
Abstract. The concept of a coherent exciton state is formulated.
It is shown that for this state, a macroscopic wave function can
be introduced such that it satisfies a nonlinear equation of the
type familiar in the phenomenological theory of a superfluid
liquid. The corresponding nondissipative flux is the flux of en-
ergy. For excitons interacting with an electromagnetic field, a
coupled system of Maxwell equations and Ginzburg±Pitaev-
skii-type equations (phenomenological theory of Bose liquid)
is obtained.

Keywords: excitons, coherent state of excitons, macroscopic wave
function, phenomenological theory of superfluid liquid, Bose-
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There has been a large number of recent theoretical papers
on exciton condensation in crystals [1±14]. There are, in
fact, three different problems at issue here. One is the
thermodynamically equilibrium rearrangement of the elec-
tronic spectrum due to the instability of the original
spectrum under the electron±electron interaction [6±8].
Another is the Bose condensation of nonequilibrium exci-
tons (for example, those excited by light) [1±5]. The third is
the coalescence of excitons into a dense phase, i.e., con-
densation in the same sense of the word in which any gas
condenses into a liquid [14, 15].

Although the problem of Bose condensation of non-
equilibrium excitons was the first to appear in the literature,
it remains the subject of the most fundamental difference of
opinion among researchers. Early studies [1±3] assumed that
excitons, which consist of two Fermi particles (an electron
and a hole), are bosons and that theoretical results for Bose
gases and Bose liquids (which consist of structureless parti-
cles) directly apply to a system of excitons. Subsequent
analyses [4, 5] showed that the deviation of the exciton
statistics from the Bose statistics must be taken into account
simultaneously with introducing the exciton±exciton interac-
tion, and that sufficiently large exciton densities make the
very concept of the exciton meaningless. But at low densities,
a system of excitons does indeed behave like a weakly
nonideal Bose gas and, notably, can exhibit superfluid

motion in a crystal. However, it was argued recently in [13]
that unlike a system of true bosons, a system of excitons
cannot be superfluid in principle. In this paper, we focus on
the analysis of this situation and on resolving the problem of
what the Bose condensation and excitonic superfluidity mean
from the physical (observational) standpoint. We show, in
particular, that the conclusions in Ref. [13] are based on a
misconception.

By an exciton, as usual, we mean an itinerant electronic
excitation in a crystal not associated with charge and mass
transfer. In the simplest molecular crystal or semiconductor
models, the exciton is, respectively, an excited single-molecule
state transferred resonantly between elementary cells of the
crystal (Frenkel exciton) or a hydrogen-like bound electron±
hole state (Wannier±Mott exciton). Thus, simply by defini-
tion, the motion of an exciton cannot involve a flow of matter
or electric charge. Excitons transfer their excitation energy
and, possibly, properties such as the angular momentum and
the electric and magnetic moments whenever appropriate.
Therefore, the superfluidity of nonequilibrium excitons can
also well imply the existence of undamped energy flows (with
a reservation to be made below) or, for example, the existence
of polarization, but it does not imply a superfluid mass or
charge transfer, whereas the proof of the impossibility of
exciton superfluidity in Ref. [13] totally relies on the analysis
of mass transfer.

We also note in passing that the formal proof in Ref. [13]
has no relation to nonequilibrium excitons because it
assumes that all electrons have the same chemical potential
and hence the system is in full thermodynamic equilibrium.
In actual fact, however, the condensation of nonequili-
brium excitons implies that the electron±hole system is not
fully in equilibrium in the sense that although the electrons,
holes, and excitons are in equilibrium among themselves
and with the lattice, the total number of excitons and
electron±hole pairs is determined not by thermodynamic
equilibrium but by a certain external excitation source.
Such a situation readily occurs in real conditions, because
recombination is in most cases much slower than the
thermalization of electrons and holes and their binding
into excitons. For example, in germanium at liquid helium
temperatures, the thermalization time 9 10ÿ9 s and the
exciton formation time from electrons and holes are of the
same order of magnitude for the electron and hole con-
centrations ne;h 0 1012 cmÿ3 and the exciton lifetime
0 10ÿ5 s. The exciton lifetime can be much longer if the
exciton recombination is spin-forbidden.

We can now be more precise about the concept of the
superfluid flow of excitons. Clearly, in contrast to liquid
helium and superconductors, the superfluid flow of excitons
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exists not arbitrarily long but only during the exciton lifetime,
and the transition of the system of excitons into a superfluid
state means that the flow damping time is determined not by
the exciton scattering time but by the exciton lifetime, which is
longer by several orders of magnitude.

Excitons are most commonly viewed as certain quasipar-
ticles in a crystal, and from this standpoint their Bose
condensation is the accumulation of a macroscopic number
of such particles in a single state. The same situation,
however, can also be described in other terms: as is known
[16, 17], excitons are in fact the quanta of normal vibrations of
the electron density in a crystal, similar in many respects to
plasmons. Their Bose-condensed state is then a coherent
definite-phase electron density wave with a finite amplitude
(rather than with an amplitude of the order ofVÿ1, whereV is
the system volume). As regards the statement on super-
fluidity, this means that introducing effects that are nonlinear
in the amplitude results in the complete suppression of
scattering processes for such a wave.

We now turn to a more formal analysis of the problem
posed. The secondary-quantized electron Hamiltonian of the
crystal has the usual form

H � ÿ �h 2

2m0

�
c�a �x�H2ca�x� d3x

ÿ
X
n; k

Zke
2

�
c�a �x�ca�x�
jxÿRn; kj d3x

� e 2

2

� c�a �x�c�b �x 0�cb�x 0�ca�x�
jxÿ x 0j d3x d3x 0 ; �1�

where c�a �x� and ca�x� are fermion operators satisfying the
commutation relations �ca�x�;c�b �x 0��� � dabd�xÿ x 0�, the
symbol �:::�� denotes the anticommutator, �h,m0, and e are the
Planck constant, the electron mass, and the electron charge,
andZk andRn; k are the atomic number and the radius vector
of the nucleus at the kth position in the nth unit cell. For
simplicity, we consider the nuclei to be rigidly fixed, and the
subsequent treatment is carried out first in the mean-field
approximation. Then the operator ca�x� can be decomposed
into electron (positive-frequency) and hole (negative-fre-
quency) parts:

ca�x� � c �e�a �x� � c �h��a �x� ;

c �e�a �x� �
X
j>j0

ajwja�x� ; c �h��a �x� �
X
j4 j0

ajwja�x� ; �2�

�aj; a�j 0 �� � dj j 0 ; �aj; aj 0 �� � 0 :

Here, wja�x� is the set of Hartree±Fock basis functions, where
the indices j4 j0 � j > j0� label the states with filled (empty)
electronic bands. These functions must evidently have the
Bloch form

wja�x� � exp

�
i

�h
px

�
upla�x� ;

where p is the quasimomentum and l labels bands. Thus, in
Eqns (2), j � fp; l g, and because our discussion concerns
nonmetal crystals, the summation over j4 j0 means a
summation over all p within the first Brillouin zone and
over l4 l0.

The function wja�x� satisfies the Hartree±Fock equations�
hab�x;x 0� wjb�x 0� d3x 0 � ejwja�x� ; �3�

hab�x;x 0� � dabd�xÿ x 0�
�
ÿ �h 2

2m0
H 2 ÿ

X
n; k

Zke
2

jRn; k ÿ xj

� e 2

2

�
gbb�y;y�
jxÿ yj d3y

�
ÿ e 2

gab�x;x 0�
jxÿ x 0j ; �4�

where

gab�x;x 0� �
X
j4 j0

wja�x� w �jb�x 0� :

The function gab is the operator of projection onto the
subspace of filled electron states and coincides with the limit
value of the electron Green's function

G
�0�
ab �xt; x 0t 0� � ÿ

i

�h


ÿ
Tc �0�a �xt�c��0�b �x 0t 0���

0

as t 0 ! tÿ 0. Here, as usual, hT:::i0 denotes the ground-state
average of the chronologically ordered operator product and
c �0�a �xt� is the electron Fermi field operator in the interaction
representation.

The exciton states of interest to us are described by the
two-particle two-time Green's function

G
�2�
ab; gd�x;y; t; x 0;y 0; t 0�

� ÿ i

�h



Tc�a �xt�cb�yt�c�g �x 0t 0�cd�y 0t 0�

�
0
;

where ca�xt� are Heisenberg operators.
Introducing the full set of excited states jJPi (where P is

the total quasimomentum and J is the set of all other quantum
numbers) and their corresponding energy levels EJP, we can
write the function G �2� in the form

i�hG
�2�
ab; gd�x;y; t; x 0;y 0; t 0� �

X
P; J

(
jPJ
ab �x;y�jPJ�

gd �x 0;y 0�

� exp

�
i

�h

�
P

x� yÿ x 0 ÿ y 0

2
ÿ EJP�tÿ t 0�

��)
at t > t 0;

i�hG
�2�
ab; gd�x;y; t; x 0;y 0; t 0� �

X
P; J

(
jPJ�
ab �x;y�jPJ

gd �x 0;y 0�

� exp

�
ÿ i

�h

�
P

x� yÿ x 0 ÿ y 0

2
ÿ EJP�tÿ t 0�

��)
at t < t 0;

where

exp

�
i

2�h
P�x� y�

�
jPJ
ab �x;y� �



0
��c�a �x�cb�y�

��JP
�
: �5�

Because of the translation symmetry of the problem,

jPJ
ab �x�Rn;y�Rn� � jPJ

ab �x;y� ; �6�

where Rn is an arbitrary lattice vector. Passing to the Fourier
time representation of the quasimomentum, we obtain

G
�2�
ab; gd�x;y; x 0;y 0; PE �

�
X
J

2EJP

E 2 ÿ �EJP ÿ id�2 j JP
ab �x;y�j JP�

gd �x 0;y 0� ; d! �0 :
�7�
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The discrete values of EJP (at fixed P), i.e., the poles of
Eqn (7), correspond to excitons, and the corresponding
function jPJ

ab �x;y� exp ��i=2�h�P�x� y�� defined by Eqn (5)
can be viewed as the exciton wave function, with the
respective variables �x; a� and �y; b� referring to the electron
and the hole. Hence, the only possible definition for the
exciton creation and annihilation operators JP is apparently

B�JP �
1����
V
p

�
exp

�
i

2�h
P�x� y�

�
� c�a �x�j JP

ab �x;y�cb�y� d3xd3y ; �8�

BJP � 1����
V
p

�
exp

�
ÿ i

2�h
P�x� y�

�
� c�a �x�jJP�

ab �x;y�cb�y� d3xd3y ; �9�

where j JP�
ab �x;y� � �j JP

ba �y;x��� and V is the normalization
volume. By writing the commutator of these operators,

�BJP;B
�
J 0P 0 � �

1

V

�
c�a �x�

�
exp

�
ÿ i

2�h
P 0x

�
j J 0P 0�
ag �x; z�

� exp

�
ÿ i

2�h
�PÿP 0�z

�
j JP
gb �z;y� exp

�
i

2�h
Py

�
ÿ exp

�
i

2�h
Px

�
j JP
ag �x; z� exp

�
i

2�h
�PÿP 0�z

�
� j J 0P 0�

gb �z;y� exp
�
ÿ i

2�h
P 0y

��
cb�y� d3xd3y d3z ; �10�

it is easy to see that they are not at all of the Bose type in
general. The situation is simplified in the mean-field approx-
imation, however, where a complete orthogonal set of one-
electron states exists. In this case, the exciton wave function
can be presented as a superposition of the products of electron
and hole states,

j JP
ab �x;y� �

X
l>l0; l 04 l0;p

uplg�x��j JP
ab �gdll 0u �pÿPl 0d�y� : �11�

The products jj� and j�j are then the projection
operators onto themutually orthogonal subspaces of electron
and hole states, and therefore, decomposing the operators c
in Eqn (10) into the electron and hole parts and using the
orthonormalization condition for the j JP,

1

V

�
j JP�
ab �x;y�j J 0P

ba �y;x� d3x d3y � dJJ 0 ; �12�

we can transform Eqn (10) to the form

�BJP;B
�
J 0P 0 � � dJJ 0dPP 0 ÿ

1

V

��
c �e��a �x� exp

�
i

2�h
Px

�
� j JP

ag �x; z� exp
�

i

2�h
�PÿP 0�z

�
j J 0P 0�
gb �z;y�

� exp

�
ÿ i

2
P 0y

�
c �e�b �y� � c �h��a �x� exp

�
ÿ i

2�h
P 0y

�
� j J 0P 0�

bg �y; z� exp
�

i

2�h
�PÿP 0�z

�
j JP
ga �z;x�

� exp

�
i

2�h
Px

�
c �h�b �y�

�
d3x d3y d3z : �13�

It follows from this equation that the operators B are close to
the Bose type for weakly excited states of the system, their
commutation relations deviating from those of Bose opera-
tors by a quantity of the order of nea

3, where ne is the density
of electron excitations and a is the effective exciton radius,
which is determined by the way j�x;y� decays at large
jxÿ yj: j�x;y�9 const� exp �ÿjxÿ yj=a� at jxÿ yj4 a.

If excitons were pure bosons and their interaction could be
ignored, the coherent exciton states could be defined in the
usual way,

jb; JPi

� exp

�
bB�JP exp

�
i

�h
EJPt

�
ÿ b �BJP exp

�
ÿ i

�h
EJPt

��
j0i :
�14�

However, including deviations of the exciton statistics from
the Bose statistics together with the interaction between
excitons leads to the fact that both the form of the operator
BJP and the energy value EJP change as the exciton wave
amplitude b is varied. The coherent exciton states must
therefore be defined in a more general way:

jji� exp

���
c�a �x�jab�x;y�cb�y� exp

�
i

�h

�
P

x� y

2
ÿ mt

��
ÿ c�a �x�j�ab�x;y�cb�y� exp

�
ÿ i

�h

�
P

x� y

2
ÿ mt

���
d3xd3y

�
j0i:

�15�

The functionjab entering this definition does not coincide
with any of the j JP

ab but tends to one of them in the low-
density limit, and its exact form (as well as the value of m) must
be determined from the SchroÈ dinger equation�

i�h
q
qt
ÿH

�
jji � 0 :

Letting Dj denote the operator in the right-hand side of
Eqn (15), we transform it to the form

DjD
�
j

�
i�h

q
qt
ÿH

�
Djj0i � 0 ;

which is equivalent to�
i�hD�j

qDj

qt
ÿ ~H

�
j0i � 0 ; �16�

where ~H � D�j HDj.
Equation (16) cannot be satisfied rigorously by any choice

of the function jab�x;y� because the form of function (15)
does not take multiparticle correlation effects into account
and corresponds in its meaning to describing the state of the
system in the mean-field approximation. This situation is not
specific to excitons. For any system of interacting bosons, it is
only in the mean-field approximation that Eqn (14) deter-
mines the coherent states. All the correlation corrections can
be calculated by a diagram technique for strongly non-
equilibrium states, as discussed in Ref. [18]. In this paper, we
confine ourselves, as already mentioned, to the lowest (mean-
field) approximation. The function jab�x;y� then has a
structure similar to that in Eqn (11), i.e., its expansion in the
set of functions wja�x� contains only electron states for the
variable x and only hole states for y. Therefore, the operator
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Dj can be rewritten in the form

Dj � exp

���
c �e��a �x�jab�x;y�

� exp

�
i

�h

�
P

x� y

2
ÿ mt

��
c �h��b �y� ÿ c �h�b �y�j �ab�x;y�

� exp

�
ÿ i

�h

�
P

x� y

2
ÿ mt

��
c �e�a �x�

�
d3x d3y

�
: �17�

As is known, this unitary operator performs a linear
transformation of the operators c �e� and c �h�. Physically,
this means that the partial redistribution of electrons due to
the creation of a large number of excitons results in a change
in the concept of a hole (the subspace of filled states) in the
system, and state (15) is the vacuum state for the operators
redefined in this way. The formulas for passing to the new
operators are

c �e�a �x� ! D�j c �e�a �x�Dj �
��

Cab�x;y�c �e�a �y�

� exp

�
i

�h

�
P

x� y

2
ÿ mt

��
Sab�x;y�c �h��b �y�

�
d3y ;

c �h�a �x� ! D�j c
�h�
a �x�Dj �

��
~Cab�x;y�c �h�a �y�

ÿ exp

�
i

�h

�
P

x� y

2
ÿ mt

��
c �e��b �y�Sba�y;x�

�
d3y ; �18�

where

Cab�x;y� � dabd�xÿ y� �
X1
n�1

�ÿ1�n
�2n�! �jj

��n ;
�19�

Sab�x;y� � jab�x;y� �
X1
n�1

�ÿ1�n
�2n� 1�! j�j

�j�n :

The product of the operators j and j� in Eqns (19) is
understood in the sense of integral convolution. With
Eqns (18) and (19), Eqn (16) becomes

0 �
��

c �e��a �x�~h �e�ab �x;y�c �e�b �y� � c �h��a �x�~h �h�ab �x;y�c �h�b �y�

� c �e��a �x�Qab�x;y�c �h��b �y� exp
�
ÿ i

�h

�
P

x� y

2
ÿ mt

��

� c �h�b �y�Q �ab�x;y�c �e�a �x� exp
�
i

�h

�
P

x� y

2
ÿ mt

��

� e 2

2

N
�
c�a �x�c�b �y�cb�y�ca�x�

�
jxÿ yj

�
d3x d3y j0i ; �20�

where N�:::� is the normally ordered product of the operators
c � c �e� � c �h��. Although the electron±electron interaction
term looks formally the same as before the transformation, it
is different because the operators c �e� and c �h� and the
function G

�0�
ab are different.

In the mean-field approximation, Eqn (20) takes the form�
c �e�� ~h �e�c �e� � c �h�� ~h �h�c �h�

� c �e��Qc �h�� � c �h�Q�c �e�
	j0i � 0 �21�

(we again use a symbolic expression where products are
understood as integral convolutions). Here, as in Eqn (20),
the following notation is used:

~h �e� � C
ÿ
h �e� ÿ v�Cÿ S

ÿ
h �h� ÿ v��S�

� CVS� � SV�Cÿ mS�S ; �22�

Q � C
ÿ
h �e� ÿ v�S� S

ÿ
h �h� � v�� ~C

ÿ CV �C� SV�Sÿ mCS : �23�

The matrix �C differs fromC by the permutation j>j�, and
the quantities V and v are defined as

Vab�x;y� � e 2

jxÿ yj
�
Sag�x; z� ~Cgb�z;y� d3z ; �24�

vab�x;y� � e 2

jxÿ yj
�
Sag�x; z�S�gb�z;y� d3z : �25�

We also note the relations CC� SS� � 1 and CS � S ~C
and the fact that the quantities

ne�x� �
�
Sab�x;y�S�ba�y;x� d3y ; �26�

nh�x� �
�
S�ab�x;y�Sba�y;x� d3y

determine the densities of excited electrons and holes, which
are periodic with the crystal lattice period for the class of
states considered so far.

The necessary and sufficient condition for Eqn (21) to
hold is clearly Q � 0, because the first two terms in the left-
hand side give zero when acting on the vacuum. Thus,
Eqn (21) reduces to

Qab�x;y� � 0 ; �27�

which, by Eqns (19) and (23)±(25), is a nonlinear integro-
differential equation for jab�x;y�, and the exciton chemi-
cal potential m is defined as an eigenvalue of Eqn (27).

The analysis [2] of solutions of Eqn (27) in the general
case is hardly possible, and we therefore confine ourselves
to relatively low excitation densities ne; ha

3 5 1, for which
Eqn (27) can be expanded in powers of j using the
relations

C ' 1ÿ 1

2
jj� ; ~C ' 1ÿ 1

2
~j�j ; S ' jÿ 1

6
jj�j :

The lowest approximation, linear in j, yields�n
h �e�ag �x; z�jgb�z;y� � h

�h�
gb �z;y�jag�x; z�

o
d3z

ÿ
�

e 2

jxÿ yj � m
�
jab�x;y� � 0 ; �28�

which is the SchroÈ dinger equation for Coulomb-interacting
electrons and holes. The way they actually interact in a crystal
is much more complicated, but it is easy to show that after the
summation of all correlation corrections that are linear in j,
Eqn (28) becomes exactly an equation for the exciton wave
functions j JP. In what follows, we replace the index J by 0,
having the lowest excitonic branch of the spectrum in mind.
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Thus, in the lowest approximation,

j � ���
n
p

j 0P ; m �0� � E0P ;

where the normalization factor
���
n
p

is determined by the mean
exciton concentration. The solvability condition for the next-
approximation equation �� j 3� yields a level shift m �1�

proportional to n:

m �1� � Kn ;

K � e 2
�
d3x d3y

(��
1

jxÿ yj �
1

jxÿ zj
�

� jab�x;y�j�bg�y; z 0�jgd�z 0; z�j�da�z;x� d3z d3z 0

ÿ
X
a;b

1

jxÿ yj

 ����� jag�x; z�j�gb�z;y� d3z
����2

�
����� j�ag�x; z�jgb�z;y� d3z

����2
!)

: �29�

The constant K can also be calculated for the pure
Coulomb case. Summing all the corrections for the constant
is a more difficult problem [4], and it is more convenient to
simply regard it as a phenomenological parameter.

Until now, we have been considering stationary coherent
exciton states with a fixed total quasimomentum P, i.e., with
the same mean excitation density n for all elementary cells in
the crystal. In a more general case, wave packets are
composed of states of this type. To introduce such packets,
we specify a transformation DF of a more general type,

DF � exp

(��
c �e��a �x�Fab�x;y; t� exp

�
i

�h
mt
�
c �h��b �y�

ÿ c �h�b �y� exp
�
ÿ i

�h
mt
�
F�ab�x;y;t�c �e�a �x�

�
d3x d3y

)
;

where we assume that the dependence of Fab�x;y; t� on t is
slower than exp ��i=�h�mt�. Similarly to the discussion above,
the equation for F then takes the form

i�h
qF
qt
ÿQfFg � 0 :

For this equation, we seek a solution of the form F�x;y; t� �
F�x� y; t�j 0P�x;y� assuming that jaHF�X; t�=Fj5 1, i.e.,
considering F�X; t� as a slowly varying amplitude. We set P
equal to Pm, a value for which E0P reaches a minimum; in its
neighborhood, E0P � E0 � �PÿPm�2=2m. Then, in the low-
est approximation, disregarding nonlinear terms in the
derivatives of F�X; t�, we obtain m � E0, and the next
approximation yields an equation for F�X; t�,

i�h
qF
qt
� �h 2

2m
H 2Fÿ KjFj2F � 0 ; �30�

equivalent, as is known, to the phenomenological hydro-
dynamics equations for a superfluid liquid (for K > 0).

The discussion above has been concerned with excitons
that have virtually no interaction with light. The condensa-
tion of dipole-active excitons should automatically create an
electromagnetic field accompanying them, also in a coherent

state. Writing the full Hamiltonian for the particle±field
system, we readily obtain the following system of equations
for the coherent-state amplitudes:

i�h
qF
qt
� �h 2

2m
H 2F� ��hoÿ E0�Fÿ KjFj2F � Ed ;

rot �rotE� � ~e
c 2

�
q
qt
ÿ io

�2

E � ÿ 4p
c 2

d

�
q
qt
ÿ io

�2

F : �31�

Here, o is the mean field frequency, d is the dipole moment
matrix element for an exciton transition, ~e is the crystal
dielectric constant with the contribution from the exciton
state under consideration subtracted, and E�x; t� is the
complex field amplitude in terms of which the real field is
expressed as

1

2

ÿ
E�x; t� exp �ÿiot� �E ��x; t� exp �iot�� :

System of equations (31) incorporates the effects of frequency
and spatial dispersion and those of nonlinear polarizability.

In the case of high-symmetry crystals, exciton states can
be degenerate, requiring several functions F to be introduced
for their description. While this complicates system (31), the
qualitative results remain unchanged.

Note from the Editors
L V Keldysh's paper ``Coherent states of excitons'' presented
in this memorial issue of Physics±Uspekhi was first published
in 1972 in the Tamm memorial collection [19] and went
relatively unnoticed by the physics community. The paper is
of quite fundamental importance, however.

In the latter half of the 1960s and the early 1970s, there
was an interesting discussion in the literature as to whether
Bose condensation and superfluidity are possible in a system
of excitons in a semiconductor. Within quite a short time, the
discussion grew quite confused, and it was the objective of
Keldysh's work to clarify a number of fundamental issues
that arose. The paper emphasizes that there are three
fundamental problems that should be recognized in the area.
One of these is directly related to the rearrangement of the
electron spectrum of a semimetal due to the Bose condensa-
tion of electron±hole pairs in the ground (equilibrium) state in
the Keldysh±Kopaev model of an exciton dielectric [6]. The
second problem is related to the possibility of Bose condensa-
tion and superfluidity in a nonequilibrium exciton gas
produced by the optical pumping of a semiconductor [1, 4].
Finally, the third problem is about the formation (condensa-
tion) of electron±hole droplets in highly excited semiconduc-
tors as excitons break up to form a sufficiently dense electron±
hole Fermi-liquid phase [20]. Experimentally, most real
(multi-valley) semiconductors exhibit precisely this last sce-
nario (it is this scenario which Keldysh predicted in his
concluding speech at the Ninth International Conference on
the Physics of Semiconductors held in Moscow in 1968 [20]).

At the same time, the direct analogy existing between the
excitonic insulator model and BCS superconductivity led to
contradictory opinions among researchers, some claiming
that this model allows a superfliud electron±hole pair con-
densate (which manifests itself in superconductivity-type
phenomena) [8], and others fully ruling out that superfluidity
can occur in a system of excitons [11]. It is to explain some of
these contradictions that Ref. [19] is now reproduced in
Physics±Uspekhi.
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This study is mainly concerned with whether superfluidity
can be exhibited by nonequilibrium excitons that are produced
in a semiconductor exposed to an external excitation source.
It is emphasized that moving excitons cannot produce either a
flow of matter or an electric current but can imply the
existence of undamped (up to the exciton lifetime) energy or
polarization flows, but not a superfluid mass or charge
transfer, which immediately invalidates the `general' proof
of Kohn and Sherringtone, who additionally, at the very
outset, assumed a thermodynamic equilibrium (i.e., a system
of the excitonic insulator type).

Most of the paper focuses on the explicit construction of
coherent excitonic states taking their generally nonbosonic
nature into account. The result, Eqn (30), is directly analo-
gous to the Gross±Pitaevskii equation for a superfluid liquid,
with the dipole interaction with an external electromagnetic
field (31) taken into account.

As regards the possibility of superfluidity in an excitonic
insulator, this debate was completely resolved in a later paper
by Keldysh and Guseinov [21], in which it was shown that
allowing interband transitions in this model turns a second-
order transition into a first-order one, and therefore the
excitonic insulator state has no properties distinguishing it
from the usual dielectrics.

The author of these lines was at the time Keldysh's
postgraduate student at the FIAN (Lebedev Physical Insti-
tute) Theory department, named after I E Tamm shortly
before. The publication of the memorial collection [19] was a

major event in the life of the department. An impressive
feature of the collection was the list of referenced authors,
which included prominent Soviet and foreign scientists. Some
of the department staff used to come to the seminars with a
copy of this volume to ask its authors for an autograph. False
modesty prevented me from doing thisÐand quite regretta-
bly, because the autographs made those copies uniquely
valuable.

Incidentally, my postgraduate research (electrons in
disordered systems) had no relation to the condensation of
excitons, which was then Keldysh's primary concern, and
therefore my role here is simply that of an unprejudiced
witness. Keldysh's prediction of electron±hole droplets in
Ref. [20] was followed by a rather long break in his
publications in this area. The first sufficiently detailed
account of the theoretical foundations of this concept also
appeared in a relatively hard-to-access paper collection [22] in
1971. Over a number of years, Keldysh's interests were
centered on the experimental confirmation of this phenom-
enon, sometimes to the extent of coauthoring experimental
studies [23]. As is known, the general picture of the formation
of electron±hole droplets he gave in Ref. [20] received striking
experimental confirmation, and experimental and theoretical
research in this field has intensified worldwide [24].

Paper [19] stands alone in this sense, and I can offer some
conjectures as to its origin. All of Keldysh's students knew
about his large notebooks into which, when at home, he wrote
down his calculations on a wide range of solid-state physics
problems and where he described his results in detail, often
without later publishing them as journal papers.

For example, E G Maksimov told me that in those years
he was actively involved in attempts at constructing a
consistent theory of electron±phonon interaction in metals,
to extend and improve the traditional FroÈ hlich Hamiltonian
approach by correctly using the adiabatic approximation and
introducing multiparticle effects. In Maksimov's words,
Keldysh also devoted much attention to these problems and
occasionally showed his results to Maksimov, but did not
publish anything at all.

In my view, Ref. [19] appeared as a reply to Kohn and
Sherrington's paper [13], which made some points Keldysh
did not agree with. This led him to perform a number of
`private' calculations, as it were, that remained hidden for a
number of years in his notebooks until the opportunity came
to publish them in the Tamm memorial collection. I may be
wrong, but all of us, his students, recall those notebooks quite
often. It would be interesting to find them and examine them
for interesting results, which they are almost certain to
contain and which Keldysh did not manage to publish.

MV Sadovskii
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