
Abstract. The Keldysh photoionization theory is a conceptual
cornerstone and a universal framework for the description of a
broad class of fundamental effects in light±matter interaction.

Here, we provide an overview of the Keldysh theory as a
significant milestone in the development of modern optical
physics and offer a historical perspective on the fundamental
role of this theory, from the early pioneering work on quantum
tunneling to the latest breakthroughs in laser optics, attosecond
technologies, and ultrafast optics of high-intensity laser pulses.

Keywords: Keldysh theory of photoionization, light±matter inter-
action, ultrafast optics

1. Introduction

For over more than half a century, the Keldysh theory of
photoionization [1] has served as a conceptual foundation for
the description of laser±matter interactions. A closed form
equation for the rate of photionization provided by this
theory is the key parameter for the analysis of a broad class
of phenomena observed in laser experiments, including laser
breakdown [2±4], high-order harmonic generation (HHG) [5,
6], laser-induced filamentation [7, 8], and the generation of
ultrashort pulses of electric current in solids [9, 10]. The
Keldysh g parameter is a fundamental characteristic that
controls the regime of laser±matter interaction. This para-
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meter simultaneously defines the borderline between the
weak- and strong-field regimes of light±matter interactions
and provides a measure for the adiabaticity of photoioniza-
tion, as well as for the adiabaticity of a broad class of
nonlinear-optical phenomena accompanying the interaction
of intense electromagnetic radiation with matter.

The Keldysh photoionization theory offers a universal
framework for the analysis of the key effects underlying the
interaction of electromagnetic radiation with matter, includ-
ing field-induced ionization in gases, solids, liquids, and
biological tissues. As one of its central results, this theory
offers a fundamental insight into multiphoton and tunneling
ionization as two limiting regimes of the same physical
phenomenon ± ionization induced by an ac electromagnetic
radiation field. The Keldysh formalism is the first theory that
provides a unified quantitative description of multiphoton
and tunneling ionization as two pathways that dominate
laser-induced ionization in the weak- and strong-field
regimes, respectively.

In the limiting case of large values of the Keldysh
parameter, g4 1, the closed-form equations for the photo-
ionization rate derived within the framework of the Keldysh
theory are reduced to well-known weak-field perturbation-
theory expressions for the rate of multiphoton ionization. In
the opposite limiting case, g5 1, the Keldysh formula for the
photoionization probability yields the celebrated quantum-
tunneling exponential. In the low-frequency limit, this
expression is reduced to the formula for the probability of
tunneling through a potential barrier formed by the potential
of an ionic core and an external field. In the pre-Keldysh-
theory epoch, the vast parameter space between these two
limiting regimes was a Hic sunt dracones land. Without the
Keldysh parameter, even the borderlines of this land
remained unknown. As we now know, beyond these border-
lines is found a landscape of incredible variety. We know this
land as modern ultrafast optics and high-field optical physics.
This is the land where ultrafast processes can be detected on
the attosecond time scale [11], a semiconductor can be
switched to the conducting state and back within a tiny
fraction of the field cycle [10], high-power laser beams can
be transmitted in new regimes [7, 8, 12], and flashes of
electromagnetic radiation of unprecedented brevity can be
generated within an extraordinarily broad range of spec-
trumÐfrom the X-ray to the terahertz region [5].

Photoionization is one of the key processes in laser±
matter interaction. Remarkable properties of ionization
phenomena induced by ultrashort light pulses are interesting
from a fundamental point of view, as well as in the context of
spectral±temporal transformation and transmission of ultra-
short laser pulses and material microprocessing. Optical
nonlinearities of ionized gas media provide efficient spectral
broadening of ultrashort laser pulses [7, 8], enabling the
generation of broadband radiation (supercontinuum) [14] in
the visible, infrared (IR), and ultraviolet (UV) ranges [15],
revealing new regimes of optical harmonic generation [16, 17]
and offering new methods of laser material processing [18]
and temporal compression of ultrashort pulses to few-cycle
pulse widths [19, 20]. Understanding the physics and themain
tendencies in the ionization of liquid-phase materials is
central to defining the optimal regimes in a broad class of
laser±biotissue interactions, including those occurring in laser
surgery and laser transfection [21±23]. The Keldysh photo-
ionization theoryÐan extraordinary example of outstanding
scientific vision and researcher's courageÐ is the key to

understanding diversified physical phenomena at the heart
of modern ultrafast optics.

The Keldysh photoionization theory with all its metho-
dological aspects and numerous applications has been a
subject of several in-depth, illuminating reviews [24±27]. The
purpose of this paper is to discuss, avoiding repetition
whenever possible, the significance of the Keldysh theory as
an important milestone in the development of modern optical
physics and to highlight the cornerstone role of this theory in
the historical perspective, starting with the pioneering studies
of quantum tunneling in the early days of quantummechanics
all the way to the latest breakthroughs in laser science,
attosecond technologies, and ultrafast high-intensity laser±
matter interaction optical physics.

2. Photons and barriers

2.1 I N or exp (ÿE0=E )?
In the pre-Keldysh-theory epoch, quantum tunneling and
multiphoton ionization were considered as independent
phenomena. In view of diversified manifestations of quan-
tum tunneling and its special role in the development of
quantum physics, such a perspective was in every respect
natural. Long before the advent of lasers, quantum tunneling
was studied in the context of molecular spectra, field-induced
ionization of atoms, electron emission from metal surfaces,
alpha decay of nuclei, electric breakdown of dielectrics, and
interband transitions in semiconductor devices.

The theory of various multiphoton processesÐ two-
photon absorption in the first placeÐwas also developed in
the pre-laser era. However, systematic experimental studies of
multiphoton phenomena became possible only with the
advent of lasers. The early days of the laser epoch have
witnessed the first experiments on multiphoton ionization of
atoms, as well as the development of a consistent theory of,
first, two-photon and then multiphoton ionization.

The Keldysh formalism is the first theory that provides a
universal framework for a consistent quantitative description
of multiphoton ionization and quantum tunneling as two
limiting cases of the same physical phenomenonÐ ionization
induced by an ac electromagnetic radiation field. Below in
this section, we provide a brief historical review of the main
concepts and approaches used in the analysis of quantum
tunneling and multiphoton ionization and discuss the sig-
nificance of the Keldysh photoionization theory as a unifying
theory, which treats quantum tunneling and multiphoton
ionization as two pathways and two limiting regimes of
laser-induced ionization and defines, for the first time, a
clear criterion, setting a borderline between these two
regimes.

2.2 Tunneling effect: welcome to the quantum world
The realization that a quantumparticle can penetrate through
a potential barrier is closely related to the development of the
key concepts of quantum mechanics in the 1920s. Within a
remarkably short span of time of just a few monthsÐ from
November 1926 until late July 1928Ðseveral seminal studies
dealing with different manifestations of quantum tunneling
[28] were submitted to various journals. These studies laid the
foundations for the theory of quantum tunneling. The key
ideas and approaches discussed in these papers are repro-
duced almost in their original form in many textbooks on
quantum mechanics to date. Since the theory of quantum
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tunneling developed in 1926 ± 1928 offers important physical
insights into laser-induced tunneling, considered by the
Keldysh photoionization theory as one of the limiting
regimes and one of the pathways of ionization in the presence
of a laser field, in this section, we will provide a brief overview
of the main results of the early-day research into the theory of
quantum tunneling.

In a series of papers, the first of which was submitted to a
journal in November 1926, Friedrich Hund [29, 30] examines
the properties of molecular spectra related to nonstationary
superposition states, in which the system oscillates between
two classical equilibrium states, penetrating through a
potential barrier V, separating the atoms that form a
molecule. Hund's work deals with a potential exhibiting a
mirror symmetry, typical of a broad class of molecular
systems. In the basis of stationary states, the ground state of
such a potential is even, while the first excited state is odd
(Fig. 1a). Superposition of these two states is a nonstationary
state, in which the system oscillates between two classical
equilibrium states. According to the Hund theory, the period
of such an oscillation, T, is proportional to exp �V=hn�, where
h � 2p�h is the Planck constant and n is the frequency of
oscillations in a harmonic-oscillator potential wellÐ the
approximation used to describe each of the atoms in the
molecule. The quantity inverse of this period, w � 1=T, is
proportional to the exponential

w / exp �ÿG� ; �1�

where G is the phase shift controlled by the width of the
potential barrier d and the effective wave number

k � �2mV�1=2
�h

�2�

of a particle that penetrates under the barrier. It is remarkable
that the exponential exp �ÿG�, archetypical of quantum
tunneling, had emerged in the theory of quantum tunneling
even before the term `quantum tunneling' was coined [31, 32].

In his paper that dates back to the same year of 1927,
LotharNordheim has studied thermal electron emission from
ametal surface [33]. His analysis has shown that electrons can
penetrate, due to their wave properties, through a classically
forbidden region of a potential barrier that keeps these
electrons inside the metal. Nordheim's analysis of transmis-
sion of electrons through a rectangular potential barrier and
reflection of electrons from such a barrier is reproduced in
many present-day textbooks on quantum mechanics.

A year later, Fowler and Nordheim [34] have generalized
the Nordheim's treatment of quantum tunneling to a
triangular potential barrier induced on a metal surface by a
uniform dc electric field F applied along the normal to this
surface (Fig. 1b). As part of their analysis, Fowler and
Nordheim have shown that the argument of the tunneling
exponential exp �ÿG� in this case is given by

G / �2m�
1=2�Vÿ EF�3=2

�hF
; �3�

where EF is the Fermi energy of electrons in the conduction
band and V is the height of the potential barrier. The
difference Vÿ EF appearing in the argument of the tunnel-
ing exponential is thus equal to the work functionF (Fig. 1b).

The tunneling exponential written in the form of Eqn (3)
helps explain many of the key tendencies observed in
experiments and sets a physically significant reference for
the analysis of more complex regimes of ionization, including
ionization by an ac external field. In an important limiting
case of small g and low field frequencies, the Keldysh-theory
formula for the ionization rate reproduces the tunneling
exponential in the form of Eqn (1), with the argument of the
exponential defined by Eqn (3). In Section 11, we will get back
to the Fowler±Nordheim result and discuss it in the context of
attosecond pulse generation by photoelectrons tunneling
from a metal nanotip irradiated by an ultrashort laser pulse.

As an important step in the development of the quantum
tunneling theory, Robert Oppenheimer highlighted in his
1928 papers [35, 36] that an external field can distort the
Coulomb potential binding electrons in atoms, giving rise to a
potential barrier of a finite width and depth, thus allowing
electrons to tunnel through this barrier.

The theory of alpha decay, developed by George Gamow
[37] and, independently, Gurney and Condon [38, 39], is,
perhaps, the most celebrated example of an early-day
application of the quantum tunneling theory. These studies
not only provided a quantitative theory explaining the key
properties of alpha decay (Fig. 1c), but also stimulated a
further progress in the theory of quantum tunneling. As a
significant accomplishment, the transmission coefficient of a
particle with energy E tunneling through a barrier V�x� in
these studies takes a more general form:

D � exp

�
ÿ 2

�h
�2m�1=2

� x2

x1

�
V�x� ÿ E

�1=2
dx

�
; �4�

where x1 and x2 are the boundaries of the potential barrier
(Fig. 1c), defined as classical turning points from the equation
V�x1; 2� � E.

2.3 Tunneling in semiconductors
The earliest studies of quantum tunneling in semiconductors
and dielectrics were aimed at understanding optical break-
down of solids by a strong electric field. It is in the context of
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this problem that Zener has developed his quasiclassical
model of field-induced ionization in semiconductors in his
seminal 1934 paper [40]. This model treats field-induced
ionization of a semiconductor as a result of field-induced
electron transitions from the valence band to the conduction
band (Fig. 2a). The right panel in Fig. 2a sketches a diagram
of electron bands of a semiconductor distorted by an external
dc electric field along with the wave functionc�x� localized in
the allowed electron band. Tunneling in the Zener model is
due to the exponentially decaying, evanescent tails of the
wave function c�x� (Fig. 2a).

The 1950s witnessed an astonishing progress in semicon-
ductor electronics, giving rise to a new wave of interest in
quantum tunneling in semiconductors. Similar to the quan-
tum effect in atoms, field-induced electron emission from
metal surfaces, and alpha decay of nuclei, tunneling of
electrons from the valence band to the conduction band in
semiconductors is due to the wave properties of quantum
objects. In its simplest form, the theory of quantum tunneling
in semiconductors can be developed in close analogy with the
theory of electron-emission tunneling from metal surfaces.

However, a detailed analysis of tunneling in semiconductors
requires a more accurate treatment of a specific dispersion
E�k� for all the electron bands involved in the process
(Fig. 2b), which makes the problem much more complicated
[41±46].

A typical Eÿ k 2 plot of a dispersion relation in a
semiconductor is sketched in Fig. 2b. Near the top of the
valence band, as well as near the bottom of the conduction
band, the energy can usually be approximated by a
quadratic function of k. In this approximation, the electron
energy can be written in the form of a free-electron energy,
E � �h 2k 2=2m �, with an effective mass m �. In the valence
band �E < Ev�, as well as in the conduction band �E > Ec�,
k 2 is positive, corresponding to real k. In the band gap
(Ec < E < Ev, shown by shading in Fig. 2b), however, k 2 is
negative, dictating imaginary k, leading to an exponentially
decaying, evanescent wave function.

As one of the fundamental properties of quantum
tunneling in semiconductors, an external electric field shifts
the absorption band edge of a semiconductor, giving rise to
absorption at radiation frequencies nominally still below the
band gap (Fig. 2c). This effect, independently predicted by
Keldysh [41] and Franz [42] and known as the Franz±Keldysh
effect, plays an important role in understanding the optical
response of solids. In its dynamic version, the Franz±Keldysh
effect enables an ultrafast modulation of the optical response
of solid-state semiconductors and dielectrics [47].

In the following sections, we will discuss some of the most
important applications of the Keldysh theory of photoioniza-
tion in solids. As part of this discussion, we will show that the
Keldysh-theory analysis helps identify universal properties of
the nonlinear-optical response of semiconductors and dielec-
trics. We will also focus on new applications of ultrashort
laser pulses for all-optical diagnostics of solids and ultrafast
reversible switching of solid-state dielectrics to the conducting
state on the subfemtosecond time scale.

2.4 Multiphoton ionization
Multiphoton ionization is a nonlinear version of the photo-
electric effect (Fig. 3a), known since the pioneering work by
Hertz and Stoletow [48, 49], one of the first effects consis-
tently explained in terms of quantum concepts [50]. Accord-
ing to the Einstein theory of the photoelectric effect, the
kinetic energy of electrons ejected by light with a frequency o
from the surface of a metal with a work functionF is given by
Ek � �hoÿ F. In the case of N-photon ionization, the kinetic
energy of photoelectrons is related to the frequency of the
light field by the equation Ek � N�hoÿ F. Manifestations of
multiphoton ionization are numerous, including the multi-
photon photoelectric effect on metal surfaces, multiphoton
processes in atoms and molecules yielding free electrons, as
well as multiphoton interband transitions giving rise to
electron±hole pairs in semiconductors. Depending on the
context, the quantity F in the above expressions for the
multiphoton photoelectric effect is understood as the work
function in the case of a photoelectric effect on a metal
surface, the ionization potential in the case of photoioniza-
tion of an atom or a molecule, or the width of the band gap
separating the valence and conduction bands in semiconduc-
tors.

Since N-photon ionization involves absorption of N
photons (Fig. 3a), a consistent quantitative theory of this
process is in many ways analogous to a perturbative
treatment of N-photon absorption, relying on a perturba-
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tion-theory calculation of the Nth order correction in a
perturbative series for the electric current, with the external
field treated as a small perturbation. In the case of two-
photon absorption �N � 2�, such a theory was developed by
GoÈ ppert-Mayer back in the 1930s [51]. The first studies into a
detailed theory of the quadratic photoelectric effect on metal
surfaces also date back to the pre-laser era [52].

The invention of lasers triggered broad-scale research into
nonlinear-optical phenomena, providing long-sought tools
for an experimental observation of the two-photon photo-
electric effect in semiconductors [53] and stimulating deeper
theoretical analysis of multiphoton ionization. A comprehen-
sive review of experimental and theoretical studies performed
in this area in the early years of laser science is provided in
Refs [54, 55]. The ionization potential of atoms (on the order
of 10 eV) is much higher than the band-gap energy of a typical
semiconductor (on the order of 1 eV). As a consequence,
while the multiphoton photoelectric effect in semiconductors
is readily observed in the regime of two-photon absorption
�N � 2�, much larger numbers of photons are needed for a
multiphoton ionization of atoms (Fig. 3a). A systematic
experimental investigation of multiphoton ionization in
atoms is thus possible only with much more intense light
fields [56±59].

As a characteristic tendency, high-intensity light±matter
interactions often lead to an optical breakdown even in a gas
medium. In view of this circumstance, multiphoton ionization
of gases in the early years of laser physics and nonlinear optics
was most often discussed in the context of optical breakdown
(see also Section 13 of this review). Fully in line with this
tradition is the work by Albert Gold and Barry Bebb [59]

submitted to Physical Review Letters in November of 1964
and published in January 1965, that is, a few months before
the publication of the English translation of the Keldysh
paper on the theory of photoionization [1] in May 1965. In
this important paper, Gold and Bebb employ an Nth-order
semiclassical perturbative treatment to derive an explicit
formula for the transition amplitude defining the probability
of N-photon ionization of an atom.

This result is then used to provide practically significant
realistic estimates for the probabilities of multiphoton
ionization for rare gases and to examine the relation between
multiphoton ionization and optical breakdown in gases. The
Nth-order semiclassical perturbative treatment of multipho-
ton ionization yields a signature I N scaling of the probability
of N-photon ionization as a function of the laser field
intensity. This dependence, typical of any nonlinear-optical
process, described in terms of theNth-order nonlinear-optical
susceptibility, provides yet another fundamental reference for
a more general photoionization theory. The Keldysh photo-
ionization theory [1] recovers this result in the limit of low
field intensities. This theoretical framework, fully developed
in a subsequent work by Nikishov, Ritus, Popov, Perelomov,
Terentyev, Faisal, Reiss, Delone, and Krainov [60±70],
provides a powerful tool for the analysis of laser±matter
interactions within a broad range of laser intensities. The
basic concepts of this formalism are discussed in the next
section.

3. Basic concepts
of the Keldysh photoionization theory

The Keldysh theory [1] treats photoionization in an ac field
E�t� as a result of a transition between the initial electron
bound state with a wave functionc0�r� to a free-electron state
modulated by the field E�t�with a wave function cp�r; t�. The
matrix element for such a transition is calculated in the first
order of perturbation theory in the interaction, leading to

w�p; t� �
�
c �p �r; t�V�r; t�c0�r� dr ; �5�

where V�r; t� is the electron±field interaction part of the
Hamiltonian.

The external field E�t� is assumed to be monochromatic,
E�t� � E0 cos �ot�, and the interactionHamiltonian is written
in the dipole approximation,

V�r; t� � erE0 cos �ot� : �6�

The wave function of the initial electron state is assumed
to have the form of the ground-state wave function of a
hydrogenlike atom,

c0�r� � �pa 3�ÿ1=2 exp
�
ÿ r

a

�
; �7�

where a � �h 2=�me 2� is the Bohr radius.
The field-dressed free-electron wave function is taken in

the form of the Volkov-type solution [71],

cp�r; t� � exp

�
iP�t� r

�h
ÿ i

2m�h

� t

0

�
P�y��2 dy) : �8�

Here, in the case of a monochromatic driver field
E�t� � E0 cos �ot�, the generalized momentum P�t� is given
by P�t� � p� eoÿ1E0 sin �ot�.
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With w�p; t� averaged over the field cycle and integrated
over the momentum, the photoionization rate is expressed as
a series

wK � 2p
�h

���L�p���2X
n

d
�
I0 � p 2

2m
� e 2E 2

0

4mo2
ÿ n�ho

�
d3p

�2p�h�3 ;

�9�
where

L�p� � 1

2p

�
dxW

�
p� eE0

o
x
�

� exp

(
i

�ho

� x

0

�
I0 � 1

2m

�
p� eE0

o
u

�2�
du

�1ÿ u 2�1=2
)
; �10�

I0 is the ionization potential,

W�s� � epÿ1=2aÿ3=2
�
exp

�
ÿ isr

�h

�
Er exp

�
ÿ r

a

�
dr ; �11�

and integration is along a closed contour enclosing the �ÿ1; 1�
segment.

Since the exponential in L�p� is rapidly oscillating, the
integral in Eqn (9) is dominated by the saddle points, defined
by the equation

I0 � 1

2m

�
p� eE0

o
sin �ot�

�2

� 0 : �12�

As highlighted by Keldysh [1], a pole in Eqn (10), defined
by the solution of Eqn (12), reflects the general property of the
scattering amplitude, which exhibits poles at momentum
values corresponding to electron bound states. With the
integral in L�p� calculated using the saddle-point approxima-
tion, we arrive at the celebrated Keldysh formula for the rate
of photoionization:

wK � Q�g; I0;o� exp
�ÿx�g; I0;o�� ; �13�

where Q�g; I0;o� is a pre-exponential factor,

x�g; I0;o�� 2

�ho
I0

�
1� 1

2g 2

��
sinhÿ1 gÿ g

�1� g 2�1=2
1� 2g 2

�
; �14�

and

g � o�2mI0�1=2
eE0

�15�

is the Keldysh parameter.
The beauty of this result is that it provides a unified

description of multiphoton and tunneling ionization, show-
ing that these processes are two limiting cases of ionization in
an ac field (Fig. 3b). Indeed, in the limit of g4 1, Eqns (13)
and (14) recover the signature wK / I N scaling of the
multiphoton ionization rate as a function of the field
intensity and the minimum number of photons N needed for
photoionization (Fig. 3b). With g5 1, on the other hand,
Eqns (13) and (14) lead to the tunneling exponential, which, in
the case of a linearly polarized field, is written as

wK / exp

�
ÿ 4

3
�2m�1=2I 3=2

0 �e�hE0�ÿ1
�
1ÿ g 2

10

��
: �16�

For low intensities and/or low frequencies, the g 2 term in
the argument of the exponential can be omitted, yielding a
frequency-independent ionization rate (Fig. 3b). The result-
ing expression recovers, with an accuracy up to the pre-
exponential factor (calculation of this factor is beyond the
scope of the Keldysh theory), the canonical result for the
probability of tunneling in a dc field [Eqns (1) and (3)].

The above analysis highlights the role of the Keldysh g
as a fundamental parameter defining the regime of light±
matter interaction. Equations (13) and (14) make it easy to
appreciate the role of the Keldysh parameter as a border-
line between the high- and weak-field ionization regimes.
Remarkably, this parameter also provides a measure of
ionization adiabaticity. This insight offered by of the
Keldysh theory is discussed in the next section.

4. Keldysh parameter, adiabaticity
of photoionization, and tunneling time

Any attempt to understand the Keldysh parameter as a
measure of ionization adiabaticity inevitably brings up a
question of tunneling time. Keldysh's 1964 paper addresses
this question in its opening paragraph, which remains
mysterious even now, more than half a century later (see,
e.g., the discussion in reviews [72±74]). This important
physical argument, which serves as a starting point for the
Keldysh analysis, is based on the observation that
``virtually no time lag'' is a typical feature of quantum
tunneling. In other words, as Keldysh articulates in his
paper, the tunneling probability remains constant, indepen-
dent of the field frequency up to the highest frequencies in
the radio-frequency range. The reason for this, according to
Keldysh, is that the tunneling time is defined by the mean
time required for an electron to pass through a barrier with
a thickness (in the notation of the Keldysh paper)
l � I=�eF �, where I is the ionization potential and F is the
electric field (Fig. 4a). The mean electron velocity in this
argument is on the order of �I=m�1=2, where m is the electron
mass. Thus, up to a characteristic frequency ot �
eF=�2mI �1=2, quantum tunneling is governed by the instan-
taneous field amplitude.

This argument seems to explain why the tunneling-limit
photoionization rate �g5 1� becomes independent of the field
frequency o, interpreting this result in terms of the tunneling
time. Indeed, the Keldysh parameter can be represented as
g � 4ptb=T0, where T0 � 2p=o is the cycle of the driver field,
and tb � d=v � �mI0=2�1=2�eE0�ÿ1 is the time it takes for a
classical particle with a velocity v � �2I0=m�1=2 to travel a
distance d � I0=�eE0� equal to the width of the potential
barrier formed by a rectangular-step potential barrier with a
height I0 and uniform dc electric field E0.

The main difficulty of this argument is that the area
behind the potential barrier is forbidden for a classical
particle. As a consequence, the tunneling time, defined as
the time of under-barrier motion of a particle becomes
imaginary. When expanded in a small momentum para-
meter, the solution to Eqn (12) for the time is complex:

t0 � i

o

(
sinhÿ1 g� g

�1� g 2�1=2

�
�
i

pk
�2mI0�1=2

� 1

4mI0

�
g 2

1� g 2
p 2
k � p 2

?

��)
; �17�
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where pk and p? are the parallel and normal components of
the electron momentum.

Thus, the interpretation of the Keldysh parameter as a
ratio of the under-barrier passage time tb � d=v to the field
cycle T0 � 2p=o encounters fundamental difficulties. In a
big-picture perspective, these difficulties are inevitable in a
canonical quantum theory, which does not provide a clear
recipe for the definition of the tunneling time. In this section,
we dwell on this important issue following an insightful path-
integral analysis of quantum tunneling by Sokolovski and
Connor [75±79].

In quantum mechanics, the dynamics of a particle is
described by the wave function C�x; t�, governed by the
quantum evolution equation. The time-dependent SchroÈ din-
ger equation is the pertinent evolution equation in the case of
nonrelativistic photoionization. Quantum mechanics also
provides a system of postulates allowing the position of a
particle x at the instant of time t to be determined using the
wave function C�x; t�. To define the time interval t within
which a quantum particle evolves from position x1 to position
x2, we need to represent the wave function C�x; t� as an
integral [75±79],

C�x; t� �
� t

0

F�x; t jt� dt : �18�

Thus, the state of particle found at point x at the instant of
time t is a result of interference of an infinite number of
`quantum prehistories' (Fig. 4b), which can be instructively

interpreted in terms of quantum trajectories [80]. Similar to
the celebrated two-slit diffraction scheme, where the number
of quantum prehistories is two, an attempt to find out which
individual trajectory is behind the quantum evolution of a
particle demolishes the stateC�x; t�. Thus, the interference of
differentF�x; t jt� leads to a loss of information on individual
quantum trajectories corresponding to well-defined time
intervals t in the integral forC�x; t� in Eqn (18).

SinceF�x; t jt� is a continuous function of t, measurement
with a finite precision yields an amplitude [75±79]

C�x; t jt� �
�1
ÿ1

F�tÿ t 0�F�x; t jt 0� dt 0 ; �19�

where an apparatus function F�t� is centered at t � 0 and has
a characteristic width dt. Thus, the probability to detect t
within an interval between tÿ dt and t� dt can be written as

r�x; t jt� � ��C�x; t jt���2 : �20�

A measurement aimed at detecting an individual trajec-
tory corresponds to an expansion

C�x; t jt� � C�x; t��F�t� ÿ F 0�t��t�x�� ; �21�
where

�t�x� �

� t

0

tF�x; t jt� dt
C�x; t� : �22�
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Figure 4. (Color online.) (a) Electron tunneling in atoms in the presence of an external field. The external field distorts the Coulomb potential binding

electrons in atoms, giving rise to a potential barrier of finite height and width, allowing electron tunneling. (b) Tunneling and quantum trajectories.

(c)Width z0 of the potential barrier produced by the potential of the atomic core and a laser fieldwith a field intensity of 500TWcmÿ2 and awavelength of
800 nm, found by solving the F�z; y� � 0 equation (red solid line 1) and calculated with the approximation of Eqn (12) (dash±dotted line 2). Green solid

line 3 shows the electron kinetic energyUp as a function of time y expressed in field cycles. Also shown is the time t0 required for an electron to acquire the

kinetic energy Up equal to the ionization potential I0 (shown by the horizontal dashed line). (d) Landauer±BuÈ ttiker oscillating potential barrier.
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Following [75±79], we consider a scheme ofmeasurements
that detects only those particles that reach the point x at the
instant of time t � T. By its definition, such a measurement
scheme, which is one of the modifications of a weak
measurement, requires an extremely large number of mea-
surements. The expectation value of t in such a scheme of
measurements is



t�x�� �

�1
ÿ1

t
��C�x;T jt���2 dt�1

ÿ1

��C�x;T jt���2 dt : �23�

Since
� 1
ÿ1 tjF�t�j2 dt � 0, we find ht�x�i � Re ��t�x��.

However, according to Eqn (22), the expectation value
�t�x� is calculated with a complex, rapidly oscillating distribu-
tion F�x; t jt�. Therefore, even if no quantum trajectory
represents t beyond the interval between 0 and T, Re ��t�x��
can fall outside this interval. This contradiction indicates a
fundamental difficulty of such a definition of time intervals.

This problem can be addressed if the point at which the
particle is detected in the scheme of weakmeasurements is not
fixed. The expectation value in such a measurement scheme,

hti �
� T

0

dt

� x2

x1

��C�x; t���2 dx ; �24�

does not encounter the difficulties explained above. When
defined as the expectation value in Eqn (24), time t always
falls within the �0;T � interval.

For a quantum particle tunneling through a potential
V�x�, the distribution F�x; t jt� can be represented as [75±79]

F�x; t jt� � 1

2p�h

�
C�x; t jW� exp

�
i
W

�h
t
�
dW : �25�

In this expression, C�x; t jW� is a result of an evolution
of the initial state C�x; 0� in the presence of a potential
V�x� �WY�x�, where

Y�x� � 1 ; x1 4 x4 x2 ;

0 ; x < x1 ; x > x2 :

�
�26�

Thus, fixing the parameter t is equivalent to an effective
change in the potential. This result reflects an inevitable
backaction of a measuring apparatus on a quantum system.
A measuring apparatus with the width of an apparatus
function dt will effectively change the potential by dW in
such a way that the uncertainty relation dt dW5 �h is
satisfied. In other words, an apparatus that provides a higher
accuracy of t measurements induces larger changes in the
potential.

The wave function of a particle behind the potential
barrier V�x� � V0Y�x� is

C�x; t� � T�k;V� exp
�
ikxÿ i

E

�h
t

�
; �27�

where T�k;V� is the transmission coefficient.
In the classical limit, x � k�x2 ÿ x1�4 1, analysis of the

function F�x; t jt� for a free particle, V � 0, leads to the
equation for the stationary-phase point [75±79],

m�x2 ÿ x1��
2m�EÿW��1=2 � t ; �28�

identical to the equation of the classical trajectory. The
integral over all the other trajectories is vanishingly small
because of the destructive interference of these trajec-
tories.

For V 6� 0, the stationary-phase point is shifted to the
complex plane off the real axis. In the quasiclassical limit,
V4E, the equation for the stationary-phase point gives two
purely imaginary solutions for t [75±79]:

t�V� � �i m�x2 ÿ x1��
2m�Vÿ E��1=2 : �29�

It is this situation that one deals with in the case of
photoionization by an intense ac field in the g5 1 regime.
The equation for the stationary phase in this case has the form
of Eqn (12), dictating a purely imaginary solution for t. All
the trajectories corresponding to the real values of t are
represented by rapidly oscillating terms in the integral for
F�x; t jt�. Destructive interference of individual quantum
trajectories leads, in accordance with Eqn (16), to an
exponentially small transmission coefficient.

Notably, Eqns (28) and (29) are fully consistent with the
Bohmian interpretation of quantum mechanics [81]. This
interpretation gives a radically different perspective on
tunneling through a quantum barrier, offering a transparent
solution [82], as the potential barrier is suppressed by an
additional `quantum' potential [81]. The solution of the
tunneling time problem in this picture (see also Ref. [83]) is
fully consistent with the insight offered by the opening
paragraph in Keldysh's 1964 paper.

5. Photoionization by an ultrashort laser pulse
and attosecond electron dynamics

Discussion in Section 4 shows that the role of the Keldysh
parameter as a measure of photoionization adiabaticity is
difficult to understand from the perspective of the electron
under-barrier motion time tb � d=v and interpretation of
the Keldysh parameters in terms of the 4ptb=T0 ratio. In
the era of modern technologies, a satisfactory solution of
this problem in relation to whatever we might like to call
the tunneling time goes way beyond purely methodologi-
cal, interpretational aspects of quantum physics. A clear
understanding of extremely fast electron tunneling
dynamics would be central to maximizing the speed of
semiconductor electronic devices, achieving an ultimate
accuracy in attosecond metrology [11], and identifying the
fundamental limitations of rapidly emerging petahertz
optoelectronics [9, 10, 84].

Unique experimental methods developed within the past
few years [85±90] enable the detection of electron tunneling
dynamics in photoionization with an unprecedented time
resolution. Figure 5 presents a schematic of direct dual-
channel detection of the photoelectron yield through above-
threshold ionization (ATI). This technique, referred to as
stereo-ATI [87], enables direct time characterization of
photoelectron currents induced by two adjacent half-cycles
of an optical field. Stereo-ATI is a powerful tool of
attosecond metrology and a highly accurate method of
temporal characterization of single-cycle and subcycle opti-
cal field waveforms [91]. However, retrieving the information
on characteristic tunneling times from such measurements, as
well as from measurements performed with the use of any
other technique, no matter how accurate it is, encounters
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fundamental difficulties related, as emphasized above, to
tunneling-time definition and interpretation.

In view of new exciting opportunities offered by attosec-
ond physics and petahertz optoelectronics, the Keldysh
tunneling-time intuition offers hope for a clear, physically
transparent, albeit not perfectly rigorous perspective on
electron tunneling, leading to real-valued predictions for a
time scale of electron tunneling in terms of the Keldysh
parameter. The main difficulty of such an approach, as
explained in detail in the previous section, is that the
canonical quantum theory leads to complex tunneling
times. Below in this section, we will show that there is a
way to achieve a sort of a compromise, if not reconcile,
predictions of the canonical quantum theory and an intuitive
picture of tunneling in an ac field described in terms of the
Keldysh parameter understood as the ratio of the character-
istic tunneling time to the field cycle [92]. This compromise
can only be achieved, however, at the expense of giving up
the interpretation of the g=o time as the time of under-
barrier motion of an electron. Instead, as will be shown
below in this section, the g=o parameter relates to the time
needed for an electron to acquire a kinetic energy equal to
the ionization potential. Such a perspective offers helpful
insights into the significance of the Keldysh g as a universal
parameter that not only describes the borderline between the
weak- and strong-field regimes of photoionization, but also
quantifies the adiabaticity of ionization dynamics in an
external ac field.

To this end, we consider the dynamics of photoioniza-
tion without averaging the probability amplitude w�p; t�
over the field cycle, as it is prescribed in the standard
Keldysh-theory formalism. The instantaneous photoelec-
tron yield induced by an external driver field by the time t
is then given by

J�t� /
� t

ÿ1
dZ
�
dr exp

�
ÿ r

a0

�
E0r cos �oZ�

� exp

�
i

�h

�
I0Zÿ P�y� r� 1

2m

� Z

0

�
P�y��2 dy�� : �30�

Since w�p; t� is dominated by photoelectrons with small p
[1, 62], Eqn (30) applied to a one-dimensional geometry of
photoionization induced by a driver field linearly polarized

along the z-axis gives

J�t� /
� t

ÿ1
dZ
�1
ÿ1

dz exp

�
ÿ z

a0

�
E0z cos �ot�

� exp

�
i

�h

� Z

0

F�z; y� dy
�
; �31�

where

F�z; y� � I0 ÿ eE0z cos �oy� � 1

2m

�
eE0

o

�2

sin2 �oy� : �32�

The exponential under the integral in Eqn (31) rapidly
oscillates unless F�z; y� � 0. Noting that the strong-field
regime criterion g5 1 is equivalent to the inequality
�eE0�2=�2mo2�4 I0, we see that, in this regime, an electron
acquires a kinetic energy equal to the ionization potential I0
within a small time interval �ÿt0; t0� around the peak of the
driver field (Fig. 4c), with t0 defined by the equation

sin2 �ot0� � o2 2mI0

�eE0�2
� g 2 5 1 : �33�

Since within this interval, sin2 �ot0�5 1 in Eqn (33), we
can use Taylor-series expansions sin2 �oy� � �oy�2 and
cos �oy� � 1ÿ �oy�2=2 in Eqn (32) to write the solution to
the F�z; y� � 0 equation as

z0 � I0
eE0

�
1�

�
1� 2

g 2

�
o2y 2

2

�
: �34�

Plugging this solution into Eqn (31), we arrive at the
following estimate for J�t�:

J�t� / exp

�
ÿ�2m�

1=2I
3=2
0

e�hE0

�
�
� t

ÿ1
exp

(
ÿ�2m�

1=2I
3=2
0

e�hE0

��
1� 2

g 2

�
o2y 2

2

�)
dy : �35�

Despite its approximate character, Eqn (35) correctly
reproduces the o! 0 limit of the photoionization rate,
recovering the probability of dc-field-induced tunneling,

wdc / exp

�
ÿ 4

3

�2mI 3
0 �1=2

e�hE0

�
: �36�

This expression can be written in a canonical form of
Eqn (1), w / exp �ÿkd �, with d � I0=�eE0� and k being the
wave number of the de Broglie wave representing the
tunneling electron.

Evaluating the integral in Eqn (35), we find

J�t� / exp

�
ÿ�2m�

1=2I
3=2
0

e�hE0

��
1� erf

�
t

te

��
; �37�

where erf �u� � 2pÿ1=2
� u
0 exp �ÿx 2� dx is the error function

and

te � 21=4�e�hE0�1=2�mI 3
0 �ÿ1=4oÿ1

�
1� 2

g 2

�ÿ1=2
: �38�

It is straightforward to see from Eqn (37) that the
temporal profile of J�t� has a shape of a step centered at the
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Figure 5. (Color online.) Stereo-ATI detection of attosecond electron

dynamics: MCP, microchannel plate, PCF, hollow-core photonic-crystal

fiber.

November 2017 Keldysh photoionization theory: through the barriers 1095



point where the driver field reaches its maximum. Such steps
are indeed observed in attosecond time-resolved studies of the
photoelectron yield in the strong-field regime. The buildup
rate of J�t�, that is, the steepness of the 1� erf �t=te� step in
Eqn (14), is controlled by the te time-scale parameter. Due to
the t0 / E

ÿ1=2
0 scaling, stronger driver fields give rise to

steeper steps in J�t�. In the E0 !1 limit, J�t� tends to a
Heaviside unit-step function, J�t� ! Y�t�, whose step is
locked to the peak of the field. In this sense, electron
tunneling instantly follows the driver field without any time
lag with respect to the driver field.

We are now in a position to address the key question as to
why the Keldysh parameter serves simultaneously as the
adiabaticity parameter and a borderline between weak- and
strong-field ionization. When the field intensity is high
enough so that the condition

1

2m

�
eE0

o

�2

sin2 �oy�4 I0 ; ÿt0 < y < t0 �39�

is satisfied everywhere within the field cycle except for a short
time interval �ÿt0; t0� around the peak of the driver field
(Fig. 4c), Eqn (34) for the effective width of the potential
barrier is reduced to

z0 � I0�eE0�ÿ1
�
1�

�
o
g

�2

y 2

�
� I0�eE0�ÿ1 � �2m�ÿ1eE0y

2 :

�40�

The photoelectron yield J�t� is then frequency-indepen-
dent, with its buildup time given by

te � �e�hE0�1=2�2mI 3
0 �ÿ1=4

g
o
�
�
2m

I0

�1=4� �h

eE0

�1=2

: �41�

Thus, the analysis of ultrafast photoionization within the
field cycle leads us to formulate the criterion of strong-field
photoionization in the form of Eqn (39).Whenwritten in such
a form, this criterion automatically implies, through
Eqns (33)±(35), that the photoionization rate is frequency-
independent, or, for that matter, adiabatic. Notably, since the
Keldysh formula involves integration over the field cycle, the
pondermotive energy enters into the Keldysh-theory equa-
tions in its averaged formÐas the e 2E 2

0 =�4mo2� term in
Eqn (9) and as the �1� 1=�2g 2�� factor in Eqn (14). The
relation of o cancellation in the photoionization rate to the
subcycle dynamics of photoionization is thus lost.

Equations (30)±(39) clearly show that it is the photo-
ionization dynamics occurring within a small fraction of the
driver cycle, that is, within the time interval �ÿt0; t0� near the
peak of the driver field, that makes photoionization
frequency-independent. As can be seen from these expres-
sions, photoionization in this regime is a result of ultrafast
electron tunneling, which is strongly confined to a very short
time gate �ÿt0; t0�. As can be seen from Eqn (40), within this
interval, the width of the potential barrier, controling the
photoionization rate, remains approximately constant and
equal to d � I0=�eE0�. The expression for the effective width
of the potential barrier involves no term that would be linear
in time. The first nonvanishing correction grows as
�2m�ÿ1eE0y

2 as a function of time and is also independent
of the frequency of the driver field.

We can now confront the question as to whether the time
g=o is in any way representative of the beneath-the-barrier

electron passage time tb � d=v.We note that Eqn (39) leads to
�eE0�2=�2mo2�4 I0. This inequality can be rewritten in the
form g 2 5 1 [see also Eqn (33)], which is equivalent to the
criterion of both tunneling and adiabaticity in the Keldysh
theory of photoionization. Then, solving Eqn (33) for t0, we
find t0 � oÿ1 arcsin g. With g5 1, this expression reduces to
t0 � g=o � �2mI0�1=2=�eE0�. We see that the g=o ratio does
indeed define an important time scale of photoionization.
However, this time scale is not related to the time of electron
motion beneath the potential barrier, tb � d=v, but connects
instead to the time needed for an electron to acquire a kinetic
energy equal to the ionization potential.

We see now that the considered semiclassical perspective
on the adiabaticity of photoionization driven by an ultrashort
light pulse leads to an adiabaticity criterion that exactly
recovers the Keldysh-theory criterion, but does not require a
notion of a real electron under-barrier passage time. An
experimentally measurable characteristic tunneling time
scale is now defined as te � �e�hE0�1=2�2mI 3

0 �ÿ1=4t0. For a
driver field intensity of 1014 W cmÿ2, this gives te � 0:14 fs.
Despite its brevity, the buildup time te of the photoelectron
yield J�t� can be measured with a reasonable accuracy in
experiments through a direct time-resolved photoelectron
detection [85, 87] (see Fig. 5) or through the spectral analysis
of optical harmonics [16, 17, 93].

6. Photoionization
and an oscillating potential barrier

To provide deeper insights into the dynamic aspects of
photoionization in the Keldysh theory, we will now focus
on the relation between ionization in an external ac field and
transmission of a quantum particle through an oscillating
rectangular potential barrier in the formulation of Landauer
and BuÈ ttiker [94]. In its canonical version, this problem
treats a free particle with a plane-wave wave function
tunneling through a rectangular potential barrier with a
height V0 and width d. Analysis of tunneling through a
barrier of such a form is important as it helps understand
tunneling processes in semiconductor materials and struc-
tures. BuÈ ttiker and Landauer have examined tunneling
through a time-dependent, oscillating rectangular potential
barrier (Fig. 4d)

V�x; t� � V0�x� � V1�x� cos �ot� : �42�

The perturbation V1�x� is assumed to be constant and
equal to V1 within the barrier and equal to zero outside the
barrier (Fig. 4d).

With such an oscillating potential barrier, the Hamilton-
ian of a particle is

H � p 2

2m
� V0 � V1 cos �ot� : �43�

The solution to the SchroÈ dinger equation with such a
Hamiltonian is written as

c�x; t;E� � jE�x� exp
�
ÿi E

�h
t

�
exp

�
ÿi V1

�ho
sin �ot�

�
; �44�

where jE�x� is the solution to the SchroÈ dinger equation

H0jE�x� � EjE�x� �45�
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with the Hamiltonian

H0 � p 2

2m
� V0 : �46�

Representing the solution to Eqn (45) in the region of the
rectangular potential barrier as jE�x� � exp ��kx�, with
k � �2m�V0 ÿ E��1=2=�h, we find

c��x; t;E� � exp ��kx� exp
�
ÿi E

�h
t

�
�
X1

n�ÿ1
Jn

�
V1

�ho

�
exp �ÿinot� ; �47�

where Jn�x� is the Bessel function.
In the BuÈ ttiker±Landauer model, the ratio V1=�ho is so

small that the sum in n in Eqn (47) is fully dominated by
its terms with n � 0;�1. Analysis of transmission coeffi-
cients T� for particles with energies E� �ho, correspond-
ing to n � �1, shows that, in the limiting case of low
frequencies, T� � Tÿ. As the frequency increases, how-
ever, the difference between T� and Tÿ becomes signifi-
cant, with �T� ÿ Tÿ�=�T� � Tÿ� � tanh �otLB�, where
tLB � ÿmd=��hk�. This result is attributed in the BuÈ ttiker±
Landauer treatment to the difference in the times of under-
barrier passage of particles with energies E� �ho. Such an
interpretation suggests that the time tLB � md=��hk� plays the
role of the time of under-barrier passage.

Since the time tLB � md=��hk� can be rewritten as
tLB � d=v, this interpretation is consistent with the inter-
pretation of the Keldysh-parameter-related time g=o as the
time tb � d=v of under-barrier passage. In this sense, the
`Keldysh time' is often categorized as a particular case of the
Landauer±BuÈ ttiker time. Below in this section, we will discuss
the relation between these times in greater detail.

We start by articulating that the problem of photoioniza-
tion by the field of electromagnetic radiation addressed by the
Keldysh theory differs in the underlying ionization dynamics
and the form of the potential from the problem dealing with a
particle tunneling through an oscillating rectangular barrier
as defined by Eqn (42). The wave functions of stationary
electron states in a Coulomb potential are significantly
different from the plane-wave wave function describing the
tunneling particle in the Landauer±BuÈ ttiker problem. In
contrast to the perturbation of a rectangular potential
barrier in the Landauer±BuÈ ttiker problem, perturbation of
the stationary potential by the electromagnetic field in the
photoionization problem is not spatially uniform (cf. Figs 4a
and 4d). Finally, in the photoionization problem, the
potential is modulated in such a way that each flash in the
photoelectron current, confined to the interval of time when
the potential barrier is partially or completely suppressed by
the driver field, is followed by a phase within which the next
field half-cycle increases the potential barrier for a given
direction in space, thus making some fraction of electrons
that have tunneled through the barrier within the previous
field half-cycle return to the parent ion.

The finding that both the g=o time, related to the Keldysh
parameter, and the Landauer±BuÈ ttiker time can be inter-
preted as the under-barrier passage time tb � d=v is an
important and in many ways characteristic observation
common for various regimes of quantum tunneling. This
result highlights once again the heuristic value of the

Bohmian notion of velocity [81], which remains in many
respects meaningful in the context of quantum tunneling,
when the momentum and related velocity defined according
to the recipes of canonical quantum mechanics become
imaginary. As shown in Section 4 and 5, in the framework
of canonical quantum mechanics, interpretation of the time
parameter g=o in the Keldysh photoionization theory and the
tLB parameter in the Landauer±BuÈ ttiker model of an
oscillating barrier as under-barrier passage times encounters
fundamental difficulties. The standard version of quantum
mechanics can give real and measurable tunneling times only
in the scheme of weak measurements [75±79, 95, 96] at the
expense of modifying the conventional definition of time
inherited from classical mechanics, implying that the starting
and final points of mechanical motion are fixed in time
(Fig. 4b).

Without offering a satisfactory recipe for the measure-
ment of conventionally understood time intervals, a canoni-
cal quantum-mechanical analysis of tunneling leads us again
and again to a stationary picture of tunneling, expressed by
Eqns (1) and (2). In this picture, the tunneling probability is
an exponentially decreasing function of the effective depth of
the potential barrier d to the de Broglie wavelength. The
equation for the stationary point of ionization in an ac field
and equations for the transmission coefficients T� in the
Landauer±BuÈ ttiker model give the same result for the
ionization rate or the tunneling probability.

Let us now examine more closely Eqn (47) for the wave
function of a particle tunneling through a periodically
oscillating barrier (42) and consider the wave function
described by Eqn (47) without restricting our analysis to the
n � 0;�1 terms. We observe that the sum in n on the right-
hand side of Eqn (47) represents a superposition of states with
energies E� n�ho. For small V1=�ho, the expansion coeffi-
cients of the function c��x; t;E � in the eigenfunctions of the
stationary states exp ��kx� exp �ÿiEt=�h� are given by the first
terms in the polynomial expansion for the Bessel functions,
cn / �V1=�ho�n. If the perturbation of the potential is
proportional to an external field, V1 / E, we then find that,
for a state with energy E� n�ho, the probability of transmis-
sion through the barrier scales as I n with the field intensity I.
With n > �V0 ÿ E�=��ho�, we deal with a particle whose
energy, as a result of absorption of n photons, is higher than
the potential barrier, E� n�ho > V0, and whose transmission
through the barrier has signatures of multiphoton ionization.
Similar to multiphoton ionization, the tunneling probability
of such a particle is proportional to I n. The approximation
cn / �V1=�ho�n is applicable only for V1=�ho < 1. With
V1 � eEa0, where a0 � �h=�2mI0�1=2 and I0 is the ionization
potential, this condition is equivalent to the inequality g > 1,
i.e., the criterion of multiphoton ionization in the Keldysh
theory.

7. Gauge invariance and applicability limits
of the dipole approximation

One of the main fundamental difficulties of the Keldysh
photoionization theory is related [97, 98] to the character of
the scalar and vector potentials chosen for the description of
the fields in this theory, as well as with the approximations
used to introduce the Hamiltonian of interaction between an
electron and a light field,

V�r; t� � erE0 cos �ot� : �48�
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The interaction operator is obviously written in the dipole
approximation. The fields defined by a scalar potential
j�t� � ÿerE�t� with zero vector potential, A � 0, belong to
the class of longitudinal fields. Such fields can vary in time,
but cannot propagate. Electromagnetic fields, on the other
hand, belong to the class of propagating fields. The vector
potential for such fields, A�r; t� 6� 0, depends on both time
and spatial coordinates. In view of these general properties of
electromagnetic fields, the choice of the interaction Hamilto-
nian in the form of Eqn (48) and the wave function of a
photoelectron in the form of the Volkov function (8) raises
broadly discussed questionswith regard to the applicability of
the tunneling limit of the Keldysh theory to the description of
ionization in a laser field, which should be described by a
nonzero, position-dependent vector potential A�r; t�.

Indeed, except for the case of a zero-range potential, the
photoionization rate calculated in the canonical version of the
Keldysh theory generally differs from the ionization rate
found with the use of the Coulomb gauge. In other words,
this result is not gauge-invariant. However, within the
applicability limits of the dipole approximation, when effects
related to the magnetic field and the position dependence of
the vector potential are negligible, the difference in the
photoionization rates calculated with different gauges is
purely nominal [25]. Quantitative analysis of photoioniza-
tion beyond the applicability limits of the dipole approxima-
tion obviously falls beyond the scope of the original Keldysh
theory developed in the early years of the laser era. However,
deeper insights into these problems are certainly useful in the
modern age of laser science, when cutting-edge laser sources
of high-intensity ultrashort light pulses enable direct experi-
mental studies of photoionization within a broad range of
frequencies [99±110].

We start by noting that both the apparent paradox of the
physical nonequivalence of different gauges and the general
scheme of resolving this paradox have been known for quite a
while [51, 111]. An illuminating, in-depth review of this
problem has been provided by Bykov [112]. To illustrate the
main arguments helping put the issue to rest, we consider an
electron with amomentum p and a potential energyU�r� in an
atom or a molecule in the presence of an electromagnetic field
with electric and magnetic components E andH and a vector
potential A. In the Coulomb gauge �divA � 0�, the full
Hamiltonian of such a system is written as

H � 1

2m

�
pÿ e

c
A

�2

�U�r� � 1

8p

�
�E 2 �H 2� dV : �49�

The Hamiltonian of interaction of an electron with the
field can then be isolated as

Hint � ÿ e

mc
pA� e 2

2mc 2
A2 : �50�

In the dipole approximation, i.e., in the approximation
that the radiation wavelength is much larger than the size of
an atom, Eqn (50) is dominated by the first term,

Hint � ÿ e

mc
pA�r � 0� : �51�

However, the Hamiltonian of the considered system can
also be written as

~H � 1

2m
p 2 �U�r� � 1

8p

�
�E 2 �H 2� dVÿ erE? � . . . : �52�

In the dipole approximation, the interaction operator is
given by

~Hint � ÿerE : �53�

Within the dipole approximation, i.e., when

ka5 1 ; �54�

where k is the wave number of the electromagnetic field and a
is a typical spatial scale of electron motion, the Hamiltonian
(51) can be transformed to the Hamiltonian with an
interaction operator in the form of Eqn (53) by means of a
canonical transformation found by GoÈ ppert-Mayer [51].
Power and Zienau [111] have considered a quantum problem
and found a unitary transformation SPZ such that
~H � Sÿ1PZHSPZ. Willis Lamb, however, has observed [113±
115] that the interaction Hamiltonian in the form of Eqn (48)
provides a much higher accuracy of quantitative analysis of
experimental spectra. Thus, one faces a paradox of physical
nonequivalence of Hint and ~Hint, suggesting that the gauge
with the Hamiltonian with an interaction operator (48) is
preferable.

The paradox can be resolved [112] by consistently
applying the quantum treatment to both an atom or
molecule and the electromagnetic field. To ensure correct
calculation of the matrix elements defining the relevant
transition probabilities, Hamiltonian transformation ~H �
Sÿ1HS in such a treatment should be performed, in
agreement with the general rules of unitary transformations
in quantummechanics, jointly with the pertinent transforma-
tion of the state vector jci of the `atom (molecule) � field'
system, j~ci � Sÿ1jci. It is the vortex part of the j~ci state that
accurately removes the time dependence of the initial state of
the problem, restoring the correct form of the stationary
Coulomb field, identical to the Coulomb field of the initial
state prior to the unitary transformation.

Within the applicability limits of the dipole approxima-
tion, the j~ci � Sÿ1jci transformation does not give rise to
a dramatic change in the wave function of the system. In
this approximation, calculations performed with the
interaction Hamiltonian (48) and the initial state c0�r� �
�pa 3�ÿ1=2 exp �ÿr=a� lead to a photoionization rate with an
exponential in the form of Eqn (10), whose value at the
stationary-phase point (9) is gauge-invariant [25].

We consider now the question regarding the long-
wavelength boundary of the applicability of the dipole
approximation [97, 98]. As the frequency of the driver field
decreases, effects related to the magnetic component of the
optical field start to play a noticeable role at lower field
intensities. In the presence of the magnetic field H, electrons,
when viewed in an appropriate frame of reference, tend to
move along signature figure-of-eight trajectories (Fig. 6a)
with characteristic amplitudes xE and xH of oscillations along
the electric field E and along the normal to this field. Broadly
discussed in the literature is the question as to whether the
dipole approximation and, hence, the Keldysh photoioniza-
tion theory are applicable for magnetic fields H0 inducing
electron oscillations along the normal to the electric field with
an amplitude xH comparable with the Bohr radius a0. This
requirement on the magnetic field is usually expressed as
b0 � Up=�2mco�. The intensity of the driver field IH needed
to fulfill this requirement scales as o3 with the driver
frequency, growing faster as a function of the driver
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frequency than the field frequency Irel required to accelerate
electrons to relativistic velocities, Irel / o2. Viewing the
problem from this perspective, one has to conclude that, in
the long-wavelength range, the quasistatic tunneling regime,
predicted by theKeldysh theory, is possible only within a very
limited parameter space or is not possible at all.

Questioning these aspects of laser-induced ionization is
indeed timely [97, 98], as high-power laser sources of
ultrashort pulses in the mid-infrared developed in the past
few years [100±102, 104±110] provide an access to the
pertinent parameter space where such unusual regimes of
laser±matter interactions can be studied as a function of the
driver wavelength (Fig. 6b). With these emerging laser
technologies in mind, we will examine in greater detail the
condition b0 � a0 and its significance for the applicability of
the dipole approximation and the feasibility of the quasista-
tionary tunneling regime as predicted by the Keldysh theory.

To this end, we use the following estimate on the ratio
xH=xE of electron oscillation amplitudes in the presence of
electric and magnetic fields:

xH
xE
� eE

moc
: �55�

This estimate leads us to a natural result: xH=xE � vE=c,
where vE � eE=�mo�.

Now, setting xH � a0, we find that the magnetic-dipole
term of themultipolar expansion of the interactionHamilton-
ian is still much smaller than the electric-dipole term for all the

wavelengths l4 8pa0. Notably, except for a numerical
factor, this inequality is no different from the condition of
Eqn (54), defining the short-wavelength boundary of the
dipole approximation.

The magnetic-dipole term in the multipolar expansion of
the interaction Hamiltonian remains small compared to the
electric-dipole term as long as vE 5 c. Since vE=c �
gÿ1�vK=c�, where vK � �2I0=m�1=2, this condition is equiva-
lent to

g5 a ; �56�
where a � 1=137 is a fine-structure constant.

The condition of Eqn (56), however, does not necessarily
imply the existence of a low-frequency boundary for the
applicability of the Keldysh photoionization theory. Indeed,
when the condition of Eqn (56) is satisfied, electrons are
accelerated up to relativistic speeds within a typical time trel
on the order of a quarter of the field cycle, trel � T0=4.
However, photoionization in this regime, as shown in
Sections 4±6 of this review, occurs within a typical time of
gT0=�2p�. Since the condition of Eqn (56) is assumed to be
satisfied, i.e., g5 a5 1, we have gT0=�2p�5 trel. Thus,
photoionization occurs within an interval of time that is too
short for an electron to acquire a relativistic velocity. Thus,
inequality (56) does not necessarily imply a limitation on the
applicability of the Keldysh theory. An illuminating, in-depth
discussion of photoionization in the relativistic regime and
methodological questions related to the gauge choice can be
found in Refs [24, 116±128].

Recent experimental studies [105, 107, 129±131] reveal
unusual properties of the ultrafast nonlinear-optical response
of materials in the mid-infrared. However, a satisfactory
explanation of these results can be found within the frame-
work of the dipole approximation and Keldysh photoioniza-
tion theory, perhaps, extended to include the subcycle
dynamics of photoionization. These questions will be dis-
cussed in the next section of this review.

8. Subcycle dynamics of photoionization
and new regimes of nonlinear optics

Analysis of the ultrafast electron dynamics behind photo-
ionization, resolved on a time scale faster than the cycle of the
driver field, gives a key to understand a broad class of unusual
nonlinear-optical phenomena observed in experiments with
ultrashort laser pulses [5, 11, 132±135]. The properties of the
nonlinear-optical response become especially intriguing and
complex whenmid-infrared ultrashort laser pulses are used in
laser±matter interaction experiments [100, 101, 136]. The
dipole approximation remains valid for the description of
the nonlinear-optical response of matter and nonlinear-
optical properties of materials in such studies within the
range limited by Eqns (54) and (56). In the weak-field
regime, the polarization induced in the medium can be
expanded as a perturbative power-series expansion [137].
The coefficients of such an expansion define nonlinear-
optical susceptibilities, which are usually calculated by
summing over the states of the discrete spectrum of the
system. In fact, it is this approximation, limiting summation
to the discrete states of the system, that often becomes
insufficient, as recent experiments show, for an accurate
description of the nonlinear-optical response of matter to
high-intensity fields in themid- and long-wavelength-infrared
ranges [138].
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To examine this question, it is convenient to write the
wave function of an optical electron as a sum c�r; t� �
cb�r; t� � cf�r; t� of two terms, cb�r; t� and cf�r; t�, represent-
ing negative- and positive-energy parts of the wave function,
respectively. Negative energies correspond to bound electron
states. Positive energies, on the other hand, correspond to an
infinitemotion of an electron. Such states are often referred to
as free states, although the wave function cf�r; t� is certainly
different from the wave function of a free electron in the
absence of any potential.

The longitudinal component of the dipole moment is
then given by a sum of three terms (Fig. 7), dz�t� �
dbb�t� � dff�t� � dbf�t�, which isolate the contributions of
bound±bound �dbb�t��, free±free �dff�t��, and bound±free
�dbf�t�� electron transitions, respectively. In the presence of
an external mid- or long-wavelength-infrared driver field, the
dynamics of these three components of the dipole moment is
strikingly different.

In Figs 8 and 9, we present typical radiation spectra
and the time dynamics of radiation amplitudes abb; ff; bf /
q2dbb; ff;bf=qt 2 related to different components of the dipole
moment as predicted by the numerical solution of the time-
dependent SchroÈ dinger equation for a hydrogen atom. The
shape of the radiation spectrum related to the dipole
moment dbb is typical of the weak-field, perturbative
regime within the entire range of field intensities I0 and
wavelengths l0 studied in calculations in Fig. 8. The
intensity of low-order harmonics in the spectrum of dbb
rapidly decays as a function of the harmonic order
(Fig. 7a), indicating that the nonlinear response related to
this component of the dipole moment can be accurately
described within the framework of perturbation theory, in
terms of power-series expansion of the nonlinear polariza-
tion in the driver field.

Within the same range of I0 and l0, the spectrum of
radiation related to bound±free transitions (the dbf compo-
nent of the dipole moment) displays an extended plateau
(Figs 7b, 8e), which can span over hundreds of harmonics and
within which the harmonic intensity remains almost constant.
These features in harmonic spectra clearly indicate the
nonperturbative character of the nonlinear-optical response.
The cutoff of the plateau in harmonic spectra, as shown by
Corkum in his seminal work [139], is determined by the
ionization potential and the kinetic energy acquired by an
electron driven by an external field by the instant of
recollision with the parent ion (Figs 7b, 9). This regime of
interaction of high-intensity ultrashort pulses with matter is
broadly used for the generation of attosecond pulses and

attosecond metrology of ultrafast processes in matter (see
Fig. 9) [11, 120].

The properties of the nonlinear-optical response due to
free±free electron transitions are strikingly different. For low
field intensities I0 and short wavelengths l0, the radiation
amplitude aff, related to free±free transitions, is at least one to
two orders of magnitude lower than the abb amplitude (see
Fig. 8). However, as the field intensity I0 and the wavelength
l0 increase, the ratio of the aff and abb amplitudes radically
changes. For high-intensity fields in the mid-infrared range,
free±free transitions, as can be seen in Fig. 8, tend to dominate
over bound±bound transitions, emitting much more intense
optical harmonics.

To understand the physics behind the enhancement of the
nonlinear-optical response of free±free electron transitions to
low-frequency fields, it is instructive to examine the behavior
of the population of continuum states rf�t� �

�
V jcf�r; t�j2 dr.

For low field intensities I0 and short driver wavelengths l0,
the electron wave function is strongly localized near the
atomic core. The continuum population in this regime
displays oscillations, following, as shown in Fig. 9a, the
cycles of the driver field. Such oscillations in rf�t� indicate
that most of the electrons that undergo ionization within one
field half-cycle tend to return to the atomic core, recombining
into bound states, within the next field half-cycle (see Figs 8
and 9). Trajectories of such electrons calculated by numeri-
cally solving the time-dependent SchroÈ dinger equation [138]
are presented in Fig. 9a. In this regime, the continuum
population at any moment of time is low compared to
bound-state populations, defined by the expansion coeffi-
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b c
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Figure 7. (Color online.) Optical nonlinearity due to the dipole moment

related to bound±bound (a), bound±free (b), and free±free (c) electron

transitions.
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cients jan; l�t�j2 of the wave function

cb�r; t� �
XN
n�1

Xnÿ1
l�0

an; l�t�cn; l�r�

in the eigenfunctions of electron states with quantum
numbers n and l.

Higher field intensities and longer wavelengths l0 increase
the amplitude of field-driven electron motion (see Fig. 8). In
the limit of classical dynamics, the amplitude of field-induced
electron oscillations scales as E0l

2
0 with the field E0 and the

driver wavelength. Due to the quasiclassical character of
electron dynamics in continuum states, this tendency, typical
of classical electron dynamics, tends to show up in quantum
electron dynamics as well. In an external field of a higher
intensity and longer wavelength, the electron wave function is
no longer tightly localized near the atomic core. Instead, it is
distributed in an extended area. The energy acquired by
electrons accelerated by the external field increases with the
growth in the field intensity and the wavelength of the driver
field (scaling as I0l

2
0 in the classical limit). In this regime, the

intensity of low-order harmonics emitted by the dff compo-
nent of the dipole moment becomes much higher than the
intensity of low-order harmonics emitted through bound±
bound electron transitions (Fig. 8e). Thus, the time-resolved
analysis of subcycle electron dynamics of photoionization
offers important insights into a broad class of unusual
nonlinear-optical phenomena observed in the field of high-
intensity ultrashort pulses in the mid- and long-wavelength-
infrared ranges.

9. Detection of electron tunneling dynamics

Photoionization is one of the key fundamental processes in
laser±matter interactions. Photoelectrons generated as a
result of laser-induced ionization on an extremely short time
scale launch cascades of diversified, complicated, strongly
coupled phenomena in physical, chemical, and biological
systems (Figs 10a, b). While the methods for studying these
secondary, much slower processes are well developed,
methodology and instrumentation for the investigation of
ultrafast processes underlying photoionization, including, in
the first place, subfemtosecond laser-induced electron tunnel-
ing dynamics, are still in their infancy [140].

Rapidly progressing methods of attosecond metrology of
ultrafast processes offer means for a direct time-resolved
detection of the photoelectron yield [85, 87]. This constantly
progressing methodology provides unique information on
laser tunneling, helping understand the fundamental physical
properties of electron tunneling in the field of high-intensity
laser pulses and providingmeans to employ the photoelectron
yield of laser-induced tunneling for the investigation of
molecular dynamics with an unprecedented time resolution.
The recently developed method of two-channel detection of
tunneling photoelectrons [87] enables a parallel measurement
of photoelectron currents induced by two adjacent half-cycles
of the laser field, offering a unique tool for the investigation of
ultrafast dynamics of atoms and molecules (see Fig. 5).
Recent experiments demonstrate that this stereo-ATI tech-
nique can be successfully combined with fiber sources of
single-cycle light pulses [91].

As a natural limitation, however, methods of attosecond
spectroscopy and metrology based on direct photoelectron-
current detection are difficult to apply for time-resolved
studies of ultrafast photoionization processes in the bulk of
solids and liquid-phase media. In view of the widespread use
of optical methods for the microscopy of biological systems
[141±147] and a rapid progress in optical methods of brain
research and neurostimulation [148±158], the demand for all-
optical methods for photoionization detection in biological
systems is constantly growing. Even for electron densities well
below the levels creating a risk of optical breakdown,
photoionization in biological systems, as a thresholdless
process, gives rise to photoelectrons [159±161], some of
which become solvated (Fig. 10a) and produce reactive
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ics as they undergo rescattering by the ion.
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oxygen species (Fig. 10b), causing a death of cells and
producing a background signal in optical microscopy and
fiber-based detection systems.

All-optical methods for the detection of ultrafast laser-
induced ionization (Figs 10c, d) open ways to address these
problems. As one of the most promising approaches, non-
linear-optical methods based on optical harmonic generation
andmultiwave mixing using nano- and picosecond pulses [13,
162±165], as well as cutting-edge femto- [166, 167] and
attosecond [168] field waveforms (Figs 10c, d), offer unique
tools for the detection of ultrafast photoionization.

Rapidly progressing laser technologies and new methods
of characterization of nonlinear-optical signals arising as a
result of interaction of optical fields with an ionizing system
give rise to novel methods of ultrafast ionization detection in
gases [11, 16, 135], solids [17, 169±172], and biological systems
[173] (Figs 10c, d). Unique information on subfemtosecond
photoionization dynamics can be retrieved from the spectra
of optical harmonics [16, 17]. A careful analysis of such
spectra enables an all-optical detection of ultrafast ioniza-
tion phenomena in the gas and condensed phases [17, 169±

172]. A small fraction of an optical cycle serves as a
subfemtosecond probe in such an experimental scheme,
inducing ultrafast electron tunneling (Fig. 10c). The tem-
poral profile of the electron density, rapidly building up near
the peak of the field, displays steep steps locked to half-cycles
of the laser field. Quantitative information on photoioniza-
tion dynamics can now be retrieved from the spectra of
optical harmonics, viewed as the Fourier transform of the
temporal profile of the electron density [17]. Central to this
method of photoionization detection is a detailed under-
standing of the spatiotemporal dynamics of an ultrashort
laser pulse in an ionizing medium [174].

Figure 11a presents the results of calculations performed
with the use of the Yudin±Ivanov model of tunneling
ionization [175]. The solid line in this figure shows a temporal
profile of the absolute value of the correction to the refractive
index jDnpj induced by free-electron generation by an
ultrashort light pulse with an intensity of 8:5� 1014 W cmÿ2,
providing the tunneling regime of photoionization. Since the
rate of tunneling ionization reaches its maximum values near
the peaks of the instantaneous field intensity (shown by the
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dashed line in Fig. 11a), the temporal profile of the free-
electron density and the related correction Dnp to the
refractive index display well-pronounced steps (visible in the
solid line in Fig. 11a).

Such ultrafast changes in the electron density in a gas
ionized by an ultrashort pulse have been recently detected
experimentally by means of mass spectrometry [85] and
optical-harmonic generation [16, 17]. Each step in the
temporal profile of Dnp is locked to the related half-cycle of
the laser field (Fig. 11a). A typical buildup time of the electron
density within the most intense field half-cycle in Fig. 11a is
estimated as approximately 0.5 fs. Such ultrafast variations in
the local refractive index can be employed for high-speed
switching of optical signals in fiber-optic systems [176, 177]
and semiconductor waveguide microcavities [178]. Steep
changes in the electron density within each field half-cycle,
tightly confined to the peak of the field intensity, translate
into radial-coordinate-dependent field-cycle distortions
across the laser beam (Figs 11b±d). Information on such
distortions and, hence, information on ultrafast ionization
processes can be retrieved from the spectrum of an ultrashort
laser probe [16, 17, 179, 180].

10. Keldysh formalism and a universal dispersion
profile of optical nonlinearity

The Keldysh formalism for the analysis of photoionization
and multiphoton absorption in solids offers important
insights into the universal properties of dispersion of the
nonlinear-optical response related to interband transitions in

semiconductors and dielectrics [181, 182]. These properties of
dispersion play an important role in the spatiotemporal
dynamics of ultrashort light pulses interacting with solid-
state semiconductors and dielectrics [183, 184]. The prob-
ability of M-photon absorption bM calculated within the
framework of the Keldysh formalism and its generalizations
[185] is related to the imaginary part of the nonlinear-optical
susceptibility w �2Mÿ1��o; . . . ;o�. The pertinent Kramers±
KroÈ nig relation for the nonlinear-optical susceptibility [186]
can be written as

w �n��o1;o2; . . . ;on�

� 1

ip
p:v:

�1
ÿ1

w �n��o1;o2; . . . ;oiÿ1;O;oi�1; . . . ;on�
Oÿ oi

dO ;
�57�

where p.v. stands for the principal-value integration by
Cauchy.

As can be seen from Eqn (57), to find the real part of the
nonlinear-optical susceptibility w �2Mÿ1��o1; . . . ;oM� through
theKramers±KroÈ nig relation, we need to know the imaginary
part of the frequency-nondegenerate nonlinear optical sus-
ceptibility w �2Mÿ1��o1; . . . ;oM�. Causality also dictates the
following Kramers±KroÈ nig relation for the changes in the
refractive index Dn�o; e� and absorption coefficient Da�o; e�
caused by the same causal factor, described by the variable e
[182, 186]:

Dn�o; e� � c

p
p:v:

�1
0

Da�o 0; e�
o 0 2 ÿ o2

do 0 : �58�

T
im

e,
fs

20

10

0

ÿ10

ÿ20
ÿ150 ÿ100 ÿ50 0 50 100 150

r, mm

b

T
im

e,
fs

20

10

0

ÿ10

ÿ20
ÿ150 ÿ100 ÿ50 0 50 100 150

r, mm

c

T
im

e,
fs

20

10

0

ÿ10

ÿ20
ÿ150 ÿ100 ÿ50 0 50 100 150

r, mm

d

0.0025

jDnpj
0.0020

0.0015

0.0010

0.0005

0

1.0

F
ie
ld

in
te
n
si
ty
,a

rb
.u

n
it
s

0.8

0.6

0.4

0.2

0
ÿ4 ÿ2 0 2 4

Time, fs

a

Figure 11. (Color online.) (a) Dynamics of ionization of neon by a few-cycle laser pulse: temporal profiles of the absolute value of the correction to the

refractive index induced by free-electron generation (solid line) and field intensity (dashed line). The peak intensity of the light field is 8:5� 1014 W cmÿ2.
The pressure of neon is 1 atm. (b±d) Spatiotemporal maps of a few-cycle light pulse in a gas medium (neon at a pressure of 20 bar) undergoing

photoionization: (b) at a distance of 1.5 mm before the focus, (c) in the focus, and (d) at a distance of 1.5 mm behind the focus.

November 2017 Keldysh photoionization theory: through the barriers 1103



In a particular case of two-photon absorption (TPA),
Eqn (58) relates the change in the refractive index Dn�o;O�
induced at the frequency o by a light field with a frequency O
to the integral of the change in the absorption Da�o;O� �
b2�o;O�IO at the frequency o, with b2�o;O� being the
coefficient characterizing the probability of two-photon
absorption of photons with frequencies o and O and IO
being the intensity of the field with frequency O. In this case,
we should take e � O in Eqn (58).

The solid-state photoionization formalism leads to the
following expression for the S-matrix [182]:

S � ip
�h

eapvc
mc

X
k; l

Jk�y1�Jl�y2�
h
A1d

ÿ�k� 1�o1 � lo2 � ovc

�
� A1d

ÿ�kÿ 1�o1� lo2� ovc

�� A2d
ÿ
ko1� �l� 1�o2� ovc

�
� A2d

ÿ
ko1 � �lÿ 1�o2 � ovc

�i
; �59�

where A1 and A2 are the amplitudes of the vector
potentials of the fields with frequencies o1 and o2, A �
a�A1 cos �o1t� � A2 cos �o2t��, a is the unit polarization
vector,

yi � �mvccoi�ÿ1eAi ka ; mÿ1vc � mÿ1c ÿmÿ1v ;

mc is the effective mass of an electron in the conduction band
and mv is the effective mass of a hole in the valence band,
which is taken negative,

pvc �
i

�h

�
u �c �k; r�Huv�k; r� dr ; �60�

�hovc � Eg ÿ DEvc � DEcv � �h 2k 2

2mvc
; �61�

Eg is the band-gapwidth, andDEvc andDEcv are the quadratic
Stark shifts of the valence and conduction bands.

It is straightforward to see from Eqn (59) that, even in the
case of the simplest multiphoton process, viz., two-photon
absorption, different frequency mixing schemes contribute to
the S-matrix and need to be taken into account. In its general
form, this expression includes both frequency-nondegenerate
multiphoton absorption and Raman-type processes. The
change in absorption Da�o1;o2� due to these processes is
given by [182]

Da�o1;o2� � 210p
5

e 4

m 1=2c 2
E

1=2
p

n�o1�n�o2�E 3
g

F2

�
�ho1

Eg
;

�ho2

Eg

�
I2 ;

�62�

where Ep � 2jpvcj2=m, I2 is the intensity of the field at the
frequency o2, and the function F2�x1; x2� is

F2�x1; x2� � �x1� x2ÿ 1�3=2
27x1x

2
2

�
1

x1
� 1

x2

�2

; x1� x2 5 1 �63�

for two-photon absorption and

F2�x1; x2� � �x1 ÿ x2 ÿ 1�3=2 ÿ �x2 ÿ x1 ÿ 1�3=2
27x1x

2
2

�
1

x1
ÿ 1

x2

�2

�64�

for the Raman-type process.
Equation (58), jointly with Eqns (62)±(64), gives the I-

intensity-dependent change in the refractive index Dn � n2I.

The nonlinear refractive index n2 in Dn includes both TPA
and Raman-type parts. The TPA part of this coefficient is
defined by the real part of the third-order nonlinear-optical
susceptibility w �3�TPA � w �3��o1;ÿo2;o2;o1� and contributes
to Dn through the transformation of Eqn. (58) performed
with Da�o1;o2� related to two-photon absorption. The
electronic Raman part of n2 is defined by the real part of the
nonlinear-optical susceptibility w �3�Ram � w �3��o1;o2;ÿo2;o1�
and contributes toDn through the transformation of Eqn (58)
performed withDa�o1;o2� corresponding to the Raman-type
process.

When used jointly with Eqn (62) for Da�o1;o2�, Eqn (58)
dictates the following frequency dependence of the nonlinear
refractive index:

n2�o� � K
E

1=2
p

n0E 4
g

G2

�
�ho
Eg

�
; �65�

where

G2�x� � 2

p
p:v:

�1
0

F2�x; x�
x 2 ÿ x 2

dx ; �66�

and K is a material-nonspecific constant.
Equation (65) describes a universal dispersion profile of

the nonlinear refractive index for a broad class of dielectric
materials [182, 186] (Fig. 12a). In a typical situation of laser±
semiconductor interaction, when the frequency of the laser
field o is on the order of half the minimum two-photon
absorption frequency, oTPA � Eg=�2�h� (with the Franz±
Keldysh effect neglected), that is

2o � Eg

�h
; o5

Eg

�h
; �67�

the nonlinear-optical susceptibility w �3�TPA is much larger than
the w �3�Ram susceptibility, which does not involve any terms close
to aTPAor any other resonance. In this regime, theKerr-type
optical nonlinearity of a solid is mainly determined by two-
photon absorption (Fig. 12a).

When conditions of Eqn (67) are satisfied, the exact
Kramers±KroÈ nig relation can be replaced with an approx-
imate relation [181], which is identical in its form to Eqn (58),
but where the replacement

Da�o;O� ! b2

�
o� O

2

�
IO �68�

has been made. Equation (68) implies that the function
Da�o;O� used in the exact Kramers±KroÈ nig relation of
Eqn (58) is replaced by the product b2��o� O�=2�IO,
involving the b2 TPA probability calculated using the
Keldysh formalism or one of its generalizations and the
radiation intensity at the frequency O. Rigorously, with such
a replacement made, Eqn (58) is no longer consistent with
causality [182]. To verify this, we can write the Kramers±
KroÈ nig relation for a nonlinear-optical susceptibility of the
form of Eqn (57). Since nÿ 1 frequency arguments of the
nonlinear susceptibility in this relation are free parameters,
which can take arbitrary values within the entire spectral
range where the nonlinear susceptibility is still defined, there
is, clearly, no way to find a relation that would express the
multiphoton-absorption probability functions bq�1�o�,
which depend on only one frequency argument, through the
nonlinear refractive index n2q�o�, where q is an integer.
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It is also clear from this causality-based argument that, in
a particular case of two-photon absorption with the condi-
tions of Eqn (67) satisfied, the transformation of Eqn (58)
with a replacement Da�o;O� ! b2��o� O�=2�IO can provide
a reasonably accurate description of the dispersion profile of
n2�o� for a broad class of dielectrics [181]. Predictably, the
error of this approximation grows as the radiation frequency
approaches the edge of the band gap [182].

However, an extension of this approximation to higher-
order Kerr-type optical nonlinearities, described in terms of
nonlinear coefficients n2q with q > 1, encounters fundamental
difficulties related to the causality issue as explained above.
To have a better feeling of this problem, it is instructive to
examine the simplest case of a higher-order Kerr effect
(HOKE) and explore an attempt to use the replacement of
Eqn (68) for a simplified calculation of the first HOKE term
in the expansion Dn � n2I� n4I

2 of the intensity-dependent
correction to the refractive index. Using Eqn (58), we can
express the field-induced change in the refractive index
Dn�o;O� � n2�o;O�IO through the nonlinear correction to
the absorption coefficient Da�o 0;O�. Then, settingo � O, we
find the nonlinear refractive index n2, which is manifested in
many nonlinear-optical experiments and can be measured by
nonlinear-optical methods.

The HOKE coefficient n4 meets the Kramers±KroÈ nig
relation that extends Eqn (58) to the higher-order, quadratic
in the field intensity correction to the refractive index

Dn�o;O1;O2� � n4�o;O1;O2�IO1
IO2 ;

expressing it through the pertinent field-induced absorption
change

Da�o 0;O1;O2� � b3�o 0;O1;O2�IO1
IO2

;

where b3�o 0;O1;O2� is a coefficient that characterizes the
probability of absorption of three photons with frequencies
o 0,O1, andO2. The generalized Keldysh formalism [185, 187,
188] leads to the following general expression for the
coefficient bM, characterizing the probability of M-photon
absorption [185] (Fig. 12a):

bM /
�
e 2

�hc

�M

�hMÿ1 P 2Mÿ3

nM
0 E 4Mÿ5

g

FM

�
M�ho
Eg

�
; �69�

where P / �hpcv=m, FM � �M�ho=Eg ÿ 1�s=2�M�ho=Eg�4Mÿ3,
and s � 3 for evenM and 1 for oddM.

The full procedure of n4�o;O1;O2� calculation using
the Kramers±KroÈ nig relation between Dn�o;O1;O2� and
b3�o 0;O1;O2�IO1

IO2
is perfectly legitimate. Such a procedure

gives an expression for n4�o;O1;O2�, which can be used to
define the nonlinear coefficient n4�o� � n4�o;o;o� degen-
erate in its frequency arguments, which shows up in a broad
class of nonlinear-optical experiments. We start facing
fundamental difficulties with causality, however, if we
attempt to further simplify this procedure by adopting a
replacement

Da�o;O1;O2� ! b3

�
o� O1 � O2

3

�
IO1

IO2
�70�

or

Da�o;O;O� ! b3

�
o� 2O

3

�
I 2
O : �71�

With such a replacement, Dn and Da, as explained above,
no longer satisfy theKramers±KroÈ nig relation.We encounter
another serious difficulty if the frequencyo0 of the driver field
is chosen in such away as to satisfy the conditions of Eqn (67),
which is often the case in laser±semiconductor interaction
experiments. Integration in the variable o 0 in the Kramers±
KroÈ nig relation then probes only the tail of the three-photon
absorption coefficient stretching from 2o0 � Eg=�h to infinity
(Fig. 12a). However, with the replacement of Eqn (68), this
integration probes the entire frequency profile of the three-
photon absorption coefficient b3�o�, including its peak near
o � Eg=3�h (Fig. 12b). In its correct version, the Kramers±
KroÈ nig relation does not involve integration around this
peak, as 2o0 � Eg=�h > Eg=3�h (Fig. 12b). The HOKE coeffi-
cient n4 calculated with such a replacement (unjustified from
the causality standpoint) corresponds to a completely
different frequency range (Fig. 12b) and is not applicable to
an analysis of Kerr-nonlinearity saturation at the frequency
o0. Because of these issues, the above-specified simplifica-
tions may result in unnecessarily inaccurate predictions for
the HOKE coefficients and may even lead to n4 values of the
same sign as n2, offering no explanation for the saturation of
optical nonlinearity.
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In search for a more consistent method for the analysis of
higher-order optical nonlinearities, we resort to Eqn (59) for
the S-matrix. We emphasize once again that, in its general
form, this expression includes all the pertinent multiphoton-
absorption and Raman-type nonlinear-optical processes of
different orders with all possible combinations of laser
frequencies (Fig. 12b). We will show now that, for each
perturbative nonlinear-optical process described by a non-
linear-optical susceptibility w �3�, giving rise to a Kerr-effect
correction to the refractive index, we can isolate a higher-
order, w �5� nonlinear-optical process that saturates the w �3�-
related Kerr nonlinearity.

To this end, we consider the S-matrix term that describes
absorption of two photons with the frequency o1 �k � ÿ1,
l � 0�,

STPA
ÿ1; 0 �

ip
�h

eapvc
mc

A1Jÿ1�y1�J0�y2�d�ovc ÿ 2o1� : �72�

In a weak-field regime, y1; 2 5 1, this process corresponds
to the w �3�-relatedKerr-type nonlinearity characterized by the
nonlinear coefficient n2 with a dispersion profile as described
by Eqn (65). It is straightforward to see that the k � ÿ2, l � 0
term,

SHOKE
ÿ2; 0 � ip

�h

eapvc
mc

A1Jÿ2�y1�J0�y2�d�ovc ÿ 3o1� ; �73�

and the k � ÿ1, l � ÿ1 term,

SHOKE
ÿ1;ÿ1 �

ip
�h

eapvc
mc

A1Jÿ1�y1�Jÿ1�y2�d�ovc ÿ 2o1 ÿ o2� ; �74�

in Eqn (59) correspond to a higher-order, w �5� nonlinear
susceptibility, giving rise to a higher-order Kerr effect.

Since the field is assumed to be weak in this consideration,
y1; 2 5 1, we have Jn�x� � xn=�2 nn!�. Then, using the identity
Jÿn�x� � �ÿ1�nJn�x�, we find that each of the terms (73) and
(74) gives rise to a quadratic in the field intensity nonlinearity
with n4 whose sign is opposite to the sign of the n2 coefficient.
Thus, for each n2 Kerr-nonlinearity term in the expression for
the S-matrix, we can always isolate the terms corresponding
to a higher-order, quadratic in the field intensity optical
nonlinearity that saturate the n2 nonlinearity.

In the weak-field regime, y1; 2 5 1, Eqns (73) and (74) give

z � jS
HOKE
ÿ2; 0 j2
jSTPA
ÿ1; 0j2

� ZI ; �75�

where

Z � 16pe 2

mc�h 2n0

Eg

o4

���� 3�ho
Eg
ÿ 1

���� �76�

is an order-of-magnitude estimate for the ratio of the w �5�

nonlinearity to the w �3� Kerr-type nonlinearity.
Notably, the maximum of Z is achieved atom � 4Eg=�9�h�.

This pointmakes the dominant contribution to the sum in k in
Eqn (59). When the laser frequency is roughly half the band-
gap frequency, 2�ho � Eg Ða relation typical of laser±
semiconductor interaction experimentsÐ the frequency o is
close to om. Equation (76) then leads to

Z � 128pe 2�h 2

mcn0

1

E 3
g

: �77�

The saturation intensity can then be estimated from z � 1
as

Is / mcn0

e 2�h 2
E 3
g : �78�

It is instructive to compare Eqn (78) with an estimate on
the saturation intensity for the TPA coefficient that can be
found from Eqn (69),

I 0s /
n0cE

4
g

e 2P 2
; �79�

where P � pcv�h=m.
With mvc � m and, hence, p 2

cv � Egm=2, we find from
Eqn (79)

I 0s /
2n0cm

e 2�h 2
E 3
g ; �80�

which fully agrees with Eqn (78) for Is.
In the opposite limiting case ofo5Eg=�h, which is typical

of the interaction of laser radiation in the visible, near-, and
mid-infrared ranges with wide-gap dielectrics, Eqn (76) yields

Z � 16pe 2

mc�h 2n0

Eg

o4
: �81�

In this regime, the saturation intensity is estimated as

Is / mc�h 2n0
e 2

o4

Eg
: �82�

The saturation intensity defined by Eqn (82) exhibits an
o4 scaling, which is archetypical of nonresonant light
scattering. Such a scaling offers an important insight into
the enhancement of higher-order nonlinear-optical effects
observed in the interaction of mid-infrared radiation with
wide-band dielectrics. It is instructive to compare the ratio of
Z estimates for two characteristic laser wavelengthsÐ
l1 � 0:8 mm and l2 � 4 mm. The former is chosen as a typical
wavelength of titanium sapphire lasers, widely used in
ultrafast optics. The latter wavelength, on the other hand,
is a typical wavelength of recently developed sources of
mid-infrared radiation based on optical parametric
chirped-pulse amplification. Due to a unique combination
of the output wavelength, a high peak power, and a short
output pulse width, such sources help reveal new regimes
of nonlinear-optical interactions. Using Eqn (82), we find
Z�l2�=Z�l1� � 625. Thus, in experiments performed in the
mid-infrared range, e.g., at l2 � 4 mm, much stronger higher-
order nonlinear-optical effects should be expected. This
tendency is clearly observed in experiments on soliton self-
compression and laser-induced filamentation of ultrashort
high-peak-power mid-infrared pulses propagating in wide-
gap dielectrics [189±192]. Experiments of this class are
discussed in Section 15 of this review.

11. Photoelectric effect in an intense laser field
and attosecond pulses of electron current

The discovery of the photoelectric effect [48, 49] is one of the
milestone achievements of natural sciences in the 19th century
[50]. The photoelectric effect is widely used in present-day
experiments as a powerful spectroscopic technique and a
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method for the detection of electromagnetic radiation,
providing a principle of operation for a vast arsenal of
physical measuring instruments. When combined with cut-
ting-edge laser sources of ultrashort pulses, the photoelectric
effect enables new methods of time-resolved studies of
ultrafast processes in matter [193, 194]. The photoelectric
effect is at the heart of the rapidly growing area of time-
resolved structure analysis of complexmolecular systemswith
ultrashort photoelectron pulses [195±199]. One of the promis-
ing directions of attosecond technologies involves time-
resolved photoelectron spectroscopy and microscopy for the
investigation of ultrafast electron dynamics and attosecond
tomography of wave functions in atoms and molecules [199].
Local field enhancement provided by metal nanostructures
helps observe new regimes of the photoelectric effect accom-
panied by enhanced nonlinear-optical interactions [200, 201
(Fig. 13).

We consider a generic experimental arrangement with a
metal tip irradiated by an intense few-cycle laser pulse. A bias
voltage U is applied to the metal tip to induce a tunneling
current through a gap between the tip and a sample in a
standard tunneling or atomic-force microscopy scheme.With
image charge effects included in accordance with the Fowler±
Nordheim treatment (see Section 2.2), the density of the
tunneling electron current is given by

j � e 3F 2

16p2�hFy 2�x� exp
�
ÿ 4�2m�1=2F 3=2v�x�

3�heF

�
; �83�

where e and m are the electron charge and mass, F is the
electric field across the tip±sample gap,F is the work function
(see Fig. 13), y�x� and v�x� are the Nordheim elliptical
functions of x � e 3=2Fÿ1�F=4p�1=2.

We represent the electric field in Eqn (83) as a sum

F�t� � E0 � ~E�t� ; �84�
where E0 is the dc component related to the bias voltage U
and ~E�t� � E�t� exp �ÿiot� � c:c: is the ac field of the laser
pulse, E�t� � E�t�n, E�t� is the field envelope, n is the unit
vector along the normal to the metal surface, and o is the
carrier frequency of the laser field.

In the case of an ideally periodic laser field, the current
density given by Eqn (83) is also periodic. The Fourier-series
expansion of this function yields

j�t� �
X
n

jn exp �inot� ; �85�

where jn is the amplitude of the nth Fourier harmonic.
The harmonic modulation of the tunneling current

translates into the harmonics in the spectrum of a laser pulse
interacting with the metal tip. Since the function j�t� is a
periodic function whose period is defined by the field cycle
T0 � 2p=o, the current density j and, hence, the spectrum of
the optical field transmitted through the tip±sample gap
feature both odd- and even-order harmonics of o. This is in
stark contrast with the case of optical harmonic generation in
a gas medium, where the tunneling ionization rate is
controlled by the field intensity, rather than the field itself.
Physically, this important difference in the spectra of optical
harmonics is due to the symmetry of field±target interaction
geometry. In a gas medium, the interaction of the light field
with a gas target is centrosymmetric, suppressing even-order
harmonics. When a light field interacts with a metal tip,
however, the central symmetry is broken, lifting the prohibi-
tion on even-harmonic generation.

For a typical laser intensity of 0.1 MW cmÿ2

used to illuminate a gold tip (F � 5 eV) with a bias
field E0 � 1 kV mmÿ1 � 107 V cmÿ1, we find k �
4�2m�1=2F 3=2v�x0��3�heE0�ÿ1 � 70, with x0� x�E � 0�. Thus,
the ratio kE=E0 5 1 is a small parameter. We can therefore
us a power-series expansion in this parameter in Eqn (83) to
find for a laser field ~E�t� � E�t� cos �ot�

j � e 3E 2
0

16p2�hFy 2�x0�
exp �ÿk�

�
1ÿ kE

E0
cos �ot�

� 1

2

�
kE
E0

�2

cos2 �ot� ÿ 1

6

�
kE
E0

�3

cos3 �ot� � . . .

�
: �86�

As can be seen from Eqn (86), the amplitude of the
second-harmonic response scales as E 2 with the amplitude
of the laser field. Since E � En, the ISH / I 2 scaling of the
second-harmonic intensity translates into the ISH / cos4 a
dependence of the second-harmonic intensity on the angle a
between the polarization vector of the laser field and the
normal to the metal surface, which agrees well with experi-
ments [201].

We will now demonstrate that an ultrafast modulation of
the current of photoelectrons tunneling from a metal
nanostructure induced by an ultrashort light pulse provides
a means to generate attosecond electron pulses. To this end,
we use Eqn (83) with jE0j5 jEj and ~E�t� � E�t� cos �ot� to
derive the following equation for the photoelectron pulse
width at the 1=e level:

cos �otel� � 1

1� d
; �87�

where d � �3=4��he�2m�ÿ1=2Fÿ3=2�v��x��ÿ1fE, �x � x�t � 0�,
and f is the local field enhancement factor provided by the
metal nanostructure.

Under typical experimental conditions, a laser field on the
order of 104 V cmÿ1 induces a sufficiently strong photoelec-
tron current from a metal tip (in excess of 106 electrons per
second for a laser pulse repetition rate of 80 MHz) and is still

E� �N� 1��ho

E�N�ho
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E

VL

F�Up

F

xf�E�

Energy

VL

Figure 13. (Color online.) The photoelectric effect in the field of a high-

intensity ultrashort laser pulse: EF, electron Fermi energy in the conduc-

tion band of ametal;F, work function;Up, electron pondermotive energy;

f �E�, electron density of states in the metal; and VL, potential induced by

the laser field.
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safe from the viewpoint of a laser-induced damage of a metal
tip. With f � 1000, such laser field corresponds to d �
5� 10ÿ3. With a power-series expansion in the small
parameter d, Eqn (87) gives

tel � 1

p

�
d
2

�1=2

T0 : �88�

Using the above estimate for d, we find tel � 1:7�10ÿ2T0.
With T0 � 2:7 fs for 0.8-mm Ti: sapphire laser pulses, this
gives electron pulses with a pulse width tel � 0:1 fs.

12. Ultrafast photoionization dynamics in solids

The physical picture of ultrafast photoionization of solids
resolved on an ultrafast time scale without averaging over
the field cycle is of special interest from the fundamental
point of view and from the standpoint of numerous
applications. Understanding of photoionization dynamics
resolved within the field cycle would help achieve an
ultimate time resolution in attosecond time-resolved
studies, provide important insights into the fundamental
aspects of quantum tunneling, allow solid dielectrics to be
switched to the conducting state on the subfemtosecond
time scale, and enable a high-speed control of optical
signals in fiber-optic systems [176, 177] and semiconduc-
tor waveguide microcavities [178], opening routes toward
petahertz optoelectronics [9, 10, 84, 169, 202].

For solid-state dielectrics, a field-cycle-resolved photo-
ionization theory applicable to laser pulses of an arbitrary
pulse shape and pulse width has been developed in Ref. [203].

The theory of photoionization developed in this work is not
limited to electron bands with a parabolic dispersionÐ the
assumption used in the canonical version of the Keldysh
photoionization theoryÐbut can be applied to more
complicated and more realistic dispersion profiles of electron
bands. Analysis of a periodic dispersion profile, as a
particular case, provides important insights into the proper-
ties of photoionization in high-intensity laser fields, where
effects related to Brillouin-zone edges start to play a
significant role. For sufficiently long laser pulses, this general-
ized model of photoionization recovers the results of the
canonical Keldysh theory for multiphoton and tunneling
ionization.

The generalized model of laser-induced ionization shows
that the subcycle dynamics of photoionization may drasti-
cally differ from the predictions of the standard, cycle-
averaging photoionization theory (Fig. 14). Specifically, in
the weak-field regime, the subcycle dynamics of the electron
conduction-band population displays well-resolved oscilla-
tions, which follow the cycles of the driver field (Fig. 14b).
After each field half-cycle, most of the electron population
returns from the conduction band to the valence band. For
long pulses, the generalized photoionization theory recovers
the signature w / I N scaling of the photoionization rate w as
a function of the laser intensity I, with N defined as the
minimum number of photons required to transfer an electron
from the valence band to the conduction band. In the case of
very short pulses, on the other hand, the photon number N
becomes uncertain even in the weak-field regime with g4 1.
Manifestations of the Franz±Keldysh effect are also drasti-
cally different in this regime.
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Figure 14. (Color online.) (a) Electron bands of a semiconductor (dielectric) modified by a laser field. (b) Population of the conduction band in the

presence of an ultrashort laser pulse (shown by the thin line) as a function of time calculated using the canonical Keldysh theory with averaging over the

field cycle (green dashed line) and the generalized Keldysh formalism without time averaging (blue bold solid line).
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13. Optical breakdown of solids

Laser-induced breakdown of solid materials has been a
subject of in-depth research since the early days of the laser
era (seeRefs [2] and [3] for review). This effect is one of the key
physical factors limiting radiation fluence in laser experi-
ments. Understanding photoionization is central to an
adequate description of optical breakdown. This problem is
discussed extensively in the literature, starting from the
classical texts of the founders of laser technologies and
nonlinear-optical physics [2±4, 204].

The criterion of optical breakdown is often defined in
terms of the ratio of the electron density r to the critical
electron density rcr for a given radiation wavelength,
r � krcr, where the numerical coefficient k is usually taken
at a level of 0.1. However, in the case of few-cycle laser pulses,
such a criterion encounters serious difficulties. As can be seen
in Fig. 14, such laser pulses can give rise to subcycle
oscillations of the electron conduction-band population.
The peak values of the conduction-band population in these
oscillations can be orders of magnitude higher than the
conduction-band population in the wake of the laser pulse.
In this regime, the r � krcr condition clearly fails, as it ceases
to provide a physically meaningful criterion of optical
breakdown.

As laser sources of ultrashort pulses are rapidly progres-
sing, this regime of laser±matter interactions is quickly
becoming less and less exotic. To define a physically mean-
ingful criterion of optical breakdown in this parameter space,
we need to examine [205] the entire hierarchy of energy
transfer processes, occurring on drastically different time
scales, whereby the energy of an ultrashort laser pulse is
eventually coupled to the crystal lattice (Fig. 15a). Photo-
ionization, which tends to occur on the fastest, femtosecond
time scale (Fig. 15a) triggers the entire sequence of processes
transferring the energy of the laser field to the crystal lattice.

Photoionization itself, as a physical process, is defined by the
dynamics of photoelectrons on an even fasterÐattose-
condÐ time scale (Fig. 15a). An accurate analysis of
ultrafast photoionization dynamics (Fig. 15b) examined
jointly with much slower processes involving energy dissipa-
tion and relaxation accompanying the transfer of laser energy
to the crystal lattice yields a reasonably accurate fit for the
available experimental data for the optical breakdown
threshold of fused silica measured as a function of the laser
pulse width (Fig. 15c).

14. Photoionization
and nonlinear-optical diagnostics of solids

The electron band structure is a map of fundamental proper-
ties of solids, providing a key to understanding complex
physical phenomena in new materials, such as high-tempera-
ture superconductors [206], graphenes [207], and topological
isolators [208]. Widely used methods of X-ray diffraction
analysis [209, 210] allow direct-space crystal-lattice para-
meters to be determined with a high accuracy and can be
employed in the bulk of solids. In contrast to X-ray analysis,
angle-resolved photoemission spectroscopy [211] enables
analysis of the electron band structure. However, this
technique can only be used for surface studies, as it relies on
the detection of photoelectron emission.

Since experimental characterization of the electron band
structure in the bulk of solids is so challenging, all-optical
analysis of the band structure of solids using high-order
harmonic generation (HOHG) in the field of ultrashort laser
pulses in the mid-infrared (mid-IR) range is of considerable
interest for numerous applications. Practical implementation
of this approach becomes possible [170±172, 212±216] due to
recently developed sources of high-power ultrashort pulses in
the mid-IR. The first experiments demonstrating this new
approach to the studies of solids were performed with the use
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of ultrashort laser pulses with a central wavelength of 3.66 mm
[171, 172]. High-order harmonic generation in solids driven
by an intense laser field with such a wavelength is mainly due
to interband processes in solids. The frequencies of the most
informative harmonics in this regime are higher than the
frequency of the energy gap in the band structure of solids,
giving rise to a strong attenuation of harmonic radiation and
limiting the depth at which the analysis of the band structure
of solids is still possible.

As the central wavelength of the laser driver increases, the
ratio between the contributions of intraband currents and
interband transitions to HOHG changes [217]. Recent
experiments [170] have shown that HOHG driven by
ultrashort laser pulses with a central wavelength of 5±7 mm
is mainly due to intraband processes. With a large group of
high-order harmonics generated through intraband mechan-
isms falling within the transparency range of a solid material,
this regime of HOHG is ideally suited for an all-optical
metrology of the electron band structure, enabling electron-
band analysis in the bulk of solids. Polarization analysis of
intraband HOHG allows a full reconstruction of the electron
band structure based on the results of measurements
performed within the transparency range of a solid-state
material [218].

High-order harmonic generation in gasmedia is one of the
key phenomena in strong-field optical physics [5], serving as a
cornerstone for the technology of attosecond pulse genera-
tion [11]. The physical picture of HOHG in solids is much
more complicated and diverse [170±172, 212±217] compared
to HOHG in gases. Similar to a standard classification of
perturbativemechanisms behind optical nonlinearity in solids
[219], it is physically meaningful to distinguish between intra-
and interband mechanisms of HOHG (Fig. 16a). Interband
HOHG is related to field-induced transitions of electrons
from the valence band to the conduction band, leaving holes
in the valence band. The subsequent recombination of
electrons and holes accelerated by the driver field is accom-
panied by the emission of harmonics of the driver field.
Intraband HOHG (Figs 16a, 17) is due to the nonlinear
dependence of the energy of electrons and holes, driven by
the laser field along the conduction and valence bands, on
their momenta (Figs 17d, e), a strongly nonlinear dependence

of the probability of electron transitions from the valence
band to the conduction band on the laser intensity, as well as
electron±hole scattering effects (Figs. 16a, 17a).

The group velocity of a wave packet generated in an
electron band of a solid with a dispersion e�k� is

v�k; t� � 1

�h

de�k�
dk

: �89�

The momentum k�t� of the electron wave packet is given
by

k�t� � ÿ e

�h

� t

ÿ1
E�y� dy ; �90�

where E�t� is the field of an ultrashort driver laser pulse. The
field-driven intraband oscillations of electron wave packets
are thus ideally suited to probe the e�k� profile, offering a
means to map the electron band structure (Fig. 17e).

To identify the properties of this map, we expand e�k� as a
Fourier series,

e�k� � e0 �
X
s

es cos �ska� : �91�

The group velocity of an intraband electron wave packet
driven by a field E�t� � E0 cos �o0t� is written, in a scalar
form, as

v�t� � ÿ
X
s�1

sesa sin
�
soB

o0
sin �o0t�

�
; �92�

where oB � eEa=�h is the Bloch frequency. Such a wave
packet driven by a laser field within an electron or hole band
of a solid (Fig. 17d) radiates odd harmonics of the driver field
(Figs 16a, 17e) with the intensity of theNth harmonic given by

IN / �No0�2
����X

s

sesaJN

�
soB

o0

�����2 : �93�

In the case of low driver intensities, when JN�x� �
�x=2�N=N!, Eqn (93) recovers the I N

0 signature scaling of the
Nth harmonic intensity as a function of the driver intensity I0,
characteristic of the perturbative regime of HHG. Since this
asymptotic expression is valid as long as x < �N� 1�1=2, the
field-intensity borderline between the perturbative and
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Figure 16. (Color online.) (a) High-order harmonic generation due to interband and intraband processes in a solid. Expansion of the conduction band as a

sum of its Fourier harmonics is shown in the upper part. (b) Face-centered cubic crystal lattice of ZnSe (Zn and Se atoms are shown as grey and blue

spheres) and its Brillouin zone. The driver laser pulse and the high-order harmonic pulse behind the polarization analyzer (A) are also shown. The angle y
characterizes polarization of the laser driver field.
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nonperturbative regimes of HHG scales as �N� 1�lÿ20 /
1=Up. Thus, similar to gas media, the pondermotive electron
energy, Up / l20, is a key parameter that controls the regime
of laser±solid interaction.

To understand the key properties of optical harmonics
emitted by electron wave packets driven by a laser field within
an electron or hole band of a solid, it is instructive to represent
the argument of the Bessel functions in Eqn (93) as a ratio
xs � soB=o0 � ke=Ks of the momentum ke � eE0=�ho0 of the
field-driven electron wave-packet oscillatory motion to the
reciprocal lattice vector, Ks � �sa�ÿ1, of the sth Fourier
harmonic in the Fourier expansion of the dispersion e�k� of
the pertinent band (Fig. 17e). The properties of the Bessel
functions suggest a physically transparent qualitative criter-
ionNs � soB=o0 for the cutoff in the spectrum of harmonics.
Optical harmonics near the cutoff region thus represent
electrons whose field-induced momenta are large enough to
reach the band edges ��sa�ÿ1 of the sth harmonic of the
dispersion e�k� of the relevant band (Fig. 17e). This relation
allows the dispersion profiles of electron bands in solids to be
reconstructed from high-order harmonic spectra through a

successive determination of the Fourier harmonics of the
dispersion profiles of these bands.

The full electron band structure of solids can thus be
determined by means of high-order harmonic generation
using ultrashort laser pulses in the mid-infrared range.
Electron and hole wave packets whose direction of motion is
controlled by the polarization of a laser pulse relative to the
symmetry axes of the Brillouin zone provide an effective
probe for the electron bands along well-defined directions
within the Brillouin zone.

The most informative part of the spectrum of interband
harmonics lies above the band gap of solids and experiences
absorption in the material. It is, therefore, HOHG due to the
nonlinearity of the dispersion of electrons and holes in solids
that becomes a focus of interest as a promising method of
electron band structure analysis in the bulk of solids. A
considerable part of the spectrum of harmonics generated
through this nonlinearity mechanism is below the band gap,
falling within the transparency range of a solid. Analysis of
the properties of high-order harmonics emitted in this regime
gives an access to important information on the dispersion
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e � e�k�, i.e., on the band structure of a solid. Implementation
of this regime of HOHG requires sources of ultrashort pulses
with a sufficiently high peak power and a central wavelength
much longer than the wavelength of drivers enabling inter-
band HOHG studies. Laser sources meeting these require-
ments have been developed only recently [104, 109, 110],
opening ways toward the practical implementation of all-
optical metrology of the band structure in solids.

With a separate detection of HOHG signals due to
intraband currents along different directions within the
Brillouin zone, selected by a polarizer and an analyzer
(Fig. 16b), electron band profiles near this direction within
the Brillouin zone can be determined from the spectra of high-
order harmonics. The entire band structure of a solid can then
be reconstructed section by section using polarizationHOHG
measurements for e � e�k� profiles of certain band sections
near specific directions of the Brillouin zone, defined by the
geometry of polarization HOHG measurements.

15. Electron tunneling from excited states

The canonical version of the Keldysh photoionization theory
for atoms and molecules treats laser-induced ionization as a
direct transition from the ground electron state to a free-
electron state dressed by the external field. The 1964 paper by
Keldysh also develops a formalism for the calculation of the
photoionization rate, including transitions into resonant
intermediate electronic states. Both the formulation of the
original version of the Keldysh photoionization theory and
the method whereby intermediate electronic states are

included in the analysis are based on the assumption of a
monochromatic external field, which is a natural first step
from the methodological point of view and fully justifiable in
the context of the state of the art in laser technologies in the
early years of laser science. For a monochromatic external
field, photoionization effects related to transitions into
intermediate electronic states can be adequately described
by a pertinent sum over allowed one-photon andmultiphoton
transitions into excited bound electronic states.

An attempt to extend this approach to photoionization by
ultrashort laser pulses encounters fundamental difficulties
related to the broadband character of the external field. For
such a field, the sums over intermediate states of the discrete
spectrum of the system become poorly defined. An accurate
analysis of photoionization effects related to the excited states
of an atomic or molecular system has to take into considera-
tion electron dynamics on the subcycle time scale (Figs 18a, b).
To make this analysis more physically transparent, we
represent the full electron wave function as a sum of
positive- and negative-energy terms:

c�r; t� � cb�r; t� � cf�r; t� �
XN
n�1

Xnÿ1
l�0

anl�t�cnl�r� � cf�r; t� :
�94�

The probability to find an electron in a bound state with
quantum numbers n and l is then given by janl�t�j2 �
j �V cnl�r�c�r; t� drj2. The photoionization rate can now be
calculated as the population of continuum states, with all the
intermediate bound states included through appropriate
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sums:

C�t� �
�
dp

���� i�h
� t

ÿ1
dy
�
V

drc �p �r; t�eE�y�

�
XN
n�1

Xnÿ1
l�0

anl�y�
�
zcnl ÿ

XN
s�1

Xsÿ1
q�0

Znl
sqcsq

�����2; �95�

where

Znl
sq �

�
V

cnl�r�zcsq�r� dr ; �96�

and the coefficients anl can be found from the equation

i�h
qanl
qt
� Enanl ÿ eE�t�

XN
s�1

Xsÿ1
q�0

Znl
sqasqÿ

�
V

cnl�r�ezE�t�cf�r; t� dr:
�97�

Figures 18c and 18d present the results of calculations
[220] using Eqns (95)±(97) for a quantum system with a
hydrogenlike ground state and a Volkov-type wave func-
tions (8) for the continuum states. As can be seen from these
calculations, for low field intensities, photoionization is
adequately described even when only one term �N � 1�,
corresponding to the ground state of a hydrogenlike atom, is
included in the sum under the integral in Eqn (95). However,
as the field intensity grows, calculations in a model including
only one electronic state become increasingly inaccurate.
Moreover, in the strong-field regime, the photoionization
process starts to display qualitatively new features. Transi-
tions to the continuum states via excited bound states open a
new ionization channel. The potential barrier height for such
states is much lower than the potential barrier height for
ground-state electrons (Figs 18a, b). This effect plays an
important role for high field intensities. Tunneling of
electrons from excited states, which occurs within a small
fraction of the laser field cycle, becomes a dominant
mechanism of photoionization [220].

16. Photoionization and laser filamentation

16.1 Spatiotemporal dynamics of a high-intensity
ultrashort laser pulse in a medium with photoionization
The rapid progress of laser technologies gives rise to new
unique sources of high-power ultrashort pulses of electro-
magnetic radiation, opening a new chapter in photoioniza-
tion studies. Propagation of high-power ultrashort laser
pulses in a medium with photoionization is accompanied by
a complex nonlinear evolution [7, 8, 221, 222], where various
spectral±temporal field transformations are strongly coupled
to spatial beam dynamics, which, in turn, is nonuniform
within the laser pulse. Such regimes of pulse propagation are
of special interest in the context of long-distance transmission
of high-power ultrashort laser pulses [223], efficient white-
light supercontinuum generation [12, 14, 15, 224, 225], and
temporal compression of high-power ultrashort laser pulses
[226±228] in the laser filamentation regime. Lasing in laser-
induced filaments [229] offers unique opportunities for a
highly sensitive remote sensing of the atmosphere [230, 231].
Analysis of these new phenomena and physical scenarios is
impossible without a detailed understanding of photoioniza-
tion within the extended framework of the Keldysh photo-
ionization theory.

As a universal property of intense laser fields, light beams
with peak powers well above the self-focusing threshold

become intrinsically unstable with respect to a breakup into
multiple filaments [232]. Since such beam instabilities are
seeded by random intensity fluctuations across a laser beam
or optical inhomogeneities of a medium, a laser beam
undergoing multiple filamentation usually loses its axial
symmetry. Photoionization is one of the key effects in this
complex regime of nonlinear dynamics [233]. In each of the
filaments arising as a part of this process, diffraction is
suppressed due to the joint action of nonlinear polarization
induced in the medium and the radial profile of electron
density. Within a limited parameter space, as recent studies
have shown, high-power single-cycle and subcycle optical
pulses can be generated in laser filaments, giving rise to
ultrashort bursts of electromagnetic fields less than a field
cycle in duration. Correct analysis of this intriguing regime of
pulse evolution is not possible within the standard slowly
varying envelope approximation (SVEA) and requires the
inclusion of all the relevant non-SVEA effects in nonlinear
spatiotemporal dynamics of high-power ultrashort light
pulses.

The diversity of physical phenomena involved in this
regime of nonlinear spatiotemporal field evolution and the
related physical scenarios that may lead to the formation of
single-cycle and subcycle pulses can only be understood in the
framework of a full model of spatiotemporal field dynamics
including all the relevant non-SVEA effects. Since single-cycle
and subcycle pulses need to be adequately described,
numerical analysis has to be performed with a high resolu-
tion in spatial and temporal coordinates within the entire path
of nonlinear interaction, which is often very long in the regime
of laser filamentation. Such an analysis requires exaflop
computations and is usually performed with the use of
supercomputers [122, 234, 235]. Exaflop computer simula-
tions reveal new unique phenomena of the spatiotemporal
dynamics of high-peak-power ultrashort light pulses, includ-
ing the generation of single-cycle and subcycle field wave-
forms. In special regimes of nonlinear dynamics, such field
waveforms have been shown to evolve into multiple light
bullets.

16.2 Physical model
The spatiotemporal dynamics of high-peak-power ultrashort
pulses is analyzed using the generalized nonlinear SchroÈ din-
ger equation (GNSE) for the complex field amplitude
including ultrafast field-induced ionization processes [7, 8,
122, 236]:
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Here, A�Z; x; y; z� is the complex field amplitude, A�o; x; y; z�
is its Fourier transform, I�Z; x; y; z� � jA�Z; x; y; z�j2 is the
field intensity, Z is the time in the retarded frame of reference,
x and y are the transverse coordinates, z is the coordinate
along the propagation axis, o is the radiation frequency,
D? � q2=qx 2 � q2=qy 2 is the transverse part of the Laplacian,
~D � k�o� ÿ k�o0� ÿ qk=qojo0

�oÿ o0� is the dispersion
operator, o0 is the central frequency of the laser pulse,
k�o� � on�o�=c is the wave number, n�o� is the refractive
index, n0 � n�o0�, ~F is the Fourier transform operator in the
time variable, w �3�, w �5�, w �7�, and w �9� are the third-, fifth-,
seventh, and ninth-order nonlinear-optical susceptibilities,
n2, n4, n6, and n8 are the Kerr nonlinearity coefficients,
~T � 1� ioÿ10 q=qZ, R�Z� is the Raman response function, fR
is the fraction of the Raman (delayed) nonlinearity in the
overall nonlinear response of the medium, r is the electron
density,Ui � U0 �Uosc,U0 is the ionization potential,Uosc is
the pondermotive energy of field-induced electron oscilla-
tions, W�I � is the photoionization rate, s is the avalanche
ionization cross section, rcr � o2

0mee0=e 2 is the critical
electron density, r0 is the neutral gas density, me is the
electron mass, e is the electron charge, and e0 is the dielectric
permittivity of a vacuum.

The field evolution equation (98) is solved jointly with the
equation for the electron density, which includes field-
induced ionization, as well as avalanche ionization and
recombination:

qr
qZ
�W�I � � s�o0�Uÿ1i rIÿ r

tr
: �99�

The photoionization rate W in Eqns (98) and (99) is
calculated using the Keldysh±Popov±Perelomov±Terent'ev
formalism. The avalanche ionization cross section s is
calculated with the use of the Drude formula

s�o� � e 2tc
�
mee0n0c�1� o2t 2c �

�ÿ1
; �100�

where tc is the collision time and tr is the recombination time.
Themodel based onEqns (98) and (99) includes all the key

physical effects that show up in the evolution of high-peak-
power ultrashort pulses in a nonlinear dispersive medium [7,
8, 237]. The spectral representation of the dispersion operator
~D allows thematerial dispersion to be described exactly rather
than through its polynomial expansion about the central
frequency o0. An accurate description of material dispersion
is of crucial importance for the analysis of a broad class of
nonlinear optical processes, including multioctave super-
continuum generation, as well as single-cycle and subcycle
pulse generation, where the models based on a series
expansion of the frequency dispersion profile in oÿ o0 fail.
This physical model also includes linear loss and diffraction
effects, the field-induced change in the refractive index due to
the third-, fifth-, and, whenever necessary, higher-order Kerr-
type optical nonlinearities, pulse self-steepening, spatiotem-
poral self-action phenomena [7, 8, 238], as well as plasma loss,
dispersion, scattering, and defocusing due to an ultrafast
ionization of the medium by the laser field.

Importantly, the assumption of an axially symmetric
beam, which substantially simplifies the solution of Eqn (98),
fails in the regime of multiple filamentation. In this regime, a
laser beam tends to break up into multiple filaments due to
spatial modulation instabilities, arising from random hot
spots across the beam seeded by noise-induced intensity
fluctuations and random optical inhomogeneities in the

medium. In its fully three-dimensional version, the field
evolution equation (98), which also involves the time
variable and is, hence, often referred to as a �3� 1�-
dimensional model, leads to calculations of high computa-
tional complexity [122].

16.3 Multiple filamentation dynamics
A typical picture of the spatiotemporal dynamics of an
ultrashort laser pulse with a peak power P two orders of
magnitude higher than the self-focusing threshold Pcr is
shown in Fig. 19. Here, calculations have been performed
for ultrashort mid-infrared pulses with a central wavelength
l0 � 3:9 mm and an input pulse width t0 � 80 fs. High-peak-
power femtosecond pulses at this wavelength are delivered by
recently developed mid-infrared sources of generation based
on optical parametric chirped-pulse amplification [105, 107,
108]. The dynamics of such pulses in the regime of multiple
filamentation is of considerable interest as a way toward the
generation of high-power single-cycle and subcycle pulses in
the mid-infrared and in the context of interesting new
phenomena that may be expected since the central wave-
length of such pulses falls within the range of anomalous
dispersion of many solid materials. Numerical analysis of
single-filamentation dynamics [239, 240], which takes place
for much lower ratios of the laser peak power to the critical
power of self-focusing, suggests that unique propagation
regimes, including formation of light bullets, may become
possible for ultrashort laser pulses in the regime of anomalous
dispersion.

A light beam with a peak power several orders of
magnitude higher than the critical power of self-focusing
(P � 100Pcr for the propagation regime illustrated in Fig. 19)
exhibits a complex temporal, spatial, and spectral dynamics
(see Fig. 19). The field structure is inhomogeneous across the
beam and within the pulse, constantly changing as the beam
propagates through the medium, displaying significant
variations from the leading edge to the trailing edge of the
pulse (see Fig. 19). Such variations in the beam structure are
due to a dynamic interplay between the Kerr and ionization
nonlinearities [7, 8, 237], which changes from the leading edge
of the pulse to its tail. The temporal structure of the field is, in
turn, nonuniform across the beam.

A laser field with a peak power P4Pcr is unstable with
respect to beam breakup into multiple filaments, seeded by
random field intensity fluctuations within the beam. The
resulting spatial modulation instabilities give rise to field hot
spots across the beam and eventually lead to the loss of
coherence within the laser beam (see Fig. 19). As a result of
joint action of the Kerr and ionization nonlinearities, the
beam breaks up into multiple filaments. This effect is
accompanied by efficient spectral broadening (see Fig. 19),
which is typical of laser-induced filamentation and which is
often referred to as supercontinuum generation.

In the Bespalov±Talanov theory [232], the typical length
within which spatial modulation instabilities tend to build up
is on the order of the nonlinear length,Lnl � �on2I0�ÿ1, where
I0 is the field intensity. For the propagation regime illustrated
in Fig. 19, the buildup of modulational instabilities closely
follows the exp �z=lnl� growth rate, predicted by the Bespa-
lov±Talanov theory. In this regime, for beam instabilities
seeded by noise intensity fluctuations, a 100 gain is achieved
within a propagation length of about 1 m. Within a broad
range of input laser beam parameters, the length within which
multiple filamentation was observed in numerical simulations
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agrees well with the predictions of the Bespalov±Talanov
theory for the modulation instability buildup length. This
finding allows complex strongly coupled processes involved
in nonlinear spatiotemporal field dynamics observed in
numerical simulations to be interpreted in a clear, physically
transparent way.

16.4 Self-compression of high-peak-power laser pulses
Soliton self-compression of laser pulses in the anomalous
dispersion regime is widely used for the generation of
ultrashort optical waveforms in optical fibers [241, 242]. The
�3� 1�-dimensional spatiotemporal dynamics of freely pro-
pagating laser beamswith a peak power well above the critical
power of self-focusing is, however, much more complicated
than the dynamics of light pulses in optical fibers, which can

be accurately described within the framework of the thor-
oughly developed model of the generalized nonlinear
Schr�odinger equation with one temporal and one spatial
coordinate. The spatiotemporal evolution of optical fields
with peak powers P4Pcr in the regime of anomalous
dispersion can often involve beam breakup into multiple
filaments, leading to the loss of beam connectedness and,
eventually, spatial coherence (see Fig. 19). Effects of spatial
instability in this regime are strongly coupled with the
temporal modulation instability of laser pulses [243].
Remarkably, despite all the complexity of their spatiotem-
poral dynamics, efficient self-compression of high-peak-
power ultrashort light pulses is still possible, as shown in
Fig. 19, without the loss of beam connectedness and spatial
coherence through beam breakup into multiple filaments.
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Figure 19.Full �3� 1�-dimensional dynamics of an ultrashort laser pulse with a central wavelength of 3.9 mmand a pulse width of 80 fs propagating in an

anomalously dispersive material under conditions of photoionization: (a) the radial distribution of the field intensity integrated over the pulse along the

propagation direction, (b) the electron density induced by the laser pulse, (c) spatiotemporal evolution of the field intensity, and (d) temporal envelope

(top) and the spectrum (bottom) of the pulse on the beam axis at the point of maximum pulse compression. The input laser pulse peak powerP, energyW,

and beam diameter d are (I) P � 5Pcr, W � 13 mJ, d � 70 mm; (II) P � 15Pcr, W � 40 mJ, d � 120 mm, (III) P � 100Pcr, W � 0:25 mJ, d � 260 mm,

(IV) P � 300Pcr,W � 0:75 mJ, d � 450 mm, and (V) P � 500Pcr,W � 1:25 mJ, d � 590 mm.
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Of key significance for this regime of nonlinear dynamics
is that the typical lengths of self-compression andmodulation
instability, lc and lm, shouldmeet the inequality lc < lm.When
this condition is satisfied, a light pulse experiences self-
compression to its minimum pulse width, as a result of the
joint action of anomalous dispersion and nonlinearity, before
the beam breaks up into multiple filaments. As can be seen
from simulations presented in Fig. 19, self-compression yields
a subcycle field waveform. Within the propagation length
needed to achieve such pulse compression, the beam does not
lose its connectedness, with its angular spectrum showing
virtually no features that would be indicative of spatial
modulation instabilities.

Within longer propagation paths (z > lm), modulation
instabilities become noticeable, with field hot spots appearing
across the beam. The angular spectra corresponding to this
phase of beam dynamics display noticeable distortions,
indicating off-axial field components. Beam breakup due to
modulation instability is accompanied by multiple filamenta-
tion (see Fig. 19), caused by the joint action of the Kerr and
ionization nonlinearities.

Thus, our numerical simulations confirm that, when the
spatial length of self-compression is kept shorter than the
length required for the buildup of modulational instabil-
ities, lc < lm, high-peak-power light pulses can undergo
efficient self-compression without the loss of beam coher-
ence. This effect is of key significance for identifying the
physical scenarios whereby single-cycle and subcycle light
bullets can be generated in the regime of anomalous
dispersion.

16.5 Subterawatt ultrashort mid-infrared pulses
in the atmosphere
To gain deeper insights into the physical scenario of
filamentation of ultrashort pulses in the mid-IR, we plot in
Fig. 20 the maps of field intensity distribution in the filament

calculated for the leading edge (Figs 20a, b), the central part
(Figs 20c, d), and the trailing edge (Figs 20e, f) of the pulse. As
can be seen from these simulations, with the electron density
increasing from the leading edge of the pulse to its trailing
edge, different sections of the beam undergo different
dynamics. This difference is due to the buildup of the
electron density within the laser pulse [244, 245]. The leading
edge of the pulse induces ionization of the air, giving rise to a
transverse profile of the electron density, falling off from the
center of the beam to its periphery. Such a profile of the
electron density defocuses the central part and especially the
trailing edge of the pulse. This dynamics is clearly seen in the
maps of field intensity presented in Fig. 20. Scattering of mid-
IR radiation off the field-induced plasma also becomes
especially strong in the trailing edge of the pulse, leading, in
the case of long filaments, to a noticeable pump depletion
along a filament.

The white solid line in Fig. 20 shows the beam diameter d
defined as the beam full width at half-maximum (FWHM) of
the field intensity. The evolution of the beam diameter along
the optical path of the mid-IR driver provides a convenient
measure of the filament length as the distance between two
points along the beam path where the beam diameter is equal
to twice the minimum beam diameter d within a filament.
When the beam focusing is too tight (Figs 20a, c, e), strong
scattering of the central part (Fig. 20c) and the trailing edge
(Fig. 20e) of the pulse off the electron-density profile induced
by the leading edge of the pulse limits the length of the
filament. An appropriate choice of beam-focusing condi-
tions (Figs 20b, d, f) can help achieve a precise balance
between beam self-focusing and defocusing by the transverse
profile of the electron density. In this regime, the filament
length, as can be seen from Fig. 20f, can reach several meters,
offering unique options for the remote sensing of the atmo-
sphere and long-range transmission of high-power laser
pulses.
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Figure 20. Spatiotemporal maps of field intensity in a subterawatt ultrashort mid-IR pulse propagating in the atmosphere in the leading edge (a, b), in the

central part (c, d), and in the trailing edge (e, f) of the pulse. The beam is focused by a lens with a focal length of 45 cm (a, c, e) and 200 cm (b, d, f). The

initial driver energy is 20 mJ. The initial pulse width of the driver is 100 fs. The solid line shows the beam diameter defined as its full width at half-

maximum.
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17. Conclusion

The Keldysh photoionization theory is a conceptual corner-
stone and a universal framework for the description of a
broad class of fundamental effects in light±matter interaction.
Developed in the early years of the laser era, when the entire
area of research focused on laser±matter interactions was still
in its infancy, the Keldysh photoionization theory is an
extraordinary example of outstanding scientific vision and a
researcher's courage.

As one of its central results, the Keldysh photoioniza-
tion theory offers a fundamental insight into multiphoton
and tunneling ionization as two limiting regimes of the same
physical phenomenonÐ ionization induced by an ac elec-
tromagnetic radiation field. The photoionization rate
calculated within the framework of this theory is one of
the key parameters for the analysis of a broad class of laser±
matter interaction processes, including laser-induced break-
down, high-order harmonic generation, and laser filamenta-
tion. The Keldysh photoionization theory is broadly used
for the description of laser±matter interactions occurring on
the attosecond time scale and provides a universal frame-
work for a quantitative analysis of complex physical
processes enabling the generation of attosecond pulses of
electromagnetic radiation and ultrashort light-controlled
flashes of photoelectric currents in solids. Keldysh-theory
closed form expressions for multiphoton absorption in
solids provide a key to understand the universal dispersion
properties of the nonlinear-optical response of semiconduc-
tors and dielectrics.
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Afterword

Great scientists stay in history through their scientific work.
Great people remain in our memories and souls. Leonid
Veniaminovich Keldysh will be remembered as a great
scientist, whose work transformed optical physics and gave
rise to new research areas, and as a great human, whose light
will stay in the memory of those who had the privilege to
know him.

A rare scientific paper is celebrated by special issues of the
leading scientific journal devoted to the 50th anniversary of
its publication. The 1964 ZhETF paper by L V Keldysh,
which laid the foundations of photoionization theory in a
strong laser field is an outstanding example of such a rare

recognition.1 A rare scientist has a chance to witness how his/
her ideas, his/her theories define the development of the entire
area of research. Such a remarkable destiny needs to be
earned in some unknown high realms. ``Glad that my
equations still work,'' Leonid Veniaminovich concluded,
with archetypical modesty, one of the seminars celebrating
the 50th anniversary of his photoionization theory.

The rapid progress of laser technologies and the advent of
high-power sources of ultrashort laser pulses called for the
extension of the Keldysh photoionization formalism to the
case of ultrashort laser pulses. Leonid Veniaminovich spent
much of his time thinking about this problem, developed an
approach to solve it, found several important equations, but
... never published this work. The only reason why this work
has never been published within Keldysh's lifetime is that
Leonid Veniaminovich was doubtful as to whether the review
of the rapidly growing literature in this field that he put
together for the introductory part of the manuscript was
complete enough. Even for the leading experts in ultrafast
science, it was an utter surprise to hear of the very existence of
this work by Keldysh. Over many years, this writing was
available only as a carefully formatted and proofread
author's manuscript [246]. Interestingly, the easiest way to
receive these notes has always been to send a request to the
author himself. His reply would always come within a day ...
As a proper journal paper, this work first sees the light of day

1 See the special issue of the Journal of Physics B: Atomic, Molecular and

Optical Physics 47 October (2014).

Leonid Veniaminovich Keldysh and Paul Corkum in Red Square,

following the RAS Gold Medal award ceremony, March 22, 2016.
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in this memorial issue of Physics±Uspekhi [247], the journal
that Leonid Veniaminovich has put so much effort into as its
Editor-in-Chief.

In 2015, Leonid Veniaminovich and Paul Corkum, one of
the founders and pioneers of attosecond physics, were
awarded the highest prize of the Russian Academy of
SciencesÐM V Lomonosov Gold Medal. The celebration
ceremony took place during a special session of the general
meeting of the Russian Academy of Sciences in March 2016.
Both laureates delivered remarkably insightful, thoughtful,
andmoving lectures [248, 249]. In the opening of his talk, Paul
Corkum praised Keldysh by saying: ``It is a great honor for
me to be receiving theRASGoldMedal jointly with Professor
Keldysh, whose discoveries have inspired and continue to
inspire generations of researchers, including myself andmany
of my students today.''

In the evening following the ceremony, the author of these
lines had the privilege of joining Leonid Veniaminovich and
Paul for dinner in a quiet restaurant on Petrovka. By the end
of the dinner, Leonid Veniaminovich looked tired, but,
having learnt of a car tour of nighttime Moscow that has
been promised to Paul, said he would gladly join us. In Red
Square, Paul, who had his camera ready, asked me to take a
picture. ``I will remember this evening forever,'' Paul wrote in
an email accompanying the picture... .
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