
Abstract. The detachment of a bound electron by an electric
field pulse whose duration ranges from a fraction of to a few
times the optical cycle but is long compared to �h�h=I (�h�hÐPlanck
constant, I Ð binding energy) is studied theoretically, simulat-
ing the ionization of atoms by extremely short laser pulses.
Because of the strong nonlinearity, the solution to the problem
does not reduce to the sum of monochromatic harmonic con-
tributions and depends significantly on the pulse shape features.
A general analysis is carried out for an analytical pulse shape,
and exact formulas are given for standard pulse shapes such as
solitonlike, gaussian, lorenzian, etc., one or a half optical cycle
in duration. The intensity and pulse length dependences of the
ionization probability are of a near-universal tunneling type at
high intensities. However, at moderate intensities in the multi-
photon regime, these dependences differ widely for different
pulse shapes, with ionization probabilities always a few orders
of magnitude higher than for ionization by a monochromatic
wave of the same intensity and mean frequency.

Keywords: multiphoton processes, tunnel and multiphoton
ionization, relativistic ionization, very short laser pulses, in-
tense laser radiation

Remarkable progress in generating very high intensity laser
fields was closely related to a corresponding reduction in
pulse duration [1, 2]. Therefore, actual multiphoton pro-
cesses, i.e., those requiring the simultanious participation of
many (4 1) photons, are observed typically in experiments
with ultrashort pulses (USPs). With this reduction continu-
ing, pulselengths become comparable to the optical field cycle
duration [3±8]. Under such conditions, the usual concept of
transition (ionization) probability per unit time makes no
sense. The onlymeaningful quantity remains the totalÐafter
the whole pulseÐ transition probability. Moreover, the
frequency spectrum of the pulses under consideration is very
broad and, because of the extreme nonlinearity of the process,
its probability does not reduce to the sum of independent
harmonics contributions.

The physical essence of ionization process in the high
intensity USP case may be thought of as an interaction of and
competition among the contributions of many harmonies,

depending not only on the spectrum, but also on the phase
relations of different harmonies, i.e., higher order field
correlations. In other words, this means that the result is
very sensitive to the exact pulse shape. In this article, some
extreme particular cases are theoretically studied, corre-
sponding to USPs a few or even half an optical cycle long.

Recently, a few groups have investigated both experimen-
tally and theoretically an evenmore extreme limiting case, in a
senseÐ the ionization of atoms by a pulse much shorter than
characteristic electron times (the inverse optical transition
frequency between neighbouring energy levels). They realized
these conditions experimentally with alkali atoms, excited to
very high Rydberg states, corresponding to quasiclassical
electron motion and small interlevel distances. A field pulse
acted in such a case as an (quasi)instantaneous kick, moving
electron from oneÐboundedÐKepler orbit to anotherÐ
unbounded.

In contrast to this, the problem discussed below is
essentially a quantum one: ionization from the tightly bound
state, e.g., the ground state, by a pulse one or one-half optical
cycle long, but much longer than the `atomic cycle'Ð �h=I,
�h being the Planck constant and I the ionization energy. This
means that the average energy of a photon in the pulse is small
compared to the ionization energy. For an atomic electron,
this is slowly varying perturbation, and therefore the same
adiabatic treatment can be applied to this problem which was
exploited earlier [9] for ionization by intense monochromatic
waves. The basis for this is the observation that the finalÐ
freeÐ state of an electron in the process under consideration
is much more sensitive to such type of perturbations than the
initial oneÐ strongly bound and localized. So, the transition
probability is calculated as that of a first order transition from
the unperturbed initial atomic state to the final `exact' state of
the free electron in the strong time-dependent electric field.
The latter of these states accounts for the field action
nonperturbatively and contains the main contribution to the
transition amplitude. For the fields below atomic, i.e.,
intensities up to the PW/cm2 range, the most (and only)
important defect in this approach is neglecting electron±ion
Coulomb interaction in the final state, i.e., a Born-type
approximation. The significance of such approximate solu-
tions may seem questionable now. This kind of quantum
problemÐa single electron in an external field, including
both atomic and electromagneticÐ is certainly within the
limits of modern computing abilities. During the last decade,
several algorithms have been proposed and successfully
applied to the problems of multiphoton ionization and some
other related ones, such as UV higher harmonics generation.
Still, analytic solutions, even semiquantitatively correct, also
have their advantages, not being restricted by any definite set
of parameter values. They may be useful in representing an
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overall view of the process and trends due to variation of
parameters, or as a starting point in analyzing more compli-
cated, e.g., multielectron, systems.

Let the spatially uniform time-dependent electric field
F�t� be given by

F�t� � F f 0�ot� : �1�

Here, f 0�x� is the derivative of the function f over its
argument x, and o is the inverse characteristic timescale of
the pulse. In such a field, the wave function of the free electron
is

cp�r; t� � exp

�
i

�h

�
p�t� rÿ

�t
0

p 2�t 0�
2m

dt 0
��

�2�

with

p�t� � p� eF

o
f �ot� : �3�

Following the usual first-order perturbation theory, the
transition probability from the initial state c0�r� exp ��i=�h� It �
to the final state cp�r; t� can be calculated:

wip � e 2F 2

�h 2o 2

�
���� �1ÿ1 dxRk

�
p� eF

o
f �x�

�
exp

�
i

I

�ho
F�x�

� ����2; �4�
with phase function F�x� defined as

F�x� � 1

I

�x
0

�
I� p 2�x 0�

2m

�
dx 0 ÿ i

�ho
I

ln f 0�x� : �5�

Here,Rk�p� is the transition matrix element of the coordinate
component parallel to the field F,

Rk�p� �
�
exp

�
ÿ
�

i

�h

�
pr

�
nrc0�r� d 3r ;

and n is the unit vector in the field direction.
In order to make the following analysis more vivid, it is

convenient to use the representation of all quantities involved
in the natural `atomic' scale, i.e., to define

O � �ho
I
; q � p��������

2mI
p ; E � e�hF�����������

2mI 3
p : �6�

Certainly, this means the corresponding transformation of
coordinate and time scales. Then, the dimensionless matrix
element should be defined as

M�q� �
 ��������

2mI
p

�h

!5=2

Rk�p� : �7�

According to the above claim, the whole consideration in
this article is for O5 1.

The crucial parameter of the theory is then the ratio of
dimensionless field to the frequency:

l � jEj
O
; �8�

which is exactly inverse to the parameter g introduced in [9]
(if o is considered a characteristic frequency of the process).

The factor 1=O being the large parameter of the theory,
the integral in (4) can be calculated by the stationary phase
method. The stationary phase point(s) in the complex
variable x plane is found from the equation

qF�x;q�
qx

����
xs

� 1� ÿq� n l f �xs�
�2 ÿ iO

f 00�xs�
f 0�xs� � 0 : �9�

Then, the transition probability

wip�2pOl 2

����X
s

M
ÿ
q� nl f �xs�

�����������������������jF 00�xs;q�j
p exp

�
ÿ i

O
F�xs;q�

�����2 ;
�10�

with summation over all saddlepoints xs. Contributions of
different saddlepoints are exponentially different and only the
dominating one must be kept in (10). Generally, there is one
such dominating saddle pointÐ that corresponding to the
lowest value of the positive imaginary part of F�xs;q�.
However, in many cases, due to some symmetry of the pulse
function f �x�, pairs or groups of equivalent saddle points
exist with equal values of ImF�xs;q� but different phase
factors ReF�xs;q�. Interference of their contribution results
in oscillations of the ionization probability as a function of
pulse parameters l and O.

Considered as a function of its argument q, this prob-
ability is the momentum distribution function of emitted
electrons. Note, however, that q in this formulae is momen-
tum at the time instant when f �x� � 0. So, if f �1� 6� 0, as it
is, e.g., in examples 1 and 4 below, the momentum distribu-
tion of ejected electrons is distribution (10) but shifted by
dq � nl f �1�, as is done in formulae (17) and (43) for the
above mentioned examples 1 and 4.

Typically, distribution is Gaussian around some average
momentum qm, to be defined from the condition of minimum
of ImF�xs;q�, which, accounting for (9), reduces to

qkm � ÿ l
x 00sm

Im

� � xsm

0

dx f �x�
�

�11�

and q? � 0, with qk and q? being the momentum compo-
nents parallel and perpendicular to the field direction,
xsm � xs�qm�, and being the x 00s Ðimaginary part of xs.

In the vicinity of this sharpmaximum, taking into account
(9) and (11), the imaginary part of F�xs;q� can be trans-
formed into

ImF�xs;q� � x 00sm � Im

��xsm
0

�
l 2 f 2�x� ÿ q 2

km
�
dx

� xsmq
2
? �

�
xsm ÿ i�l f 0�xsm��ÿ1

� �qk ÿ qkm�2
�
; �12�

with halfwidths defined by the second derivatives of the
exponent in (10) over components of the momentum.

A comment should be made about the pre-exponential
factor in (10). In deriving this formula, the matrix element
M
ÿ
q� nl f �x�� was treated as a regular function, slowly

varying in the vicinity of xs: M�q� 'M0 �M�0�. However,
typically M�q� contains a poleÐa singularity M�q� �
M0=�1� q 2�, in the momentum complex plane [9]. In the
whole range of nonlinear absorbtion l4 lc, with lc defined
below by (46), terms in F�xs� proportional to l or l 2 are
much larger than the last term � O. This pole then comes
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very close to the position of the saddle point. This modifies
slightly the evaluation of the integral in (4): instead of the
saddle point contribution, we have half of the residue at
that point, which enhances the pre-exponent in (10) by the
factor p=�4Ej f 0�xs�j�. If two (or a few) equivalent saddle
points (and poles of M) are present in (10), each contribu-
tion to the transition amplitude must be multiplied by
sign Im � f �xs��

�
p=�4Ej f 0�xs�j�

�1=2
. However, strictly speak-

ing, these corrections to the preexponential factor (also like
the one discussed below and due to violation of the standard
stationary phase method in the vicinity of the singularity in
the pulseshape function itself) must be ignored: the pre-
exponential factor in (10) and some following formulae
should be considered correct only by the order of magni-
tude, because of the abovementioned Born-type approxima-
tion.

Results for a few particular but quite representative
examples are shown below.

1. Solitonlike half-cycle pulse (HCP)

f �x� � tanh x �13�

which means for electric field strength

E�t� � ÿ E
�coshot�2 : �14�

Momentum-resolved ionization probability

wi�O; l;q� � pO�����������������
O 2 � l 2

p �l 2 � z 2� jM0j2

� exp

�
ÿ 2

O

�
�1� l 2� arctan z

l
ÿ lz

� arctan
z
l
�qÿ nl�2

��
�15�

with parameter

z � 1

l

h �����������������
O 2 � l 2

p
ÿ O

i
: �16�

Accounting for the above-mentioned pole in the transition
matrix element, formula (15) should be modified to

wi�O; l;q� � jpM0j2

� exp

�
ÿ 1

O

�
�1� l 2� p� 2 arctan

z
l
�qÿ n l�2

��
� sinh2

�
1

O

�
�1� l 2� arctan �l� � l

��
: �17�

Moreover, formulae (15) and (17) are derived by the
stationary phase method applied to evaluate the integral in
(4). However, for f �x� � tanh x with field decreasing, the
saddle point approaches ip=2Ð the singularity of f �x� itself
(not that of the matrix element). In the linear absorption
regime, l < O5 1, this violates conditions of the stationary
phase method applicability, also modifying the numerically
pre-exponential factor. In the framework of the general
analysis below, the exact (in the Born approximation)
formulae will be derived that are also valid for a weak field
limit. Coinciding with (15) and (17) in the nonlinear field
range, for weak fields they contain correction factors S reg for
(15) and S sing for (17), represented in formulae (52) and (54).

2. Solitonlike one-cycle pulse (OCP)

f �x� � ÿ 3
���
3
p

4 cosh2x
: �18�

The numerical factor is introduced to normalize j f 0�xm�j to
unity at both extrema of the field strength.

Momentum-resolved ionization probability

wi �O; l;q� � 8j2pM0j2 exp

�
ÿ p
O
�1� q 2�

�
�
�
1ÿcos

�
2

O
ReF�xs;q�

��
sinh2

�
ÿ 1

O
Im ~F�xs;q�

�
;

�19�
for which

Im ~F �xs;q� � ImF�xs;q� ÿ p
2
�1� q 2�

��1�q 2�
�
x 00s ÿ

p
2

�
ÿ 1

6

h
�5qkÿ2~l� Z�

������������
1�q 2

?
q

x
i
; �20�

ReF�xs;q���1� q 2� x 0s ÿ
1

6

h
�5qk ÿ 2~l� xÿ

������������
1�q 2

?
q

Z
i
:

�21�

Saddle point xs defined by

x 00s � Im xs � p
2
ÿ 1

2
arccos

�����������������������������������
1�q 2

?��~lÿ qk�2
q

ÿ~l��������������
1� q 2

p ; �22�

x 0s � Rexs � 1

2
tanhÿ1

"
x

~l�
��������������������������������������
1� q 2

? � �~lÿ qk�2
q #

; �23�

field parameter ~l � �3 ���
3
p

=4� l and

x �
�����������������������������������������������������������������������
2~l
h ��������������������������������������

1� q 2
? � �~lÿ qk�2

q
� ~lÿ qk

ir
; �24�

Z �
�����������������������������������������������������������������������
2~l
h ��������������������������������������

1� q 2
? � �~lÿ qk�2

q
ÿ ~l� qk

ir
: �25�

Formula (19) is presented in the form corresponding to the
singular matrix element M�q� as described above. The
function sinh�. . .� in (19) accounts for contributions of two
pairs of poles (saddle points): one pair with x 00s < p=2 and
another symmetrically above p=2. The contribution of the
latter pair is significant only at the weakest fields l5O 2.
Thanks to this, formula (19) describes correctly (up to
numerical factor � 1) the linear absorption. In the whole
nonlinear range l4O 2, this contribution is negligible and
sinh does not differ from half of the exponential function of
the same argument.

Momentum qkm, corresponding to the distribution func-
tion maximum, should be found from the equation

qkm x 00sm

����
q?�0

� Z �26�

and substituted into (19)±(25). For small l5 1, it is approxi-
mately qkm � �2~l�1=2=p. For large fields l4 1, its value
approaches 2~l=3.

Oscillations in the field and momentum dependences in
(19) arise because of interference contributions due to the pair
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of saddle points, symmetrical relative to an imaginary axis. In
the totalÐmomentum integratedÐ ionization probability,
their amplitude decreases with a field increase as a result of
destructive interference of different momenta contributions:

Wi �O; l� �
���������
2pO
u

r
O
x 00sm
jM0j2 exp

�
ÿ p
O
�1� q 2

m�
�

�
�
1ÿ exp

�
ÿ 2~l
pO

�
cos

�
4
�����
2~l

p
3O

��
� sinh2

�
ÿ 1

O
Im ~F�xsm;qm�

�
; �27�

with

u �
 
x 00s �

1

4

qx� Z

�1� q 2�
�������������������������
1� �~lÿ q�2

q !
q�qm

:

The oscillating term is written here in a form valid only for
l5 1, as for larger fields this term becomes negligible.

3. Gaussian one-cycle pulse (OCP)

f �x� � exp

�
1ÿ x 2

2

�
: �28�

Corresponding field pulse shape

E�t� � ÿEot exp
�
1ÿ �ot�2

2

�
: �29�

Then,

F�xs;q���1� q 2� xs � 2~lqk Erf
�

xs���
2
p
�
�~l 2 Erf �xs� :

�30�

Here, ~l � ���
e
p

l, Erf �x� is the error integral

Erf �x� �
�x
0

exp �ÿy 2� dy ;

xs�q� �
��������������������������������������������������������
ln

~l 2

1� q 2
� 2i arccos

ÿqk
1� q 2

s
: �31�

Only saddlepoints in the upper halfplane of x are relevant.
Thus, the signs of the roots must be chosen with positive
imaginary parts. Therefore, the signs of the real part are
different for two saddlepoints. This is just an example of two
equivalent saddlepoint interferences.

x 00s � Im xs � 1���
2
p

�

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
ln

~l 2

1�q 2

�2

� 4

�
arccos

�
ÿ qk������������

1�q 2
p ��2s

ÿ ln
~l 2

1�q 2

vuut ;

�32�

x 0s � Re xs � � 1���
2
p

�

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
ln

~l 2

1� q 2

�2

� 4

�
arccos

�
ÿ qk��������������

1� q 2
p ��2s

�ln
~l 2

1� q 2

vuut :

�33�

The equation for qm in this case looks like

qm

�x 00sm
0

�
1ÿ exp

�
ÿ x 00smu�

u 2

2

�
cos �x 0smu�

�
du

� ÿ
�x 00sm
0

exp

�
ÿ x 00smu�

u 2

2

�
sin �x 0smu� du : �34�

As xsm itself is a function of qm, this equation, alongwith (31),
a system of two coupled equations defining both xsm and qm.

The imaginary parts of the Erf functions in (30) can also
be represented by integrals similar to those in (34). Taking
into account (31),

~l 2 ImErf �xs� � ÿ
�x 00s
0

exp �ÿ2x 00smu� u 2�

� ��1ÿ q 2
km� cos �2x 0smu� � 2qkm sin �2jx 0smju�

�
du : �35�

Unlike the general form of (31)±(33), equations (34) and (35)
are written for q � qm.

All these formulae become substantially simplified and
more transparent in the `multiphoton' (l5 1) and `tunneling'
(l4 1) parameter ranges. For moderate intensities (l5 1),
momentum-resolved ionization probability

wiq � 4pO
l 2

l 2 � l 2
c

x 00sm
��M�0���2 �1� cos

pÿ 4qk
x 00smO

�

� exp

�
ÿ 2

O

�
�1� q 2� x 00sm ÿ

1

2x 00sm

��
; �36�

with x 00sm given by

x 00sm �
����������������������
ln

1

~l 2 � l 2
c

s
4 1 ; �37�

qkm � ÿ p
2x 002sm �x 002sm ÿ 1� 5 1 : �38�

Strictly speaking, formula (36) is correct for low fields
(l5 lc � exp �ÿ1=�2O 2��, linear absorption) and moderate
fields (lc 5 l5 1). In the intermediate range (l � lc), it
seems to be a reasonable interpolation. Oscillations of
transition probability to any particular momentum due to
the interference of two saddlepoint contributions are very
strongÐup to complete cancellation. However in the total
(momentum integrated) ionization probability, they are
gradually damped with a field increase because of the
momentum dependence of their phases,

Wi � 8
l 2x 002sm
l 2 � l 2

c

�
pO
2x 00sm

�5=2

jM�0�j2

�
�
1� exp

�
ÿ 2

Ox 003sm

�
cos

p
x 00smO

�

� exp

�
ÿ 2

O

�
x 00sm ÿ

1

2x 00sm

��
: �39�

As to the strong field tunneling regime (l4 1), formulae (48)±
(50) are universal for any pulse shape, the only difference
being in the particular value of the parameter aÐthe
curvature at the pulse top. For a Gaussian pulse, a � 2.
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4. Lorenzian half-cycle pulse (HCP)

f �x� � arctan x : �40�

Corresponding field pulse shape

E�t� � E
1� �ot�2 : �41�

The saddle point is then

xs � i tanh

� ��������������
1� q 2

?
p

� iqk
l

�
; �42�

and momentum distribution of ionization probability

wi�O; l;q� � jpM0j2 exp

�
ÿ 2

O

ÿjxsmj ÿ l 2 j�jxsmj�
� �

� exp

�
ÿ 2

O

�
q 2
? jxsmj �

�
qk ÿ pl

2

�2

�
�
jxsmj � 2

l
�1ÿ jxsmj2�

���
; �43�

with

jxsmj � tanh
1

l
; �44�

j�x� � 1

4

�x
0

ln2
1� y

1ÿ y
dy : �45�

The numerical solution of (9) and (11) is strightforward for
any reasonable pulseshape. However, a general qualitative
analysis is also possible and may be illuminating. There are
three essentially different areas in the plane of parameters
�O; l�:

1. Weak fields and linear absorbtion for l5 lc�O�with lc
being the effective nonlinearity threshold, substantially
dependent on the pulseshape and specified below for some
typical pulse shapes. The general definition is

lc
�� f �xs0��� � 1 ; �46�

with xs0 being the root of equation (9) corresponding to l � 0.
Terms proportional to l and l 2 on the right-hand side of (9)
can be disregarded. The exponential factor in (10) reduces to
an exponentially small amplitude of high frequency harmo-
nics, corresponding to the above-threshold quantum energy
�ho > I, always present in the Fourier spectrum of a broad-
band signal.

2. Nonlinear regime: l > lc. The last term in (9) can be
omitted. Then,

xs � f ÿ1
�ÿqk � i

��������������
1� q 2

?
p
l

�
: �47�

Here, f ÿ1�y� is a function, the inverse of f �x�. The sign of the
imaginary part of its argument must be fixed so as to
correspond to x00 > 0.

2a. High fieldsÐOÿ1 4 l4 1.
Without any loss of generality, one can always choose the

point x � 0 to be the absolute maximum of f 0�x�, i.e., field
strength, and f 0�0� � 1. This last condition just fixes the exact

value of l. If there are a few equivalent maxima, each of them
can be treated separately. In the range of interest around this
point, f �x� can be approximated by a cubic parabola:

f �x� � f0 � xÿ 1

6
ax 3 ; 0 < a � 1 : �48�

Then, after simple calculations,

ImF�xs;q� � 2

3l

�
1� 4a

�qÿ qm�2
l 2

�
; �49�

qkm � l
�
f �1� ÿ f0

�
: �50�

This corresponds in [9] to quasistatic tunneling during a short
dx � ������jEjp

time interval around the field maximum. The
momentum distribution of photoelectrons is Gaussian with
halfwidth Dqk � �l=4�

�������������
3jEj=ap

.
2b. 14 l4 lc�O�Ðmoderate fields. Compared to the

weak and strong field cases, in this one the l-dependence of
Q^(xs, q) is more diverse, depending on the details of the pulse
shape, particularly singularities of the function f �x� in the
upper half-plane of the complex variable x. The Gaussian
shape f �x� � exp �ÿx 2=2� is the particular case with the only
singularity of f �x� being the essential one at infinity.
However the most typically pulselike function f �x� has
singularities (poles, branching points) in the complex plane
of variable x at some xpol with the imaginary part x 00pol � 1.
Then, for weak fields, just the exp �ÿ2x 00pol=O� defines the
amplitude of the high frequency Fourier component respon-
sible for single quantum ionization. With the field increasing,
the saddle point xs moves from xpol to the real axis. Let the
singularity closest to the real axis be the k-th order pole, i.e.,

f �x� � A

�xÿ xpol�k

for jxÿ xpolj5 1. Then, as will be shown below, the
ionization amplitude in the whole domain l5 1, including
both weak and moderate field ranges, beside the weak field
factor exp �ÿ2x 00pol=O�, is dependent only on a single para-
meter,

z � �lA�
1=k

O
; �51�

and the moderate field range starts at jzj � 1, i.e., lc � O k.
Note that the first two of the above-described examples are
dominated by such singularities, the first one corresponding
to k � 1 and the second to k � 2. The saddle points (and
possible poles of matrix element M

ÿ
q� nl f �x�� coincident

with them in the pre-exponential factor)

xs�q� � xpol �
�

Al
1� q 2

�
� i

��������������
1� q 2

?
q

ÿ qk
��1=k

; �52�

with both signs in the argument being relevant, as all of these
2k points are in the close vicinity of xpol, which itself is in the
upper halfplane. However, in the moderate field strength
range jzj > 1, only one of them dominatesÐ that with the
minimal value of x 00s ; or, one pair of such points, if, depending
on pole order k and w � argA, there are in the whole set (52)
such a pair of mirror symmetric relative to the imaginary axis
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elements, with the minimal value of the imaginary part. The
second example above with k � 2 and w � 0 corresponds to
just such a case �xs ÿ xpol�q�0 �

��������
l=2

p ��1ÿ i�. In general,

ImF�xs;q� � x 00pol ÿ
2k

2kÿ 1
g �ljAj�1=k

� q 2
?

�Dq?�2
� �qk ÿ qkm�2

�Dqk�2
; �53�

with

Dq 2
k � Dq 2

? � x 00pol � o�l 1=k� ;

qkm �
�������������
1ÿ g 2

p
�2kÿ 1� x 00pol

�ljAj�1=k ;

g � maxs
�xpol ÿ xs�00
jxs ÿ xpolj �54�

with index s � 1; 2; :::; 2k marking different elements of
set (52). Thus, in the moderate field strength range, ionization
probability increases as exp �4kgjzj=�2kÿ 1�� and the average
momentum as l 1=k. If there is only one dominating saddle
point,

Wi�O; l� �
���
p
p �

O
2x 00pol

�3=2

jM0j2�

� exp

�
ÿ 2

O
x 00pol �

4k

2kÿ 1
gjzj
�
; �55�

and

Wi�O; l� �
����
p
2

r �
O
x 00pol

�3=2

jM0j2

� exp

�
ÿ 2

O
x 00pol �

4k

2kÿ 1
gjzj
�

�
�
1ÿ exp

�
ÿ 2

x 00polO

�
gjzj

2kÿ 1

�2�

� cos

�
4k

2kÿ 1

�������������
1ÿ g 2

p
jzj
��

; �56�

if a pair of symmetric saddle points contribute. It should be
noted that, in all arguments of exponential and trigonometric
functions, only leading terms in l5 1 are shown in these
formulae.

Derived by a stationary phase asymptotic evaluation of
integral in (4), formulae (55) and (56) are valid for the
moderate field range O k 5 l5 1. Their inapplicability for
weak fields is clearly seen from the fact that they do not
follow the usual � E 2 dependence as l! 0. The reason for
that was already mentioned above in discussing the second
example: at z < 1, contributions of all 2k saddle points,
surrounding xpol, become of the same order. It is easy to
account for all of them, which would restore the correct� E 2

behavior in weak fields. Still it is not the whole story. The
numerical coefficient appears to be wrong. The reason is
that, besides all these poles and saddle points, the point xpol
itself is the essential singularity of the integrand in (4):
exp �i�lA�2�xÿxpol�ÿ2k�1=�2kÿ1��. An evaluation of the
integral in (4) accounting for this whole structure in the
complex plane, valid in the whole domain jzj5 1, i.e., weak
and moderate field ranges, is possible in terms of a fast

converging power series in z. The result again is slightly
different depending on the presence or absence of the pole in
the matrix element. If the matrix element is regular (no pole)
and slowly varying,M�q� �M0,

wi�O; l;q� � l 2jM0j2 exp
�
ÿ 2x 00pol

O
�1� q 2�

�
�
����S reg

k

�
zk��������������
2kÿ 1
p

�����2 ; �57�

with

S reg
k �y� � 2p

��������������
2kÿ 1
p

y
X1
n�0

�ÿ1��k�1�ny 2n

n!
��2kÿ 1� � k

�
!
; �58�

and for the case of a singular matrix element,

wi�O; l;q� � l 2jM0j2 exp
�
ÿ 2x 00pol

O
�1� q 2�

� ��S sing
k �zk���2 ;

�59�

with

S sing
k �y� � 2pk y

X1
n�0
�ÿ1��k�1� n an y 2n ; �60�

and coefficients an defined as

an �
Xn
m�0

�2kÿ 1�ÿm
m!
��2n� 1� kÿm��! : �61�

The asymptotic form of functions S reg
k and S sing

k at jzj4 1
exactly coincide with the results of stationary phase calcula-
tions in the moderate field regime,

S reg
k

�
zk��������������
2kÿ 1
p

�
�

������
pk
jzj

s
exp

�
2k

2kÿ 1
gjzj
�
; �62�

S sing
k �zk� � p exp

�
2k

2kÿ 1
gjzj
�
; �63�

and their first terms substituted into formula (51) and (53)
give the exact result for the weak field regime. Thus, for a
pulse shape with a pole type of singularity, formulae (9)±(12)
and (57)±(61) together describe completely the ionization
probability for any field strength, restricted only from above
by the atomic field, i.e., E5 1. However, the weak field
regime seems to be of more academic interest: for such short
pulses, the effect is hardly experimentally observable.

The last of the above examples corresponds to another
type of pulse shape function singularityÐ the logarithmic
branching point (`zeroth order pole').

For long pulses and approximatelymonochromatic fields,
the frequency dependence of true multiphoton process
probability is very steep. As the whole consideration above
shows, for very short pulsesÐHCP, OCP, and probably a
few (< 1=O) cycles-long pulsesÐ it is much slower, though
still pretty steep. Qualitatively, this slowing down can be
explained as an increase, with the field increasing, of an
average effective number n of photons absorbed per single
ionization event. Because of a broad frequency spectrum of
the pulse, the process is a single-photon one in a weak field
and its multiplicity increases gradually to n � l 3 [9] in the
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tunneling regime l41, while in a monochromatic field it is
restricted from below, n > I=��ho�.

This work was started during my visit to the Miller
Institute for Basic Research of the University of California,
Berkeley. I am grateful to the Miller Institute for this
opportunity and especially to Professor Ron Shen for the
hospitality andmany valuable discussions. I am also thankful
to Professor J Moloney for discussions that stimulated the
beginning of this study.
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