simply

denotes some function in no way related to a distribution function.

6 Parameter x, which is related to time t by the equation dt � r dx, is
interpreted as the fictive time in going over to Levi-Civita coordinates.
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Accordingly, the effective cross section should be no smaller
than seff 7 estimated by expression (62). This quantity is
appreciably greater [by a factor of bv=ra �bv=ra 4 1�] than
the effective cross section r 2a derived from the small-angle
approximation [15].

The expression for the particle velocity variation Dv in the
scattering from a Coulomb center is helpful in the subsequent
discussion:

Dv � ÿ q v

r
2
�������������
e 2 ÿ 1
p

e
ÿ v

2

e 2
� ÿ 2q v 3

1� r2v 4
ÿ 2v

1� r2v 4 :
�63�

In this case, the scattering angle is expressed as y �
pÿ 2 arccos �1=e� � 2 arctan �bv=r�. By substituting it into
expression (30) for the transport cross section, we arrive at the
well-known Rutherford formula [36]:

str � 2pL
v 4

; �64�

which is also valid in the framework of quantum mechanics
[57].

From the particle trajectory (59), one can find the energy
radiated by one particle in a frequency range do [49]:

dEo � po2

6c 3

�
H 0 2 ÿ e 2 ÿ 1

e 2
H 2

�
do :

Here, c is the speed of light in vacuum, H � Hin�ine� is the
first-order Hankel function of rank in, andH 0 � H 0

in�ine� is its
derivative with respect to argument n � bv=ra�o� � o=v 3.
Integrating over many particles permits finding the emission
cross section (31) in the scattering of a beam of particles
moving in parallel [49]:

winc �
4p2o
3c 3v 5

��Hin�in�H 0
in�in�

�� : �65�

Using the formula Hin�iz� � ÿ�2i=p� exp �np=2�Kin�z�, the
cross section (65) may be rewritten in the form

winc �
16

3

F�n�
c 3v 2

; F�n� � n exp �np�Kin�n�K1ÿin�n� � K1�in�n�
2

:

�66�
Here, Kin�z� is the modified Bessel function of rank in.

We give special consideration to low- and high-frequency
cases. For low frequencies n5 1, one may approximately put
Kin�n� � K0�n� � ln �2=�gn�� andK1�in�n� � 1=n, where g is the
Euler constant exponent, g � 1:78107 . . . . In view of this, we
find

winc �
16

3v 2c 3

�
1� pbv

ra

�
ln

2ra
gbv

; bv5 ra : �67�

For high frequencies n4 1, we take advantage of the
expansions

Hin�in� � ÿ i

p
���
3
p
�
6

n

�1=3

G
�
1

3

�
;

H 0
in�in� �

1

p
���
3
p
�
6

n

�1=3

G
�
2

3

��
1� 7

90

�
6

n

�1=3�

(where G is the gamma function). We substitute them into
formula (65) to obtain the effective emission cross section at
high frequencies:

winc �
16p

3
���
3
p

c 3v 2

�
1� 7

90

�
6ra
bv

�2=3�
; bv4 ra : �68�

The next order of expansion in the small parameter was
purposefully retained in formulas (67) and (68) (compare with
the corresponding formulas in Ref. [49]) for their further use
in the search for the effective collision frequency.

To determine the effective collision frequency in the
domain of v4 vosc under consideration, it is convenient to
take advantage of the formula that relates the spontaneous
(bremsstrahlung) emission and the stimulated (particle
energy variation) emission for an isotropic velocity distribu-
tion:

neff � p2c 3ni
v 2

q
qv
�wincv 2� ; �69�

which was derived in Ref. [58] proceeding from the principle
of detailed balance (see also Refs [5, 59]). The convenience of
formula (69), which was derived from quantum-mechanical
considerations, resides in that it relates two nonquantum
processes: the dipole radiation of a particle in its trajectory
motion, and the variation of particle energy under the action
of a weak external field.

In our case, this permits finding the effective collision
frequency for a complicated particle trajectory without
resorting to unwieldy calculations (under classical or quan-
tum approaches). By applying expression (69) to expression
(66) for the radiation cross section, it is possible to find neff:

neff � 16p2ni
3v 3

n
dF�n�
dn

: �70�

For low and high values of n, the expression for the
effective collision frequency (70) is simplified:

neff �
9:45 niv b

2
v ln

ra
bv
; ra 4 bv ;

2:94 niv b
2
v

�
ra
bv

�2=3

; ra 5 bv :

8>><>>: �71�

The first formula in expressions (71) gives the well-known
result of the small-angle scattering theory. The second
formula, which describes collisions in the case of strong
attraction, was obtained proceeding from quantum-mechan-
ical approaches in Refs [50, 51].8 We note that, owing to
substantial attraction, at high frequencies of the external field
the collision frequency decreases much more slowly than
1=o2, as is predicted in the framework of the small-angle
scattering theory [15], and so the plasma description calls for
the inclusion of large-angle scattering.

5. Averaged description domain

In the case of a strong �vosc 4 v� and high-frequency �O4 1�
field, the following inequalities hold true:

bv4 bosc 4 rosc ; �72�

8 The result obtained in Refs [50, 51] differs from ours by a numerical

factor.

7 In reality, the particles that approach the ion to a closer distance

experience a higher energy change than the small-angle ones, and there-

fore the effective cross section turns out to be even greater.
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and the equations of motion (47) may be simplified. To this
end, we expand the potential on the right-hand side of the
equation in a Fourier series:

1��rÿ rosc�t�
�� � X1

n�ÿ1
Un�r� exp �iOnt� ;

�73�
Un�r� � O

2p

� 2p=O

0

exp �ÿiOnt�
jrÿ roscj dt :

Under condition (72), the particle velocity variation over a
field cycle 2p=O is small. Then, wemay keep in series (73) only
the zero-order term

U0�r� � O
2p

� 2p=O

0

dt

jrÿ roscj ; �74�

which is also termed the averaged potential.
In the case of linear polarization, integral (74) is taken

analytically [14]:

ULP
0 �r� � ÿ

2

p
����������
r�rÿ
p K

" �������������������������������������
4r 2osc ÿ �r� ÿ rÿ�2

4r�rÿ

s #
; �75�

where r� �
�������������������������������
r 2? � �z� rosc�2

q
, r? �

����������������
x 2 � y 2

p
, and K�m� is

the complete elliptic integral of the 1st kind. As expected, the
averaged potential (75) is axially symmetric about the z-axis
and is an even function of z. At the stopping points r� � 0, the
potential has a square-root singularity: ULP

0 � ÿ1=
������������
roscr�
p

,
and a logarithmic singularity on the symmetry axis for
jzj < rosc:

ULP
0 � ÿ 4

p
ln

�
r?rosc

r 2osc ÿ z 2

�
�r�rÿ�ÿ1=2 :

However, of greater interest is the expansion of the
averaged potential at long distances �r4rosc�:

ULP;CP
0 � ÿ 1

r

�
1� r 2osc

r 2
3 cos2 yÿ 1

4
� . . .

�
; �76�

where y is the angle between the electron velocity and the
z-axis. The first term in the expansion represents the Coulomb
ion field, and the next terms are responsible for the noncentral
nature of the averaged potential.

Indeed, it follows from the applicability condition (72)
of the averaged description that it makes sense to consider
the particle motion with velocities v5O, i.e., the range
r4 rosc of distances is significant in the particle motion. It
can be seen from expansion (76) that the motion of the

majority of particles continues to be adequately described
by Rutherford formulas. The emergence of a higher-power
potential, � 1=r 3, appears as a new circumstance, which
makes possible the trapping of transit particles and the fall
of particles on the center even for a nonzero impact
parameter.

As the center is approached, expansion (76) becomes
inapplicable. However, the motion in the exact potential
proceeds in a similar manner (Fig. 4) of attraction to the
ion.9 In this case, the attraction in the exact potential turns
out to be stronger than in the approximated potential (76).

The particle capture cross section may be estimated from
formula (61) as the cross section whereby the minimum
approach distance is equal to rosc:

scap ' pr2gr ' 2pbvrosc ; bv4 bosc 4 rosc : �77�

It is easily seen that this cross section increases with a lowering
of the particle velocity v or of the field frequency O.

We revert to the complete dynamic problem (73) to note
that capture cross section (77) yields an estimate from below
of the effective cross section seff. Specifically, particles that
encounter the singularity of the averaged potential in the
dynamic problem experience scattering by large angles and
change their energy by a magnitude on the order of the
oscillatory energy mv 2osc. Therefore, the estimated effective
cross section is

seff 5scap ' 2pbvrosc ; bv4 bosc 4 rosc : �78�

In reality, the effective cross section is larger. Indeed, in
the averaged description domain (72), the inequality bv4 ra is
fulfilled. It permits employing the result for the effective cross
section from the Rutherford problem, because, as noted
above, the particle motion for r4 rosc is close to the motion
in a stationary Coulomb potential:

seff � neff
niv
� 2:94b 2

v

�
2ra
bv

�2=3

4 2pbvrosc : �79�
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Figure 4. The shape of electron trajectories trapped by the averaged potential in the case of linear field polarization. The coordinates are normalized to

radius rosc.

9 Formally, this motion is not at variance with the Liouville theorem on

phase volume conservation: as the particles are drawn to the ion, Vr ! 0,

their velocity rises, Vv !1, so that the total phase volume VrVv is

conserved. Nor does this motion contradict the conservation of angular

momentum, since the potential is not centrally symmetric and the

centrifugal force can no longer compensate for the nonpoint-like singu-

larity of the potential.
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This is because the particles for which the influence of the
oscillatory field is significant are collected from a significantly
smaller area, � pbvrosc, than the particles making a contribu-
tion to the effective cross section and cannot significantly
affect the integral scattering characteristics.

Expansion (76) of the potential permits estimating the
transport cross section. Indeed, particle scattering through
large angles will occur at the equality between the kinetic and
potential energies. Provided that rosc 5 bv, this will take place
for impact parameters rmin� bv � �3 cos2 yÿ 1�r 2osc=�4bv�.
The transport cross section is then expressed as follows:

str �
� rmax

rmin

b 2
v dr
r
� b 2

v ln
rmax

bv � �1=4��3 cos2 yÿ 1�r 2osc=bv
; �80�

this quantity is close to the Rutherford cross section (64). The
weak anisotropic dependence on the field amplitude
r 2osc�3 cos2 yÿ 1�=bv enters only logarithmically. This result
is due to the fact that most of the integral defining the
transport cross section acquires its value in distant colli-
sions, which are nicely described by Rutherford trajectories.
Furthermore, since distant collisions make the main con-
tribution to the incoherent radiation cross section, as well as
to the transport cross section, it may be shown that the
incoherent radiation cross section, too, will depend on the
pump field logarithmically weakly. Numerical calculations
(see Section 8) suggest that these results also persist for low-
frequency fields, bosc 4 rosc.

Therefore, formulas for the effective (79) and transport
(80) cross sections suggest that the influence of an external
weak high-frequency field �O4 1� on the particle scattering
in the averaged description domain �bv4 bosc 4 rosc� is
insignificant and the particle scattering may be treated in
this case as scattering by a stationary Coulomb potential, i.e.,
in the framework of the Rutherford problem.

6. Domain of multiple returns

So, let us consider what new effects, in comparison with the
small-angle approximation, appear at low drift velocities of
particles colliding in strong fields, when

bosc 5 rosc ; v5 vosc : �81�
The salient feature is a significant bending of trajectories in
the course of scattering. This gives rise to new effects: (i) a
significant increase in the scattering cross sections due to
attraction across the initial beam velocity, and (ii) the
appearance of electron bunching along the beam. We discuss
them in greater detail. Only a qualitative description of the
phenomena is outlined in this section. Their quantitative
estimates are given in Section 7.

First, we consider the attraction across the oscillatory
velocity direction, whose main consequence is an increase in
the particle energy variation and, accordingly, an increase in
all scattering cross sections. Figure 5 shows the energy
variations on the same scale [in what follows, the darker
domains correspond to a higher energy variation (black color
corresponds to the oscillatory energy), and the lighter
domains to a lower one (white color signifies the absence of
energy variation)] as a function of impact parameters, which
were obtained numerically and in the framework of the small-
angle approximation. It is clear from the drawing that along
with the particles having experienced head-on collisions
(black circle of size bosc in the center), the particles with

impact parameters that are much greater than bosc also
experience energy variations on the same order of magni-
tude. This phenomenon may be termed the `parachute' effect
[37, 38], because the particles gradually, during several flight
times, approach the ion (decrease their instantaneous impact
parameter). In traditional models we would have observed
only head-on collisions. The energy variation of particles
from concentric rings would be exponentially small on the
strength of the adiabaticity of the motion of distant particles.

One can also see in Fig. 5 the second implication of
transverse attraction: the dependence of energy variation on
the impact parameters is not a one-to-one function. In strong
fields,O5 1, and at low drift velocities, v < vosc, a situation is
realized whereby particles with different impact parameters
experience the same energy variation. Furthermore, particles
with different impact parameters may acquire the same final
velocity. In other words, a multiflow state takes place, which
is lacking in weak fields. Along with this, stochasticity
emerges: a small variation of the initial parameters results in
a strong deflection of particle trajectories and a large
difference in final particle velocities (Fig. 6). So, if distant
particles travel along almost the same line and are well suited
to the description in the framework of the small-angle
approximation (Fig. 6c), then a strong dispersion of trajec-
tories is observed even at the boundary of the attraction
domain. Inside the attraction domain, the trajectories behave
stochastically (Fig. 6a). The boundary of the attraction
domain may be estimated numerically in a linearly polarized
field at y � 0:

rattr �
1:5

Ov
4 bosc � O 2 : �82�

Notice that the attraction domain boundary serves simulta-
neously as the boundary for a strong particle energy variation.
Indeed, to significantly change its energy, a particle should
approach the ion, but the particles residing outside the
attraction domain cannot approach the ion closely and
therefore cannot change their energy considerably.
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Figure 5.Energy variation as a function of impact parameters atO � 0:316
and v � 1. Shown in the inset on the same scale is the energy variation

obtained in the framework of the small-angle approximation.
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It is noteworthy that the attraction domain boundary for
v4 1 turns out to be greater than the adiabaticity radius
ra � v=O. Therein lies one of the most nontrivial results of the
solution to the problem of energy exchange between electrons
and a strong field, which consists in the absence, even for large
impact parameters, of the domain corresponding to the so-
called Coulomb logarithm (41).

Recall how this domain emerges in weak fields. If the
oscillatory electron radius is short in comparison with the
distance to a Coulomb center, i.e., the impact parameters are
relatively large, then for solving the scattering problem it
would suffice to expand the potential in equation (47) for the
drift center in powers of the oscillatory radius and take into
account the first correction term, which corresponds to the
dipole approximation. In this case, the drift center trajectory
itself is defined by the static ion field and the energy exchange
between an electron and the field by the work of the
oscillatory dipole field along this trajectory. This problem is
easily solved [5] for impact parameters belonging to the
domain of essentially nonadiabatic interactions, r < v=O.
One may verify for oneself that, beginning with relatively
small impact parameters corresponding to the Rutherford
radius bv � 1=v 2 estimated from the drift velocity, and up to
the distances corresponding to the nonadiabaticity domain
boundary, ra � v=O, the following estimate applies to the
electron energy exchangewith the field averaged over incident
phases and considered as a function of the impact parameter:

Dw ' mv 2
osc

b 2
v

r2
exp

�
ÿOr

v

�
: �83�

The exponent on the right-hand side of formula (83)
corresponds to the adiabatic electron transit through the
interaction domain for impact parameters greater than the
size of the adiabaticity domain. Hence, it is clear that
integration over the impact parameters,

�
Dwr dr, gives rise

to a logarithmic factor caused by the cutoff of energy
exchange at this boundary.

Let us now discuss how this picture changes in strong
fields. In the impact parameter domain corresponding to the
`parachute' effect, the impact parameter changes greatly, and
this domain is similar in many respects to the domain of small
impact parameters in weak fields. It is significant that the drift
trajectories deflect greatly in this domain, depending on the
field phase, in contrast to the drift trajectories in the case of
weak fields. For drift velocities smaller than unity (in
dimensionless variables), the boundary of the attraction
domain turns out to be further than the adiabaticity domain
boundary, and so the exponential cutoff sets in immediately
after it. For high drift velocities, 1 < v < 1=O, a decrease
beyond the capture domain obeys a power law and gradually

transforms to 1=r2. Thus, with an increase in velocity we
gradually move in this domain to the regime with the
Coulomb logarithm.

A similar situation takes place in the case of nonlongitu-
dinal incidence, y 6� 0 (Fig. 7). Here, concentric rings divide
into arcs, with the distance between them decreasing. As
would be expected, the effect becomes stronger with a
decrease in the initial velocity. For high velocities, the main
contribution is made by head-on collisions, and the attraction
is insignificant. With a decrease in velocity, the `segment' (the
thin strip in Fig. 7) broadens and, in addition, arcs appear at
its ends. In the case of longitudinal incidence, the arcs close up
into concentric circles (see Fig. 7). That is, at low velocities the
electron drift velocity can no longer be thought of as being
straight, and the bending of the particle drift trajectory should
be taken into account in describing the motion near the
Coulomb center.

A similar situation is observed for a circular polarization
(CP) (Fig. 8), with the difference being that transverse
incidence in the CP case is an analogue of longitudinal
incidence for a linear polarization (LP). In the transverse
incidence in the circular polarization case, the electron flies
past the multiply oscillating ion. As a result, effects of
attraction due to periodic returns are most clearly mani-
fested, as is the case in the longitudinal incidence for an LP. In
the case of longitudinal incidence for a CP, the attraction
effects weaken.

Once again, as in the case of an LP, ellipse splitting shows
up (see Fig. 8). The splitting mechanism resembles the one
responsible for the appearance of concentric rings in the
longitudinal incidence for an LP. The splitting mechanism is
due to the fact that a significant energy change is experienced
not only by the electron that directly flies into the ion, but also
by the electrons that are drawn closer to the ion during several
oscillation half-cycles. We note that the picture is asymmetric
relative to the x-axis, since the total velocity in the flight past
the ion turns out to be different at the two ends of the
`segment'. At one of its ends, the total velocity is equal to
the sum of oscillatory and drift velocities, while at the other
end the total velocity is equal to their difference.

One of the consequences of particle trajectory bending
under the action of Coulomb potential is the manifestation of
singularity in the distribution over the minimum approach
distance rmin to the ionÐ the surface particle density at the
point where the attractive ion force ismaximum. In the case of
applicability of the small-angle approximation, this surface
density should be constant and equal to the surface density in
the plane for x � ÿ1. According to numerical simulation
data, the surface density decreases as 1=rmin for short rmin

(Fig. 9), which is further confirmation that particle trajectory
bending in the scattering must be taken into account. For a
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Figure 6. Set of particle drift trajectories with different initial phases for particles traveling inside (a), at the boundary (b), and outside (c) the attraction

domain. (Longitudinal fall, linear polarization, O � 0:1 and v � 1.)
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known n�rmin� dependence and the assumption that the main
energy change is stepwise at r � rmin, it is possible to estimate

the effective cross section seff (see Section 7). This may be
employed for checking the accuracy of calculations.

20

10

0

ÿ10

ÿ20
ÿ20 ÿ10 0 10 20

ry

rx

y � p=4

20

10

0

ÿ10

ÿ20

ry
y � p=2

ÿ20 ÿ10 0 10 20

y � 7p=16

ÿ20 ÿ10 0 10 20

ÿ20 ÿ10 0 10 20
rx

y � p=8

20

10

0

ÿ10

ÿ20

20

10

0

ÿ10

ÿ20

rosc

rosc

y � 3p=8

ÿ20 ÿ10 0 10 20

ÿ20 ÿ10 0 10 20
rx

y � 0

20

10

0

ÿ10

ÿ20

20

10

0

ÿ10

ÿ20

Figure 8. Energy variation as a function of impact parameters for various angles of incidence y for a CP at O � 0:25 and v � 0:5.

10

5

0

ÿ5

ÿ10

ÿ15
ÿ20 ÿ10 0 10 20

ry

rx

y � 0

10

5

0

ÿ5

ÿ10

ÿ15
ÿ20 ÿ10 0 10 20

ry

rx

y � p=8

10

5

0

ÿ5

ÿ10

ÿ15
ÿ20 ÿ10 0 10 20

ry

rx

y � p=16

10

5

0

ÿ5

ÿ10

ÿ15
ÿ20 ÿ10 0 10 20

ry

rx

y � p=2

2rosc

15 15

15 15

Figure 7.Dependence of energy variation on the impact parameters at various angles of incidence y for a linear polarization atO � 0:25 and v � 0:5. The
points show the projection of ion oscillations onto the impact parameter plane.

December 2017 Electronëion collisions in strong electromagnetic éelds 1211



As stated in the foregoing, the Coulomb ion field is
responsible not only for the particle `beam' compression
(transverse attraction), but also, jointly with the periodic
pump field, for the bunching of particles along the `beam'. It
turns out that virtually all collisions, especially those with a
large energy change, occur for quite specific phases of the
pump field (Fig. 10). This effect is extraordinary, the more so
as it takes place in the scattering of different electrons from
different randomly located ions with the only synchroniza-
tionmechanismÐthe electric field of the pumpwave. All this
looks as if a wave of bremsstrahlung `bursts' is excited in the
plasma, which travels along with the pump field wave.

Figure 10 is similar to Fig. 5, but it takes into account the
axial symmetry of the problem, which made it possible to
derive the dependence of the quantities on the initial incident
phase j of particles as well. Figure 10a displays the energy
and Fig. 10b the collision phase as functions of the initial
phase and the impact parameter of the electrons being
scattered. It is evident that these dependences are periodic in
the initial phase due to the periodicity of the pump field. As
noted above, in strong fields, due to the `parachute' effect, an
electron may greatly change its energy (the darker color in
Fig. 10a), even if its initial impact parameter was far greater
than the Rutherford radius bosc estimated from the oscillatory
particle velocity (the thin dark strip for r � 0 in the lower part
of Fig. 10a). Figure 10b demonstrates much more unexpected
fact: the same color corresponds to the same phases at the
instant of the last (closest) electron passage near the ion. One
can see that all collisions originating from the attraction
domain occur practically at only two field phases. This is
just the effect of electron bunching.

The bunching consists in the fact that all electrons fly past
the ion almost in the same field phase due to adiabatic
attraction, despite the initial uniform electron distribution
over the field phases. Figure 11 depicts the dependence of the
field phase at the instant of the `last' collision (the instant of
closest electron approach to the ion), which is subsequently
called the collision phase, on the initial field phase. All
electrons start moving along the field with an impact
parameter r � 3:2. One can see that the energy exchange
between an electron and the field occurs in a narrow band of
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field phases. The `steps' in this dependence correspond to the
shift of collision instants by a field half-cycle. As the drift
velocity rises, the electron bunching in phase vanishes, i.e.,
collisions begin to occur at arbitrary instants of time,
independent of the phase of the external field.

The degree of bunching is demonstrated by the electron
distribution function over the collision phase (Fig. 12). As the
ratio vosc=vT increases, all electrons concentrate into two
relatively narrow peaks near the maxima of oscillatory
velocity (Fig. 12). The width of these peaks is proportional
to the ratio vT=vosc. With reference to Fig. 12a, for a high
thermal electron velocity, vT > vosc, the effect of bunching in
phase vanishes, and the traditional weak-field collision model
becomes applicable.

The peak widths in the electron distribution over the
collision phase determine the spectral width of coherent
radiation. The narrower the peaks in the distribution
function, the broader the spectrum of coherent radiation
(compare with Fig. 25 in Section 8). In accordance with the
above, the number of peaks increases with an increase in the
ratio vosc=vT. The bunching, as expected, vanishes completely
for vT > vosc. A similar situation takes place in the case of
circular polarization. In particular, it is precisely the electron
bunching that the generation of coherent radiation is related
to for a circular polarization of the pump field (see Section 8).
As far as the authors know, this is the only mechanism of
coherent radiation generation in a CP field in a transparent
plasma.

As regards the qualitative aspect of the bunching effect, a
remark is in order. Since the electron scattering angle in each
transit depends on its velocity, which in turn depends on the
field phase at the instant of closest electron approach to the
ion, the energy exchange efficiency, which is determined by
the field phase at the instant of collision (the last passage near
the ion), depends entirely on the field phase. In essence, herein
lies the mechanism of electron separation for the field phases.
It has the result that almost all electrons arrive at the ion in
specific phases of the external field! This is the effect of phase
bunching.

7. Attraction with the inclusion of correlations

The data of numerical simulations outlined in Section 6 may
be interpreted proceeding from relatively simple analytical
considerations. Specifically, in a strong field (81), the
oscillation radius

rosc � 1

O 2
!
O!0
1

is quite broad, i.e., most of the time the electron travels away
from the Coulomb center, describing a trajectory which

oscillates under the action of the pump field. And only once
or twice in a cycle can the electron approach the ion and
scatter from it in a very short time � bv=vosc 5 2p=o0.
Accordingly, the electron drift trajectory is a broken line
(see Fig. 6). In view of the shortness of the collision time in
comparison with the cycle of the pump field, wemark out two
time scales corresponding to (1) the instantaneous scattering
by the Coulomb center during which the pump field is
insignificant, and (2) the motion along the oscillating
trajectory disregarding Coulomb attraction.10 Herein lies
the idea of the low-frequency approximation [31]. In the
consideration of particle motion, however, the limitation on
the number of electron±ion collisions (impacts) will not be
imposed, while the model of Ref. [31] implies only a single
collision. Moreover, all qualitatively new, unusual effects
come out only with the inclusion of multiple collisions. No
limitations are imposed on the particle trajectory, either, with
the exception of the condition that the time taken by every
particle to pass by the ion is much shorter than the field cycle,
i.e., the condition for the instantaneous impact parameter is
fulfilled:

r
V

5
2p
o0
() r5 rosc : �84�

As earlier, here V is the velocity in the laboratory frame of
reference (the total particle velocity).

It should be noted that the assumption of a single electron
impact on the ion in the course of collision, which was used in
Ref. [31], is equivalent to the straight-line trajectory approx-
imation. The reason lies in the fact that the information about
electronmotion correlations in the transits past the ion during
neighboring field cycles is lost in the single-impact approx-
imation. The effective electron distribution over impact
parameters thereby becomes uniform, for which the contribu-
tion from electrons scattered through large angles is logarith-
mically small.

To describe the system of interest in the framework of the
low-frequency approximation, advantage is conveniently
taken of a point map. The idea is that a discrete set of points
zn � z�nT �, where n is an integer, and T is some time interval,
is singled out in a continuous trajectory z�t� (as before,
z � fr; pg is the set of particle coordinates and momenta).
The relation of the �n� 1�th point to the nth point is described
by a point map:

zn�1 � M̂�zn� ; or �z � M̂�z� : �85�
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Figure 12. Particle distribution over collision phases in relation to parameter O in the case of longitudinal incidence at v � 1 and a linear polarization of

the pump field.

10 The Coulomb attraction for slow particles, v4O, away from the ion

may be taken into account by employing the averaged potential (see

Section 5).
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The symbol �z denotes the value of z obtained through
iterations. For a periodic system, it is expedient to take the
time interval T equal to the period 2p=O of the external field.

In the parameter ranges defined by inequalities (81) and
(84), the form of a point mapping (85) is considerably
simplified. Condition (81) signifies that the oscillation radius
rosc is long, while condition (84) implies that the variation of
parameters in every transit occurs quickly on the scales of an
oscillation cycle (Fig. 13). In this case, as noted above, two
time scales may be marked out: the slow electron oscillation
scale, and the fast scale for electron parameter variation in an
impact. Assuming that the latter scale is very short (an
instantaneous impact), advantage can be taken of the exact
solution to the Kepler problem [36], writing down a point
mapping through a period in the dimensionless form:

rn�1 � rn � vntc � vn�1�Tÿ tc� ; �86�
vn�1 � vn ÿ 2

V 3q� V

1� r2V 4
;

where V � vn � vosc�tc� and R � rn � rosc�tc� are the particle
velocity and coordinate in the laboratory frame of reference
at the instant of impact tc, and q � Rÿ V�R;V�=jVj2 is the
instantaneous impact parameter.

When a particle experiences two `collisions' with the ion
during a field cycle, the resultant map may be represented as
the sequential exercise of two mappings (86) with the instants
of collisions taken from the first and second half-cycles,
respectively. In view of the previous remark, we are dealing
with themapping in a half-cycle p=O for linear polarization of
a field. Therefore, the `period' may be written down as

T � ap
O
; a � 1 ; for LP ;

2 ; for CP :

�
�87�

The mapping as in Eqn (86) is rather complicated in form,
but even this one does not describe the entire particle
scattering in the presence of a strong pump field. Indeed, the
conditions for the construction of mapping (86) are violated
at the stopping points �V�t�5 vosc� and, generally speaking,
use should be made of the trajectories from the scattering
problem in the presence of a constant field [60], which are
rather complex in and of themselves.

Despite its simple appearance, a point mapping (86) is
quite complex, and its analysis calls for a special investiga-
tion. However, several properties of mapping (86) are easily
found if the variations of the longitudinal coordinate and
total momentum V � vosc in the small parameter v5 vosc are
ignored. This results inmapping for longitudinal coordinate r

and velocity u � v?=O:
�r � r� ap�u ; �88�
�u � uÿ 2

r

with the generating function S�r; �u� � r�u� ap�u 2 � 2 ln r.
By disregarding in expressions (88) the particle's shift

across the electric field due to the drift velocity u5 2p=r (this
is most easily realized in the longitudinal scattering), mapping
(88) may be represented in the form of mapping for the
variation of only one variableÐ the local impact parameter
r �

����������������
x 2 � y 2

p
:

�r �
����rÿ 2ap

r

���� : �89�

Recall that a is defined by formula (87). Mapping (89) is
graphically shown in Fig. 14. Like mapping (86), mapping
(89) does not describe the scattering of particles through large
angles and their escape from the scattering region. To take
into account these particles, a region of loss with an
approximate width bosc � O 2 ! 0 (the crosshatched domain
in Fig. 14) may be introduced, so that particles are assumed to
have departed from the scattering domain whenever they
enter this region.

Let us consider the properties of mapping (89).

7.1 Multiflow state
First of all, we note the emergence of a multiple flux state (see
Section 6), which comprises particles with different impact
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Figure 13. Trajectory of electron motion in a Coulomb field.
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Figure 14.Dependence of the impact parameter �r on the impact parameter

r through an iteration of mapping (89). The domain of particle loss due to

large-angle scattering is crosshatched.
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parameters simultaneously arriving at the same point in
space. Let us find the set of initial impact parameters rini
whereby the particles enter the domain r4 bosc and, accord-
ingly, experience scattering through large angles, a strong
energy change, etc.

The simplest case concerns the particles with small initial
parameters rini 4 bosc, i.e., the particles which would `collide'
with the ion in the absence of oscillations induced by the
pump field. It is precisely these particles that are described by
the small-angle approximation. Apart from them, there are
particles that fly past the ion once, scatter through a small
angle, and impact the ion on return (see Fig. 1). That is,
particles that started moving with different impact para-
meters arrive at the same point in space. This is what we
understand by a multiflow state. The impact parameter r1
corresponding to these particles may be found from the
equation

r1 ÿ
2ap
r1
� 0 ) r1 �

��������
2ap
p

: �90�

Such is the value of impact parameters in the first peak
(compare Fig. 15 with Fig. 5).

Similarly, it is possible to find the values of the initial
impact parameters r2; r3; . . . for the 2nd, 3rd, etc. peaks that
appear after the 2nd, 3rd, etc. particle return to the ion. The
total number of peaksN (or passages over the ion, which is the
same thing) may be estimated by the formula

N � rosc
vT
� vosc

av
: �91�

In this case, by analyzing mapping (88) it is possible to obtain
the coordinate of the last peak, which is the boundary of the
attraction range:

rN � rattr �
��������
2ap
p vosc

v
rE ; �92�

agreeing nicely with the data of numerical simulations (82). It
should be noted that determining the location of distant peaks
requires taking into account the transverse particle velocity u,
i.e., analyzing a more complex mapping (88). Without the
inclusion of transverse velocity variation, the coordinates of
the peaks and, accordingly, the expression for the attraction
boundary would be underrated (Fig. 16).

Estimate (92) may also be obtained in a simpler way. Let
us assume that an electron has flown by the ion with a drift

velocity v at a distance r and was scattered through a small
angle dy � 2=�rv�. To appreciably change its energy, the
electron should manage to collide with the ion in a path
2rosc. This may be done only by particles with impact
parameters that satisfy the condition

r4 2rosc dy ) r4rattr �
2

Ov
: �93�

Once again, we arrive at an estimate for the boundary of the
attraction domain close to estimate (92).

The coordinates of the peaks rn (see Fig. 15) possess
one more interesting property: all particles with impact
parameters r 2 �rn; rn�1� find themselves within a range
�r 2 �rnÿ1; rn� after one pass over the ion. This signifies that all
particles with impact parameters r4rattr find themselves in a
domain rfin 4r1 �

��������
2ap
p

. Therefore, it is sufficient to
consider the scattering of a particle beam with diameter 2r1
and concentration neff � n0r2attr=r

2
1 instead of the initial

scattering problem for an infinitely broad particle beam with
concentration n0. In the dense plasma case, the effective
concentration may lower due to the screening of the ion's
Coulomb potential for r5 rD (the Debye radius
rD � op=vT):

neff � n0
min �r 2D; r2attr�

r21
; rD 5r1 : �94�
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Figure 15.Energy variationDw averaged over the initial phase as a function of the initial impact parameter r for anLP (longitudinal incidence) in panel (a)
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It follows from formula (94), in particular, that all the effects
involving the particle return to the ion upon scattering vanish
when rD < r1 � 2:51rE, while for rE 5 rD 4rattr they turn
out to be only weakened. In a sufficiently rarefied plasma,
rD > rattr, all these effects will show up in full measure.

7.2 Singularity in the correlation function
Another important property of mapping (89) is the appear-
ance of singularity in correlation function (8). As noted in
Section 7.1, all particles with impact parameters r4rattr are
drawn to the domain r4r1 in the course of scattering. It
would be instructive to determine the particle distribution
prior to the `last' collision, i.e., in the range �0; r1�. To answer
this question, we find the variation of concentration (or of the
spatial density of the correlation function, which is the same
thing) through an iteration of mapping (89) from the particle
number conservation law �n�r d�r � nr dr. Expressing from
mapping (89) the old coordinate r in terms of the new one �r
and using the inequality r > r1 (we consider particles which
have not yet fallen into the �0; r1� domain) one finds (Fig. 17)

�n��r� � n�r��
r�
�r

���� dr�d�r

����� n�rÿ�
rÿ
�r

���� drÿd�r

���� ; �95�
r� �

1

2

� �������������������
�r 2 � 8ap

p
� �r
�
:

In particular, for large impact parameters �r4
��������
8ap
p � 2r1,

the concentration is hardly changed, as would be expected.
However, a concentration singularity appears at small impact
parameters (compare with Fig. 9):

�n '
�r5 r1

n
r1
2�r

: �96�

Taking into account relation (94) leads to the formula for the
particle distribution over impact parameters after N pas-
sages:11

neff ' n0

�
vosc
v
� b

r

�
'

r5 b
n0

b

r
; b � r2attr

2r1
: �97�

The appearance of the first term on the right-hand side of
formula (97) is due to the fact that distant particles which did
not manage to draw closer to the Coulomb center never-
theless experience about N � vosc=v small-angle collisions
during a passage near the ion. For such particles, the effective
concentration for one collision with the ionwill be of the form
of a uniform concentration n0 multiplied by the number of
particle transits past the ion:

neff ' n0
vosc
v

:

Notice.The concentration (97) prior to the `last' impact is,
in essence, the Jacobian for the passage from the initial
coordinates r0 to the coordinates r of the `last' impact. In
this passage, distant particles, evidently, are not perturbed by
the Coulomb field of the ion. Accordingly, the Jacobian is
equal to unity as r!1. Attraction and bunching of the
particles in the vicinity of the ion occur such that the
distribution acquires singularity (96) every half-cycle of the
field variation. Furthermore, every following cycle more
particles experience collisions because of attraction than
during the previous one. As a result, the Jacobian assumes
the form

J�r1; r0� � 1� r1
r

X2vosc=v
n�1

nd
�
x
ra
ÿ n

2

�
:

In this case, the variation range of coordinate x is equal to
2rosc, while the variation range of the initial coordinate x0 is
equal to ra (since we are dealing with the scattering of one
layer of thickness ra). Subsequently, of interest will be the
integral of the quantities taken over the normalized long-
itudinal coordinate x=ra. The presence of delta functions in
the expression for the Jacobian permits performing its
integration easily. As a result, we arrive at expression (97)
again.

Notice that the particle concentration should be constant
when the small-angle approximation is applicable. According
to both numerical simulations and analytical estimates (97),
the surface density increases as 1=r for short r, which
confirms once again the necessity of taking into account the
bending of particle trajectories in the scattering.

For a known particle distribution prior to the last
`impact', the use of mapping (86) for the last impact permits
finding all scattering characteristics, which will be done in the
following sections.

7.3 Stochastic dynamics
The third important property of mapping (89) is the
appearance of stochastic dynamics. As noted in Section 6,
the dynamics of particle scattering in a strong pump field turn
out to be quite complex, stochastic. The same fact is
demonstrated by mapping (89). Really, on the one hand, it is
globally attractive. On the other hand, the central part of the
mapping is locally unstable. This results in particle mixing.
This is one of the criteria for stochastic dynamics. In this case,
the Coulomb center plays the role of a complex stochastic
attractor.

The unusualness of the Coulomb attractor consists in
permanent loss of particles due to large-angle scattering. The
particles that find their way to the close vicinity of the ion due
to attraction in the course of multiple oscillations (for regular
dynamics) or due to Arnol'd diffusion (stochastic particle
walk in the case of stochastic dynamics) experience large-
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Figure 17.Dependence of the particle concentration on impact parameter

r for the unperturbed distribution (dashed line), the distribution upon one

iteration of mapping (89) (the dashed±dotted line), and the limiting curve

after an infinite number of iterations (solid curve), which is the `norm' of

mapping (89).

11 Actually, it is also easy to find from expression (95) the invariant

measure n�r� � 1=r of mapping (89)Ð the particle distribution which

passes into itself after a mapping step.
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angle scattering and acquire velocities comparable to the
oscillatory one. As a result, these particles, on the one hand,
escape from the attractor domain and, on the other, make a
contribution to the collisional current and, accordingly, to
coherent radiation. Because particles in the scattering
through large angles acquire velocities opposed to the
instantaneous oscillatory velocity, one would expect the
emergence of intensive generation of collisional current (see
Section 8.1) and, therefore, of coherent radiation which
enhances with the broadening of the stochasticity domain,
i.e., with an increase in pump field intensity.

Furthermore, an accumulation of particles in the attractor
may take place (Fig. 18). In numerical simulations, this shows
up in the appearance of a nonzero capture cross section. This
effect corresponds to a so-called dynamic recombination in
strong fields. The recombination cross section (or degree)
increases with a decrease in flow rate, v! 0, or in field
frequency, O! 0. We note that the appearance of particles
captured by the potential signifies the necessity of going
beyond the framework of binary electron±ion collisions and
of including `collisions' with `neutral' atoms (i.e., of three-
particle collisions). However, as long as the fraction of
captured particles is small in comparison with the fraction
of particles that make the dominant contribution to the
effective cross section (it is precisely this that is demonstrated
by numerical simulations), the binary collision approxima-
tion can be employed in describing the energy exchange
processes.

Mapping (89) also has stationary points, which pass into
themselves upon one or several iterations (a particle returns to
these points after one or several passes over the ion). These
points are easy to find analytically. For a point r�1�1 , which
passes into itself in one iteration (see Fig. 18), we have

2r�1�1 �
2ap

r�1�1

) r�1�1 �
������
ap
p

: �98�

For points r�2�1 and r�2�2 , which go over into themselves in two
iterations, we find

r�2�1 � r�2�2 �
2ap

r�2�1

;

r�2�1 ÿ r�2�2 �
2ap

r�2�2

8>>><>>>: )
r�2�1 �

��������
2ap
p������������������
2
p � 1

p ;

r�2�2 �
������
ap
p ������������������

2
p
� 1

q
;

8>><>>: �99�

etc. The trajectory corresponding to the stationary point r�1�1

is plotted in Fig. 18. The electron starts moving with a low
drift velocity at point ÿrosc, passes over the ion, and scatters
through a small angle with total velocity. After that the

electron arrives at point �rosc with a velocity opposite to the
initial one. The motion reverses.

Unfortunately, all stationary mapping points turn out to
be unstable. A small change in the initial conditions `draws' a
particle from the periodic trajectory. Nevertheless, according
to the data of dedicated numerical calculations, the majority
of particles remain `trapped' for many field cycles (see
Fig. 18). In actual truth, numerical calculations suggest that
all particles escape from the scattering domain. But the
fraction of particles that reside close to the ion longer than
some time (for instance, longer than 20 oscillatory radius
transit times, tpass > 20rosc=v) rapidly increases with decreas-
ing drift velocity v.

Therefore, we are dealing with a new quasistable electron
state in an `atom', which is realized only in the presence of a
strong EM pump wave. This atom measures several rE. In
Ref. [61], such highly excited atoms were investigated in the
context of the ionization problem in the field of a strong EM
wave. It is likely that the existence of such states may
appreciably lower the ionization rate in superstrong low-
frequency �O5 1� fields and favor an increase in the
generation of coherent radiation based on the Corkum effect
[62]Ð the radiation emitted in the scattering of the electron
which returns to the ion immediately after its detachment
(ionization). Recent experimental and analytical investiga-
tions into the Corkum effect [63] bear out the importance of
accounting for electron returns to the ion.

7.4 Features of transverse scattering
In the general case of a particle incidence across the electric
LP field �v ? vosc�, use should bemade of a completemapping
(86) in determining the effective cross section. For a low
velocity, v5O (or bv5 rosc 4 bosc), advantage can also be
taken of simplified one-dimensional mapping (89). Accord-
ingly, the results will be close to those described above. In the
opposite limiting case, bosc < bv < rosc, the particle dynamics
is different; however, as before, determining the effective
cross section calls for the inclusion of large-angle scattering.

To estimate the effective cross section when
bosc < bv < rosc, we consider in greater detail particle scatter-
ing. Figure 19 depicts particles incident on the ion perpendi-
cular to the field oscillating along the z-axis. The initial
impact parameters r of the particles are approximately
equal to the Rutherford radius bv4 bosc, so that the particles
are scattered by the immobile ion12 with an angular variation
of the drift velocity by more than p=2.
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Figure 18. (a) Simplest trajectory of a stationary point r�1�1 at O � 0:0316. (b) Example of a trajectory `captured' by the Coulomb attractor.

12 A case in point is motion near the stopping points, where the ion is

practically immobile for a greater part of the period [60].
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After the first collision, which changes the particle energy
only slightly, the particles move along a straight line and
travel a distance of about pra � pv=O during a half-cycle. In a
cycle, the particle collides at point z � rosc ÿ pra with the
`returning' ion, which has velocity v� �

���������������
2pvvosc
p

4 v. A
second collision occurs, which changes the particle energy to
a value on the order of v 2

� ' 2pvoscv. Notice that by the
second collision the particles, in fact, find themselves in the
longitudinal scattering mode described in Section 7.1, since
the transverse velocity of such particles is low. This also
signifies that a particle may actually experience many
collisions, rather than one, prior to changing its energy
significantly and leaving the scattering domain (see Fig. 19).

It is worthy of note, however, that such energy variation is
not acquired by all particles but only those which reach the
ion neighborhood of b� � 1=v 2� in the second collision. On the
strength of condition b�5 bv, this is possible only for particles
from a region of width b�. This permits estimating the
effective cross section as the product of the area bvb� from
which the particles are collected and the relative change in
their energy 2pvvosc=v 2

osc:

seff � 2pvvosc
v 2osc

bvb� � 2pbvbosc : �100�

Numerical integration in the case of transverse beam
incidence yields precisely the same result.

8. Collision cross sections.
Radiation emission in collisions

We now turn to a discussion of the period-averaged moments
of the collision operator: the transport �str� and effective
�seff� cross sections.

First, we consider the transport cross section str (30),
responsible for the directional variation of electron momen-
tum in the scattering from an ion. Figure 20 shows the
transport cross section on a log-log scale obtained by
numerical integration for a linearly and circularly polarized
pump field [38, 39]. One can see from the drawing that the
transport cross section is hardly affected by an external field.
An exception is provided by the domain v ' vosc, in which the
transport cross section increases due to a significant contribu-
tion from the stopping pointsÐthe points at which the total
electron velocity V � v� vosc is close to zero. For a high
thermal velocity v4 vosc, the cross section str is close to the
zero-field value, since the effect of the pump field may be
ignored in this case. For low velocities v5 vosc, the cross
section is proportional to 1=v 4 again, since the main
contribution to the cross section is made by distant particles,
for which the effect of an external field on their trajectories is
also weak. Therefore, numerical calculations suggest the
following approximation for the transport cross section:

str � 4pL
v 4

; v5 vosc and v4 vosc �101�

(where L is a logarithmic factor), which applies to both
linearly and circularly polarized pump waves. Formula (101)
is supposedly true for an arbitrarily polarized pump wave as
well.

We now turn to a discussion of the more important
effective cross section (23), which characterizes the energy
exchange between electrons and the pump field. Plotted in
Fig. 21 is the quantity lg jseffj in relation to the logarithm of
velocity v and frequency O. First, we consider the case of
linear field polarization (Fig. 21a).

For high velocities v4 vosc, the dependence of the
effective cross section on velocity v and frequency O is
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Figure 20. Logarithm of the transport cross section str as a function of velocity v and frequency O for LP (a) and CP (b) pump fields.
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approximated by the formula

seff � 4pL
v 4
, neff � L

v 3
; v4 vosc ; �102�

which is similar to the formula which is derived in the
framework of the small-angle approximation [3±5, 33]. This
is due to the fact that the main contribution to the integral for
seff in this case is made by distant small-angle collisions
�ra 4 bv�. Consequently, the transport and effective cross
sections should be of the same order of magnitude, which is
numerically borne out. The dependence of the cross section
seff on angle y (Fig. 22a) is also in good agreement with the
small-angle approximation:

seff � 2ÿ 3 cos2 y ; v4 vosc : �103�

In the strong-field domain, v5 vosc and v > O, numerical
integration yields an estimate for the effective cross section in
the form

seff � O 2

v 2
� bvbosc , neff � 1

vv 2osc
; v5 vosc : �104�

We note that neff is vosc=v4 1 times higher than the collision
frequency obtained in the generalization of the small-angle
approximation to the strong field case [3, 13]:

ntrad � L
v 3
osc

; v5 vosc : �105�

The reason for so strong a discrepancy between the data of
numerical integration and traditional models is discussed in
Section 6.

Furthermore, in the case of longitudinal �y � 0� particle
incidence, the effective cross section considerably hightens:

seff � 1

v 2
; v5 vosc ; y � 0 : �106�

To state it in different terms, a strong anisotropy of seff is
observed (Fig. 22b), which vanishes at high frequencies. The
central peak width dymay be estimated as

dy4
�����������������������

seff
seff�y � 0�

r
� O5 1 : �107�

It is easily seen that the width dy tends to zero upon increasing
the pump field amplitude �O! 0�.

Another feature of the effective cross section in the high-
field domain is its positiveness for all angles y [compare with
formula (103)], which is due to the fact that the scattered
electron energy is low in comparison with the oscillatory
energy. As a consequence, energy-loss collisions decrease seff
only slightly. By contrast, energy-gain collisions [especially
the not-small-angle ones (see Section 6)] substantially
increase the effective cross section.

Similar dependences are obtained as well with the use of
formula (97) for the effective particle density n�r�. Indeed, the
particle energy change as a function of impact parameter r
may be found from the formula

Dw � 4v 2
osc

1� r2=b 2
osc

; �108�

which gives a one-to-one relationship between the particle
energy change and the impact parameter r. In this case, it is
assumed that the main contribution is only made by the last
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impact (see Fig. 13) and that `soft' impacts lead to only a
variation of the spatial particle distribution. As a result, the
cross section is found as the integral 13

seff � 2p
v 2
osc

� ra

0

n�r�rdr 4v 2
osc

1� r2=b 2
osc

'
ra 4 bosc

4p
vosc
v

b 2
oscL

� 4p2bbosc �
b4

���������
boscbv
p

L
4p2bbosc ; �109�

and the effective collision frequency is written out as

neff � 4pvniseff ' 4pnivoscb 2
oscL� 4p2nivbbosc

�
b4

���������
boscbv
p

L
4p2nivbbosc / 1

vv 2osc
: �110�

Here, b � 1=O 2v 2 for longitudinal particle incidence (97),
and b � bv � 1=v 2 for the transverse one (100).

Quantitatively similar results are also obtained for a CP
pump field (Fig. 21b). Good agreement with the small-angle
approximation (102) is again observed for high velocities
v4 vosc. For low velocities, the integral magnitude of the
effective cross section is described by formula (104).However,
the angular dependence seff�y� is fundamentally different: tt is
smoother (Fig. 23a), and the magnitude of seff�y � p=2� for a
CP is higher than for an LP. The two plots are compared in
Fig. 23b. Again, as with an LP, the anisotropy of seff vanishes
with increasing frequency O.

So appreciable an increase in collision frequency (104) in
strong fields in comparison with that in traditional (small-
angle) models has the following implications: (1) the amount
of energy acquired by the plasma due to collisions will not
decrease with an increase in the pump field amplitude; (2) the
rate of plasma heating

Q � neff
p 2
osc

2m
� 1����

T
p �111�

is defined only by the temperature and is independent of the
pump field intensity. With the use of formula (104), it may be
estimated that plasma heating to the oscillatory temperature
proceeds 4±5 times faster than in the context of traditional
models.

Radiation emission in collisions. Let us turn to a discussion
of the results on integrating incoherent bremsstrahlung (31)

and collisional current (29), which is responsible for the
coherent bremsstrahlung. We first consider the incoherent
radiation. Numerical integration of formula (31) [40, 64]
shows that complete (integrated over the incidence angle)
incoherent radiation is, to logarithmic accuracy, independent
of the pump field amplitude and is nicely approximated by the
formula

winc �
L
v 2

; �112�

whereL is a logarithmic factor, i.e., the formula of traditional
weak-field models [49] remains valid. Here, the situation
resembles that with the transport cross section (101), which
also varies only slightly with increasing field amplitude. As
with the transport cross section str, a strong anisotropy of the
emission cross section winc appears (Fig. 24). The radiation
emission at longitudinal incidence �y � 0� may be approxi-
mated by the formula

dwinc �
L

O 2v 2
do : �113�

In this case, the central peakwidth is again defined by formula
(107).

Of considerably greater interest is the emergence of
collisional current and coherent bremsstrahlung induced by
it. First, we consider the LP case depicted in Fig. 25 on a
logarithmic scale. For high velocities v5 vosc, the collisional
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13 In reality, the energy variation of particles with impact parameters

r5 ra is exponentially small and, therefore, the integration should be

restricted to the r < ra domain.
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current is low, which is quite consistent with the assumption
made in traditional models that the instants of electron±ion
collisions are random (uncorrelated):

wcoh � 0 ; v5 vosc : �114�

In the strong-field domain, v5 vosc, ra > bosc, numerical
integration yields an estimate for wcoh in the form

wcoh �
1

Ovn
: �115�

The frequency spectrum displays a plateau with the
number of harmonics of order vosc=v (Fig. 26). As would be
expected, coherent radiation vanishes completely when
v > vosc. The presence of primarily the odd harmonics in the
spectrum of the coherent current component is due to the fact
that bunching is realized twice during one half-cycle near the
maxima of total electron velocity (see Fig. 12). This signifies
that during each bunching peak the electrons are scattered in
the direction opposite to the instantaneous oscillatory

velocity. Thus, in each cycle the collisional current is
represented in the form of two peaks of opposite polarity
shifted by a half-cycle.

In the case of a CP pump field, qualitatively and
quantitatively similar effects are observed (see Fig. 25). For
high velocities, again, the collisional current is not present
(114). For low velocities, formula (115) is applicable, with the
reservations made below it. The frequency spectrum also
resembles the spectrum concerned in the LP case (see Fig. 26).
We note that, to the authors' knowledge, this is the only
mechanism of coherent radiation generation in plasma
exposed to a circularly polarized pump field.

9. Particle acceleration in collisions

Collisions are responsible not only for background plasma
heating and radiation emission, but also for the emergence of
fast particles. In the nonrelativistic case, the highest particle
momentum is limited by a value of 2posc � 2mca. (Introduced
here is the frequently exploited notation for the normalized
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vector potential a � posc=�mc� � eA=�mc 2�.) However, ioni-
zation [65] in relativistically strong fields �a4 1�may give rise
to particles with momenta on the order of p 2

osc=�mc� � mca 2.
This brings up the question: what is the highest energywhich a
particle with a kinematic momentum equal to the oscillatory
one may acquire after an instantaneous elastic collision?

The answer is trivially obtained from formulas for
charged particle motion in the field of a plane monochro-
matic EM wave [49]:

p? � q� posc ; pk � p 2
0 � q 2 � 2qposc � p 2

osc

2a
ÿ a
2
; �116�

where p0 � mc is the rest momentum, q and a are the integrals
of motion, and p? and pk are the kinematic particle momenta
along and across the wave vector in the laboratory frame of
reference.

It is easy to obtain the answer to the question posed above
by considering the stepwise change in the particle momentum
(`injection' of a particle with new momenta) and taking into
account conservation in the adiabatic approximation (see
Section 9.2) of the phase-averaged momentum after passage
of the wave packet. The highest after-collision energy
corresponds to the `production' of a particle with the initial
momenta p? � 0 and pk � posc, which in turn corresponds to
q � ÿposc and a � p 2

0 =�2posc�. The longitudinal momentum
averaged over the phase of the wave (i.e., the drift one) is of
the form

hpki � p 2
osc � h p 2

osci
2a

� posc
ÿ
p 2
osc � h p 2

osci
�

p 2
0

: �117�

Expressing formula (117) in terms of a, i.e.

Hmax � ch pimax � mc 2a
ÿ
a 2 � ha 2i� � 2mc 2a 3 ;

allows understanding that the increase in highest energy is
proportional to a 3 [66]. Interestingly, with increasing EM
wave amplitude posc the energy threshold rises even faster
than in the nonrelativistic case �Hmax

nonrel 4 2p 2
osc=p0�.

Broadly speaking, we may whence obtain a rather
unexpected result about the possibility that even stronger
particle acceleration can occur in the field of an EMwave. Let
a particle scatter (for instance, by an ion) and acquire a
momentum p. Then, using formulas (116) and (117), one finds
that the phase-averaged momentum equals

hp?i � q ; h pki � pk ÿ p 2
osc � 2qposc ÿ h p 2

osci
2�pk ÿ w� : �118�

The integrals ofmotion are q � p? ÿ posc and a � wÿ pk, and
the energy w � �p 2 � p 2

0 �1=2. Taken for the value of posc are
the values of the oscillatory momentum at the instant of
scattering.

By putting p? � 0 (the particle scattered along k) and
assuming that the momentum is high enough, p4 p0, we
conclude that the average momentum (and, hence, the final
particle energy) will be a 2 times higher than after scattering!
This process may be termed a `Coulomb accelerator'.

But here other points arise. To what degree does the
phase-averaged momentum persist after passage of the wave
packet, andwhat are the limits on energy increase? To provide
answers to these questions, it is convenient to go over to
canonical variables, in which the Hamiltonian of the problem

is independent of the rapidly oscillating external field. In the
nonrelativistic case, this frame of reference is termed the drift
frame. We also adhere to this term in the general relativistic
case.

9.1 Drift coordinates
in a relativistically strong electromagnetic wave
The form of drift coordinates in the relativistic case and the
transformation to them are nontrivial. For the initial
Hamiltonian, we take that describing the free motion in the
field of an electromagnetic wave packet in generalized
coordinates (in this case, not only the customary canonical
momenta P and coordinates r are the canonically conjugate
coordinate and momentum, respectively, but so are the time
ct and the energyHc (see, for instance, Ref. [67])):

H �
ÿ
P� posc�r; t�

�2 � p 2
0 ÿH 2

2p0
: �119�

The role of time for this generalized Hamiltonian is played by
parameter sÐthe `intrinsic' timeÐso that the equations of
motion take on the form

dr

ds
� qH

qP
;

dP

ds
� ÿ qH

qr
;

dt

ds
� qH

qH
;

dH

ds
� ÿ qH

qt
:

Whence follows, in particular, that the quantity H �
ÿ��P� posc�2 � p 2

0 �1=2=p0 is negative for increasing time:
dt=ds � ÿH=p0 > 0. We note that the employment of
generalized coordinates [49, 67] made it possible to repre-
sent the Hamiltonian in a simple quadratic form without
using cumbersome square-root dependences. The Hamilto-
nian H possesses an important property: it is identically
equal to zero in the trajectory of motion. Indeed, Hamilto-
nian H is constant, since it does not depend explicitly on
parameter s; furthermore, this constant is equal to zero on
the strength of the expression for the particle energy in the
relativistic case.

Transformation to the drift coordinates requires perform-
ing a canonical transformation to eliminate the explicit
dependence on the fast phase from the free-motion Hamilto-
nianH. In this case, the free motion itself in drift coordinates
in the field of a plane uniform EM wave should be a straight
line with particle momentum conservation. In the general
form, the generating function of this transformation may be
found by solving the Hamilton±Jacobi equation for our
Hamiltonian and the intrinsic time s. Actually, this problem
has long been solved [49]. However, since we are also
concerned with nonadiabatic corrections, we outline the
requisite calculations and slightly modify the procedure. To
this end, let us choose the system of coordinates in which the
x-axis is aligned with the wave vector k of the EM wave. In
this laboratory reference system, the Hamiltonian assumes
the form

2p0H �
ÿ
P? � posc�xÿ t��2 � P 2

x � p 2
0 ÿH 2 ; �120�

where the time coordinate ct is denoted, as before, by t for
brevity.

In the co-moving frame of reference fx; Zg with
x � xÿ t ; Z � x� t ; Px � Px � PZ ; H � PZ ÿ Px ;
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the Hamiltonian may be written out as14

2p0H �
ÿ
P? � posc�x�

�2 � p 2
0 � 4PxPZ : �121�

Next, performing a canonical transformation with the use of
the generating function

F � �p?
ÿ
r? ÿ rosc�x; �pZ�

�� �pZZ� �pxxÿ
�
p 2
osc ÿ h p 2

osci
4�pZ

dx
�122�

(the angle brackets imply averaging over coordinate x, i.e.,
over the wave phase) and taking into consideration the
definition

rosc �
�
posc
2PZ

dx ; �123�

one obtains the change of variables in the form

�p? � P? ; �r? � r? ÿ rosc ; �pZ � PZ ;

�Z � Z� 1

4p 2
Z

�ÿ
p 2
osc � 2p?posc ÿ h p 2

osci
�
dx ; �124�

�px � Px ÿ p 2
osc � 2p?posc ÿ h p 2

osci
4pZ

; �x � x :

Then, the coordinate-independent Hamiltonian assumes the
form

2p0H � p 2
? � p 2

0 � h p 2
osci � 4pxpZ : �125�

It is noteworthy that the canonical transformation made
using expressions (122) and (123) may be performed for an
arbitrary (not necessarily harmonic) dependence of the vector
potential A � ÿcposc=e on the coordinate x.

Finally, reverting to the usual coordinates x, t allows
obtaining the relationship between the momenta p and P,
respectively, in the drift and laboratory systems of coordi-
nates, as well as the expression for Hamiltonian [66]:

p? � P? ; px � Px ÿ p 2
osc � 2p?posc ÿ h p 2

osci
2�px � h� ; �126�

H � p 2
? � p 2

x � p 2
0 � h p 2

osci ÿ h 2

2p0
: �127�

Here, we purposefully singled out the term h p 2
osci, which

conforms to the effective particle `making heavier' in
relativistically strong fields. This term may smoothly depend
on coordinates, which corresponds to the appearance of a
pondermotive potential. Notice that expressions (126) for the
drift momenta coincide with the kinematic momenta (118)
averaged over the wave phase (recall that the drift `energy' h is
negative).

It should be noted that several interesting features of the
drift coordinates show their worth in the relativistic limit, in
which the amplitude of oscillations in the coordinate and
momentum, unlike that in the nonrelativistic limit, depends
significantly on the particle energy. This is easily seen from
expression (123), because in the general case pZ is defined by
the particle energy, and not only by its rest mass. Further-

more, the real particle time t�s� flows nonuniformly due to the
periodic change of the particle momentum in the external
field. Thus, the `drift' (uniform) time turns out to be different
for different oscillating particles. This signifies that there is no
way of introducing, as is done in the nonrelativistic case, a
drift system of coordinates in the universal (laboratory, real)
time t for all particles.

For a particle traveling in the field of only one wave,
Hamiltonian (127) may be presented in a more familiar form
h � ÿ�p 2 � p 2

0 � h p 2
osci�1=2, with momentum h expressed

explicitly. Recall that any canonical variable (most often
momentum) expressed as a function of the remaining
canonical variables may fulfill the function of the Hamilto-
nian. This form of Hamiltonian is encountered in many
papers on the averaged description of particle motion in a
wave field (see, for instance, Refs [65, 68] and references cited
therein). The appearance of an additional potential V (for
instance, of the Coulomb potential of an ion) in the equation
will complicate the form of the Hamiltonian (127):

H � p 2
? � p 2

x � p 2
0 � h p 2

osci ÿ h 2

2p0
� 2hV ÿ V 2

2p0

� V p 2
osc � 2p?posc ÿ h p 2

osci
2p0�px � h� ; �128�

and will not permit writing down the Hamiltonian in a
familiar form, because expressing momentum h becomes
much more difficult. On the other hand, the use of general-
ized Hamiltonian (128) in numerical simulations permits
eliminating errors in the determination of the drift momen-
tum, when calculating relativistic particle collisions [69].

9.2 Adiabaticity conditions
Another difference between our proposed approach and the
averaged description is the possibility of considering the field
of a wave packet and not only of a plane monochromatic
wave. As noted in Section 9.1, formulas (126) and (127)
remain invariant in the presence of an arbitrary dependence
on the `longitudinal' coordinate x. Introduction of an
additional dependence on the remaining coordinates will
lead to the emergence of oscillating terms in the drift
momentum p?; Z � P?; Z ÿ dp?; Z and in the Hamiltonian

H � p 2
? � p 2

x � p 2
0 � h p 2

osci ÿ h 2

2p0
� dpZ

px ÿ h� 2U
p0

� dp?
2p? ÿ 2posc � dp?

2p0
; �129�

where

dpi �
�
qU
qri

dx ; U � 2p?posc � p 2
osc ÿ h p 2

osci
4pZ

: �130�

These terms are small in comparison with the radiation
wavelength in the case of a smooth dependence on transverse
coordinates, which permits evaluating the nonadiabatic
corrections to the averaged description in the framework of
the perturbation theory. Moreover, if it turns out that these
corrections are insignificant, we will be able to continue the
chain of canonical transformations and find second-order
corrections to the drift Hamiltonian, etc. [70].

The conditions for the adiabatic approximation in the
particle's motion in a wave packet are also easily found

14 This is a canonical change of variables with the generating function

Fx � �p?r? � �px�xÿ t� � �pZ�x� t�.
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from general considerations. Specifically, the variation of
momenta will be adiabatically (exponentially) small when the
intrinsic time of traversing the packet along coordinates r?; Z
is much longer than the intrinsic transit time of a field cycle.
These times are easy to estimate: s0 � l=vx is the intrinsic
transit time of a field cycle, while s1 � L?=v? and s2 � Lk=vZ
are the intrinsic transit times along the transverse and
`longitudinal' coordinates. The transit velocities in intrinsic
time are defined by standard formulas dri=ds � vi � qH=qpi
and assume the form [as follows from formula (125)]

v? � p?
p0
� a ; vx � 2pZ

p0
; vZ � 2px

p0
:

We additionally take into account the relationship between
momenta pmax � px � p 2

osc=pZ 4 p0 for the ultrarelativistic
case and write the adiabaticity conditions in the following
simple form [66]:

pmax 5
2L?
l

posc ; pmax 5

������
Lk
l

r
posc : �131�

These are essentially the same conditions which were earlier
given by other authors [65], though expressed in terms of the
maximum particle momentum.

The physical meaning of conditions (131) is rather clear.
An ultrafast particle travels almost together with the wave,
and due to the relativistic time dilation it needs a longer
intrinsic time to transit the field oscillations than it does in the
nonrelativistic case.Meanwhile, the particle escape across the
packet is as quick as in the nonrelativistic case. This is
precisely the reason why the ordinary nonrelativistic adiaba-
ticity condition L?;Lk4 l is replaced by condition (131),
which contains the particle momentum. Similarly it is possible
to obtain the conditions for adiabaticity violation in the
propagation of a wave packet through a medium (plasma,
for instance). In this case, the limitation actually consists in
the fact that the particle velocity may not exceed the wave
group velocity.

9.3 Energy change during a prompt impact
We write out the energy relations in the sharp stepwise
variation of the total particle momentum due to an elastic
collision. Let the kinematic particle momentum prior to the
collision be equal to fh; pg in the laboratory frame of
reference and let the momentum immediately after (on the
scale of the field cycle) the collision be fh; p� dpg. As an
important example of such collisions, we refer to electron±ion
collisions disregarding ionmomentum variation (an infinitely
heavy ion). As is well known, the energies of particles are
conserved in their scattering by the ion Coulomb potential in
the absence of external fields [49]. This follows directly from
the stationarity of the corresponding Hamiltonian of the
particle interaction.

Let us find the variation of the particle drift momentum
Dp. The variation of transverse drift momentum of the
particle is precisely Dp? � dp?. Furthermore, since pZ is not
transformed in switching to the drift coordinates, we obtain

DpZ � dpx
2
� Dpx � Dh

2
:

The variation of the remaining momentum component Dpx �
�Dpx ÿ Dh�=2 should be expressed with consideration for

formulas (124) describing the transition to drift coordinates:

Dpx � dpx
2
ÿ p 2

osc � 2�p? � dp?�posc ÿ h p 2
osci

4�pZ � dpx=2�

� p 2
osc � 2p?posc ÿ h p 2

osci
4pZ

:

Hence, we obtain for the energy variation

Dh � 1

2�px � h� dpx�

�
�
2dpposc ÿ

dpx
px � h

ÿ
p 2
osc � 2p?posc ÿ h p 2

osci
��
: �132�

In the nonrelativistic limit, px; jhÿ p0j5 p0, we obtain the
well-known expression for the energy variation:

Dh � ÿDE
c
' dpposc

p0
; �133�

which reflects the fact that the particle energy change equals
the work done by the field on the particle. The energy change
is highest in the backward particle scattering, when
dp � ÿ2posc. From now on, unless otherwise stated, we
assume that the initial drift momentum is small in compar-
ison with the oscillatory momentum. However, in the case of
relativistic motion, it is easily seen that an appreciable energy
variation is also possible in transverse scattering (along kÐ
especially when dpx � p0; px) due to a change in particle
`mass' and, accordingly, the oscillatory trajectory, because
the oscillation amplitude depends on the particle drift
momentum in the relativistic case.

Let us analyze expression (132). It is seen that the
expression in square brackets is limited in amplitude and
may not be greater than a value of order p 2

osc. This follows
directly from the smallness of the initial drift momenta,
p5 posc, and an energy estimate h � posc 4 p0. Assuming
that the variation of momentum along k is small
�dpx 5 h � posc�, we immediately arrive at the limitation of
the highest acquired energy by a value of order p 2

osc, as noted
above.

However, let a particle scatter by nearly 90� from its initial
velocity �dp? � ÿposc� and fly along the wave vector of anEM
wave. Then, the denominator of expression (132) will turn out
small: 2�px � h� dpx� � p 2

0 =posc 5 posc. As a result, the high-
est possible particle energy will be on the order of

Dhmax � posc

p20

ÿ
p 2
osc � h p 2

osci
� � 2p 3

osc

p 2
0

4 posc : �134�

This is the earlier obtained estimate (117).
We note that it is sometimes more convenient to use

formulas for drift coordinates than expressions for the
variation of momenta. In particular, the formulas for drift
coordinates make it possible to rather easily obtain the
particle energy distribution after a collision. Furthermore,
the drift coordinates are convenient in the numerical simula-
tion of particle collisions in relativistically strong fields.

9.4 Ultrafast particle distribution
Let us find the energy distribution of ultrafast particles
emerging in electron±ion collisions per unit time. To do this
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requires calculating the integral

g�h� � ni

��
n�r�vd�hÿ Dh�r dr df ; �135�

where ni � ne=Z is the ion concentration, n�r� is the particle
density prior to the last impact, and h is the drift energy
variation in a relativistic Coulomb collision.

The particle density prior to the last impact may be
determined from the following considerations. Notice that
relativistically strong laser fields correspond to the conditions

posc � eA

c
4mvT �

��������
mT

2

r
; rosc � c

o
4 bosc � e 2Z

poscc
:

�136�

The approximate expressions for the oscillation radius rosc
and the Rutherford radius bosc [unlike those in inequalities
(81)] are given for the ultrarelativistic intensity case of
posc 4mc.

We assume that the particle scattering in relativistically
strong fields occurs in two stages and the particle concentra-
tion n�r� prior to the last hard impact is given by formulas
(97). In relativistically strong fields, distribution (97) will
supposedly remain, since this is the simplest form of
distribution in conditions whereby particles gather at a point
from a circle. Since the law of increasing the scattered
momentum with decreasing impact parameter holds in the
relativistic case, distribution (97) will therefore take place for
kinematic reasons. The distribution form (97) is also borne
out by numerical calculations of collisions in relativistically
strong fields (see Section 10).

To determine the variation of momentum which enters in
expression (132) for h, we will take advantage of the exact
formulas for relativistic particle scattering from a Coulomb
center [49]. The utilization of these formulas is justified by the
circumstance that the last, `hard', impact occurs on time and
spatial scales much shorter than the EM wave scale (period
and wavelength). Naturally, this is true for collisions
occurring away from the particle stopping points (when the
total particle velocity is equal to zero), which are nonexistent
in relativistically strong fields. The particle longitudinal15

momentum dpx has the form

dpx � posc cosf sin y�r� ; �137�

where the scattering angle

y � pÿ 2���������������������
1ÿ b 2=r2

q arccos
ÿb

������������������
p 2
osc � p 2

0

q
����������������������������
p 2
oscr2 � p 2

0 b
2

q : �138�

Here, b is the characteristic parameter of the scattering
problem, defined as

b � e 2Z

poscc
�

posc 4 p0
bosc :

We note an important feature of scattering with relativistic
velocities. Forward scattering becomes possible at small
impact parameters r � b. Moreover, with decreasing impact

parameter, r! b, the scattering acquires a rapidly oscillating
nature, because the denominator �1ÿ b 2=r2�1=2 tends to zero
in formula (138) for the scattering angle. Particles with an
impact parameter r < b fall on the Coulomb center and are
given no consideration in what follows.

If the scattering in ultrarelativistic fields �posc 4 p0� is of
interest, expression (138) for the scattering angle becomes
simpler:

y � pÿ 2�������������
1ÿ Z2

p arccos �ÿZ� ; �139�

whereZ � b=r5 1. In this case, integral (135) foracircularly16

polarized electromagnetic wave assumes the form

g�h� � vneni
��

d
�
hÿ posc�2� cos y�

1ÿ sin y cosf� m

�
bZ
b

dZ df
Z 3

; �140�

where m is the small parameter of the problem, and
m � p 2

0 =�2p 2
osc� � 1=�2a 2�5 1. To evaluate this integral

requires expressing the integration parameter Z in terms of
h. However, this is rather hard to do analytically because of
the transcendental nature of the scattering angle dependence
(139) on Z.

Let us consider in greater detail the quantity sin y (Fig. 27).
Of primary interest to us are the energies on the order of
h � posc=m, which corresponds to the values j sin yj � 1. In
this case, due to the rapid oscillations of this function, the
possibility arises to replace it with some approximate function
of a simpler form. As an example of such a function, we take
(see Fig. 27)

sin y � sin

�
1� 2p�������������

1ÿ Z2
p �

: �141�

Evidently, the domain of small values of Z5 1 responsible for
a relatively small energy change will be incorrectly described
in this case, i.e., we must restrict ourselves to energies
h5 2posc.
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Figure 27. (Color online.) Function sin y for the argument expressions

(139) (black curve) and (141).

15 The variation of the remaining components will be small for the particles

of interest.

16 Similarly, it is possible to write down expressions for an arbitrarily

polarized wave, which will give rise to the additional integral accounting

for the dependence on the field phase at the instant of collision. Circular

polarization is different in that the modulus of the oscillatory velocity is

independent of the field phase, which eliminates one integration.
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As a result, integral (140) assumes the form

g�h� � 2vneni
X1
k�1

�
bZk
b

qy �

qh
1

Z 4
k

4p2 dfÿ
y � � p�k� 1��3

� vneni
�
4

5

�3
2

pZ 4
1

bZ1
b

�
qy �

qh
df : �142�

Here, Zk is a value of Z 2 �0:4; 1� at which sin y � 1, and y � is
the scattering angle at which the argument of the delta
function in integral (140) turns to zero:

y � � arcsin
1� mÿ 2posc=h

j sinfj : �143�

We note that the limitation on the maximum energy gain is
easily obtainable from this expression, again proceeding from
the arcsine function domain: h4 2posc=m.

Finally, the particle energy distribution takes on the form

g�h� � vneni
�
4

5

�3
2

pZ 4
1

bZ1
b

posc
h 2

K

�
1ÿ

�
1� mÿ 2

posc
h

�2�
;

�144�

where K�x� is the complete elliptic integral of the first kind.
On singling out the dependence on the main plasma
parameters, the energy distribution assumes the following
simple form

g�h� � n 2
i Z

3L
h 2

; �145�

whereL is a logarithmic factor. This formula is convenient for
making experimental estimates. For instance, by changing the
type of gas (i.e., the value of Z) we obtain a cubic dependence
on the ion charge. Furthermore, seen clearly is the power law
for a decrease in g�h� with increasing particle energy. Notice
that such particles will hardly experience collisions in the
plasma subsequently due to their high energy, which will
conserve their energy distribution law. The dependence on the
gas density (on ni) is not quite evident, because high
concentrations entail the violation of adiabaticity conditions
(131).

Estimate (145)may actually be obtained fromquite simple
considerations. Assume that a particle is isotropically scat-
tered if its impact parameter is small, r � b (see Fig. 27).
Then, in view of formulas (97) and (118), the energy
distribution takes on a simple form for high-energy parti-
cles, p > posc:

g�h� � 2pvninebb
�
d
�
hÿ posc

1� mÿ cos#

�
sin# d# :

Here, # is the angle between the wave vector and the
kinematic particle momentum after a collision, and px �
posc cos#. The integral is easily computed with the help of
the delta-function definition, when the particle energy
satisfies the conditions h > posc, h < 2posca

2:

g�h� � 4pvninebb
posc
h 2
� n 2

i Z
3

h 2
: �146�

Interestingly, the crude assumption of scattering isotropy has
led to the loss of the logarithmic factor [compare with
expression (145)], but the dependence on the main para-
meters has remained correct.

10. Collisions in relativistically strong fields

Electron scattering dynamics in relativistic and strong
nonrelativistic fields is similar in many respects. The effects
of attraction and bunching take place in just the same way
[69]. Accordingly, the statement that the straight-line approx-
imation is inapplicable for describing collisions in such fields
remains valid. Specifically, in strong fields, O5 1, account
should be taken of the attraction stageÐ the phase of motion
during which an electron in the oscillating field is attracted to
a close neighborhood of an ion from large impact parameters.
The energy of an electron is hardly changed at this stage, but
its position in space relative to the ion changes appreciably.
Only then does the strong (`hard', last) electron impact on the
ion occur with a significant change of the electron energy and
the electron velocity direction.

The attraction effect, which is purely kinematic in nature,
is due to the attraction of an oscillating electron to the ion. In
this case, the presence of two conditions is significant at the
stage of electron attraction, which persist in the relativistic
case, too: the attractive ion center, and the periodic external
field. Although the particle oscillations will be highly
complicated, the qualitative pattern of collisions will
remain unaltered. Moreover, since the effect is determined
by the drift velocity 17 of the incident electrons, the
characteristic scales and dependences remain the same as in
nonrelativistic fields. Only the character of the last (`hard')
electron impact on the ion will actually change. It is in this
case that relativistic formulas have to be used for resolving
the scattering problem [49].

Let us show, for instance, the presence of the attraction
effect in relativistically strong fields (compare with the
consideration in Section 7). From exact formulas for the
scattering of a relativistic particle in the ion field [49] there
follows a simple relationship between the particle momentum
variation Dp? and its impact parameter r:

Dp? � poscbosc
r

5 posc : �147�

However, for bosc � e 2Z=poscvosc, one must substitute the
relativistic expression, which takes into account the electron
velocity±momentum relation: vosc � poscc=�p 2

osc � p 2
0 �1=2. On

finding from this the magnitude of transverse velocity
variation Dv? � Dp?c=�p 2

osc � p 2
0 �1=2, it is easy to see that

the particles with the instantaneous impact parameter
r1 �

������
2p
p

rE will arrive exactly at the ion in a field cycle
2p=o. We emphasize that definition (52) of the quantity rE
retains the same form as in the nonrelativistic case, though
with the substitution of relativistic expressions for the
oscillation radius and the Rutherford radius:

rosc � poscc

o
������������������
p 2
osc � p 2

0

q ; bosc �
e 2Z

������������������
p 2
osc � p 2

0

q
p 2
oscc

: �148�

Similarly, it is possible to find the instantaneous impact
parameters whereby the electron will arrive exactly at the
ion in two, three, etc. oscillations, the expressions for these
parameters being precisely the same as in the nonrelativistic
case.

17 For typical plasma parameters with a temperature ranging from several

electron-volts to several hundred electron-volts, the electron drift velocity

may be treated as nonrelativistic.
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Therefore, all inferences of the nonrelativistic scattering
problem remain in force with consideration for the relativistic
definition of parameters in the scattering problem (148). The
results of numerical simulations bear out this statement. For
instance, the particle distribution prior to a `hard' impact has
the same singularity (Fig. 28) as in the nonrelativistic case
(97). Some decrease in the number of particles is due to the
appearance of an oscillation finite width in the coordinate
along the direction of wave propagation. As a result, the
mode of `longitudinal' collisions in a linearly polarized field,
when the particles move along the symmetry axis of the
electric field and are under conditions most favorable for

gaining energy, is replaced with the scattering mode similar to
that in a circularly polarized wave. In this case, the maximum
value of coefficient b becomes smaller, but its dependence on
the angle y of particle incidence becomes smoother, so that
the integral value

�
b sin y dy remains almost constant. The

magnitude of b turns out to depend only slightly on the angle
of particle incidence and is approximately equal to
bv � e 2Z=�mv 2�. It is precisely this picture that is observed
for the dependence of the effective (energy) collision cross
section on the particle incidence angle with increasing
parameter a (see Section 10.1).

Despite the relatively simple form of the particle energy
distribution (97) prior to the last impact, the dynamics of the
scattered particles is rather complex. This is illustrated by
Fig. 29, which shows the energy variation in relation to the
initial impact parameter for different entrance angles and
amplitudes a of the pump field. Darker domains correspond
to greater energy changes. In the nonrelativistic case, a � 0,
one can view concentric rings in the longitudinal particle
incidence and a dumbbell-shaped distribution in the lateral
one. With increasing pump field amplitude, the rings in the
longitudinal incidence begin to `blur', which corresponds to
the appearance of a `figure-eight' in the oscillatory electron
motionÐ the passage to a scattering mode similar to the
scattering mode in the circularly symmetric case. This figure-
eight is seen well in Fig. 29b for the transverse scattering.
Furthermore, the oscillatory radius somewhat shortens in
comparison with that in the nonrelativistic case [in perfect
agreement with formula (148)]. Lastly, in an ultrarelativistic
pump field �a � 3�, the dynamics becomes even more
complicatedÐ the difference between the longitudinal and
lateral particle incidences becomes insignificant. The particles
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Figure 28. Density prior to a hard impact as a function of the distance to

the ion for different a values. The lower dashed line stands for the model

dependence.
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begin to gain more energy (the darker color in Fig. 29; lines
thicken), which is indicative of an increase in the oscillatory
Rutherford radius bosc with increasing a > 1, in accordance
with formula (148).

10.1 Joule heating
The integral characteristics of scattering behave quite
similarly. First, we consider the energy-related scattering
cross section (23), which may be estimated from simple
analytical considerations. We assume that the main contribu-
tion to heating in the last impact is made by small-angle
scatterings with a momentum variation (147). The particle
density (97) prior to the last impact on the ion is known from
numerical simulations. Then, the scattering cross section
takes on the form

seff �
�1
bosc

n�r� Dp
2
?

p 2
osc

r dr � bvbosc �
��������������
1� a 2
p

Tep 2
osc

: �149�

The results of numerical simulations bear out estimate
(149) completely. One can see in Fig. 30 that the collision
cross section is almost constant for underrelativistic intensi-
ties, a < 1. For relativistic intensities �a5 1�, the cross
section starts to rise in proportion to

��������������
1� a 2
p

, this depen-
dence taking place for all polarizations of the pump field.

Figure 31 depicts the effective cross section as a function
of the entrance angles of scattered particles for a linearly
polarized pump field. In the nonrelativistic limit �a � 0�, one
can see a strong anisotropy of the cross section in relation to
the angle y between the particle momentum and the direction
of the electric field. The anisotropy stems from the following
fact: all particles that travel along the field find themselves in a
mode which favors multiple scattering by the ion. Conversely,

only a relatively small fraction of particles experiencemultiple
collisions at an incidence perpendicular to the electric field.

If the relativistic effects are included, the passage from
sinusoidal oscillations to figure-eight oscillations entails three
implications. First, an increasingly large fraction of particles
begin to experience multiple collisions at an incidence at an
angle to the electric field, which broadens the dependence of
the scattering cross section on angle y. Second, the long-
itudinal incidence �y � 0� becomes progressively less pre-
ferred than nonzero-angle incidence, and only a part of the
electrons experience multiple impacts on the ion in this case.
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As a consequence, the cross section at y � 0 becomes smaller.
A passage to the mode of collisions in a circularly polarized
field actually occurs. Third, there appears a weak dependence
of the cross section on the anglef between the direction of the
initial particle momentum and the wave vector of the pump
field. Lastly, in ultrarelativistic fields �a4 1� the cross section
rises as a whole proportionally to

��������������
1� a 2
p

. In this case, the
heating rate dT=dt does not depend as well on the EM wave
amplitude due to the `lowering' of transferred (oscillatory)
energy � ��������������

1� a 2
p ÿ 1, with exception of the transition

domain with a � 1.

10.2 Production of fast particles
By proceeding from the considerations stated at length in
Section 10.1, it is also possible to obtain the particle energy
distribution w � c��p 2

0 � p 2�1=2 ÿ p0� (Fig. 32). For a rela-
tively small momentum variation, w5mc 2, the particle
distribution function decreases as � 1=w 3=2. Conversely, at
high energies, w4mc 2, this function becomes proportional
to � 1=w 2 and bounded from above by an energy
2a 2poscc4 poscc. The behavior of the particle energy distribu-
tion function for both small and large momentum changes is
in complete agreement with theoretical expectations.

Specifically, for p < posc, advantage can be taken of
formula (147) to calculate the distribution

g�q� � ninevTe

�
d�qÿ p�� d2r df :

By using the definition of the delta function, we obtain the
particle energy distribution in the form

g�Dp?� � ninevTe
n�r�r

dDp?=dr
;

where the impact parameter

r � bosc posc
Dp?

� bosc poscc������������������������
w 2 � 2wcp0

p
should be expressed in terms of the final momentum Dp? or
energy w (we assume that w4Te), and the particle concen-
tration n�r� prior to the hard impact is defined by formula
(97). Since the fast particle fraction is small, the background
plasma may be considered as a `source' and its parameters to

be invariable. Moreover, the fast particles do not experience
subsequent collisions due to their high energy. As a result, the
energy distribution function assumes the form [71]

g�p�� 1

p 3
or g�w�� w� p0

�w 2� 2p0w�3=2
�

1

w 3=2
; w5mc 2;

1

w 2
; w4mc 2:

8>><>>:
�150�

Precisely this distribution of scattered particles was
obtained in the experiments [72±74], i.e., the momentum
distribution (150). In Fig. 33, one can see good agreement
between the theoretical dependence (150) and the experi-
mental data. Note that four different series of experimental
measurements are combined in Fig. 33 [72±74]. Figure 33
provides another indication of precisely collisional hot
electrons. Collisional heating has a natural upper threshold
for the electron momentumÐ2posc. The corresponding
highest energies are indicated by arrows in Fig. 33. One can
see that they correspond to a sharp decrease in the number of
observed hot electrons.18 We emphasize that Fig. 33 demon-
strates the dependence on the `energy momentum' pc and not
on the particle energy. These quantities are equal only in the
ultrarelativistic limit [72, 73]. The possibility of interpreting
experimental data in this way is also due to the fact that the
authors of Ref. [74] employed magnetic scintillators, which
measured precisely the particle momentum rather than
particle energy. When all of this is taken into account, one
may draw a conclusion that there was a calibration error in
the distributions obtained in Ref. [74].

In the other limiting case of p0 4 posc < w=c < a 2posc,
the energy±momentum relationship is linear: w � pc. The
momentum distribution of such ultrafast particles, which was
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18 It is pertinent to note that particles with a far higher energy (up to p 2
osc=m

or p 3
osc=m

2c) may be produced in electron±ion collisions in the ultrarela-

tivistic case.
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found earlier [see formula (145)], is proportional to � 1=p 2.
The direction of particle escape is almost parallel to the wave
vector of an EM wave. Accordingly, the particle energy
distribution takes the form

g�w� � 1

p 2

dp

dw
� 1

w 2
; w4 posc : �151�

In this case, the highest particle energy is limited by the value
of 2p 3

osc=p
2
0 . It is precisely such a `tail' that is demonstrated

also by numerical simulations (see Fig. 32).
Figure 34 depicts the variation of the angular distribution

of scattered particles with increasing parameter a. The color
gradation serves to show the scattered electron density (the
more particles with a given momentum, the darker the color)
in relation to the momentum projections for different values
of the normalized vector potential a. It can be seen that the
scattered electron distribution is almost isotropic across the
wave electric field, although there is a small fraction of
electrons with pz 6� 0 scattered along the wave electric field.
With increasing a, the electron distribution becomes aniso-
tropic and, for a5 1, an appreciable `tail' appears directed
along the EM wave propagationÐ to the px > 0 domain.
Actually, confined in this tail are superhigh-energy electrons
with energies w > posc Ð the so-called a 3 effect.

Electrons with energies of several hundred megaelectron-
volts were observed with precisely distribution law (151) in
the experiment [75]. Seen in Fig. 35 is the power-law electron
energy distribution, as well as a kink arising from the
nonadiabaticity of motion in a wave packet for electrons
with too high an energy (131). The disappearance of this kink
with increasing density may be due to the fact that the
attraction effect vanishes in dense plasma, because the binary
collision approximation becomes invalid.

Apart from the graphic comparison of experimental data
and the theoretical curve, it is possible to find and compare
the heating rate (temperature after a pulse propagation) and
the number (net charge) of fast electrons. The rate of heating
in the nonrelativistic and relativistic cases is easy to obtain by
putting b � bv:

Q ' 4pninemc 3b 2
c

c

v
: �152�

Here, bc � e 2Z=�mc 2� is the Rutherford radius for p � mc,
equal to the classical electron radius at Z � 1.

We note that the heating rate (152) is independent of the
EM field amplitude in both the nonrelativistic and relativistic
cases. A dimensional estimate of the heating rate per unit
volume, namely

Q � 1013
nZ����
T
p �eV cmÿ3 s

ÿ1� ; �153�

permits estimating the plasma temperature after the passage
of an EM pulse. In particular, for 1-ps long pulses (which
corresponds to the experimental conditions in Refs [72, 73]),
formula (153) yields an electron temperature on the order of
several hundred electron-volts, which conforms to the
available experimental data (200±600 eV).

11. Collision operator in strong fields

Formally, the collision operator has the form of expression
(17). However, its direct employment is hindered by the
complex, inherently stochastic shape of test particle trajec-
tories. Expression (17) may be simplified by taking into
consideration the features of particle dynamics in strong
electric fields. The dynamics of such particles represent a
pulling towards the ion with hardly any variation in the
modulus of the drift velocity, a sharp `hard' impact on the
ion, and an escape from the scattering domain.

The escaped particle momentum is hardly changed. This
permits replacing the final momentum p�t � �1� by the
momentum after the hard impact. Furthermore, by replacing
the integration variable r0 with the coordinate rc prior to the
hard impact, we obtain


wei�p; p0; t�
� � ni

T

�
J�rc; p0�

ÿ
d�p0 � dp� Dpÿ p�

ÿ d�p0 ÿ p��d3rc : �154�

Here, dp is a small variation of the particle momentum at the
stage of pulling towards the ion, J�rc; p0� is the Jacobian19 of a
transition from r0 to rc, Dp is the momentum change in the
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One can see a kink in the transition to the nonadiabatic mode (indicated by

an arrow) and the disappearance of this kink with increasing particle

concentration. The dashed line matches the 1=p 2 law. The arrow indicates

the adiabaticity boundary (131).

19 A note is in order: in the case of multiflow particle dynamics (which

takes place in strong fields), summation over ambiguity regions should be

performed in the Jacobian.
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hard impact, and

Dp � ÿ
�

2qmP=b

1� r2=b 2
� 2mP

1� r2=b 2

�
�

r4 b
ÿ2mP

q

r
b

r
; �155�

where r � Rc ÿ P�Rc;P�=jPj2 and b � e 2Z=�mP 2� are the
impact parameter prior to the hard impact and the Ruther-
ford radius determined from the total particle velocity. As
before, R and P are the complete coordinate and momentum
at the instant of impact. For low velocities, p5 posc, and a
linearly polarized pump wave, E � Ez0, the expressions for q
and P become simpler:

P ' z0posc�z� ; q ' xx0 � yy0 : �156�
To calculate the Jacobian, advantage can be taken of the

fact that the physical meaning of the Jacobian is reduced to
the particle concentration in new variables, whichwas already
found in Section 7. In general, the concentration in the case of
a linearly polarized field may be represented in the form

J�rc; p0� � n0

�
1� p

posc

a�p0�
r

�
� a�p0�

bosc
r

; �157�

where a�p0� � posc=p4 1 is a factor which describes the
anisotropy of the attraction effect in relation to the particle
velocity prior to scattering (to the initial velocity). Further-
more, owing to the smallness of particle velocity variation at
the stage of attraction, we may put dp � 0. As a result, the
expression for the collision kernel takes on the form

hweii � ni
T

�
J�rc; p0�

�
d
ÿ
p0 � Dp�rc; v0�ÿ p

�ÿ d�p0 ÿ p�
�
d3rc :

�158�
Disregarding particle velocity variation is insignificant in

the consideration of energy exchange with the field, when the
characteristic particle energy variation is comparable to or
exceeds the initial energy (for instance, in the description of
particles on the tail of the distribution function) but may
introduce errors in transport scattering characteristics, which
get the bulk of the contribution, as in weak fields, from long-
range small-angle scatterings.

Expression (158) for the collision kernel resembles
formula (17) but has a significant difference: the explicit
stochasticity of particle dynamics is excluded from the
integrand. In reality, expression (158) describes the stochas-
tic mode, but does so implicitly: in terms of the particle
concentration n�r; p0� prior to the last impact. In this case,
the density must be exactly calculated, considering the
complexity of stochastic particle dynamics. One may take a
simpler road: take some approximation of expression (157)
for the concentration prior to the last impact and exploit the
fact that J�r� appears in the integrand, and the inaccuracies of
the approximation will `smooth out' in the integration.

Expression (158) is sufficient for calculating the diffusion
part of the collision operator in small-angle scattering.
Specifically, from expression (17) it differs by only the
integrand factor J � 1=r, which describes the attraction of
particles at the aiming stage. In this case, use can be made of
the perturbationmethod in small-angle scattering once again,
but for the particles already pulled.

In this case, calculations are similar to those inRefs [5, 76].
The collision operator assumes the Landau form:

Stei � f � � q
qpi

Bi j
q f �p�
qpj

;

where coefficient Bi j is defined by the integral [77]

Bi j � ni

�1
bosc

abosc
r

qV
qri

qV
qrj

����
r!r0�vt

dt d3r

� 2panie 4Z 2m

posc

�
di j ÿ PiPj

jPj2
��1

bosc

bosc dr

r 2

' p2anie 4Z 2m

posc

�
di j ÿ PiPj

jPj2
�
: �159�

The last expression comprises integral
�
bosc dr=r

2, which
diverges at the lower limit of integration. As its lower limit
in the integration, we took the Rutherford radius correspond-
ing to total velocity, b � bosc Ð the limit of pulse variation
expansion (155) in the scattering through small angles
�r4 b � bosc�.

Tensor (159) exhibits the only form of the simplest
differential operator that yields the correct result for the
collision frequency in strong fields under the assumption
that the scattering occurs primarily across the electric field
of an EM wave. We note that precisely the same `diffusion'
part also results for the instantaneous (not time-averaged)
collision operator. In the latter case, however, the total
particle momentum P will also depend on time.

In reality, the divergence at the lower limit in expression
(159) is rather strong, i.e., the contribution from close
collisions is comparable to the contribution from distant,
small-angle scatterings. Specifically, by applying the method
of moments to expression (158), we obtain the expression for
the first moment:

dhpii
dt
� p2nie 4Z 2am

p 3
osc

posc; i�t� � qBi j

qpj
;

which coincides with the similar expression from integral
(159). However, even for the second moment,

dhpi pji
dt

� p2nie 4Z 2am
posc

�di j � dizdjz� 6� Bi j ;

an expression results corresponding to a nearly isotropic
scattering rather than the scattering (see Fig. 34 at a � 0)
across the instantaneous (oscillatory) velocity, as would
follow from expression (159).

The main difficulty in expression (159) is concerned with
the integral

� 1
bosc

dr=r 2, which diverges at the lower limit. This
divergence is due to the appreciable contribution made by
particles scattered through large angles. For an accurate (not
estimative) description of collisions, complete integral (158)
must therefore be employed.

We write out integral (158) in an explicit form, taking into
account the bunching of particles near the phases of peak
oscillatory velocity:

hweii � voscni
2p

�
J�r; v0�

�
d
�
dp? ÿ

2poscboscq

r2 � b 2
osc

�

� d
�
dpz � poscb

2
osc

r2 � b 2
osc

�
ÿ d�dp�

�
dx dy ; �160�

where dp � p0 ÿ p. The plus and minus signs correspond to
the electron bunches near the highest values of the
oscillatory momentum along and opposite to the direction
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of their motion, since the modulus of oscillatory velocity
vosc�t� � j sin �O �t�j in a linearly polarized field reaches its
maximum twice a period.

To calculate expression (160), we go over to the Fourier
transform

wK �
�


w�dp�� exp�iKKdp
posc

�
d3dp :

As a result, after a change r! bosc tan �j=2�, expression
(160) reduces to a single integral:

wK � C

� p

0

J0�K? sinj� cos
�
Kz�1� cosj��ÿ 1

1� cosj
dj ; �161�

where C � voscanib 2
osc=�2p�. Unfortunately, attempts to

calculate integral (161) analytically do not meet with
success. The result of numerical integration of expression
(161) is plotted in Fig. 36. However, analytical calculation is
possible in two important cases.

The first covers the expansion of expression (161) at
small K:

wK � ÿ pC
4
�2K 2

z � K 2
?� � . . . : �162�

This expansion corresponds to diffusion in a momentum
space:

q2 ~Bi j f �p�
qpi qpj

; ~Bi j � p2anie 4Z 2m

4posc

�
di j � posc; i posc; j

j poscj2
�
: �163�

The second case concerns the expansion as K? ! 1.
Numerical integration yields a linear dependence (see
Fig. 36). True, the second derivative of expression (161) has
the form

d2wK

dK 2
?
� p

�
J 2
1

�
K?
2

�
ÿ J 2

0

�
K?
2

��
!

K?!1
0 :

This signifies that wK is a linear function of K? for K? ! 1.
Moreover, it may be shown (see Fig. 36) that

wK �
K?!1

2K? :

Using this dependence and the integral�1
0

r 2J0�kr� dr � ÿ 1

k 3
;

the possibility arises to find an approximate expression for the
collision operator in strong fields:

hweii �
2Cd�DPk=posc�

DP 3
?

: �164�

Assuming the momentum of scattered electrons to be
much greater than their thermal velocity, the collision
operator may be simplified by replacing the distribution
function f �p0� with the delta function [77]:

St � f �hot

� � � f �p0�F�p� d3p0 ; F�p� � 2Cposcd�pk�
p 3
?

: �165�

This is the power-law fast-electron distribution obtained in
Section 10.2.

Since the velocity of such particles after the collision is
high and, accordingly, their collision frequency is negligibly
small, there is good reason to speak about `runaway'
electrons. These particles experience hardly any collisions
with ions in an alternating EM field and, in a way, are
subsequently `lost' for energy exchange processes, similarly
to the runaway electrons produced in collisions in a static field
[5]. The loss frequency mÐthe frequency of appearance of
electrons in the tail of the distribution functionÐmay be
estimated by the formula

m �
�
p>pT

F�p� d2p � ni posc
p

boscbv: �166�

The runaway particle distribution per unit time in a
momentum space is given by expression (165).

So, the collision operatormay be qualitatively represented
as the sum of two termsÐa `diffusion' term, and a fast
particle `generator':

Stei � f � � q2 ~Bi j f �p�
qpi qpj

�
�
f �p0�F�p� d3p0 ÿ m f �p� : �167�

This representation yields correct values for the plasma
heating rate, as well as for the number and distribution law
of the fast particles produced in collisions in the plasma.
However, it is not entirely correct from the standpoint of
kinetic peculiarities of scattering. When an issue of central
interest is kinetics and it is required to accurately describe the
plasma kinetics, use should bemade of integral form (18) with
kernel (160) or (161).

12. Applicability domain

We write down in dimensional form the applicability
conditions of the results outlined in Sections 8±11. In the
subsequent formulas, the electron temperature T is expressed
in [eV], the power P in [1016 W cmÿ2], all frequencies in
[1015 Hz], wavelengths l in [mm], the rest of the lengths in [cm],
particle concentrations n in [1018 cmÿ3], and the pulse
duration t in [10ÿ15 s].

All calculationswere performed in the strong field domain
under the conditions expressed in dimensional form as
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Figure 36. Fourier transform of collision function (161).
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follows:

v5 vosc , T5 6:7� 103
P

o2
0

; �168�

o0 5oE , o0 5 20P 3=8 : �169�

Another important condition is imposed on the pulse
duration. The pulse duration t should be longer than the
time taken to transit the characteristic region of interaction
with the ion (on the order of two oscillatory radii) with a drift
velocity: 20

t4
vosc
v

2p
o0
, t4 510

����
P

T

r
1

o2
0

: �170�

Another condition arises from the classical description we
employed. Itmay be shown that this condition is equivalent to
the following one:

rE 4 losc � �h

mvosc
, P4 2:4� 10ÿ6

o4
0

Z 2
: �171�

Therefore, with increasing field the applicability conditions
for the classical description of the binary collision problem
are improved. From a qualitative viewpoint, the issue is that
the energy exchange occurs in a region of size rE (48), which is
inversely proportional to the square root of the field
amplitude. Since the electron de Broglie wavelength esti-
mated from the oscillatory velocity decreases even faster
�� 1=E �, quantum corrections should be insignificant,
which is confirmed by the data of numerical simulations
[42±44].

The condition imposed on the particle concentration is the
most rigorous. The results outlined here are formally valid
only for a sufficiently rarefied plasma, nr 3osc 5 1 (Table 1).
However, similar effects would be expected to take place in
denser plasmas as well. Specifically, of significance is only the
assumption that there is only one ion in the volume roscr2attr
which defines the attraction domain, since the presence of
another ion in the path of the electron scattered by the ion
may radically change the collision dynamics and minimize
correlation effects [78]. In dimensional variables, this condi-

tion has the form

n4 6� 1017
To4

0

PZ
' 8� 1018

T

l4PZ
: �172�

In higher-density plasmas, the effects described in our
review will not show up completely (will turn out to be
weakened, while their parameter dependence will change),
but will take place up to concentrations nboscr

2
osc �

nr 2Erosc 4 1, albeit in a rather weak form. In such a plasma,
the neighboring ions have no effect on the electron trajectory
during the external field cycle and permit the electron to
execute one oscillation and be attracted to the ion from a
distance on the order of rE �

��������������
boscrosc
p

. We did not perform

Table 1. Limiting concentrations (in cmÿ3).

Formula Estimation formula

Dense plasma for v4 vosc 1=b 3
v 3� 1020

T 3

Z 3

Dense plasma for v5 vosc 1=b 3
osc 9� 1031

P 3

Z 3o6

Boundary of correlation effects
�rE 5 rD�

1=�r 2Ebv� 9� 1022
T
����
P
p

Z 2

Applicability domain
of numerical data

1=�roscr2attr� 6� 1017
To4

PZ

Highly rareéed plasma 1=r 3osc 2� 1016
o6

P 3=2

20 It is pertinent to note that an appreciable fraction of `captured'

electronsÐ the particles which would not leave the interaction region

rosc for a time considerably longer than the transit time 2rosc=vT for this

regionÐwas observed in numerical simulations. The fraction of such

electrons increases with field intensity.

Table 2. Characteristic scales in electron±ion collisions.

Quantity Notation* Formula Estimation formula

Spatial scale

Pulse length L ct 2:99�10ÿ5t

Oscillation radius rosc � 1

O 2

eE

mo2
3:41�10ÿ6 P 1=2

o2

Rutherford radius
in vT

bv � 1

v 2
Ze 2

mv 2T
1:44�10ÿ7 Z

T

Rutherford radius
in vosc

bosc � O 2 Ze 2

mv 2osc
2:17�10ÿ11 Zo2

P

Return radius rE � 1

�������
Ze

E

r
8:61�10ÿ9 Z 1=2

P 1=4

Attraction radius rattr �
1

Ov

������������
bvrosc
p

7:02�10ÿ7 P 1=4Z 1=2

oT 1=2

Coherence radius ra
2pc
op

3:34�10ÿ3 1���
n
p

Debye radius rD
vT
op

7:41�10ÿ7
����
T
p ���
n
p

Compton length lC
h

mc
3:86�10ÿ11

de Broglie length
in vT

lv
h

mvT
2:76�10ÿ8 1����

T
p

de Broglie length
in vosc

losc
h

mvosc
3:39�10ÿ10 o����

P
p

Velocities

Thermal velocity vT � v
�������
2T

m

r
4:19�107 ����

T
p

Oscillatory velocity vosc � 1

O
eE

mo
3:41�109

����
P
p

o

Normalization
velocity

vE � 1 rEoE 1:71�108P 1=8Z 1=4

Critical velocity vO � O rEo 8:61�107
����
Z
p

o
P 1=4

Frequencies

Field frequency o � O
2pc
l

1:88

l

Plasma frequency op�
��������
4pn
p �������������

4pe 2n
m

r
5:64�10ÿ2 ���

n
p

Normalization
frequency oE � 1

�����������
eE 3

m 2Z

4

r
19:9

P 3=8

Z 1=4

* For some quantities, their dependence on parameters v and O is given
in dimensionless form.
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detailed calculations for this case but, according to general
considerations, incoherent bremsstrahlung will be enhanced
by a factor of rosc=bosc [by analogy with the increase in the
effective cross section (see Section 8)] in comparison with that
in traditional models, and a weak coherent radiation will
emerge (see Section 8). In a plasma of even higher density
�nb 3

osc � 1�, correlation effects vanish completely and tradi-
tional models become applicable [79±84].

To summarize this section, we give estimates for char-
acteristic quantities (spatial dimensions, velocities, and
frequencies) in dimensional form (Table 2).

13. Conclusions

Our review presents the current state of research on electron±
ion collisions in strong electromagnetic fields. The emphasis
was placed on the description of relativistic- and nonrelati-
vistic-velocity electrons colliding with ions. Of the most
important results included in our review, we highlight the
following ones.

We have classified the types of electron motion and
expected effects in the electron scattering by an ion in the
presence of an EM field. The equation of test electron motion
and, accordingly, the structure of phase space were shown to
depend on one dimensionless parameter, which is defined by
the ratio of the potential energy at a range of the oscillatory
radius from the ion to the electron oscillatory energy.

We have analyzed the strong field case under those
conditions where the oscillatory velocity is far greater than
the drift one. We have obtained analytical and numerical
estimates of the effective collision frequency, the intensity of
coherent harmonic emission, and the energy distribution of
fast particles. We showed that, unlike traditional notions, the
efficiency of these processes does not become lower with
increasing intensity of the pump field. A common feature of
the above effects is their weak dependence on the polarization
of the pump field.

A general expression was derived for the integral of binary
electron±ion collisions in the kinetic equation for the single-
particle distribution function in the drift coordinates and
velocities of electrons in the field of an arbitrary EM wave.
For strong EM fields, the expression for the collision operator
was represented in the form of the sum of a diffusion term and
a fast particle source.

An investigation of the applicability conditions for the
results outlined in our review shows that they remain valid for
a transparent plasma and an EMwave of arbitrary (including
relativistic) intensity.
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