
Abstract. The present review discusses different effects related
to orbital degrees of freedom. Leaving aside such aspects as the
superexchange mechanism of cooperative Jahn±Teller distor-
tions and various properties of `Kugel±Khomskii'-like models,
we mostly concentrate on other phenomena, which are the focus
of modern condensed matter physics. After a general introduc-
tion, we start with a discussion of the concept of effective
reduction of dimensionality due to orbital degrees of freedom
and consider such phenomena as the orbitally driven Peierls
effect and the formation of small clusters of ions in the vicinity
of the Mott transition, which behave like `molecules' embedded
in a solid. The second large part is devoted to orbital-selective
effects, such as the orbital-selective Mott transition and the
suppression of magnetism due to the fact that the electrons on
some orbitals start to form singlet molecular orbitals. At the
end, the rapidly growing field of so-called `spin±orbit-domi-
nated' transition metal compounds is briefly reviewed, includ-
ing such topics as the interplay between the spin±orbit coupling
and the Jahn±Teller effect, the formation of the spin±orbit-

driven Mott and Peierls states, the role of orbital degrees of
freedom in generating the Kitaev exchange coupling, and the
singlet (excitonic) magnetism in 4d and 5d transition metal
compounds.

Keywords: orbital ordering, spin-orbit coupling, transition-
metal oxides

1. Introduction

Systems with strongly correlated electrons, in particular,
transition metal (TM) compounds, present a very interesting
class of materials with extremely rich properties (see, e.g.,
Refs [1, 2]). Among them are metals, insulators (of a special
kind), and systems with metal±insulator transitions; they
exhibit different types of ordering [magnetic, charge ordering
(CO), orbital ordering (OO)], the cooperative Jahn±Teller
effect, and, last but not least, high-temperature superconduc-
tivity. All this richness is mainly due to strong electron
correlations and the presence in them, and mutual interplay,
of different degrees of freedom: charge, spin, and orbital, and
all of this, of course, on the background of the lattice, with
which all these electronic degrees of freedom often strongly
interact.

The crucial general feature of these systems is the
fundamental importance of electron±electron interaction,
which determines the main properties of these systems,
changes the behavior of electrons compared with that
following from the standard free-electron-like or band
description, and leads to localization of electrons on
respective sites. These are the famous Mott, or Mott±
Hubbard, insulators. Most often, such electron localization
leads to the appearance of localized magnetic moments,
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which then determine all the rich magnetic properties ofMott
insulators, and sometimes gives also rise to charge ordering.
The existence of two different limiting cases ± strongly
correlated and localized electrons, as opposed to weakly
interacting itinerant onesÐalso leads to the possibility of a
phase transition between these states, caused by a change in
temperature, pressure, doping, etc.: the famous Mott metal±
insulator transition (MIT).

Besides charge and spin degrees of freedom, in real TM
compounds one also has to take into account orbital degrees
of freedom, which lead to many nontrivial consequencesÐ
orbital ordering, a directional character of many properties,
nontrivial effects related to the relativistic spin±orbit coupling
(SOC). All these effects taken together can lead to novel, very
interesting phenomena, which are the subject of the present
review. For example, the directional character of orbitals may
result in a spontaneous reduction of dimensionality, when
three-dimensional KCuF3 or Tl2Ru2O7 start to behave like
one-dimensional magnets. This effect, together with another
very interesting phenomenonÐ the formation of small
clusters, where electrons are practically delocalized, while a
systemasawhole is still insulatingÐarediscussed inSection4.
This concept of `molecules in solids,' leading to a `stepwise'
Mott transition, is an alternative to a homogeneous Mott
transition.

Another important aspect of Mott physics is discussed in
Section 5. This is the so-called orbital-selective Mott transi-
tion, when due to the directional character of the orbitals there
is a substantial overlap between some of orbitals centered on
different sites, while hopping (and, hence, the bandwidth)
between the others is much smaller, so that they turn out to be
more susceptible to the Mott transition, which again occurs
stepwise, but in a momentum space, first for narrow and then
for wider bands.Moreover, even if there is noMott transition,
this separation intomore and less `localized' orbitals (in fact, it
is the electrons, not the orbitals, which can be localized or
itinerant) may strongly affect the magnetic properties of a
system, resulting, in particular, in a suppression of the double
exchange mechanism of ferromagnetism.

Finally, there is a large group of effects related to spin±
orbit coupling (see Section 6), which is under intensive study
right now andwhich has already brought up such phenomena
as the spin±orbit-assistedMott state andKitaev and excitonic
magnetism.

The present review is devoted to a general description of
the main concepts of `orbital physics', with the main focus
being new developments in this rather large area of condensed
matter physics. We describe novel phenomena mentioned
above and also discuss many real examples of systems, the
properties of which find a natural explanation using these
concepts. For completeness, to make our review more self-
contained, we also included in the first two introductory
sections a general description of the main concepts in the field
of systems with strongly correlated electrons, in particular,
TM compounds, paying the main attention to the role of
orbital degrees of freedom in different phenomena. A more
complete presentation of this material can be found in many
monographs and textbooks, in particular, inRefs [1, 3±5], and
in review articles [6±9]. We do not discuss here in detail
possible types and mechanisms of orbital ordering and the
extensive literature devoted to `Kugel±Khomskii' and com-
pass models. The first topic is reviewed in rather old but not
yet obsolete paper [7] and in recent book [1]. For other aspects
of orbital physics, we may recommend reviews [10, 11].

2. Basic concepts in the description
of electrons in solids

To start with, we discuss at the beginning general ways to
describe the state of electrons in solids in different situations.
The simplest approach, from which a description of electrons
is always started, is that of free electrons (band structure
theory). In this type of treatment, one considers the motion of
an electron in a periodic lattice potential, first ignoring
electron±electron interaction or treating it in a mean-field
way. This leads to a well-known formation of energy
bandsÐ the regions of allowed states, in general divided by
the forbidden regions, energy gaps.

There are two main approaches for describing these
energy bands: the weak coupling approximation, in which a
periodic potential of the lattice is treated as a perturbation,
and the tight-binding approximation. For our purposes, in
particular, for describing d-electrons of TM compounds, the
second method is more appropriate, and we will mostly use it
below.When we start with the band description, we can easily
get both insulating and metallic states by filling available
band states. According to the Pauli principle we can put two
electrons with spins `up' and `down' in each state. If some
bands turn out to be partially filled, we are dealing with a
metal, like Na or Al. And if some bands are completely filled,
and the upper-lying bands separated from the occupied ones
by an energy gap are empty, we have a band insulator or
semiconductor like Ge or Si.

In the tight-binding approximation, we can speak of
bands which are formed by intersite hopping of electrons
between particular ionic states, e.g., 1s states of hydrogen or
3d states of TM ions. For lattice of N sites, each such
(nondegenerate) band would contain N electronic states,
into each of which we can put two electrons, so that there
are places for 2N electrons in such a band, e.g., a 1s band of a
lattice made of equally separated hydrogen ions (protons)
(Fig. 1a). Corresponding tightly bound electrons can be
described by the Hamiltonian

H � ÿt
X
hi j is

c
y
iscjs ; �1�

where c
y
is and cjs are the creation and annihilation electron

operators on sites i and j. The intersite hopping matrix
element t is positive for s orbitals. Summation in the formula
(1) goes over all inequivalent pairs of nearest-neighbor lattice
sites, numerated by indexes i and j. In momentum space, the
Hamiltonian takes the form
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Figure 1. Peierls transition accompanied by an opening of the gap in the

electronic spectrum E�k�. Distance between sites in the uniform chain is a.

1122 S V Streltsov, D I Khomskii Physics ±Uspekhi 60 (11)



with the dispersion e�k� � ÿ2t cos �kxa�. If we have a
noninteger or odd number of electrons per site, e.g., one
electron as for a lattice of hydrogen ions, the band will
necessarily be partially (e.g., half-) filled, and we will have a
metal. Only if we have an even number of electrons per site
will such a system be a usual band insulator (but even in this
case in a realistic situation it is possible to obtain a metal or
semimetal, if some bands overlap).

In this band picture, one can also have metal±insulator
transitions; thesemay be caused by structural transitions with
lattice distortions, which opens a gap exactly at the Fermi
surface. The simplest example is the Peierls transition in a
one-dimensional (1D) case. If we have, for example, a regular
chain of sites (e.g., hydrogen atoms) with, say, one electron
per site, then the 1s band would be half-filled (Fig. 1a).
Dimerization of this chain (a first step towards the formation
of H2 molecules from the chain of hydrogen atoms) would
open the gap exactly at the Fermi surface and would decrease
electron energy (Fig. 1b), and this decrease overcomes the loss
of lattice (deformation) energy, i.e., such a chain would
always be unstable to the dimerization (see also review [12]).
We note right away that such an instability in a chain would
develop not only for a half-filled band, but also for other
fillings: e.g., for the band filled by 1/3 or 2/3, we would have
trimerization, and for the 1/4-filled band ± tetramerization.
We will see real examples of such phenomena later on, in
Section 4.2.

Such metal±insulator transitions in the band picture may
occur not only for 1D- or (quasi)-1D systems, but also in a
more general situation. The usual condition for their
appearance is the so-called nesting of the Fermi surface,
which means that some parts of the Fermi surface coincide
when shifted by a certain vector Q. In this case, a super-
structure with this wave vectorQ could be formedÐa charge
density wave (CDW) in the case of effective electron
attraction (e.g., via phonons) or a spin density wave (SDW)
for electron repulsion. And if the gap which opens at these
transitions cut the whole Fermi surface, it would lead to a
metal±insulator transition. Such examples are encountered in
some TM dichalcogenides, such as TaS2.

Therefore, according to the band picture, if there is no
dimerization, the regular lattice of hydrogen atoms with one
electron per site should have half-filled band and should be
metallic, irrespective of the distance between atoms or of the
value of the intersite hopping matrix element t, which for
large distances between sites would be exponentially small. Of
course, this contradicts common sense: we should instead deal
here with a collection of individual (hydrogen) atoms with
electrons localized one per lattice site.

The reason for this was explained already long ago [13]
(see also Appendix A.1 in book [1]): when we remember that
electrons repel each other, it immediately becomes clear that,
if we start with one electron per site and then try to create
charge carriers, transferring an electron from this site to the
other one, the repulsion of the transferred electron with `its
own' one, already existing at this site, will prevent such a
charge transfer. In effect, the material would become an
insulator with each electron localized at its own site. This is
what we now call Mott or Mott±Hubbard insulators. And, in
contrast to the band insulators described at the beginning of
this section, the very fact that such a system remains
insulating is due to electron±electron interactions, and not
due to the interaction of independent electrons with the
periodic lattice potential.

To treat this state, we have to generalize the description
given by Eqns (1), (2) and include electron±election interac-
tionsÐat least the Coulomb repulsion between electrons at
the same site. The corresponding model

H � ÿt
X
hi j i s

c
y
iscjs �U

X
i

ni"ni# ; �3�

where nis � c
y
iscis is the electron density, is called the

Hubbard model, and it serves nowadays as the basic model
to describe the physics of systems with strong electron±
electron interactions or with strong electron correlations.

According to the physics discussed above and described
by the Hubbard model (3), the state of the system is
characterized by two parameters: the average electron
density n � Nel=N, and the effective interaction U=t, or
U=W, where W � 2zt is the electron bandwidths (for simple
lattices like linear chain, square, or cubic lattices; and z is the
number of nearest neighbors). Here,N is the number of sites,
and Nel is the number of electrons. If U=t5 1, we are dealing
with weakly interacting electrons, and in this case the
standard band description is valid; electron±electron interac-
tion can then be taken into account by the perturbation
theory, using, for example, the Feynman diagram technique,
etc. Furthermore, for n 6� 1, we would have a metalÐ
although for the strong interactionU4 t it could be a special
type of metal, still with strong correlations (such a metallic
state could, in principle, be rather fragile and very sensitive
and unstable to any extra perturbationsÐ longer-range
interactions, etc.). However, at least in the simplest case, this
description catches the main physical effect: the creation of a
novel stateÐa Mott insulator with localized electrons for
half-filled bands (one electron per site: n � 1) and for the
strong interaction U=t4 1. And one can see that in this state
we simultaneously create localized magnetic moments: each
electron localized at a respective site gives a localized
magnetic moment, corresponding to S � 1=2.

When we take into account in this situation only the
dominant term in Hamiltonian (3), the interaction term
Uni"ni#, the spin direction would not matter, and the system
would be paramagnetic (with disordered localized spins).
However, if we also consider electron hopping, the first term
in formula (3), this hopping lifts spin degeneracy in the second
order of the perturbation theory in t=U5 1, thus leading to
the antiferromagnetic interaction of localized spins � t 2=U,
i.e., the low-lying energy states of the system can be effectively
described by theHeisenbergmodel (see Section 3.2 for details)

H � J
X
i j

SiSj � 2t 2

U

X
i j

SiSj ; �4�

where Si is the spin operator acting at the site i, and J is the
exchange coupling between spins at two such sites (and hence,
in principle, it can be different for various pairs, i.e., J! Ji j in
this situation). The ground state of the system under
consideration would be a Mott insulator with antiferromag-
netic spin ordering. For only two sites and two electrons, we
would then arrive at the singlet ground state

CHL � 1���
2
p ÿ

c
y
1"c
y
2# ÿ c

y
1#c
y
2"
� j0i : �5�

This is what is called the Heitler±London (HL) description in
the chemical bond theory.
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It should be noted here that for noninteracting electrons
described by the simple Hamiltonian (1) the ground state
would also be a unique singlet stateÐa filled Fermi surface,
in which there are two electrons with spins `up' and `down' in
every occupied state. For only two such sites, the ground state
would also be a singlet:

CMO � 1

2

ÿ
c
y
1" � c

y
2"
�ÿ
c
y
1# � c

y
2#
� j0i : �6�

Such a state in the theory of chemical bonds is called the
Hund±Mulliken state, or molecular orbital (MO) state
(sometimes listed as MO LCAO: Molecular OrbitalÐ
Linear Combination of Atomic Orbitals).

In quantum chemistry, it was relatively soon realized that
both MO (6) and HL (5) wave functions describe just two
limiting cases, and for realistic calculations one should
instead employ a linear combination of homeopolar states,
given by the HL wave function (5) and ionic contributions
c
y
1#c
y
1" � c

y
2#c
y
2", but (in contrast to MOs) with a variational

coefficient:
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The wave function in the form CCF is often called the
Coulson±Fisher wave function [14]. These notions will be
very important for our discussion in the main body of this
paper.

It is thus seen that the dichotomy between two descrip-
tions of chemical bonds in moleculesÐMO and HL
approachesÐhas exact counterparts in two types of solids:
those with itinerant electrons described by the band theory,
and localized electrons in Mott insulators possessing strong
electron correlations. But, in contrast to the case ofmolecules,
where with an increase in electron correlations we continu-
ously go over from the MO to HL description [cf., for
example, the Coulson±Fisher form (7)], for a large concen-
trated solid these two states are really two different thermo-
dynamic states of matter with sharp, well-defined transition
between themÐthe Mott transition. This transition can be
caused simply by a change in the parameterU=t (which can in
many systems be reached experimentally under pressure,
which leads to an increase in electron hopping t, but in some
very interesting cases also by a change in temperature, the
level of doping, etc). And the properties of a system close to
this localized±itinerant crossover turn out to be very interest-
ing and nontrivial, with some rather unexpected features
emerging (see Section 5.2).

3. Basic effects related to the orbital
degrees of freedom

3.1 Crystal-field splitting, spin-state transitions
When we want to apply these general ideas to TM com-
pounds, several important ingredients have to be included,
which make the description, on the one hand, more realistic,
but which, on the other hand, often lead to novel phenomena.
The most interesting (from the point of view of physical
properties) TM compounds have partially filled d-bands.
Five d-states are degenerate in isolated atoms or ions, but
become split when the ion is put into a crystal. In fact, these
split states have to be classified according to corresponding

irreducible representations. Thus, if a TM ion finds itself
inside the ligand octahedra, as often happens in TM
compounds (e.g., NiO, La2CuO4, LaCoO3), its d-levels are
split into the t2g and eg subshells: the eg-orbitals are directed as
much as possible towards the ligands, while the t2g `look'
between them (Fig. 2). This effect is called crystal-field
splitting.

There are two equally important contributions to crystal-
field splitting. First of all, there is indeed an effect of the
electric field created by a local surrounding. Negatively
charged ligands repel a negative electron charge density
corresponding to d-orbitals. This repulsion is larger for the
eg-orbitals directed toward the ligands, and these orbitals go
higher in energy than the t2g ones. However, there is also
another contribution to the crystal-field splitting that is due to
a hybridization of d-orbitals and the ligand p-orbitals. In
conventional TM compounds, the ligand p-orbitals lie lower
in energy than the d-orbitals of TMs, and the hybridization
between them shifts the d-orbitals even higher. In the case of
an octahedral surrounding, this shift will be larger for the eg
orbitals. So we see that both effects usually act one way.

However, there can be exceptions to this rule: for instance,
if at least some of ligand p-states lie higher than d-orbitals, the
hybridization will push these d-states down, while Coulomb
forces push them up (both stronger for eg orbitals). If
hybridization wins, the bonding states of eg symmetry (these
will be a mixture of p- and d-orbitals) will be lower than those
of t2g. This happens in Cs2Au2Cl6 [15], and it can also be
expected in other systems with a negative charge-transfer
gap, DCT, which is the energy cost for the reaction 1

d np6 ! d n�1p5. A negative charge-transfer regime can be
realized in the case of an unusually high oxidation state of a
TM, when a system cannot afford such a strong charge
redistribution between a metal and a ligand, as the chemical
formula requires. That is why the holes emerge in the ligand p-
orbitals, which appear to be higher in energy than some of the
d-orbitals in these systems. Thus, for example, in CrO2, where
Cr nominally possesses valence 4� and O does 2ÿ, it is rather
unfavorable to transfer four electrons from the Cr ion to O;

t2g-orbitals

eg-orbitals
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x
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y
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Figure 2. Cubic harmonics corresponding to d-orbitals in an octahedral

surrounding.

1 If DCT > 0, as in normal TM oxides, we lose the energy transferred by

electrons from a ligand to a transition metal, while if DCT < 0, such a

transfer occurs spontaneously to minimize the total energy of a system.
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instead, holes appear in the O 2p-band, with Cr being
practically 3� [16].

The crystal-field splitting (DCFS) often has a dramatic
influence on the magnetic properties of TM compounds. We
know from atomic physics that Hund's rules determine the
ion state with partially filled levels. As a matter of fact, they
say that the state of a many-electron system should be such
that, first, the total spin Stot �

P
i si, and then the total orbital

moment Ltot �
P

i li of an ion should take the maximum
possible values. This, in particular, means that, e.g., a Co3�

ionwith outer electron configuration 3d6 should haveStot�2.
However, this is not always the case. When a TM ion is
implanted into an octahedral surrounding, the ligand crystal
field splits its d-shell, making the filling of higher lying d-levels
(the eg levels in the octahedra) energetically unfavorable,
which may result in violation of first Hund's rule. A classical
example of such a situation is LaCoO3, where the spin state of
Co3� is the low-spin Stot � 0 (electron occupation t62g), and
the transition (known in chemistry as spin crossover) from the
low-spin (Stot � 0, t62geg

0) to the intermediate-spin (Stot � 1,
t52geg

1) or to a mixture of low-spin and high-spin (t42ge
2
g) states

occurs [17±20].
It is often sufficient to describe Hund's rule in the mean-

field approximation by the following Hamiltonian:

HHund � ÿJH
X
m6�m 0

�
1

2
� 2Sz

mS
z
m 0

�
; �8�

where m, m 0 numerate orbitals, and JH is the intraatomic
Hund's exchange parameter. It is easily seen that if one uses
this Hamiltonian, then, in order to find the Hund's exchange
energy for each atomic configuration, one needs simply to
count the number of inequivalent pairs of electrons with
parallel spins (e.g., for Co3� the low-spin state will have
EHund � ÿ6JH, intermediate-spin EHund � ÿ7JH, and high-
spin state EHund � ÿ10JH).

Spin-state transitions can be found in many other TM
compounds based, in addition to Co3�, on Fe2�, and more
rarely on Fe3�, Mn2�, and Mn3� ions. It is rather important
to mention two points in this regard. First of all, spin-state
transitions are more typical for 3d, not for 4d and 5d, TM
compounds. In 3d systems, the t2g ÿ eg splitting is DCFS �
1:5ÿ2 eV and it can easily compete with the intra-atomic
exchange interaction, which is given by JH � 1 eV and which
arranges electrons according to Hund's rule. In contrast, due
to a larger principal quantum number, the 4d and 5d orbitals
are more spatially extended than the 3d ones [3]. As a result,
both kinetic and Coulomb contributions to the crystal-field
splitting are larger, and the t2g ÿ eg splitting exceeds 3±4 eV in
systems based on these ions [21].

As a result, 4d and 5d elements typically adopt low-spin
states, putting as many electrons as possible into the lower-
lying t2g levels. While one cannot completely rule out the
possibility that even in this case spin-state transitions may
occur within t2g levels split by a noncubic crystal field, this is
generally rather unlikely, since corresponding splitting is
typically much smaller than JH. Indeed, attempts to describe
the properties of some materials by the spin-state transition
caused by crystal-field splitting of the t2g subshell (see, e.g.,
Ref. [22]) have failed [23±25]. One might expect, though, that
this idea may apply to some early 5d TM compounds, where
JH is expected to be rather small (0.3±0.5 eV) and DCFS within
the t2g subshell can also be � 0:5 eV due to the noncubic
crystal field.

3.2 Orbital degrees of freedom and magnetism
While crystal-field splitting in the t2g or eg subshells (not the
main splitting between t2g and eg!) is unlikely to lead to a spin-
state transition, it (and more so the `main' t2g ÿ eg crystal-
field splitting) may greatly affect the magnetic properties of
materials via a completely different mechanism. In strongly
correlated systems, even small crystal-field splitting may
result in electron localization on a particular orbital. More-
over, it turns out that the magnetic properties of a system
strongly depend on the particular orbitals on which electrons
are localized. There are the so-called Goodenough±Kana-
mori±Anderson (GKA) rules [3], which describe the relation-
ship between the orbital occupation and the resulting
magnetic coupling in systems with localized electrons. In
describing these rules, we will employ the terminology of
filled (two electrons), half-filled (a single electron), and empty
orbitals, and will explain how these rules can be applied to
most common geometries.

It is easier to start with a direct overlap between d-orbitals
(direct exchange), and then consider a situation more typical
for TM compounds, when TM ions are separated by ligands,
so that the corresponding d-orbitals practically do not
overlap directly with each other and all hopping processes
occur via ligand p-orbitals (the so called superexchange).

Direct exchange. Case 1: the exchange coupling between
two overlapping half-filled orbitals is strong and antiferromag-
netic.

This situation is illustrated in Fig. 3a. In the limit of large
Hubbard repulsion, U4 t, electrons are mostly localized on
TM sites. If two electrons have different spin projections, i.e.,
are AFM coupled, they can sometimes hop from site to site
and gain some kinetic energy. One may easily evaluate a
correction to the ground-state energy due to this hopping,
using second-order perturbation theory with respect to t=U:
dEAFM � ÿ2t 2=U. Factor 2 appears here since both electrons
can hop. U is the energy of an intermediate perturbed state
(when both electrons are on the same site) with respect to
the ground-state energy E0. In the opposite situation of
FM-coupled spins, electrons cannot hop due to the Pauli
principle and do not display this energy gain. Thus, the
exchange integral becomes AFM (positive):

J1 � EFM ÿ EAFM � E0 ÿ
�
E0 ÿ 2t 2

U

�
� 2t 2

U
�9�

(compare with formula (15)).
Direct exchange. Case 2: the exchange coupling between

overlapping half-filled and empty orbitals is weak and turns out
FM.

First of all, since only one half-filled orbital can be
directed along the line connecting two sites (otherwise there

Half-élled/
half-élled Half-élled/empty

a b

AFM

FM

AFM

FM

Figure 3. Sketch illustrating hopping processes in the case of a direct

overlap between (a) two half-filled and (b) half-filled and empty d-orbitals.
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will be overlap between these two half-filled orbitals), only
one electron can hop from site to site, and hence there will be
no factor 2 in the expression for the exchange integral.
Second, the Pauli principle does not restrict in this case any
hoppings, and both AFM- and FM-coupled ions gain some
energy due to these processes (Fig. 3b). However, it can be
seen that this gain will be larger for FM, since the energy of
the excited (virtual) state with two electrons on the same site
in this case is smallerÐ this state follows Hund's rule: both
electrons have the same spin and hence the energy of this state
is Uÿ JH, and not U, as it was for AFM. The corresponding
exchange parameter becomes FM (negative):

J2 � EFM ÿ EAFM � E0 ÿ t 2

Uÿ JH
ÿ E0 � t 2

U
� ÿ t 2JH

U 2

�10�

(for JH < U, which is almost always the case). This result can
also be used for the case of overlap between (completely) filled
and half-filled orbitals: one should just consider holes instead
of electrons.

It is worthwhile to note that for 3d TM ions JH � 1 eV,
while U � 5ÿ7 eV [1]. Therefore, jJ2j is usually (much)
smaller than J1, as defined by Eqn (9). This simple result has
rather general consequences.We see that in insulators the FM
contributions to the exchange coupling are generally much
smaller than the AFM ones: J1=jJ2j � U=JH. This is the
reason why most of the insulating TM compounds with
localized electrons appear as AFM, not FM (in contrast to
metals, which are typically FM). There must be special
conditions which allow FM J2 to overcome J1 (like small U,
a specific geometry, or a particular filling of d-levels, which
switches off the AFM contribution). Moreover, even if the
FM contribution dominates, the resulting Curie temperature
is usually much smaller than the N�eel temperature in AFM.
Thus, for example, the antiferro-orbital ordering (leading, for
example, to overlap between half-filled and empty orbitals)
does stabilize FM in YTiO3, but TC � 30 K, while in the
AFMLaTiO3 the ferro-orbital ordering (overlap of half-filled
with half-filled orbitals) results in TN � 150 K [26±28]. The
Curie temperatures in ferromagnetic NaCrGe2O6 (TC�6K
[29]) and in Ba2NaOsO6 (TC � 7 K [30]) are much less than
the typical values of N�eel temperatures in AFM TM oxides.

A word of caution should be mentioned with respect to
Eqns (9) and (10), which were derived for the cases of only one
electron and two electrons per site, (9) and (10), respectively.
In real materials the occupation of d-states can be very
different, and these formulas must be rewritten accordingly.
One needs to calculate the energy of the intermediate state
accurately. For example, in the case of three electrons per site
and a half-filled/half-filled overlap between one of the
orbitals, J1 � 2t 2=�U� 2JH�: in the initial state the hopping
electron experiences Hund's rule `attraction' to the other two
electrons at this site; this energy is lost in the (virtual)
intermediate state when this electron is transferred to a
neighbor.

Also, in writing down the expressions for different
exchange constants, we used the same value ofU for different
orbital occupations. In fact, this interaction is different for
two electrons on the same (U) and on different (U 0) orbitals.
In the t2g subshell, one can make use of the so-called
Kanamori parameterization [31]: U 0 � Uÿ 2JH; and in
general, one has to employ the full atomic description, using
Racah parametersA;B, andC [32]. This can change the exact

expressions and numerical values of exchange constants, but
the general qualitative rules formulated by Goodenough,
Kanamori, and Anderson (GKA rules) remain valid.

Up to now, we have discussed direct overlap between
d-orbitals. However, this situation is rather atypical for TM
compounds, where TM ions are usually separated by ligands
and are often quite far away from each other. Since d±d
hopping scales as [33, 34]

tdd � rÿ�2l�1� � rÿ5 ; �11�

where r is the distance between TM ions, the direct exchange
interaction is often rather inefficient. In this situation, the
electron hopping occurs via the ligand p-orbitals (super-
exchange). General rules governing the overlap between
filled, half-filled, and empty orbitals remain valid, but the
analysis becomes more complicated, since one also needs to
take into account, in addition to d-states, the energetics
related to the ligand orbital and all various exchange paths
which these orbitals provide.

Here, we will consider in detail only the simplest
situation of superexchange interaction between two half-
filled d-orbitals via the p-orbital, as shown in Fig. 4a (see
Ref. [1] for amore complete analysis). In this case, d-electrons
will hop via ligand p-orbitals; corresponding hopping
amplitudes are designated as tpd. There are two possibilities
for their implementations, as shown in Fig. 5. While the

ca

b

Strong

Weak

Weak

Figure 4. (Color online.) Three main types of superexchange interaction:

(a) AFM superexchange between two half-filled d-orbitals via the same

p-orbital; see Eqn (15); (b) FM superexchange between half-filled and

empty d-orbitals via the same p-orbital; see Eqn (16), and (c) FM super-

exchange between two half-filled d-orbitals via different p-orbitals, see

Eqn (17); d-orbitals of the TM ions are shown in blue (half-filled) and

white (empty), while ligand p-orbitals are in yellow. In this figure, only the

eg orbitals are considered; corresponding plots for the t2g orbitals can be

found, e.g., in Ref. [35].

aU5DCT,
`MottëHubbard'

U4DCT,
`Charge-transfer'

b

AFM

FM

AFM

FM

TM TML

2 1

3 4

TM TML

2 1

TM TML

2 1
43
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2 1

Figure 5. Schematic illustration of the hopping processes in superex-

change interaction between half-filled orbitals in two regimes: (a) Mott±

Hubbard regime, and (b) charge-transfer regime (L stands for a ligand,

and TM labels a transition metal ion). The hopping order is designated by
numbers 1 ± 4.
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energy of the excited state after the first such hop is the same,
viz. DCT, the hopping processes at steps 2 and 3 are different.

If Hubbard's U is smaller than the charge transfer energy
DCT, U5DCT, then at step 2 we move the d-electron to the
vacant place in the p-shell (the energy of this state is U), and
with processes 3 and 4 we restore the status quo. The
corresponding expression for the exchange constant reads as
follows:

J � t 4pd
DCTUDCT

�
ÿ
t effdd

�2
U

: �12�

Here, we have intentionally introduced the effective d±d
hopping integral via p-orbitals:

t effdd �
t 2pd
DCT

; �13�

to demonstrate that the superexchange interaction in this case
has exactly the same form as the direct exchange defined
previously [see formulas (4), (9)].

In the opposite limit ofU4DCT, it is easier to move at the
second step the second electron from a ligand to another TM
ion. In this case, one has

J � t 4pd
DCT�DCT �Upp=2�DCT

�
ÿ
t effdd

�2
DCT �Upp=2

: �14�

Here,Upp is the on-site Coulomb repulsion of two holes in the
p-shell of a ligand (it also takes into account the intraatomic
exchange).

The U5DCT limit corresponds to Mott±Hubbard insu-
lators, while U4DCT corresponds to charge-transfer insula-
tors. However,U andDCT inmany real materials can be of the
same order of magnitude, and one needs to take into account
both contributions:

J � ÿt effdd

�2� 1

U
� 1

DCT �Upp=2

�
: �15�

Without further details, we list below the dominant
contributions to the exchange interaction for three main
geometries: when two neighboring MO6 octahedra share
their corners, edges, and faces (Fig. 6).

Common corner. Typical crystal structures with this
geometry are perovskites (normal, double, quadruple, and
layered). Since there is a ligand (L) between TM ions, the
dominating exchange interaction will be the 180� super-
exchange (15). The AFM exchange between half-filled eg
orbitals via the s(p±d) bond characterized by the hopping

integral tpds appears as the strongest (Fig. 4a). In addition,
there can also be a moderate AFM superexchange between
half-filled t2g orbitals via the same p-orbital (described by the
same expression (15)), since p bonding is much weaker than s
(tpds � 2tpdp [34]). The last contribution is a weak FM
exchange between half-filled and empty d-orbitals (Fig. 4b):

J � ÿÿt effdd

�2� JH
U 2
� JH
�DCT �Upp=2�DCT

�
: �16�

Common edge. Typical materials with such crystal
structures involve pyroxenes, delafossites, spinels (AM2L4),
and hexagonal `213' systems ��Li;Na�2MO3� (see also
Sections 4.3 and 6.5 for a detailed discussion). There is a
substantial direct d±d overlap of two half-filled t2g-orbitals
(Fig. 6b), which will result in a strong AFM exchange (9).
There will also be a 90� superexchange interaction:

Ð first of all, a moderate AFM exchange appears via the
same p-orbital (see Fig. 28) (one can use formula (15) with the
appropriate choice of tpd in this case);

Ð second, there is also an FM superexchange between
half-filled and empty d-orbitals, which is shown in Fig. 4 of
Ref. [35] and which can be described by expression (16);

Ð finally, there is also a possible FM superexchange
between two half-filled eg- (or t2g-) orbitals via two different
p-orbitals, as shown in Fig. 4c (for the t2g-orbitals, see Fig. 5
of Ref. [35]):

J � ÿ
ÿ
t effdd

�2
J p
H

�DCT �Upp=2�DCT
; �17�

where J p
H stands for the Hund's intraatomic exchange

interaction on the ligand site.
Common face. Typical crystal structures are one-dimen-

sional or dimerized systems such as BaRuO3, CsCuCl3, or
6H-perovskites with the general formula Ba3�M1��M2�2O9

(where M1 and M2 are metals), etc. It is believed that the
strongest exchange coupling will be between the a1g-orbitals
(a1g��xy� yz� zx�= ���

3
p

in the local coordination system,
where axes are directed towards ligands) (Fig. 6c). This
contribution will be exceptionally large for 4d and 5d TM
ions, the wave functions of which are more spatially extended
than 3d. Such an exchange is strong andAFM. It is interesting
to note that the spin±orbit (Kugel±Khomskii) Hamiltonian
describing the interplay between spin and orbital degrees
of freedom has, in this case, unusually high symmetryÐ
SU(4) [36, 37].

To end this section, we would like to note that, in
principle, there can be exchange processes via not one but
several intermediate ions. Sometimes this exchange interac-
tion is referred to as a supersuperexchange [38±40].

Common corner a Common edge b Common face c

Figure 6. (Color online.) Three types of octahedra packing in TM compounds: for the common corner (a), for the common edge (b) and common face (c)

cases; we also show d-orbitals with the largest direct overlap in figures (b) and (c). Ligands are shown as brown balls.
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3.3 Double exchange
Let us turn to the exchange interactions in metals. We do not
consider all metals, but only those in which local magnetic
moments still exist. Moreover, we examine a situation when
there are two sets of electronsÐone providing localized
magnetic moments, and the other giving metallic conductiv-
ity. In some sense, this is an extreme situation, since in
conventional metals the same electrons can simultaneously
be mobile and provide magnetic moments. But in many
materials, like manganites [41], this is indeed a very good
approximation: part of the electrons are localized (due to
strongHubbardU), while the other (metallic) electrons can be
added to a system, e.g., by doping. One can assume that these
two types of electrons interact with each other via intra-
atomic Hund's exchange JH:

H � ÿt
X
hi j is

c
y
iscjs ÿ JH

X
i

Si c
y
isrcis � J

X
hi j i

SiSj : �18�

Here, r is the vector of Pauli matrices, while s is the spin. The
first term gives a band spectrum of mobile electrons
(described by operators c

y
is; cjs); the second one introduces

the coupling between mobile and localized electrons (with
spin Si). The last term describes an exchange coupling
between localized spins of neighboring sites.

In the case of small doping, all mobile electrons are at the
bottom of a band, the width W of which is defined by the
hopping integral t and the number of nearest neighbors z:
W � 2zt. Thus, we can lower the total energy of a system
considerably (by � xW=2, where x is the concentration of
mobile electrons), if mobile electrons propagate through the
lattice. However, if localized spins are AFM-ordered, the
intraatomic Hund's exchange prevents (or at least strongly
suppresses) such a propagation, since there are sites at which
the spins of mobile and localized electrons would be
antiparallel (Fig. 7). Thus, to gain kinetic energy of mobile
electrons, it is better to make the system ferromagnetic. We
see that, in contrast to direct exchange and superexchange
discussed in items 2 and 3 of Section 3.2, this mechanism,
called double exchange in the literature, tends to stabilize
ferromagnetism. The corresponding model, given by formula
(18) (sometimes omitting the second term, with the assump-
tion that JH is much larger than the other parameters of the
system), is called the double exchange (DE) or ferromagnetic
Kondo lattice model. Other details of this mechanism and a
more detailed treatment of the model can be found in review
[42] and in original papers [43±47]. Here, we would like to
mention just a couple of points.

First of all, let us give some examples of systems where
the DE operates. These include manganites, such as
La1ÿxSrxMnO3, where electrons in the narrow t2g band are
considered to be localized (and to have local magnetic
moments). By doping, one may add some holes or electrons

to the much wider eg band. The electrons or holes in the eg
band play the role of itinerant carriers [43]. Another example
is CrO2, where we do not need doping to `switch on' the DE.
There are localized electrons in the xy band, which provide
local magnetic moments, and itinerant electrons in the xz=yz
bands, which make the system ferromagnetic by hopping
from site to site [16].

Second, there can be a conventional direct or super-
exchange interaction between localized spins, described by
the last term in Eqn (18), which is usually AFM, as explained
in Section 3.2. The competition between the AFM super-
exchange and the FM double exchange can result in a canted
magnetic state with the angle y between neighboring spins,
cos �y=2� � tx=�4JS 2� [46] for appropriate concentration x of
conduction electrons (see also the discussion in Refs [47, 48]).
Another more plausible option implies that for small doping
there may appear in a system, instead of homogeneous
canting, a phase separation into the undoped antiferromag-
netic matrix and ferromagnetic droplets containing all doped
electrons [49]. There are experimental indications that such
phase separation indeed exists in low-doped manganites [50].

Finally, there is an important question as to what happens
with the double exchange, if a small band gap appears, which
prevents propagation of itinerant electrons. Or, in other
words, how the double exchange concept could be combined
with the superexchange picture in a multiorbital case. While
this problem is still not completely solved, it was recently
shown that the double exchange survives even in the
insulating regime, if JH is large enough [51, 52]. Moreover,
for a certain range of parameters, a phase appears with
partially suppressed total magnetization. It is clear that the
natural generalization of the double exchange model would
lead to a picture which retains differentiation of electrons on
more localized andmore itinerant, but which does not require
metallic conductivity. Obviously such a difference can be
provided by a spatial ordering of corresponding orbitals. In
Section 5.2, we will discuss for the example of dimerized
systems the interplay between the orbital-selective behavior
and magnetic properties, in particular, the eventual suppres-
sion of double exchange by the formation of orbital-selective
`molecular' states.

3.4 Jahn±Teller effect
Yet another important factor which we should mention here
is that for certain types of symmetry and for some d-electron
occupations we can have an extra orbital degeneracy. This is
the case, for example, for TM ion having four d-electrons, all
with spin `up' (Mn3� or Cr2�) in the octahedral coordination.
Three electrons occupy the t2g levels, which are half-filled, and
the fourth electron then goes over into the eg state. But for
regular octahedra, these eg levels are doubly degenerate.
Thus, this extra electron can occupy any of these states:
3z 2 ÿ r 2, x 2 ÿ y 2, or any of their linear combinations. This
leads to the well-known instability, known as the Jahn±Teller
(JT) effect: it is favorable to reduce the symmetry of a system,
e.g., distort the initially regular O6 octahedron around the
TM ion in an oxide, leading to the splitting of d-levels and to
some gain in energy.

Such splitting for the tetragonal elongation of an O6

octahedron is shown in Fig. 8a. It is clearly seen that such a
distortion splits the eg levels, so that our fourth electron can
now occupy the lowest eg level and can decrease the total
energy of the system. This decrease turns out to be linear in
distortion u, i.e., dEkin � ÿgu, as the level splitting in a

Mobile electrons

Localized electrons

AFM FM

No energy gain due
to hopping! dEDE � ÿWx

Figure 7. Sketch illustrating the double exchange mechanism of ferromag-

netism.
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Zeeman effect. Here, g is a parameter characterizing the
coupling between an electronic subsystem and a lattice, and
u is a strain. Of course, this distortion leads to an elastic
energy loss, which, however, is only quadratic in the
displacement: dEelast � Bu 2=2 (B is the elastic modulus). The
linear electronic energy gain always wins, and the minimum
energy will be reached for a finite distortion: in this case,
u � �g=B. This is, in simple terms, the essence of the JT
theorem (which, according to Teller himself, was first
suggested to him by Landau (see Appendix A.2 in mono-
graph [1]).

For isolated centers, the Jahn±Teller instability leads to
very interesting quantum effects, including the geometric
(Berry) phase (which actually first appeared in the literature
just in this context [53], long before the famous work by Sir
M Berry). But for us, it is more important that for
concentrated solids we can get in this situation structural
phase transitions with corresponding orbital ordering (see,
e.g., review [7]). Moreover, it is not clear what comes firstÐ
the JT distortions followed by orbital ordering, or vice versa.
Indeed, in addition to the electron±phonon mechanism of the
JT effect described above, there is another mechanism of
orbital ordering, the so-called superexchange (or Kugel±
Khomskii) mechanism [7]. We have already found out that a
system may gain an exchange energy by setting up some
orbital ordering [e.g., by occupying the overlapping half-filled
orbitals, we gain an energy proportional to that given by
Eqn (15)], and the crystal lattice will react to this by
corresponding (JT) distortions. Sometimes, instead of a real
orbital ordering in an undistorted high-temperature phase,
we can speak about short-range orbital correlations.

Band structure calculations show that an orbital ordering
can appear even in the absence of JT distortions, just due to
the superexchange mechanism, and if we then allow lattice
relaxation, the lattice will relax to the JT-distorted structure

(in the LDA�U [54], 2 i.e., including electronic correlations
described by Hubbard's U, which are needed to localize
electrons on particular orbitals) [55, 56]. The more sophisti-
cated LDA+DMFT calculations, 3 however, show that both
the electron±phonon and the superexchange mechanisms are
important, and they together determine the temperature of
the JT transition [57±59]. We will not discuss this large and
very interesting field here; but in dealing with real systems
with orbital degeneracy, one always has to keep in mind the
possibility of JT distortions, which could result in the
formation of orbital ordering.

3.5 Spin±orbit coupling
When dealing with the TM compounds, especially with 4d
and 5d TMs, one also has to take into account the real
(relativistic) spin±orbit coupling (SOC), in these systems it
becomes large comparable to many other parameters,
especially for 5d compounds. Still, usually the spin±orbit
constant l (� 0:5 eV for ions such as Ir, Pt) is smaller than
the t2g ÿ eg crystal-field splitting DCFS, which for 5d oxides is
typically � 3ÿ4 eV. For eg electrons, the crystal field
quenches the orbital moment and the SOC. Therefore, we
should only expect strong effects of the SOC for systems with
partially filled t2g subshells. But most 4d and 5d compounds
actually belong to such systems, since 4d and 5d TM ions
usually occupy the low-spin state (see Section 3.1).

For the t2g subshell with triply degenerate orbitals, one
can, by applying the Wigner±Eckart theorem, describe
orbitals using the equivalent orbital moment leff � 1.
Indeed, matrix elements of the orbital moment for three t2g
orbitals coincide with those for l � 1 up to the sign of the
spin±orbit constant [60]. In the following, we will use this very
convenient language to describe 4d and 5d orbitals and for
simplicity often omit the `eff' subscript. One has only to take
care of the magnitude and the sign of the effective spin±orbit
coupling leff, when it is written out for this effective moment.

Two remarks have to bemade right away. The first is that,
when we include the SOC, the electron±hole symmetry
existing for the t2g shell is broken. Without the SOC, the
properties of systems containing one and five t2g electrons,
and also two and four of them, are equivalent with the
electron±hole substitution. Therefore, one can easily `trans-
late' the results obtained, for example, for one electron to
those with five electrons (or one hole) in the t2g subshell. This,
however, is no more the case in the presence of a (strong)
SOC.

The second point is the way we consider the SOC inmany-
electron atoms or ions. In principle, it is a complicated, many-
particle problem. A detailed analysis of the structure of
atomic electronic terms, with real atomic parameters (Racah
parameters A, B, and C, or intraorbital and interorbital
Hubbard repulsion parameters U and U 0, and Hund's
interaction JH) is described, for example, in Refs [32, 60].
Generally, in atomic physics, one usually considers two limits,
or two approximations. From the Dirac equation, one gets
the SOC for one electron, zlisi [61], with the positive coupling
constant z (and dependent on the atomic number; see below).
For many-electron atoms or ions with a relatively weak SOC
(weaker than Hund's rule intraatomic exchange), one usually
applies the LS or Russel±Saunders approximation. In this
case, according to Hund's first rule (see, e.g., Ref. [1]), one

a

eg

eg

t2g

t2g

x2 ÿ y2

x2 ÿ y2

3z2 ÿ r2

3z2 ÿ r2

xy

xy

EJT

2

EJT

xz=yz

xz=yz

b

Figure 8. Tetragonal elongation (a) and compression (b) of a ligand (L)

octahedron surrounding a metal ion (M), and corresponding splitting of

the d-levels. In order to keep the volume of the crystal constant, the

elongation (compression) along one of the axes is accompanied by

compression (elongation) along two others.

2 LDAÐlocal density approximation.
3 DMFTÐdynamic mean-field theory

November 2017 Orbital physics in transition metal compounds: new trends 1129



first forms the total spin S �Pi si and the total orbital
momentum L �Pi li, and then invokes the spin±orbit
interaction for these total moments:

HSOC � lLS : �19�

The energy contribution due to the SOC can be expressed via
the total momentum J defined as J � L� S:

ESOC � hlLSi � l
2

ÿ
J�J� 1� ÿ L�L� 1� ÿ S�S� 1�� ;

since J 2 � L2 � S 2 � 2LS. The SOC constant is then given
by l � �z=�2S�, where one takes plus for the less-than-half-
filled shells, and minus for the more-than-half-filled shells.
This finally leads to the second (or third) Hund's rule: for the
less-than-half-filled shells (l > 0), we have a normal order of
multiplets (the terms with the smaller J have lower ESOC),
and an `inverted' multiplet order (the lowest multiplets are
those with the maximum J) for the more-than-half-filled
shells.

When dealing with the effective moment l � 1 and the
effective SOC for the t2g shell, the sign of l turns out to be the
opposite [1, 60], so that we have a reversed multiplet order:
multiplets with the larger J lie lower in energy for the less-
than-half-filled t2g shells, and we have a normal order for the
more-than-half-filled shells. It is this factor that finally gives
rise to an electron±hole asymmetry for this case. Thus,
according to these rules, for a d1 configuration, with L � 1
and S � 1=2, the possible values of the total momentum are
J � 1=2 and J � 3=2, and according to the rules formulated
above the lowest multiplet is the quartet J � 3=2. However,
for five d-electrons (one hole in the t2g shell), the multiplet
order will be inverted, so that the ground state of such an ion
would be a doublet J � 1=2. This is the state often invoked
nowadays for compounds containing Ir 4� (t52g) (see discus-
sion below).

This treatment is applicable to light elements, with a
relatively weak SOC. In the opposite limit of a very strong
SOC, realized, for example, in rare earths or in actinides,
another approximation is usually usedÐ the so-called
jj-coupling scheme (realized if the SOC constant l is larger
than Hund's exchange energy JH). In this scheme, we first
couple for each electron its spin and angular momentum to
the total momentum of an electron:

ji � li � si ; �20�
and then form the total momentum out of those momenta for
individual electrons:

J �
X
i

ji : �21�

In this scheme, a strong SOC splits the one-electron d-state
into j � 5=2 and j � 3=2 components, and then the other
interactions may remove the degeneracy of these levels. Note
that, by doing this, we violate first Hund's rule, first of all
taking care of the spin±orbit coupling (assumed to be stronger
than Hund's exchange). A general schematic of d-level
splittings in the presence of a crystal field and SOC is
demonstrated in Fig. 9.

The 3d-compounds are definitely better described by the
LS (Russel±Saunders) coupling scheme, and probably so are
most 4d systems. But with 5d materials, the situation is not so
clear. It might be that they are already `half-way' between the
LS- and jj-couplings.

For some d counts, these two pictures give qualitatively
similar results, but for some others the conclusions might be
different. Thus, for example, for the low-spin d4 configura-
tion in the LS-scheme L � 1, S � 1, and the ground state
should be singlet J � 0. The same conclusion would be
reached in the jj-scheme. In this scheme, we have single-
particle states in the form of a low-lying j � 3=2 quartet and
higher-lying j � 1=2 doublet (see Fig. 10). Four d-electrons
would then occupy all states of the 3/2 quartet, i.e., the total J
would also be zero.

The same is true for the most widely discussed case of d5

occupation, as in Ir4� ions. In the LS coupling scheme, as
mentioned above, we would have L � 1, S � 1=2, and the
ground state would be aKramers doublet with J � 1=2. In the
jj-scheme, we should fill the levels shown in Fig. 10 with five
electrons, which would completely fill the lowest quartet, and
the fifth electron would be in the j � 1=2 doublet, as in the
LS-scheme. But, for example, the situation would be different
for d3 occupation. In the LS-scheme, these three electrons
would fill all t2g levels (the high-spin state), so that the net
orbital momentum would be L � 0, and what remains would
be a pure spin S � 3=2 state, without any influence of the
SOC. In the jj-scheme, we also would have three electrons in a
quartet, however not an S � 3=2 quartet, but a j � 3=2
quartet (Fig. 10). Consequently, the form of corresponding
wave functions, the values of g factors, etc., would be different
(see, e.g., Ref. [62]). Very recently, these effects were indeed
observed for 5d3 systems Ca3LiOsO6 and Ba2YOsO6 [63].

It is also worth mentioning that all the band structure
calculations based on the density functional theory (DFT)
[64] are, in fact, dealing with one-electron states (one Slater
determinant). In this sense, they describe the SOC in the

d d

eg

t2g

j eff1=2

j5=2

j3=2
j eff3=2

DCFS 4 l DCFS 5 l

Figure 9. Schematic illustration of level splitting in the presence of cubic

crystal field (CF) and of spin-orbit coupling.
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j � 3=2
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Figure 10. jj-scheme for d3, d4, and d5 configurations (it is assumed that the

t2g ÿ eg crystal-field splitting is large, so that all electrons occupy the t2g
levels).
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jj-scheme, which also operates with one-electron states,
before combining them into a total J state. In addition,
experimentalists very often use the description with energy
schemes similar to Fig. 10. One has to realize, though, that the
real atomic electronic terms, real multiplets, are many-
particle states, especially in the LS-coupling scheme.

One more comment is in order here. We have said above
that the SOC becomes stronger with increasing atomic
number Z of an element, and it is due to this fact that the
heavier elements like 5d TM may already be close to the
jj-coupling scheme. Very often in the literature, the estimate is
given that the spin±orbit coupling constant l � Z 4, where Z
is the atomic number of an element; this has already become
an accepted notion. But in the famous textbook [61], it is
shown that in fact this relation should instead be l � Z 2, not
Z 4 [61]! And, indeed, a comparison with the experimental
data demonstrates that this estimate is much closer to reality
(though both are, of course, `order-of-magnitude estimates').
For example, compare Ir andV. Ir has atomic numberZ � 77
and l � 400 meV [65]. V has atomic number Z � 23 and
l � 30 meV [60]. In effect, lIr=lV � 13:3. Now, the `Landau
estimate' gives �ZIr=ZV�2 � 11:2, but the more commonly
used `rule' l � Z 4 would give �ZIr=ZV�2 � 125Ðway off!
Thus, it seems that the dependence l � Z 2 is indeed a correct
one.

4. Effective reduction of dimensionality
due to orbital degrees of freedom
and its consequences

The original investigations of `orbital physics' in solids were
mostly concentrated on the study of the effects connected
with orbital degeneracy and with the resulting phase transi-
tionsÐ the cooperative JT effect, or orbital ordering (these
terms actually denote the same phenomenon, just stressing
different aspects of it). These effects have been discussed in
many books and review articles, e.g., Refs [7, 78, 79]. Later
on, some novel aspects of orbital physics have attracted
significant attention and come to the forefront.

In the present review, we will mostly concentrate on this
novel developments; the older, more `classical' parts of this
field can be found in the literature cited above.

We start by discussing the phenomenon which was
highlighted relatively recently and which was shown to lead
to many interesting consequences. This is the reduction of the
effective dimensionality of electronic and magnetic subsys-
tems, which is the result of the directional character of d-
orbitals (see, e.g., Fig. 2). We will describe these effects with

several examples, before formulating general conclusions. In
Table 1, we give a list (far from complete!) of several materials
inwhich the phenomenon of reduction of effective dimension-
ality has been examined both experimentally and theoreti-
cally.

4.1 Formation of low-dimensional magnetic systems
due to orbital ordering
The simplest example, known already long ago, is the
formation of low-dimensional magnetic systems in materials
which just by the crystal structure belong to the usual three-
dimensional ones. Probably the most striking example is
KCuF3. The latter is an insulating perovskite, with basically
a cubic lattice, containing classical JT ions Cu2� (t 62ge

3
g ), with

one hole in doubly degenerate eg orbitals. Due to electron±
lattice (JT) interaction [78] and the superexchangemechanism
[7, 75], an orbital ordering with the (half-filled) hole orbitals
occurs in KCuF3 as illustrated in Fig. 11 (the half-filled hole
orbital of the x 2 ÿ y 2 type is shown).

Remembering the GKA rules discussed in Section 3.2, we
expect that in this system a strong antiferromagnetic
exchange should exist along the c-direction, in which these
orbitals strongly overlap (via corresponding p-orbitals of F).
The coupling in the ab plane is ferromagnetic and much
weaker: the half-filled orbitals here are orthogonal to each
other, and there is an overlap only between half-filled and
completely filled (in the electron picture) or between half-
filled and empty (in the hole representation) orbitals. And,
indeed, the magnetic properties of KCuF3 ideally correspond
to these expectations: this system turns out to be a quasi-one-
dimensional antiferromagnet, with weak ferromagnetic cou-
pling between these AFM chains, which finally leads to A-type
long-range magnetic ordering [FM layers stacked antiferro-
magnetically (see Fig. 11)]. Thus, in effect, this material,
which is crystallographically cubic, turns out to be magneti-
cally one of the best 1D antiferromagnets known [76]! And

Table 1. Examples of materials with an effective reduction of the

dimensionality due to orbital degrees of freedom.

Type of reduction Materials References

1D! 0D, zigzag chains! dimers, S�0

1D! 0D, chains! dimers
2D! 0D, triangular layers!
isolated triangles (S�0)
3D! 0D, spinel! heptamers, S�0

3D! 0D, spinel! octamers, S�0
3D! 1D, spinel!
tetramerized chains (S � 0)
3D! 1D, 3D-perovskite!
AFM-chains S � 1=2
3D! 1D, 3D-pyrochlore!
Haldane chains

NaTiSi2O6

TiOCl
LiVO2

AlV2O4

CuIr2S4
MgTi2O4

KCuF3

Tl2Ru2O7

[35, 66]
[67]

[68, 69]

[70, 71]
[72, 73]
[73, 74]

[75, 76]

[77]

c

a

b

Figure 11. Spin density distribution (difference between charge densities

for spin `up' and `down') obtained in LDA+U calculations for KCuF3

[54]. Cu ions are in the corners of the cube, and F ions are in the middle of

its edges. It can be seen that a single hole is localized on the x 2 ÿ y 2 and

y 2 ÿ z 2 orbitals. This results in A-type antiferromagnetism shown by

arrows.
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this is completely due to corresponding orbital ordering, with
the resulting highly anisotropic electron hopping and
exchange interaction.

There are other materials in which orbital ordering leads
to the formation of low-dimensional magnetic systems. A
rather striking example is provided by pyrochlore
Tl2Ru2O7. In the latter, also crystallographically 3D cubic
material with Ru4� (S � 1) ions, a state with the spin gap
appears below the phase transition at Tc � 120 K. How-
ever, structural studies have not revealed any apparent
distortion which could have led to the formation of singlet
dimers. The explanation proposed by Lee et al. [77] is that
the orbital ordering appearing in Tl2Ru2O7 below Tc leads
to the formation of magnetically quasi-one-dimensional
structures, viz. chains of S � 1 ions. Such objectsÐchains
with integer spinÐare very well known in `spin science,'
and they are called Haldane chains. In contrast to half-
integer spin chains, they exhibit a gap (a spin gap) in the
spin excitation spectrum [80, 81] and topologically protected
edge (here ends of a chain) states.

4.2 `1D-zation' of electron spectrum
and orbitally driven Peierls state
Other materials also exist with a similar reduction of
effective dimensionality of the magnetic subsystem. But
even more drastic consequences could result from the
reduction of dimensionality in the electronic subsystem.
This is often related to the special properties of low-
dimensional, especially one-dimensional, systems and, in
particular, to the tendency of such systems to undergo
Peierls-like instability.

In Table 1, we list some materials in which the orbital
structure leads to a reduction of the effective dimensionality
of the electronic subsystem, in particular resulting in the
formation of a Peierls-like state. Of course, we cannot
describe in this review all these examples; we concentrate on
the most representative (and easy to explain) cases.

Probably the most spectacular example concerns the
formation of an exotic superstructure in MgTi2O4 (spirals)
[74] and in CuIr2S4 (octamers) [72]. These materials belong

to spinels with a TM ion in B-sites (Fig. 12). In both, a
structural transition occurs from the cubic to tetragonal
phases with decreasing temperature. But, besides that, in
these systems extra distortions appear, leading to the
formation of unusual superstructures. Thus, short (violet)
and long (red) Ti±Ti bonds form strange `spirals' in the low-
temperature phase of MgTi2O4 (Fig. 13a).

An even more nontrivial superstructure was found by the
same group in CuIr2S4 [72]: in this system at temperatures
below 230 K there is a charge ordering of Ir ions (average
valence Ir3:5�) into Ir4�(t52g) and nonmagnetic (low-spin)
Ir3�(t62g), and these species form beautiful octamers
(Fig. 13b). Moreover, extra dimerization occurs in Ir4�

octamers with the formation of short Ir 4�±Ir 4� singlet
dimers, which makes the whole material nonmagnetic.

In the original publications [72, 74], there was no
explanation of the formation mechanism for these super-
structures. But one can find a very straightforward explana-
tion of the observed superstructures by taking into account
the orbital dependence of the electronic structure in these
spinels [73].

In both cases, we are dealing with systems comprising
partially filled t2g levels. As can be seen fromFig. 12, in spinels
with TM ions at the B-sites, octahedra surrounding TM ions
shore their edges. In this case a strong direct overlap of certain
t2g orbitals occurs in a particular direction. Thus, for example,
the xy-orbital of one site strongly overlaps with a similar
xy-orbital along the xy-direction, but not with the other two
orbitals. Similarly, yz-orbitals overlap and experience strong
hopping to the same yz-orbital in the yz-direction. Now, the
structure of the B-sites of a spinel can be visualized as
consisting of straight chains running in the xy-, xz-, and
yz-directions. It may seem a rather artificial construction, but
just for t2g orbitals it acquires real significance. We see that
electrons hopping from site to siteÐ for example on the
xy-orbitalÐwould remain on the same orbital in the
corresponding xy-chain, and similarly for the xz- and
yz-orbitals. In effect, if we only include direct d±d over-
lapping and hopping, the electronic structure of these
basically cubic materials would be composed of three one-
dimensional bands: xy, xz, and yz.

Now, the famous Peierls effect tells us that the metallic
state of such one-dimensional systems is unstable towards the
formation of a superstructure which opens a gap at the Fermi

Ligand Metal

xz

xy

yz

Figure 12. (Color online.) Formation of 1D chains in spinels due to orbital

degrees of freedom. Transition metal ions (squares) reside at the B-sites of

AB2L4 spinels. Ligands (L) are marked by blue dots.
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Figure 13. (Color online.) Crystal structures of MgTi2O4 and CuIr2S4 in

the low-temperature distorted phase (taken fromRefs [72, 74]). Transition

metal ions are marked by circles. Short bonds in figure (a) are shown by

violet lines, while long bonds by red lines. Red dots in figure (b) label Ir 5�

ions, while blue dots label Ir 4� ions; chemical bonds in the Ir 4�±Ir 4�

dimers are marked in light blue color.
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level (see Section 2). For half-filled bands, this would lead to
dimerizationÐ the well-known case. But actually, the same
instability also develops for other band fillings. Thus, for
quarter-filled bands, we would get tetramerization, for 1/3-
filled bands trimerization, etc. And this was the explanation
proposed in work [73] for superstructures observed in
MgTi2O4 and CuIr2S4. One can easily see that in both these
cases we would have 1/4-filled bands: doubly degenerate
xz- and yz-bands in MgTi2O4, and 1/4- (rather more likely
3=4-) filled bands in CuIr2S4.

Thus, the exotic and puzzling superstructures observed in
Refs [72, 74] find a natural explanation if one only takes the
`right viewing angle' and looks at what happens in 1D bands
determining the electronic structure of these materials. In
both these cases, we have a simple tetramerization on the
straight chains: in the xz- and yz-chains in MgTi2O4, and in
all directions in CuIr2S4. Thus, this rather highly simplified
picture (we ignored, for example, possible electron hopping
via ligandsÐoxygen, sulphur) gives a natural explanation of
very exotic and beautiful superstructures found in MgTi2O4

and CuIr2S4 [73].
There are also other materials of the same kind in which

this physics can be in action. For example, such can be the
situation in V-based spinels, like ZnV2O4 [82, 83]. This
material has caused quite a discussion in the theoretical
physics community; several models have been proposed to
explain the superstructure observed in it [84±88]. A final
explanation of the properties of this system is still not agreed
upon; but in any case, all proposed pictures were based on the
important role of orbital degrees of freedom in determining
its properties.

4.3 Novel states close to the Mott transition:
`molecules' in solids
In the previous sections, we have seen that in solids with
correlated electrons some clusters, e.g., dimers, may appear in
which electrons behave as practically delocalized, whereas
still rather weak hopping takes place between such clusters.
One can often describe such clusters using the treatment
developed for molecules. In concentrated solids such objects
can appear when the whole system is relatively close to a
localized±itinerant crossover, i.e., close to the Mott transi-
tion.

Usually, when analyzing the Mott transitions, one thinks
of the situation when on one side of the transition we have a
homogeneous Mott insulator, and on the other side we are
dealing with a homogeneous metallic state described, for
example, by the Fermi-liquid theory. However, the experi-
ence collected in recent years has demonstrated that this is not
the only possible situation. It turned out that in many real
systems electron delocalization first occurred in finite
clustersÐdimers, trimers, or sometimes larger clustersÐ
whereas weak hopping still took place between them, and the

whole system still behaved as an insulator. And only at a later
stage, e.g., at higher pressures, may the whole material
become metallic.

In order to understand whether a system finds itself in
such a state, one can compare the metal±metal distances in a
compound under considerationwith thosemet in puremetals,
Dmet (see Table 2). If some distances are smaller than Dmet,
then this can be a signature of the formation of `molecules' in
a given system.

The first example of the formation of such `molecules' in
bulk solids due to a particular orbital ordering is pyroxene
NaTiSi2O6. Pyroxenes comprise a large class of materials
which are not yet very popular among physicists, but which
are extremely important in geology: they are silicates, one of
the main rock-forming minerals. They constitute up to 30%
of Earth's crust and are important constituents of the upper
mantle [89]. They are quasi-one-dimensional compounds
containing zigzag chains of MO6 octahedra sharing common
edges, and between them SiO4 (or GeO4) tetrahedra are
located (Fig. 14a).

The material we want to discuss is NaTiSi2O6, with Ti3�

(d1). It is paramagnetic, with susceptibility at high tempera-
tures following a Bonner±Fisher curve for a one-dimensional
antiferromagnet with S � 1=2. However, this behavior is
interrupted at Tc � 210 K, below which it is practically
diamagnetic [90].

Ab initio calculations demonstrate that, whereas at high
temperatures one d-electron of Ti occupies more or less
equally all three t2g states, below Tc ferro-orbital ordering
occurs, with filled orbitals depicted in Fig. 14b [35]. We see
that after such ordering the system is practically divided into
dimers, weakly connected with each other: the exchange
coupling inside such dimers is strongly antiferromagnetic,
J � 400 K, whereas the exchange between dimers is close to
zero, and most probably is weakly ferromagnetic [35]. In
effect, a material which was a one-dimensional antiferro-
magnet above Tc becomes split below Tc into singlet dimers.
This is predominantly due to particular orbital ordering; one
does not even have to move ions (but, of course, in reality the
Ti±Ti distances inside and between these dimers also become
different). This is a very clear example of reduced dimension-
ality and the formation of singlet `molecules' due to the
directional character of orbitals and due to a particular type
of orbital ordering.

Table 2.Metal±metal distances Dmet in [A
�
].

3d Ti
2.896

V
2.622

Cr
2.498

Mn
2.734

Fe
2.482

Co
2.506

Ni
2.492

Cu
2.556

4d Zr
3.180

Nb
2.858

Mo
2.726

Tc
ë

Ru
2.650

Rh
2.690

Pd
2.752

Ag
2.890

5d Hf
3.128

Ta
2.860

W
2.740

Re
2.742

Os
2.676

Ir
2.714

Pt
2.746

Au
2.884

a b

Figure 14. (a) Crystal structure of pyroxenes. Metal ions are inside

octahedra which form zig-zag chains. (b) Orbital ordering, which is

stabilized in the low-temperature phase of NaTiSi2O6.
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Another such example is LiVO2. It can be visualized as a
rocksalt VO in which half the V ions are substituted by
nonmagnetic Li ions. V and Li ions in this case are ordered
in consecutive [111] layers, and in effect we have a quasi-two-
dimensional system, with V3� (d2) ions forming triangular
layers separated by similar layers of nonmagnetic Li ions (see
Fig. 15a).

LiVO2 is an insulating compound, and at Tc � 460 K it
experiences a structural phase transition, below which the
magnetic susceptibility strongly decreases and LiVO2

becomes practically diamagnetic, while it is paramagnetic
above Tc [68]. This behavior was explained as being due to
orbital ordering with concomitant structural distortion [91].
A triangular lattice is usually considered frustrated, meaning
that it is not bipartite, i.e., it cannot be subdivided into two
sublattices, such that the nearest neighbors of one belong to
the other. But in LiVO2, we have two d-electrons per one V
ion, which occupy triply degenerate t2g orbitals, so that from
the `orbital' point of view it is a triply degenerate system.
These three t2g orbitals are shown (by different colors) in
Fig. 15.

And although triangular lattice cannot be subdivided into
two sublattices, it can be naturally subdivided into three! This
is what indeed happens in LiVO2 below Tc. The orbital
ordering proposed for LiVO2 in Ref. [91] is demonstrated in
Fig. 15b. We see that, due to this orbital ordering, the system
is subdivided into tightly bound triangles (shaded inFig. 15b).
According to Goodenough±Kanamori±Anderson rules, one
would have in these trimers a strong antiferromagnetic
exchange (between the half-filled t2g orbitals), whereas the
exchange interaction between these trimers would be very
weak and presumably ferromagnetic. In any case, antiferro-
magnetic coupling between V ions in these triangles, each V
with S � 1 (two d-electrons per V), would make a spin-singlet
ground state (three S � 1 spins form a total singlet (so to say,
`1+1+1=0').

Indeed, representing the Heisenberg Hamiltonian for a
triangle as

H � 2J�S1S2 � S1S3 � S2S3� � J�S1 � S2 � S3�2

ÿ J
X3
i�1

S 2
i � JS 2

tot ÿ J
X3
i�1

S 2
i ; �22�

we see that for the antiferromagnetic coupling (J > 0) the
ground state corresponds to a total spin Stot � 0.

We would reach a similar conclusion if we treated d-electrons
in these trimers as itinerant: in this case, these trimers would
form just a triangular molecule with singlet dimers at each
edge of a triangle, formed by respective orbitals (see Fig. 15b)
with the Stot � 0 ground state. This picture would be more
applicable if the effective d±d hopping within these trimers
were larger than the Hund's rule coupling on each V, i.e.,
t > JH � 0:8ÿ0:9 eV. Which of these two limiting pictures is
closer to reality in LiVO2 is still an open question. Spectro-
scopic studies seem to be in favor of the first interpretation
(localized electrons forming S � 1 spin at each V, which are
coupled to total Stot � 0 in a trimer) [91]. However, structural
distortion accompanying this transition in LiVO2 leads to the
formation of very short V±V bonds in such trimers: the V±V
distance in these is 2.56 A

�
, even shorter than the V±V distance

of 2.62 A
�
in a Vmetal [92]! From this point of view, one could

expect that better description of V trimers can be obtained in a
picture of electrons `delocalized' within each trimer. Further
studies, both experimental and theoretical, could be very
helpful in resolving this dilemma.

Important information about the formation of clusters
close to the Mott transition was provided by the experiments
carried out by the Takagi group [69]. The authors extended
the study of this phenomenon, observed in LiVO2, to LiVS2
and LiVSe2 with the same structures, but with a stronger
covalency than in oxide (Fig. 16). LiVS2 undergoes a similar
transition from the undistorted state to the diamagnetic one
with the same trimers as in LiVO2. But in this case, it is a real
metal±insulator transition: LiVS2 is a metal above Tc, but
becomes an insulator in the trimerized phase below Tc. Going
further to LiVSe2, one reaches a real metallic state which
survives down to T � 0. Thus, we have spanned in these
systems the whole series of phase transitions: an insulator±

a

xy
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zy

zy

zx

zx

ë Li ë V ë O

b

Figure 15. (Color online.) (a) Orientation of t2g orbitals at B-sites of a

spinel lattice, or LiVO2, of Fig. 12. Out of three t2g orbitals, there are two

for each V site which have a direct overlap with neighboring V ions in

LiVO2. Two `active' lobes (bold) of any of these orbitals responsible for

this overlap lie in the triangular layer of V, while two other lobes are

perpendicular to this plane. (b) Orbital ordering (only `active' lobes are

shown), which gives rise to trimerization in LiVO2.
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Figure 16. (Color online.) Schematic phase diagram of LiVL3, where L is

O, S, or Se. (Taken from Ref. [69].)
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insulator transition in LiVO2, a metal±insulator transition in
LiVS2, and a homogeneous metallic state in LiVSe2. Appar-
ently, the formation of these tightly bound trimers in LiVO2

and LiVS2 is intrinsically connected with the proximity to
such a localized±itinerant crossover, or to a Mott transition,
and can be seen as a precursor of this transition.

The example of LiVO2 also clearly indicates that the
`molecules' formed close to the Mott transition can be not
only dimers, which we encounter, e.g., in VO2 [2] or
NaTiSi2O6 [90], but also larger clustersÐ in this case, V3

trimers. There are also examples of still larger molecular
clusters formed in this situation. For example, tetramers are
formed in CaV4O9 [93]. One can also speak about tetramer
molecules in so-called lacunar spinels like GaV4O8, which can
be visualized as distorted A-site deficient spinels
Ga1=2(vacancy)1=2V2O4. In this case, one can very success-
fully describe their electronic structure by molecular orbitals
in respective clusters, and such `molecules' can even form
Mott insulators, with these clusters playing the role of sites in
the Mott±Hubbard description of these systems [94, 95].
Actually, a very similar situation also exists in pure and
doped C60 buckyballs, for example, in K3C60, where elec-
trons `live' on the molecular orbitals of C60 balls and,
depending on the occupation of respective molecular levels,
we may have either singlet (`low-spin') states or states with
magnetic moments localized on such molecules [96]. Under
certain conditions, we can observe here insulator±metal
transitions, and in the metallic state the materials can even
become superconducting [97].

There also are other systems with similar properties. Even
larger molecular clusters are formed in the spinel AlV2O4,
where below the metal±insulator transition a structural
deformation occurs with the formation of V heptamersÐ
clusters comprising seven V ions (see Fig. 17) [70]. And,
similar to LiVO2, at least some V±V bonds in these
`molecules' are shorter than those in a V metal.

One can sometimes also apply this concept of `molecules'
in solids to systems in which there are no such clusters
structurally. Even in this case, there can be situations in
which, electronically, one can describe a system as composed
of `molecules'.

The honeycomb geometry is very interesting from this
point of view. Let us consider TM ions in the octahedral
coordination with a not completely filled t2g shell. These

octahedra form a honeycomb lattice sharing their edges, as,
e.g., in Na2IrO3 or SrRu2O6. If one includes hoppings via
ligand p-orbitals, then, due to the signs of the wave functions
in such a geometry, the d-electron can hop only within one
particular hexagon and cannot move to another one, as
shown in Fig. 18. Thus if we start, for instance, from the
xy1-orbital on a site 1, then the electron can hop only to the
xz2- and yz6-orbitals of neighboring TM ions in a certain
hexagon (subscripts numerate TM ions). Being on these
orbitals, it cannot escape this TM6 hexagon, but can only
move to the yz3- and xz5-orbitals, and so on. Thus, the nature
of electrons in this case is twofold [98]. On the one hand, they
are itinerant within the hexagon, but, on the other hand,
localized on some extended orbitals, which are called
quasimolecular orbitals (QMOs) [99]. It is interesting that
QMOs give rise to a band spectrum reminiscent of the
electronic spectrum of a benzene molecule.

This type of description of the electronic structure in TM
oxides having a honeycomb lattice was first proposed for
Na2IrO3 and Li2IrO3 [99, 100]. However, it turned out that in
iridates this model is still not perfect; there are effects which
lead to `mixing' of these QMOs, such as direct d±d hopping
and the SOC (see Section 6.5 for details). But, for example, in
SrRu2O6, this picture works much better [98]. In SrRu2O6,
the presence of these QMOs is expected to strongly affect the
optical properties [101] and could also be important for
describing its unusual magnetic properties, in particular, a
N�eel temperature of TN � 560 K, very high for the layered
material [102, 103].

It is clear that direct d±d and p±d hoppings on a
honeycomb lattice would stabilize very different states. The
p±d hoppings via the ligand p-orbitals may result in the
formation of QMOs living on hexagons (Fig. 18), while the
direct d±d hopping would favor a strong metal±metal bond
on particular two-site bonds (Fig. 19). It can be seen that in
this case an electron, put on such a t2g orbital, can only hop to
one nearest neighbor TM ion and back. Thus, the effective
dimensionality in this case would be reduced from 2D to 0D!
This serves as a clear example of reducing the effective
dimensionality due to orbital ordering, discussed in Sec-
tion 4.1. Indeed, there is one t2g orbital at each site in the

2.6101 A
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2.8086 A
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3.0394 A
�

3.1413 A
�
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Figure 17. (Color online.) (a) Crystal structure of AlV2O4 (only V ions are

shown). Vanadium heptamers formed by short V±V bonds are marked in

red. (b) Suggested molecular orbitals, which result in the formation of

these heptamers. Reproduced from Ref. [70].
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Figure 18. (Color online.) Formation of quasimolecular orbitals on a

honeycomb lattice via p±d hopping in SrRu2O6. Transition metal ions are

shown in grey, ligands by red balls. Starting from one of the t2g orbitals

(blue), the d-electron turns out to be confined in the quasimolecular orbital

on one of the hexagons, if only the hopping via p-orbitals (green) of the

ligands are taken into account.
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common edge geometry, directed towards a neighbor, which
would give such a strong bonding (cf. Fig. 6b).

The relative importance of the d±d or p±d hoppings
depends on the particular situation. In the case of a large
metal±metal distance, the dominant hopping would occur via
ligands (since tdd falls drastically with distance, as may be
inferred from Eqn (11)); but for short distances, direct d±d
hopping may dominate. It seems that, for example, Na2IrO3

belongs to the first class of systems, whereas Li2IrO3, with
smaller Li ions, may already be `half-way' to the second case
with dominating d±d hoppings. This, in particular, may be
responsible for a more complicated magnetic structure of
Li2IrO3 compared with Na2IrO3 [104]. Distortions of the
octahedra surrounding TM ions and the SOC can also
intervene.

Speaking of honeycomb systems, it is interesting to
compare the situation in `213' iridates like Na2IrO3 and
Li2IrO3 with that in Na2RuO3, i.e. in a similar system with
Ru instead of Ir: Li2RuO3. The latter may be an example of a
system of the second type, in which the direct d±d hopping
may be more important than that via oxygen. Although
Na2IrO3 and Li2IrO3 remain undistorted and at low tempera-
tures they exhibit long-range magnetic ordering [104], a phase
transition in Li2RuO3 occurs below Tc � 540 K with the
formation of diamagnetic dimers from Ru ions [105, 106],
with the Ru±Ru distance in the dimer being rather short,
2.57 A

�
[105]Ðagain, shorter than that in aRumetal (2.65 A

�
).

Below Tc, these dimers form an interesting herringbone
pattern. The formation of such dimers, as explained in
Ref. [107], is a consequence of an orbital ordering, with the
direct d±d hopping playing the main role (Fig. 19). Ab initio
calculations support this picture in general, although it seems
likely that the hopping via oxygens is not negligible either.
Interestingly enough, the dimer Ru±Ru `molecules,' ordered
in Li2RuO3 below 540K, are very stable, and they persist even
above Tc in the `averaged' hexagonal phase. A pair distribu-
tion function (PDF) study has demonstrated that they survive
locally up to at least 650 �C, forming a disordered and
probably dynamic (liquid-like) stateÐa dimer liquid [108].
NMRdata also detect thermal activation processes associated
with the flow of dimers [109]. The study of this system for
different stoichiometry supports such a conclusion [110].

In which cases in such honeycomb systems one ends up
with an undistorted lattice (a long-range magnetic order will
appear at low temperatures) and when it is more favorable to
form singlet dimers ordered in a particular fashion is an
interesting and still an open question. As we just argued, one
can present qualitative arguments that, when the direct d±d
hopping dominates, there may be better conditions for the

formation of a `molecular' state (another name for such a
state is a valence bond solid [111]). The dominant hopping via
oxygen p-orbitals of ligands may work rather in favor of less
localized states, although the notion of molecular, or more
precisely quasimolecular, orbitals may be applicable in such
cases, too.

In any case, all these examples demonstrate that novel
states may indeed appear close to a localized±itinerant
crossover, so that the Mott transition occurs `stepwise': first,
the electrons are delocalized in finite clusters, forming
`molecules' in a solidÐ the hopping between such molecules
being still small enough to render the whole system insulating,
but with electrons localized rather on such `molecular
clusters' and not on isolated sites. Only later, for example, at
still much higher pressures, can one reach a state of a
homogeneous metal in which electrons would really be
itinerant, delocalized over the whole system. This is, of
course, not a universal behaviorÐ for example, it strongly
depends on the lattice geometry (being less plausible for
systems like perovskites with corner-sharing MO6 octahe-
dra); but in many cases, one should indeed expectÐand
actually observeÐ such a behavior.

5. Orbital-selective effects

5.1 Orbital-selective Mott transition
Generally speaking, a separation of all electrons into those
exhibiting itinerant behavior and those, which are more
localized, can occur not only in real space due to the
formation of finite size clusters, but equally well a system
may stay uniform even on a small scale but have electrons of a
very different character: `insulating' and `metallic.' In other
words, the Mott transition may not occur simultaneously for
all bands, but in turns, i.e., it can be orbital-selective. The term
`orbital-selective Mott (OSM) transition' was coined by
Anisimov et al. [113] to describe the electronic properties of
Ca2ÿxSrxRuO4, when it was found that the transition to an
insulating state for the narrow xz=yz-bands occurs at much
smaller values of U than for the xy-band with a larger
bandwidth. Thus, in the regime of large U, the whole system
is insulating due to correlation effects, while for small U it is
metallic; but in the intermediate regime some of the electrons
are localized, while others are itinerant.

Since there are two very different kinds of electrons, one
needs to apply the Hubbard model with inequivalent orbitals
(bands) to describe such a situation. The simplest would be
the two-band Hubbard model with different nearest neighbor
hoppings tm:

H � ÿ
X
hi j ims

tmc
y
imscjms �U

X
im

nim"nim#

�U 0
X
i

m6�m 0ss 0
nims nim 0s 0 ÿ JH

X
iss 0mm 0

c
y
imscims 0c

y
im 0s 0cim 0s ; �23�

where i; j and m; m 0 are the site and orbital indexes,
respectively, U and U 0 � Uÿ 2JH are intra- and interorbital
interactions, and JH is Hund's rule exchange interaction (one
could also consider different on-site energies of these two
d-levels, e.g., due to the crystal-field effects; see below); in the
3rd and 4th terms, summation runs over each pair of m; m 0.
The phase diagram of such a model in the case of JH � 0 and
half-filling of sites (i.e., for two electrons per site) on a 2D

a b

xz
yz

Figure 19. (a) Orbitals providing strong direct d±d bonding and finally

leading to the formation of the spin-singlet state in Li2RuO3 (the results of

GGA calculations). (b) Herringbone distribution of these singlets, found

in the low-temperature phase of Li2RuO3 [105, 106].
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square lattice is shown in Fig. 20a [112]. There are three main
regions: (1) a homogeneous metallic state, when t2=t1 ! 1
andU is small; (2) an insulatingMott phase at largeU, and (3)
an intermediate OSM phase (we ignore here possible
complications like the eventual formation of the spin-density
wave (SDW) state due to the nesting of the Fermi surface,
which could appear even at small U).

It is important to mention that the phase diagram
presented in Fig. 20 was obtained for an ideal situation,
when there is nomixing among different orbitals in the kinetic
energy term. Any hybridization between these orbitals, i.e.,
the presence of terms like tmm 0; i jc

y
imscjms with m 6� m 0, would

suppress the OSM state. Such terms are always present in real
systems and they disfavor the OSMphase. However, there are
also other factors which, in contrast, stabilize such a state.
First of all, the Hund's rule intraatomic exchange interaction
JH suppresses any orbital fluctuations irrespective of U and
thus supports the OSM state, as one can easily see comparing
the top and bottom panels in Fig. 20. There are also other
factors, which help to decouple different orbitals. For
example, it was shown in Ref. [114] that the OSM phase
may appear even in the situation when two bands have the
same bandwidths (i.e., t1 � t2), but there is crystal-field
splitting supported by the Hund's exchange.

In the same way as the formation of `molecules' in
homogeneous solids (described in Section 4.3), the OSM
phase is a precursor of a phase transition. It should be noted
that the OSM phase is not simply a theoretical toy, but that
the orbital selectivity strongly affects the physical properties
of the systems of interest. For example, the orbital-selective
localization leads to a non-Fermi-liquid behavior [115].
Moreover, it is well known that an insulating state can be
obtained only for integer site occupancies in the Hubbard
model, and any doping makes a system metallic. In contrast,
the OSM phase is robust against doping [116]. This can be
easily rationalized, since doping changes only the position of

the chemical potential m within the metallic band formed by
itinerant electrons, and the OSMphase is stable until the total
change in m exceeds the energy gap provided by localized
electrons.

The influence of the electron±phonon interaction on the
OSM state has very recently been studied in the framework of
the Hubbard±Holstein model with two electronic bands
having very different bandwidths (t1=t2 � 5) [117]. In parti-
cular, it was found that if we change the strength l of the
electron±phonon interaction, then the transition from the
uniform metallic state to the phase with the charge-density
wave (CDW) also occurs through the orbital-selective phase
(with a site-centered CDW).

It has to be mentioned that the idea of the OSM state was
implicitly used long before paper [113]. Indeed, for example, in
order to explain the double exchange mechanism of ferro-
magnetism, one needs to treat some electrons as itinerant,
moving against the background of localized magnetic
moments provided by completely different electrons, which
essentially do not hop from site to site (see Section 3.3). This is
actually the picture always used to describe, for example, the
properties of the colossal magnetoresistance in manganites
La1ÿxSrxMnO3 and La1ÿxCaxMnO3 [41]. For these systems,
one usually treats electrons in the half-filled t2g shell (t

3
2g) as

localized, and the electrons in the eg bands as itinerant. This
picture was already described in Section 3.3. We could, in
principle, also include correlation effects for the eg electrons,
but even without those, the purely itinerant picture of the eg
electrons gives a very reasonable description of many proper-
ties of these manganites [118]. The same description (t2g
electrons localized, eg itinerant) can also be successfully used
for other systems with perovskite and perovskite-related
structures. Ideas similar to the OSM state were previously
used in the Kondo physics, e.g., for the description of the
heavy-fermion compounds, for which the electrons from
different shells are usually considered localized (typically
f-electrons) or mobile (s, p, d).

5.2 Orbital-selective behavior
and (partial) suppression of magnetism
We have already seen that the formation of molecular
orbitals, promoted by corresponding orbital occupation,
can weaken and even completely suppress magnetism in
some materials, e.g., in NaTiSi2O6, CuIr2S4, and LiVO2 (see
Sections 4.2, 4.3).

But we can also anticipate a situation in which the
electrons on one orbital form a singlet state, whereas other
electrons still remain localized and contribute to magnet-
ismÐalbeit with a significantly reduced moment. Or these
electrons can be regarded as delocalized, but not forming
singlet dimers. Such a situation would be in some sense
analogous to the orbital-selective behavior described in the
previous subsection. It can be illustrated with a simple model,
which, as we show below, actually rather closely corresponds
to the experimental situation observed in some real materials.

Consider a dimer with two orbitals on each site, with
strong intersite hopping tc from one orbital, call it c-orbital,
and no (or very small) hopping td from the other d-orbital:
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and consider the case of two electrons per site. If the Hund's
coupling JH is the largest parameter in the system, first both
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Figure 20. Phase diagram of the two-band nondegenerate Hubbard model

on a square lattice, illustrating the onset of the orbital-selective Mott

insulating (OSMI) phase: (a) JH � 0, while (b) JH=U � 0:1. (Reproduced

from Ref. [112].)
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electrons at each site form, according to the first Hund's rule,
the state with spin S � 1 (Fig. 21a). These electrons would
then have some exchange because of virtual hopping of c-
electrons between sites, which would give an antiferromag-
netic coupling of these spin S � 1 sites with the exchange
constant J � 2t 2c =JH (cf. the usual expression (9) for the
exchange interaction in the simple Hubbard model; here, we
have not yet included the Hubbard repulsion U, but the
virtual state with an electron transferred to a neighboring
site has an excitation energy JH, which now stands in the
denominator of the expression for J instead of Hubbard's U
in formula (9)). If td � 0, the energy of this state is given by

ELS � ÿ2JH ÿ 2t 2c
JH

: �24�

However, for small JH and large enough hopping tc, we can
find a very different state (Fig. 21b): it is possible to make a
singlet from the c-electrons, breaking the S � 1 states at each
site, stabilized by the Hund's exchange interaction. Then we
lose (a large part) of the Hund's energy. But instead of that,
these c-electrons can now gain bonding energy ÿ2tc. The
energy of such a state would be

EOS � ÿ2tc ÿ JH �25�

for td � 0 (part of the Hund's energy we still gain when c- and
d-electrons are at the same site with their spins aligned
parallel). In any case, a comparison of these expressions (24)
and (25) shows that this second state, with two electrons
occupying molecular orbitals formed by the c-orbitals, is
more favorable if the inequality

tc >
JH
2

�26�

is satisfied. In this state, the remaining d-electrons, one per
site, would live their `own life' irrespective of the c-electrons;
for example, they can experience magnetic ordering, but with
a strongly (here twofold) reduced magnetic moment: spin 1/2
per site instead of spin 1 for a dominating Hund's coupling.
Therefore, this state can be called orbital-selective [119].

We have mentioned that the idea of orbital selectivity lies
at the heart of the double exchange, but how may this
differentiation on the c- and d-orbitals occur? In fact, this is
a very natural situation in many geometries. For example, the
xy-orbitals will have much larger direct hoppings than xz- or
yz-orbitals in a `common edge' geometry (Fig. 6b), or the a1g
orbitals overlap much more strongly than epg in a common
face case (Fig. 6c). This is the reason why orbital selectivity is
not such a rare phenomenon.

Let us consider, for example, a-MoCl4, where Mo4� ions
have the 4d2 configuration. One might expect that the
effective Curie±Weiss magnetic moment in this situation
would be meff � 2:8mB, but in fact it turns out to be much
smaller: meff � 0:9mB [120, 121]. This is because of the large
overlap between the xy-orbitals (c-orbitals), which is caused
by singlet molecular orbitals, so that the magnetic moment is
provided only by the electrons occupying the xz=yz-orbitals
(d-orbitals) [122].

Another example of such a behavior is provided by rutile
type systems VO2 and MoO2. In VO2 (V

4�, d1), the famous
metal±insulator transition at 68 �C is accompanied (or is
driven by) the formation of V±V dimers in chains in the
c-direction, where VO6 octahedra share a common edge, the
dimers being formed by corresponding xy-orbitals (in a local
coordination system). In contrast, MoO2 (Mo4�, d2) remains
metallic down to T�0. Nevertheless, the structure of dimers
formed in MoO2 from TM ions entirely coincides with that of
V±V dimers formed in VO2 at temperatures below Tc!
Apparently, the electrons on the xy-orbitals in MoO2 form
such singlet dimers, whereas the other electron perMobehaves
quite differently, in this case forming a metallic band. This is
also a very clear example of orbital-selective behavior.

It is important to note that the orbital-selective behavior
can be seen not only in the case of the integer number of
electrons per site, but also for other fillings. For example, in
the case of an isolated dimer with 3 electrons (1.5 electrons per
site), one can easily find the energies of the two energetically
lowest solutions. The first one, shown in the inset (a) to
Fig. 22, is a `molecular' version of the DE: the c-electron hops
from site to site and forces d-electrons to have the same spin
projection (we chose td � 0 for simplicity); the energy of this
state is

EDE � ÿJH ÿ tc : �27�
This state has the maximum total spin Stot � 3=2 (it
corresponds to the ferromagnetic order in the conventional
DE).

However, there is also another state, that with Stot � 1=2,
sketched in the lower part of Fig. 22. In this state, two
electrons occupy the bonding state constructed out of the
c-orbitals. This state is stabilized by a large hopping tc
between c-orbitals. It is an orbital-selective (OS) state in the
sense that only part of the d-electrons provide the spin
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moment, while electrons on other (c) orbitals form a singlet
spin state. The energy of this state is given by

EOS � ÿ JH
2
ÿ 2tc : �28�

We see that these two states will compete, and the total
spin of the system can be suppressed if

2tc > JH �29�

[cf. formula (26)]. While in the double exchange-like treat-
ments, JH is typically treated as the leading parameter, and
the condition (29) of OSëDE competition can be considered
unrealistic, in real materials it can be easily fulélled. As was
already mentioned above, this may be the case observed in
some 4d and 5d systems, for which the Hund's coupling is
weaker, but the larger extension of d-functions results in
increasing the value of intersite hopping t.

One such example is provided by the Y5Mo2O12 com-
pound, which has the structure of dimerized chains [123], and
in which the Mo ion has the 4d1:5 electronic configurationÐ
the same as considered above. The dimers are formed by the
edge-sharingMoO6 octahedra (see inset to Fig. 23). There is a
very strong overlap between the xy-orbitals in this geometry.
Correspondingbonding±antibonding splitting exceeds 2.9 eV,
and txy=xy � 1:4 eV, while txz; yz=xz; yz � 0:3 eV [88]. Thus, we
see that 2tc � 2:8 eV is much larger than any possible values
of the Hund's coupling JH (typically � 0:5ÿ0:7 eV for the
4d elements). Thus, in this case, as in our toy model, the
xy-orbitals form a singlet state on a dimer, which results in a
considerable reduction in the magnetic moment observed in
this system: m exp

eff � 1:7mB/Mo [123], which is much smaller
than m theor

eff � 2:3mB/Mo expected for Mo4:5�.
A situation very similar to that in Y5Mo2O12 is also

observed in Y5Re2O12 possessing the same crystal structure
[124]. In this system, with the Re ion valence 4.5+
(electronic configurations d2=d3), the magnetic moment per
dimer is again strongly suppressed, even more significantly
than in Y5Mo2O12: it corresponds to S � 1=2 per dimer,
instead of the spin 5/2 expected if the `DE' state were
realized. In this way, here two electrons per Re ion form
singlet metal±metal bonds, and only one electron per dimer
remains magnetic.

The treatment of the orbital-selective formation of
`molecules,' which was presented above, is rather qualita-
tive, since it does not take into account the strong on-site
Hubbard repulsion which is typical of TM ions. But one can
easily generalize it by an exact treatment of a dimer case. The
results of the exact diagonalization for an isolated dimer,
described by the Hamiltonian

H � ÿ
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in which we also included this interaction, are presented in
Fig. 22. They clearly show that the critical ratio JH=t for the
suppression of theDE solution depends onHubbardU (in the
so-called Kanamori parameterization U 0 � Uÿ 2JH [31]).

As we have seen for the example of Y5Mo2O12, the
suppression of the magnetic moments due to orbital selectiv-
ity not only occurs in isolated clusters, but it was shown to
persist in dimerized systems, which can be considered an
intermediate step between isolated clusters and uniform
solids. One might expect that this mechanism will play an
important role in solids as well, but certainly in them it will be
much less pronounced. Beside that, while in a dimer there is a
discontinuous transition from the DE to the OS state (since
they correspond to different quantum numbers), it becomes a
smooth crossover in dimerized bulk systems, and the final
value of the measured magnetization depends on specific
parameters of the system under consideration (see Fig. 24).

In this connection it is very interesting to mention systems
with the general formula Ba3MRu2O9, whereM can be In, Y,
La, Lu, Nd, etc. (in principle, one can also have at these
positions the other ions like Na1�; Ca2�, Co2�; Ce4�, Ti 4�).
Ru ions are in the RuO6 octahedra, which form dimers
ordered in the triangular lattice. Since Ru ion valency is
4.5+, one may expect that the local magnetic moment on a
Ru ion would be � 2:5mB. However, while the crystal
structures of systems with different M-ions are almost the
same [125, 126], their magnetic properties differ widely [127,
128], and none of them resembles a system with the local
magnetic moment equal to � 2:5mB. For instance, in
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Ba3YRu2O9, the local magnetic moment on Ru is � 0:5mB,
while in Ba3LaRu2O9 it is � 1:4mB [126]. Different models,
like charge ordering (i.e., segregation onRu4� andRu5� ions)
[128] and double exchange [126], have been involved to
explain the magnetic properties of the Ba3LaRu2O9 series.
In fact, they can be explained considering orbital-selective
behavior of compounds with the crystal structure playing the
role of a fine tuner which regulates splittings between
different molecular or localized orbitals and, because of
this, influences the magnitude of the magnetic moment
observed [129].

One may expect many different manifestations of the
orbital selectivity. For example, since there are two types of
orbitals, namely c-orbitals having a tendency to form
molecular orbitals, and the d-orbitals whereon the electrons,
on the contrary, behave more like localized ones, these
electrons can react very differently to external perturbations.

In Fig. 25, the temperature dependence of the magnetic
susceptibility obtained in the cluster DMFT calculations for a
dimerized chain with two orbitals (c and d, again tc 4 td) and
two electrons per site is presented. It can be seen that the low-
temperature response (which, in particular, determines the
value of the spin gap in excitation spectrum) is due to
localized (d) electrons only, molecular-like c-electrons being
in a singlet state, so that they enter the game at a much higher
temperature. Such behavior may also give the plateau in the
external magnetic field dependence of the magnetization, as
one may see from Fig. 26 [130].

The situation in real materials is, however, more compli-
cated. Thus, onemight expect the orbital-selective behavior in

Li2RuO3, which was already discussed in Section 4.3. Because
of the common edge geometry, there are strongly overlapping
xy-orbitals (Fig. 6b), which play the role of c-orbitals, the xz-,
yz-orbitals playing the role of localized d-orbitals, such that
txy=xy 4 ftyz; yz; txz; xzg. However, the LDA+DMFT calcula-
tion for these materials shows only a moderate difference
between contributions from different orbitals to the magnetic
susceptibility [109]. This is a result of a sufficiently low
symmetry (substantial distortions of the crystal structure),
which leads to an orbital mixing and to a partial `magnetiza-
tion' of the xy-orbitals.

Although investigating such subtle effects as different
orbital contributions to the total magnetic susceptibility
requires further theoretical and experimental studies, a
general concept of orbital selectivity works very well in
many dimerized systems. In Table 3, one may find a number
of examples for which it is seen that the theoretical magnetic
moments expected from the ionic configuration of a transi-
tion metal ion are much larger than the experimental values.
An agreement between theory and experiment might only be
achieved taking into account the orbital-selective formation
of molecular orbitals, which substantially reduces theoretical
magnetic moments.

Onemay notice that most of the TM ions in Table 3 are 4d
and 5d TM ions, not 3d. The main reason for this was already
discussed above: a much larger spatial extension of the 4d and
5d wave functions as compared to 3d ones [due to a larger
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Table 3. Examples of dimerized systems, in which the orbital-selective formation of molecular orbitals results in a considerable reduction in magnetic

moments compared to what one would expect on the basis of an ionic configuration of a transition metal ion.

System Ionic
conéguration

Local (m) or effective (meff) moment

Theoretical Experimental

Y5Mo2O12

Nb2O2F3

a-MoCl4
Ba3YRu2O9

Ba3LaRu2O9

Ba5AlIr2O11

4d1:5

4d1:5

4d2

4d3:5

4d3:5

4d4:5

meff � 2:3mB=Mo

meff � 3:9mB=dimer
meff � 2:8mB=Mo

m � 2:5mB=Ru

m � 2:5mB=Ru

meff � 3:3mB=dimer

meff � 1:7mB=Mo [123]
meff � 2mB=dimer [131]
meff � 0:9mB=Mo [121]
m � 0:5mB=Ru [126]
m � 1:4mB=Ru [126]
meff � 1mB=dimer [132, 133]
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Figure 25. Magnetic susceptibility as obtained in cluster DMFT calcula-

tions for a dimerized chain with two orbitals (c and d, tc 4 td) and two

electrons per site (for details, see paper [130]).
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principal quantum number (see, e.g., Ref. [3])]. On the one
hand, this results in an increase in the hopping parameters
and, on the other hand, it leads to a decrease in the Hund's
exchange. Intradimer hoppings for the 4d and 5d systemsmay
be quite large, and the resulting bonding±antibonding
splitting may exceed 3 eV [88]. On the other hand, while
typical JH for 3d TM are� 1 eV, they are on the order of 0.5±
0.7 eV for 4d and 0.5 eV for 5d TM ions [1]. Both tendencies
work hand in hand in stabilizing orbital-selective states.

6. Spin±orbit-related effects

6.1 Spin±orbit coupling versus Jahn±Teller effect
As already considered in Section 3.5, strong effects due to the
SOC are expected for partially filled t2g bands, for which the
orbital moment is not quenched. In this case, we generically
have a (triple) orbital degeneracy, and the concomitant Jahn±
Teller effectÐa structural distortion with a decrease in
symmetryÐ should remove this orbital degeneracy. But we
saw that the SOC also chose a particular orbital occupation,
which can also lift orbital degeneracy. An important question
is what the possible interplay is of the JT effect and the SOC in
different situations.

6.1.1 Weak SOC and mean field treatment. For systems with
large spins, we can get in many cases a reasonable description
of the role of the SOC and the interplay between the SOC and
the JT-driven orbital ordering if, instead of formula (19), we
treat the SOC classically, or in the mean-field approximation,
keeping only the terms of the form ll zs z. This can be done for
several ions from the end of the 3rd row for which we typically
have a high-spin state. In such cases, one can face a situation
with partially filled t2g bands and simultaneously large total
spin. This is, for example, the situation for Co2� (t52ge

2
g,

S � 3=2) or Fe2� (t42ge
2
g, S � 2) ions. One can easily show

that in this case for partially filled t2g levels the SOC and the
JT distortions lead to the different splitting of the d-levels and
to the opposite distortions of ML6 octahedra.

Let us consider, for example, the case of one `extra' t2g
electron with the spin `down' (while there are also 5 electrons
in the spin `up' channel, giving a large total spin) and
octahedral geometry, as, e.g., for the high-spin state of Fe2�.
The JT effect would remove three-fold orbital degeneracy in
such a way that the doubly occupied xy-level goes down (by
EJT), and the half-filled doubly degenerate xz- and yz-levels
go up (by EJT=2). This corresponds to a tetragonal compres-
sion of ML6 octahedra (Fig. 8b). Then, we gain the JT energy
ÿEJT. But the occupied xy-orbital here is the orbital with
l zeff � 0, i.e., the SOC coupling ll zs z does not give any energy
gain under these conditions.

If instead of local compression we have local elongation
of the ML6 octahedron, the level structure will be completely
different (see Fig. 8a). Doubly degenerate xz- and yz-levels,
or their complex linear combinations jl z��1i �
�1= ���

2
p ��xz� iyz�, go down by the energy ÿEJT=2. Now,

however, the SOC can lead to further splitting of these
levels, by the quantity l, i.e., the ground-state energy gain
for the `extra' electron in this case isE � ÿEJT=2ÿ l=2. Thus,
the deformation in this case would go along the `JT route'
(local contraction, c=a < 1) if EJT > l, and along the `SOC
route' (local elongation, c=a > 1) in the opposite case. We see
that in this case the JT effect and the SOC tend to cause
opposite types of distortions, and they lead to occupation of

different orbitals. It should be recognized that the same
situation also exists for other fillings of t2g levels and even in
other local surroundings, e.g., in tetrahedra (see book [3]).

Experiments show that for heavier 3d-elements, such as
Fe and Co, the larger SOC usually wins and the distortions
follow the SOC route. Such is, for example, the situation in
FeO and CoO, or in KFeF3 and KCoF3. CoO is especially
interesting, since this compound possesses a very large
magnetostriction exactly due to this effect. Forming a long-
range magnetic order in it below TN � 300 K results in
cooperative lattice distortions with c=a < 1 (in CO2��d7�
there is an extra hole rather than an extra electron in the t2g
shell). Due to a strong interplay with the lattice, the transition
itself even becomes a weak first-order transition with a small
thermal hysteresis at T � TN [134].

Note that above we only considered tetragonal distor-
tions. The t2g levels, however, can also be split by trigonal
distortions. Experimentally, most Co2�-based compounds
are distorted tetragonally, and those of Fe2� do so trigon-
ally. Why this so is not actually clear.

In typical 4d and 5d systems with their low-spin states for
TM ions, as well as for 3d systems with a small number of d-
electrons, where these electrons reside only at the t2g levels,
the situation is different. In this case, we should not consider
only terms like ll zs z, but have to take into account the SOC
`in full force' (with terms like l�sÿ and lÿs�), also including
quantum effects [see Eqn (19)]. The eventual interplay of the
JT effect and the SOC then looks different, and the results
actually strongly depend on a particular situation, i.e., on the
orbital occupation. For the general case, where the strength of
the JT coupling (EJT) and the SOC constant l are comparable,
a special detailed treatment has to be carried out. But in the
limit of a strong SOC, one can get some results rather easily
qualitatively.

6.1.2 Strong SOC: d4 and d5 configurations. The first case to
consider is the situation already discussed in Section 3.5 for
the low-spin d5 configuration, like that in Ir 4�. In the absence
of the SOC, this would correspond to one hole in triply
degenerate t2g band, and the usual JT effect would lead, e.g.,
to tetragonal elongation (the level structure is shown in
Fig. 8a), with this hole in the xy-orbital (or there can be
trigonal distortions, with a hole residing in the a1g orbital).
However, in the case of a very strong SOC ( jj-coupling), the
splitting will be very different: the ground state of such an ion
is a Kramers doublet J � 1=2, with the wave functions (see
Fig. 9)

jJ1=2; Jz
1=2i �

1���
3
p ÿjxy "i � j�ixz� yz� #i� ;

jJ1=2; Jz
ÿ1=2i � ÿ

1���
3
p ÿjxy #i � j�ixzÿ yz� "i� : �30�

Kramers doublets have no extra (orbital) degeneracy, i.e.,
there would be no JT effect in such a state. Thus, we see that in
this case the strong SOC completely suppresses the JT
distortions (and vice versa, if we made such distortions, e.g.,
elongation of theML6 octahedron, then a hole would occupy
the xy-orbital, which is the state with l zeff � 0, i.e., such
distortion would quench the SOC). It is interesting that
while there is no orbital degeneracy in the ground state in
the case of a large SOC for the d5 configuration, it still exists in
the excited states [135].

The situation for the t42g configuration in the case of a
strong SOC is very similar.Without the SOC, we would again
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have orbital degeneracy, and corresponding JT distortion
would be a tetragonal compression of ML6 octahedra (or
similar trigonal distortion), for which the xy-singlet (or a1g for
trigonal distortion) would go down andwould be filled by two
electrons, while the xz; yz doublet (or e pg doublet) lying above
would have two electrons with parallel spins (see Fig. 8b). But
the SOCwould prefer a very different orbital fillingÐ the one
shown in Fig. 9, with the singlet ground state J � 0. Thus, in
this case, the strong SOC will also suppress the JT effect.

6.1.3 Strong SOC: d1 and d2 configurations. However, the
situation becomes much different for d1 and d2 configura-
tions. In this case, for a less-than-half-filled t2g subshell, the
third Hund's rule tells us that the order of multiplets is
inverted, and the lowest-energy state would be a quartet
J � 3=2 (the same conclusion is also valid in the jj-coupling
scheme (see Section 3.5)). The one-electron states of the
J � 3=2 quartet are two Kramers doublets:

jJ3=2; Jz
3=2i � jl z � 1; "i � ÿ 1���

2
p ÿjyz; "i � ijxz; "i� ;

jJ3=2; Jz
ÿ3=2i � jl z � ÿ1; #i �

1���
2
p ÿjyz; #i ÿ ijxz; #i� ;

jJ3=2; Jz
1=2i �

���
2

3

r
jl z � 0; "i ÿ 1���

3
p jl z � 1; #i

�
���
2

3

r
jxy; "i ÿ 1���

3
p

���� 1���
2
p �yz� ixz�; #

�
;

jJ3=2; Jz
ÿ1=2i �

���
2

3

r
jl z � 0; #i � 1���

3
p jl z � ÿ1; "i

�
���
2

3

r
jxy; #i � 1���

3
p

���� 1���
2
p �yzÿ ixz�; "

�
: �31�

In effect, there is not only a Kramers degeneracy, but also an
extra (orbital) degeneracy (notice that it is not a triple
degeneracy as in the original t2g shell, but a double degen-
eracyÐ two Kramers doublets!). This extra degeneracy can
again be removed by distortions caused by the same JT effect.

Without the SOC, of course, these configurations, d1 and
d2, are JT-active, leading to opposite distortions (tetragonal
compression for d1, and tetragonal elongation for d2).
Interestingly enough, one can show that in the case of a
strong SOC, when l!1, the still present JT distortion
should be such that both tetragonal elongation and compres-
sion of ML6 octahedra give the same energy of the distorted
state in the first approximation (this reminds the formation of
the `Mexican hat' in the JT effect for doubly degenerate eg; for
the triply degenerate t2g, the situation is very different). The
large but finite l would lead to the lowering of the energy of
the tetragonally compressed structure for the d1 configura-
tion, and to elongation at the d2 configurationÐ the same as
for a pure JT effect at l � 0. However, nonlinear effects, such
as local anharmonism [136], could change the situation.

Thus, we see that in this case even a very strong SOC does
not completely suppresses JT distortion, but still reduces it:
due to the presence of Clebsch±Gordan coefficients

��������
2=3

p
,

etc. in expressions (31) describing wave functions for the
J � 3=2 quartet, the JT energy gain turns out to be half of
what one would get without the SOC.

6.1.4 Strong SOC: d3 configuration. A very unusual situation
takes place for the d3 configuration, for a nominally half-

filled t2g shell. In the ordinary LS coupling scheme, we would
then have the S � 3=2 state with a quenched orbital
momentum L � 0 and without the SOC (in the first approx-
imation). However, the situation would be very different for a
strong SOC, in the jj-coupling scheme. It has been mentioned
in Section 3.5 that for the d3 configuration these two coupling
schemes, LS and jj, lead in general to different states: the pure
spin S � 3=2, L � 0 quartet in the LS coupling scheme, and
the spin±orbit-determined J � 3=2 quartet in the jj-scheme,
with different wave functions and, generally speaking, with
different physical parameters, such as the g-factors. Further-
more, from the point of view of the JT effect, these two states
are different. There is no orbital degeneracy left for the half-
filled t2g shell in the LS coupling scheme. However, this is not
the case in the jj-scheme. Again, we have here two Kramers
doublets jJ3=2; Jz

�3=2i and jJz
3=2; J

z
�1=2i, with different wave

functions [see formula (31)], and with different (opposite)
local JT distortions. If we put three electrons in these states,
one of these doublets would be necessarily élled, but another
half-élled, so that the total distortions would not cancel, and
such a d3 conéguration would again be JT-active and would
lead to the JT distortion!

We see that in this case, in contrast to the situation in
Section 6.1.2, the SOC does not suppress, but activates
(causes) JT distortion! It would be very interesting to confirm
these considerations experimentally. The absence/presence of
the JT effect for the d3 configuration could be a fingerprint of
the applicability of the LS (Russel±Saunders) or jj-coupling
schemes for a particular material.

6.2 Spin±orbit coupling and the formation
of `molecules' in solids
Similarly to the JT effect discussed in the previous section, the
SOC can influence the formation of MO states in solids,
discussed in Sections 4.3 and 5.2. Again, the detailed results
depend on the particular situation. Generally, one should
expect that a strong SOC would act against the formation of
bonding states, for example, in TM dimers. But here there are
exceptions.

Consider, for example, the case of the common edge
geometry shown in Fig. 6b, for which only the xy-orbitals
can form the bonding MO state (we ignore here possible
hoppings between the xz- and yz-orbitals via oxygen). We
gain maximum bonding energy when electrons occupy these
xy-orbitals. But the SOC may favor very different orbitals.
For example, in the case of a d1 configuration, strong SOC
would stabilize an electron in a J � 3=2 quartet [Eqn (31)]. In
this case, the Kramers doublet jJ3=2; Jz

�3=2i does not form
bonding states at all (xy-orbitals do not enter the states of this
doublet). Only the doublet jJ3=2; Jz

�1=2i, containing the xy
component, would contribute to the bonding. Both these
xy-orbitals enter the jJ3=2; Jz

�1=2i wave function with the
coefficient

��������
2=3

p
[see (31)]. Correspondingly, the bonding

energy in this case would be reduced; it would beÿ2=3t instead
of ÿt for the real xy-orbital. Thus, we see that in this case the
strong SOC leading to the formation of the J � 3=2 quartet
partially suppresses the tendency towardsMO formation.

The same arguments would work not only for a single
electron, but also for a single hole in the t2g shell, such as Ir 4�

ions. According to Eqn (30), the `active' xy-orbital only enters
in this case the J � 1=2 wave function with an even smaller
coefficient, 1=

���
3
p

, so that, in effect, the bonding energy would
be reduced even more significantly, by a factor of 3:
Ebond � ÿt=3.
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For other electronic configurations, such as d2 or d3, the
situation could be even trickier. One also then has to worry
about the role of the Hund's coupling. We have seen in
Section 5.2 that the Hund's coupling counteracts the kinetic
energy (hopping), i.e., it acts against MO formation. But in
general, it may also work against the SOC, since the Hund's
exchange maximizes the spin S, while the SOC takes care of
the total momentum J. We will not discuss these different
cases here; it suffices to say that the features ofMO formation
in correlated materials, especially for those of 4d and 5d
elements, can also be sensitive to the SOC; and vice versa,
strong intersite effects could, in principle, suppress the SOC.

6.3 Jeff � 1=2 and the spin±orbit-assisted Mott state
Usually, when we go down a column in the Periodic Table,
e.g., from Co to Rh and to Ir, a larger spatial extension of the
4d and 5d orbitals (compared with 3d) and stronger covalency
lead to a more pronounced metallic behavior. However, in
Sr2MO4 systems, the tendency is the other way around.While
Sr2CoO4 (quite difficult to prepare) and Sr2RhO4 are metallic
[137, 138], Sr2IrO4 is insulating [139]. It turns out that one
needs to take into account the SOC when describing this
behavior.

The electronic configuration of these TM ions is d5. Due
to a large t2g ÿ eg crystal-field splitting, all these electrons
occupy t2g levels. As has been shown in Section 3.5, a strong
SOC removes orbital degeneracy, and the ground state will be
the Kramers doublet Jeff � 1=2. The situation will then
become essentially equivalent to that of a half-filled non-
degenerate Hubbard model, described by Eqn (3) [140]. The
criticalUc for theMott transition for these Jeff � 1=2 states is
smaller than that for the whole d-band, since, first of all,
Uc �

����
N
p

Uc; 0 [141], where N is the orbital degeneracy
(NJeff�1, while Nt2g�3). Second, the width of the Jeff�1=2
band is smaller than the width of the whole t2g band [140].
This explains why Sr2IrO4 is a (Mott) insulator, whereas
Sr2CoO4 and Sr2RhO4 are metallic [140]. The last cited paper
started the whole activity in studying correlated solids with
strong SOC, which has led to some quite interesting and
nontrivial results.

6.4 Spin±orbit-driven Peierls transition
After the discovery of the strong influence of the SOC on the
Mott transition, it became clear that the SOC can also be very
important for many other physical effects, e.g., for the Peierls
effect. Indeed, these are the Peierls distortions which allowed
explaining the highly unusual and seemingly self-contra-
dictory properties of CsW2O6. In this compound, W ion
valency is 5:5� and nominally one has 1/2 electron per site. In
spite of noninteger occupancy, it is a nonmagnetic insulator in
the low-temperature phase (below 210 K) [142]. Because of
the large t2g bandwidth, this fact cannot be explained by
Hubbard correlations [142]. The solution to this problem
came with the account of SOC coupling, which greatly
modifies the band structure, making it susceptible to the
Peierls transition [143]. The Fermi surface exhibits strong
nesting, in this case, while the electronic (Lindhard's)
susceptibility shows clear divergence at the same q vector.
Calculations of the phonon spectra and the subsequent lattice
optimization allowed us to find the crystal structure with
tetramerized W±W chains running in two orthogonal direc-
tions in two different ac planes. CsW2O6 turned out to be a
nonmagnetic band insulator in this picture, which fully
explains all experimental findings.

While it is hard to single out any 1D bands in CsW2O6,
even taking into account the SOC, one might propose a very
simple model which explains the Peierls instability in this
compound and the importance of the SOC. The b-pyrochlore
structure of CsW2O6 resembles a spinel (with TM ions at
the B-sites), which are prone to the Peierls distortions due
to `1D-zation' of the electronic spectrum, as we have seen in
Section 4.2. Here, WO6 octahedra are elongated and thus
electrons occupy two degenerate xz=yz bands. The SOC
removes this degeneracy, and we have 1/2 electron in the
doubly degenerate (taking into account spin) band, which
naturally explains the tetramerization found in the band
structure calculations.

6.5 Kitaev exchange
One of the most interesting consequences of strong SOCs is
the conclusion reached by Jackeli and Khaliullin [144] that d5

systemswith a honeycomb lattice such as Li2IrO3,Na2IrO3 or
a-RuCl3 might exhibit a very unusual type of exchange
interaction, which is nowadays called the Kitaev interaction.
Instead of using the Heisenberg model (4), it can be described
by the Hamiltonian

H �
X
i j

Ki j S
g
i S

g
j : �32�

For each bond, this interaction is of an Ising character, but
with different S components (numbered by the subscript
g � fx; y; zg) `working' on different bonds (Fig. 27). Such a
model, called there the `compass model', was first introduced
in review [7] in treating orbital ordering, and anisotropic
exchange there was caused by the directional character of
orbitals, mentioned many times above in this review. Kitaev
independently formulated this model in paper [145], and,
most importantly, showed that on a honeycomb lattice this
model can be solved exactly, and the solution displays quite
nontrivial states, such as the spin-liquid state with short-range
correlations, Majorana fermion, etc. These results attracted
enormous attention (see, e.g., Ref. [146]), especially because
one could think of using the special properties of such systems
for quantum computations [145, 147]. It was shown in
Ref. [144] that honeycomb materials with a t52g electronic
configuration (Ir4� or Ru3� ions) could be real examples of
Kitaev systems.

The origin of the bond-dependent interaction (32) is
explained in Fig. 28. It may be seen that a single hole resides
on J � 1=2 levels in the case of a strong SOC (Fig. 9). As
follows from Fig. 28, there are two equivalent paths for
virtual hopping (via pz orbitals of ligands) from one Ir to

SxSx SzSz

SySy

Figure 27.Kitaev model on a honeycomb lattice.
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another in the edge-sharing geometry, which usually leads to
an (antiferromagnetic) superexchange. However, for a strong
SOC, with wave functions (30), the total effective hopping
between these wave functions (30), t effdd , exactly cancels due to
the presence of i for one of the relevant d-orbitals. This is why
conventional superexchange given by formula (15) does not
work in this situation. If one assumes that the direct exchange
between t2g orbitals is zero, then what remains is the higher-
order processes (hopping to empty orbitals, with the Hund's
rule acting there). These higher-order processes lead to the
Ising-like interaction KSz

i S
z
j for the xy-plaquettes of Fig. 28,

and to similar interactions with KSxSx for the yz-plaquettes
(bonds) and KSySy for the zx bonds, where S is the effective
spin S � 1=2 for a J � 1=2 Kramers doublet [144]. The
exchange constant is given by

K � t 4pd

D 2
CTU

JH
U
; �33�

very similar to what we obtained in formula (16).
For real honeycomb materials like Na2IrO3 or a-RuCl3,

different Ir±Ir or Ru±Ru bonds have different orientations
(see Fig. 28), so that, in effect, on three bonds going from each
Ir or Ru ion we get SzSz interactions for one bond, SxSx for
another, SySy for the third, i.e., the Kitaev model (32).

Deviations from the exact cubic symmetry or from 90�

metal±ligand±metal angle, as well as some other exchange
processes, e.g., due to direct d±d hopping of the xy-orbitals,
would also add to this interaction some Heisenberg terms, so
that the resulting model becomes Heisenberg±Kitaev. Also,
the exchange processes important for charge-transfer insula-
tors [see formula (14) and Fig. 4b (with virtual states with two
holes on one oxygen)] would give Heisenberg terms in the
exchange (each exchange pass, via each oxygen, acts here
independently, so that there would be no interference terms
and no cancellation of hoppings leading to the Heisenberg
interaction; see also Ref. [144]).

The question of the relative importance of Heisenberg or
Kitaev terms, as well as the possible role (and the form) of
more distant interactions for different real materials, is a
matter of active experimental and theoretical study (see, e.g.,
review [147]).

6.6 Singlet (or excitonic) magnetism
The situation with ions possessing the d4 configuration for 4d
and 5d materials with a strong SOC deserves special
consideration. Ir5� and Ru4�, for example, are such ions.
According to the treatment presented above, such isolated
ions in a cubic crystal field should have a nonmagnetic singlet
ground state with J � 0. And, indeed, Ir5� is a famous
nonmagnetic ion: for ESR (electron spin-resonance) people

it is a classical ion for nonmagnetic dilution. However, it is, in
principle, still possible that a magnetic state of such ions and
even long-range magnetic ordering may exist; for example, it
is typical for insulating Ru4� compounds, e.g., Ca2RuO4 and
Na2RuO3 are antiferromagnets at low temperatures [148,
149]. This may be a typical case of a singlet magnetism (see,
e.g., Section 5.5 in monograph [1]).

Indeed, first of all, the SOC may be partially quenched by
lattice distortions, which lead to a noncubic crystal field.
Then, the exchange interaction with neighboring ions could
be strong enough, so as to overcome the initial splitting of the
ground-state nonmagnetic singlet J � 0 and the excited triplet
J � 1: if Zeeman splitting of such a triplet (by the internal
exchange field from all other ions) exceeds the splitting
between the J � 1 and J � 0 states (given by l), a magnetic
state would have lower energy. This is the typical situation of
singlet magnetism, well known for many rare-earth com-
pounds, e.g., those with Pr.

Recently, this topic became popular after a suggestion by
G Khaliullin [150] that many d4 systems, for example, those
with Ru4�, can be described by this model; he called the
resulting magnetic state an excitonic magnet.

The phenomenological description of the resulting
magnetic state of materials like Ca2RuO4 is still possible
with the usual exchange Hamiltonian for S � 1, but contain-
ing strong anisotropic terms [151±153]. Additionally, there
are also interesting new predictions, such as the existence of
a new spin-wave mode for `soft' spins, which may be called
the Higgs mode. It seems to be observed in Ca2RuO4 in
paper [153].

7. Conclusions

The interplay between the spin, charge, and lattice degrees of
freedom in transition metal compounds gives rise to various
important physical effects, such as giant magnetoresistance,
high-temperature superconductivity, and many others. An
account of the directional character of orbitals additionally
enriches physical phenomena met in these systems. It turns
out that in many cases orbitals play the role of either a
transmitter, which establishes a link among magnetic,
electronic, and elastic properties, or a tuner, which regulates
interplay among them.

As an example of the first role, one may recall the Jahn±
Teller effect, which couples electronic and elastic properties,
or the presence of magnetic anisotropy, which is usually
related to the spin±orbit interaction. The second role of
orbitals as a fine tuner has become more and more important
in recent years. Thus, as we have seen, these are orbital
degrees of freedom that tune the exchange interaction in
honeycomb systems like Na2IrO3 or a-RuCl3 and may result
in Kitaev physics with a spin-liquid ground state and highly
unusual excitation spectra. It is indeed rather interesting that
Kitaev first solved his exotic model and found some
nontrivial implications, and only later was it realized that
the orbital degrees of freedom can tune a system to the regime
where it can be described by this model. We expect that this
second role of orbitals will become increasingly important,
both since it opens new perspectives for fundamental science
and due to possible technological applications. In particular,
one might think of `orbital engineering' on surfaces, inter-
faces, etc.

Another tendency in orbital physics, which has to be
mentioned, is the change in the general route. Previously,

pz1

pz2

yzbxzayza xzb

Figure 28. Possible exchanges paths between two t2g orbitals via the ligand

pz-orbital in the common-edge geometry.
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most of the activity in this field was concentrated on the study
of spin-orbital entanglement in Kugel±Khomskii-like Hamil-
tonians due to superexchange or on the analysis of the
magnetic properties of different materials due to the cele-
brated Goodenough±Kanamori±Anderson rule, or was con-
nected with the interplay between orbital and lattice degrees
of freedom via the Jahn±Teller effect. In recent years,
however, a very different class of phenomena has come to
the forefront, first of all, specific phenomena due to the
directional character of orbitals. Second, this is the influence
of orbital degrees of freedom on `classical' effects, e.g., Mott
and Peierls transitions. Third, a lot of studies are now
concentrated on phenomena related to the spin±orbit
coupling. We have found that the spin±orbit coupling can be
important for almost all the effects we know in condensed
matter physics: superconductivity, the Jahn±Teller and
Peierls effects, and the Mott transition; it also results in
spin±orbit entanglement as in the case of the superexchange
interaction and leads to pronounced exchange anisotropy.
One may expect that the list of these phenomena will only
widen in the coming years.

In this review, we tried to describe a novel development in
the field of orbital physics. We hope that we demonstrated
that this part of condensed matter physics, though not new, is
still a very active field of research and is able to produce new
surprises.

This work was supported by the Russian Science Founda-
tion through project 17-12-01207.

� � �

Only a year ago, we published a paper in the special issue
of JETP devoted to the 85th birthday of Leonid Veniamino-
vich Keldysh. Unfortunately, now we have to write a paper
for the memorial issue of UFN. One of us, D Kh, was one of
his first PhD students, and later for many years he was a
member of his sector at the Department of Theoretical
Physics at the Lebedev Physical Institute of the Academy of
Sciences. The interaction with L V Keldysh over many years
was really crucial for his development. Both of us express
deep sorrow at the loss of L V, and we are sure that the
memory of L V Keldysh, both as a brilliant physicist and a
wonderful person, will remain with us for many years to
come.
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