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Abstract. The most telling scanning tunneling microscopy/
spectroscopy (STM/STS) data available on the influence of
nonequilibrium tunneling effects and electronic spectra recon-
struction are reviewed and theoretically explained by self-con-
sistently accounting for nonequilibrium electron distribution
and the change (due to the tunneling current) in the electron
density of states near the tunneling junction. The paper dis-
cusses the basic ideas of the self-consistent tunneling theory,
which forms the basis for experimental research and which
allows many effects observed in STM/STS experiments to be
explained and new phenomena to be predicted.
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We dedicate this paper to L V Keldysh, who initiated
experimental work on scanning tunneling microscopy|spectro-
scopy at Moscow State University and created the non-
equilibrium diagram technique that allowed formulating a
consistent theoretical description of tunneling processes.

1. Introduction

The building of a scanning tunneling microscope (STM)
allowed the use of the tunnel effect to investigate surface
electronic and atomic structures and surface nanostructures.
Moreover, it became possible to study local tunneling
phenomena on the atomic scale. Already in the first experi-
ments on reconstructed silicon surface ‘Si(111)-(7 x 7)* [1], it
was shown that STM allows us to obtain images of surface
atomic structures to within the charge state of a separate
atom. Over the years of application and development,
scanning tunneling microscopy and spectroscopy (STM/
STS) became one of the most effective methods to study
local tunneling phenomena and properties of the surface
structures with atomic resolution. As a result, there is a
potential to consider a spatial distribution of impurity
states, as well as identify an atomic impurity or a defect of
atomic size by means of the peculiarities in tunneling
conductance spectrum and its STM image [2—-7]. At the same
time, those tunneling peculiarities in the STM contacts whose
characteristic size is comparable to the interatomic distance
often lead to a strong distortion of the unperturbed density of
states in a system under consideration. In equilibrium
conditions, this can stem from localized states in the contact
area (e.g., those associated with a periodic structure break at
the end of the STM tip, impurity atoms or defects, etc.) and
their interactions with continuous spectrum states in the
contact leads.

In STM/STS studies, even separate localized states can
have a significant impact on the resulting STM images and
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tunneling conductance spectra. This is in contrast to experi-
ments on macroscopic tunneling contacts, where the con-
tribution from the low-density localized states to the tunnel-
ing current is negligibly small. By reducing the size of a
system, the relaxation time for tunneling electrons becomes
comparable to characteristic tunneling times. Thus, a particle
distribution becomes essentially nonequilibrium. In the
presence of interparticle interaction, the distribution also
changes the density of states. For these reasons, the study of
the properties of surface nanosystems and local tunneling
effects by STM/STS requires considering various relaxation
processes (scattering on impurities and inhomogeneities at the
sample edge, electron—phonon interaction, etc). As a conse-
quence, it is often hard to interpret the results of experimental
investigation of local tunneling conductance and, in some
cases, of the analysis of STM images of the investigated
nanostructures.

Therefore, in order to describe results of STM/STS
measurements appropriately, it is necessary to modify the
theoretical approaches applied to the analysis of tunneling
processes. We found out that the inference about always
existing correspondence between the tunneling current and
the initial density of states in the material (electronic system)
is generally incorrect. As a result of the interaction of the
sample with the nearby STM tip, the initial density of states is
distorted so that new bound states arise. The states play a
pivotal role in studying impurities, atomic defects, dielectric
materials (thin films), surface charge-density waves (CDWs),
surface bands in semiconductors, etc. Here, we can observe
nonvanishing tunneling current arising due to the presence of
localized states, while the initial bands do not overlap.

The above peculiarities of tunneling phenomena in STM
contacts clearly demonstrate that we have to employ an
adequate method to analyze the STM/STS measurement
results based on a contemporary description of tunneling
processes in nanosystems. Usually, when describing tunneling
processes in STM/STS, we use the standard formula for
tunneling current [§]

I~ 2me J do T?vi(w)vy(0) [ny(0) — n (o —eV)], (1)

where T is the tunneling amplitude, vy, is the density of
electronic states in the leads of the tunneling contact, and
ny(py(@) are the electron Fermi distribution functions in the
contact leads. At the same time, numerous STM/STS
experiments have shown that the tunneling processes on
nanometer scales and, as a consequence, the resulting STM
images cannot always be analyzed within the framework of
the standard theory of tunneling phenomena that uses
equilibrium distribution functions of tunneling particles.
The application of a consistent theory allowed us to describe
the tunneling processes in nanosystems with relaxation in all
details.

The relaxation processes in small-sized systems diminish
the tunneling current. This phenomenon was observed in
numerous experiments at decreased temperatures and invari-
able characteristics of the tunneling contact [9]. The most
general expression for the tunneling current must account for
various relaxation mechanisms and a possible change in the
occupation numbers, as well as the influence of the localized
states. We discuss these issues below within the theoretical
models that describe tunneling processes in ultrasmall contact
areas.

In the present review, we analyze several key results
obtained in STM/STS experiments, which were not fully
explained in the framework of the standard tunneling theory
guided by the equilibrium distribution of tunneling particles.
Effects observed in several tunneling experiments are ana-
lyzed using contemporary ideas on tunneling phenomena that
take into account the reconstructed spectrum of electronic
states, the influence of nonequilibrium processes, and the
presence of localized states. We discuss fundamentals of the
self-consistent tunneling theory that can be applied in
experiment. The theory not only allows describing numerous
effects in STM/STS experiments but also predicts new results.

2. Experimental results

2.1 Charge-density waves and induced conductivity
One of the experimental results obtained by the STM/STS
method that was not possible to be clearly explained within
the standard theory of tunneling processes is the observation
of an ordered arrangement on the molecular film surface of a
liquid crystal (LC) polymer [10]. Here, the authors considered
a bilayer of the LC AP-10 comb-like polymer 66 A thick
deposited on an atomically smooth conducting substrate.
Using atomic force microscopy (AFM), they obtained on
the surface of a defect-free region of the molecular film a relief
image with a two-dimensional lattice with sides of length
a~ b~ 119 A and long diagonal of length d ~ 20 A. At the
same time, using the STM method allowed them to find in the
current images of the surface a periodic superstructure at the
voltage difference of 5 mV, corresponding to a lattice with
parameters a* ~ b* ~255A and d* ~20.2 A, exceeding
those of the lattice obtained in the AFM image. Changing
the sign of the potential applied to the tunneling junction, we
found out that the current STM image of the surface
experienced the opposite phase change (Fig. 1a). Protrusions
and deeps on the STM image changed, which could be
explained by a CDW type distributed surface charge.
Moreover, in the considered system ‘conducting sub-
strate—LC-STM tip’ (Fig. 2), two types of current—voltage
characteristics (CVCs) were obtained. At large distances
between the tip and the surface, the CVC showed a wide
band gap of ~ 5 eV (Fig. 1b), while the Fermi level Er was
inside the energy gap.

When changing the applied voltage in the range of 1.5V to
5 mV, as well as when reducing the distance between the tip
and the LC surface, the band gap almost disappeared, while
conductivity sharply increased (by at least two orders of
magnitude). A detailed analysis of the electronic and atomic
(molecular) structures of the LC surface showed the existence
of charge-density waves on the surface. In this case, the Fermi
level resided inside an energy gap whose width depended on
electron—phonon and electron—electron interactions, while a
minimal period of the charge superstructure coincided with a
length of the larger diagonal of the lattice corresponding to
the relief AFM image. At the same time, it was necessary to
find conditions under which observing CDWs was possible at
room temperature (k7 = 25 meV) and the tunneling voltage
V' ~ 5 mV, as well as to explain a sharp change in system’s
conductivity. In order to observe CDWs, we need to have an
energy gap of more than kT; otherwise, the thermal fluctua-
tions break the CDW. Consequently, observing CDWs was
impossible without local interactions between electronic
states of the conducting STM tip and the LC surface.
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Figure 1. (a) Sections of the charge superstructure image opposite in sign to the tunneling voltage (curve / corresponds to V' = +5 mV, and curve 2
corresponds to V' = —5mV). (b) Current—voltage characteristics at large (/) and small (2) distances between the STM tip and the surface; x is the distance

along the surface.
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Figure 2. Schematic of the tunneling junction substrate—LC—barrier—tip.
Ep is the Fermi level, ¢; are the resonance levels, ¢, is the energy of the tip
localized state, and £, is the bound state energy.

In order to explain the observed effects, it was required to
construct a theoretical model taking into account the
presence of localized sites in the tunneling contact area.
Indeed, localized states with energy &, much less than Ef are
possible on the STM tip or LC surface. Their existence can be
explained either by a break of the periodic structure at the end
of the STM tip or by the presence of defects and inhomogene-
ities on the surface. As a result of strong hybridization
between electronic states of the tip and the sample, a bound
state arises with the energy &, in the energy gap that changes
the type of the tunneling conductance.

A self-consistent tunneling theory in nanostructures with
bound localized states is considered in Section 5.

2.2 Peculiarities of the electronic structure

of pure semiconductor surfaces

The STM/STS method is basically used to study the atomic
and electronic structures of pure surfaces in an ultrahigh
vacuum, when uncontrolled adsorbed layers do not disturb
the initial surface structure. At room temperature, when
carrier relaxation can be disregarded, while tunneling goes
from occupied states of the STM metal tip, a reconstruction
of the electronic spectrum, as a rule, has little effect on STM
images of the periodic surface structures. The role of the

Figure 3. STM image of the As sublattice and the atomic cluster on
InAs(110) surface. Scanned region is 4.4 x 4.4 nm. Tunneling current is
20 pA, and tip voltage V' = —0.5 V.

relaxation processes increases with decreasing temperature
and the tunneling transition rate may exceed the relaxation
rate. As a result, a nonequilibrium distribution of tunneling
particles emerges in the contact area, which essentially
changes the initial density of states and yields nonequili-
brium charges.

A similar effect has been observed in many experiments [9,
11]. In particular, it was considered in all details in Ref. [9],
where the authors used the STM/STS method to study the
InAs(110) atomically smooth surface and the region over the
atomic cluster formed on the surface (Fig. 3). The measure-
ments were done at liquid-helium temperature. The sample
was the single-crystalline InAs of n-type conductivity doped
with Sn atoms (5 x 10'7 cm™).

In those experiments carried out over the atomically
smooth surface an increase in width of the band gap 4 to
1.8 eV, compared to that for a bulky crystal (0.43 eV), was
observed (Fig. 4). At the same time, the Fermi level shifted
from the conduction band edge to the band gap, despite the
high degree of doping. The measurements over the atomic
cluster revealed a sharp decrease in the band gap width
compared to values found over a smooth surface. In the case
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Figure 4. Tunneling conductance measured over the atomically clean
surface of InAs(110) and over a three-atom cluster (shown in the inset
plot). Bold horizontal line shows the position of the band gap width for the
bulky crystal, equal to 0.43 eV.

of a three-atom cluster, it is given by 0.40 eV. In another
experiment with a six-atom cluster, this value was equal to
0.55 eV. However, the Fermi level in these cases is inside the
band gap (see Fig. 4).

Observed experimental results can be related to the fact
that the nonequilibrium charge localized on the tip causes an
additional bending of bands on the semiconductor surface.
Over the cluster, a charge localized on the tip may be
decreased or even compensated for by a nonequilibrium
charge of opposite sign. Thus, a width measured over the
cluster is diminished.

2.3 Microscopy and spectroscopy

of isolated impurity states on semiconductor surfaces
Peculiarities of the STM method applied to the study of
atomic impurities and defects were already demonstrated in
the first studies of charged states of Si donor atoms on the
GaAs surface [12]. In this paper, the STM image of positively
charged Si donor impurity was observed at a depth up to two
nanometers under the surface. Atomic images obtained at
room temperature manifested themselves on the surface as
protrusions of radius ~ 2.5 nm. Their height depended on the

voltage applied to the STM tunneling junction. Their analysis
assumed an additional bending of bands caused by the
Coulomb potential of the STM tip.

Possible applications of the STM method to study
impurity states at low temperatures were demonstrated for
Te atoms [13]. The results obtained in this paper showed that
nonequilibrium effects related to localized states must be
properly accounted for. A GaAs single crystal doped by Te
atoms (with a concentration of 5 x 10'7 cm~3) was studied.
Tellurium is a donor substitutional impurity in the arsenic
sublattice which loses five electrons returning to the valence
band once they are bound in the GaAs crystal lattice. Its
ionization energy is ~ 6 meV, which corresponds to forming a
shallow donor level in the band gap of GaAs, and a
theoretical estimate for the localization radius of the outer
s-electron yields ~ 7 nm. It follows that the image of the Te
atom substituting the As atom at the lattice site must be
spherically symmetric with a radius encircling ~ 15 periods of
the GaAs lattice. STM images of atoms in the upper
subsurface layers were observed as spots with a localization
radius of approximately 4 nm (Fig. 5). Because an STM image
is defined by the outer Ss-orbitals of Te with an additional
electron, as opposed to the semiconductor matrix, while
nonlocalized conduction electrons contribute to the image,
the image size should decrease with increasing location depth
of atoms under the surface.

When a positive potential is applied to the STM tip, the
images are surrounded by Friedel oscillations resulting from
screening by electrons of the charge localized on the Te
impurity atom (Fig. 5a).

Figure 6 shows an STM image of a Te atom in the first
subsurface layer surrounded by oscillations with a period of
3.3 nm, which does not meet the estimate obtained from the
standard screening model for a rigid material. According to
this model, the oscillation period should be equal to half the
Fermi wavelength Ap/2 ~ 10.5 nm. However, the influence of
nonequilibrium effects and localized states in the tunneling
contact area modifies the electron density distribution near an
impurity atom, causes local bending of bands, and changes
the Friedel oscillation period.

STM is the only method that allows us to find the form,
symmetry, and space localization of impurities in the
semiconductor matrix. As a typical example, Fig. 7 displays
STM images of impurity atoms Te, Zn, and Mn on an
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Figure 5. (a) STM images of Te atoms on the GaAs(110) surface, tip potential +1.5 V, tunneling current 60 pA. The scanned area size is 40 x 40 nm.

(b) Dependence of the image amplitude of Te atoms on the location depth.
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Figure 6. (a) STM image of a Te atom obtained at the tip voltage +1.5 V. (b) STM image relief along the line shown in figure (a).
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Figure 7. STM images of impurity atoms on the surface and in the subsurface layers of InAs(110): (a—c) Mn, (d, €) Zn, and (f) Te. Tunneling voltage values
are shown in the figures. Frame sizes: (a—) 40 x 40 nm, (d, ¢) 30 x 30 nm, and (f) 27 x 27 nm.

InAs(110) surface and on the subsurface layers for different
voltage values. The images are different in shape, symmetry,
and localization radius of the impurity state. In particular,
most Zn atom images are in the shape of an equilateral
triangle (Fig. 7e) for the unoccupied state, and of a circularly
symmetric shape for occupied states (Fig. 7d). The STM
images of Te atoms are circularly symmetric (Fig. 7f),
regardless of the voltage and the location depth. The STM
images of Mn atoms vary in a complicated way, depending on
the tunneling voltage and subsurface layer where the atom is
located.

The STM image amplitude (at constant applied voltage)
for most studied impurities exponentially decreases with
increasing impurity location depth (see Fig. 5). At a high
impurity concentration, when the average distance between
them does not substantially exceed the impurity state

localization radius, such a dependence is influenced by a
volume charge distribution. In the experiment, images can be
obtained under the surface at depths up to ten atomic layers.
This allows using STM as subsurface tunneling nanotomo-
graphy. For spherically symmetric images of impurity atoms
(for example, Te atoms), we can find how the impurity state
localization radius R depends on the subsurface layer depth
N, where an impurity atom is located. However, an interac-
tion of localized states of the tip and impurity atom should
also be taken into account, as should the influence of
relaxation processes and nonequilibrium effects.

STM image analysis shows that different types of atomic
defects cannot always be correctly identified by using a direct
comparison of their images, which depend on the tunneling
junction parameters. In these cases, the key properties of
defects, their differences, or their identity, as well as the
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Figure 8. STM Te atom images on the first (A) and second (B) subsurface
layers of GaAs(110) and the dependence of normalized tunneling
conductivity on the voltage at the sample: / and 3 over atoms A and B,
respectively, and 2 over the defect-free region of the surface. Circle shows
peaks that retain their positions in the tunneling conductivity spectra at
various location depths of Te atoms.

peculiarities of interactions, can be defined by analyzing the
tunneling conductance spectra. Figure 8 demonstrates spec-
tra of normalized tunneling conductivity measured for Te
impurity states in the first and second subsurface layers. Here,
the band gap width depends on the relative position of the
impurity atom and the STM tip. The band gap boundaries
near the impurity atom are shifted by 0.1-0.2 eV with respect
to the value corresponding to the clean surface case. We note
that if the transverse size of the tunneling contact is
comparable to or less than the impurity state localization
radius, the tunneling current and conductivity in such a
system can basically be defined by this localized state and
how it interacts with the STM tip.

The impurity Te atoms in Fig. 8 are characterized by
peaks in the spectra of normalized tunneling conductivity at
the voltage of ~ —0.7 V, which are absent in the measure-
ments over the clean surface. These peaks basically retain
their positions in the tunneling conductivity spectra at
different location depths of Te atoms. Over the clean surface
(at more than 5 nm from the impurity atom), there is a peak of

the tunneling conductivity in the voltage range from —1.5V to
—1 V related to the localized state of the tip. Its position and
amplitude depend on the distance between the impurity atom
and the STM tip.

There are general patterns in the tunneling conductivity
spectra of impurity states on the semiconductor surface. As
shown above in the plots of tunneling spectra for all studied
impurities and for a clean semiconductor surface, the band
gap is shifted and its width is different from that of the volume
band. This effect is related to the charge-induced bending of
bands arising on the localized impurity state and/or on the
STM tip as a result of a finite relaxation time of tunneling
electrons.

There are peaks in the band gap and on its edges in the
tunneling conductivity plots measured above impurity atoms
(independently of their charge sign). It is the Coulomb
interaction of localized charges that is responsible for the
tunneling conductivity behavior. It affects the impurity initial
state levels with respect to the boundaries of the band gap.
The local density of states in the vicinity of the impurity atom
substantially varies deep inside the band gap as well.
Particularly, the density of states decreases at energies on
the order of 2 eV for Te and Si donor impurities, while it
increases within the valence band for the Zn acceptor
impurity.

The tunneling conductivity measured directly in the
localized impurity atom region has shown that for each
impurity state (at least in the semiconductor matrix) the
local tunneling conductivity spectrum has some specific
features attributed to a given kind of atom. This makes it
possible to develop a technique for STM/STS measuring of
the impurity constituents based on identification of charac-
teristic details in the tunneling conductivity spectra. It allows
identifying impurity atoms using their spectral features [14].

The effect of a localized STM-probe state on the images of
impurity states and atomic defects is clearly manifested when
observing the abrupt change in image contrast of impurity
atoms in the process of scanning along the surface [9]. For this
purpose, an experiment which investigates the effect of STM-
tip charge state changes on the images of localized impurity
states on a semiconductor surface was conducted. Figure 9
shows STM images of the same impurity atom Te, obtained
for different voltages applied to the sample. For a negative

0.15

0.10

0.05

(di/dn)/(I/v)

Figure 9. STM image of an impurity Te atom (a) at different voltages on the

sample. The abrupt change in the image contrast at +0.5 V corresponds to the

abrupt change in the energy of the localized state (b) at the tip of the STM probe. In figure (b), the solid dashed line indicates the measured spectra of
normalized tunnel conductivity above the defect-free surface region before and after the switching in contrast of the image.
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potential on the sample, the electrons in the near-surface
region screen the charge of the impurity atom, inducing
Friedel oscillations around the atom. Such oscillations are
absent in the case of a positive potential on the sample.

At some point in the process of scanning along the surface,
the contrast of the impurity atom image changes abruptly.
The bright spot in the region of atom localization changes to
dark. However, images of the surface atomic rows to the right
and left of the impurity atom image do not undergo any
switching or discontinuity. A further increase in the positive
voltage does not change the contrast of the image. After an
abrupt change, the contrast of the STM image returns to its
original value, if the sign of the applied voltage is changed.
These facts indicate that differences in the contrast of STM
images do not result from a ‘double’ point of the STM or any
other mechanical instability, but are caused by an abrupt
change in the localized charge on the tip.

The key influence of localized states of the probe tip on
STM images is illustrated by the two curves of normalized
tunneling conductivity in Fig. 9b. Both measurements were
performed before and after the abrupt change in contrast on
atomically smooth and defect-free sections of the surface. The
peak in tunneling conductivity near the edge of the band gap
at —1.2 V disappears after the switching in the STM image.
This means a change in energy of the localized state of the
STM tip, which in turn leads to a modification of the
nonequilibrium charge localized at the tip, resulting from
the change in contribution of nonequilibrium electrons to the
tunneling current. The change in the charge at the tip leads to
a local band bending on the surface in the contact region and
causes a change in the STM image of the impurity state.

STM/STS precision methods make it possible to analyze
formation details of the spatial and energy structures of
isolated dangling bonds on the surface and to study the
charge states of impurity atomic orbitals in the depth of
semiconductors [15]. In Ref. [16], the STM images of spatial
localization of a dangling bond of the impurity atom Cr were
obtained. The dangling bond arises upon replacing the As-
node in the lattice of InAs on the surface and in the subsurface
structure of the charge state of the orbitals of impurity atoms
of Sn and Mn. In the InAs upper atomic layer, a region of
increased electron density of 0.5-0.6 nm near the Cr atom was
observed. Its shape corresponds to the spatial localization of
an unpaired electron located in the hybrid orbital of the Cr
atom dangling bond with the corresponding (upper) In atom.
The perturbing potential induced by the transition metal
impurity atom is limited by the size of the crystal lattice
period. The detected prolate shape of the electron cloud and
its dependence on the tunnel voltage reveal the spatial
orientation typical of the hybrid orbital of the d-electron
state.

An estimate of the localized electron Coulomb repulsion
energy for this state gives a value comparable to the width of
the band gap, which leads to an energy level shift observed in
the tunneling conductivity spectra of the deep impurity states.

2.4 Nonequilibrium interaction of impurity states

Impurity states can greatly alter the local electronic structure
on the surface and at the interfaces of semiconductors. If the
distance between impurities is comparable to their localiza-
tion radius, strong correlation effects change the electronic
properties of such a system and have a significant effect on its
tunneling conductivity. These effects, driven by nonequili-
brium interaction of impurity states, drastically affect the

tunneling conductivity as well as the tunneling current in the
localization region of each interacting atom, whenever the
applied potential is varied. The tunneling over an atom
(impurity state) in such a system can repeatedly get
‘switched on” or ‘switched off’, depending on the applied
potential, increasing or decreasing part of the tunneling
current flowing through each impurity state.

The first observation of local effects in the nonequilibrium
interaction of two impurity states was carried out by the
STM/STS method in Ref. [17]. In the experiment, the spatial
distribution of normalized tunneling conductivity over the
GaAs(110) surface near the interacting silicon impurity atoms
was studied for various potentials at the tip of the STM probe.
To obtain the spatial distribution of the tunneling conductiv-
ity along the entire surface of the investigated nanostructure,
a technique for discrete measurement of the derivative of
tunneling current with respect to the voltage was used. This
technique made it possible to measure the tunneling con-
ductivity spectrum over an area of less than 0.1 nm?. In
experiments, a splitting of opposite spin electron states up to
the energy on the order of 1 eV was obtained in a controlled
manner. Such a splitting cannot be achieved in superstrong
fields by traditional methods. The investigated sample was a
GaAs single crystal doped with mutually compensating
impurities of Si and Zn with concentrations of 5 x 10'® and
2 x 10" em™3, respectively. After cleaving the crystal, a
region of two identical impurity Si atoms separated by a
distance of 3 nm was selected on the cleavage surface, which
corresponds to a doubled localization radius of the Si
impurity state. The measurements were carried out at a
temperature of 4.2 K.

The interaction of impurity states was studied by measur-
ing the tunneling conductivity (d7/dV)/(I/V) on a surface
area of 10 x 10 nm near the interacting Si atoms. Similar
measurements were carried out on an isolated Si atom for
comparison. Figure 10 shows the dependence of the normal-
ized tunneling conductivity on the applied voltage in the
range from +2.5 to —1 V, measured along direction X
indicated by arrows in the topographic STM image for one
isolated atom and for two interacting impurity atoms a and b.
It should be noted that the contribution from other doping
impurities near the investigated impurity Si atoms was
observed only in the form of a distributed inhomogeneous
Coulomb potential in the crystal. This potential caused the
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Figure 10. Upper part of the figure displays STM images of an isolated
atom (on the left) and a map of the normalized local tunneling conductiv-
ity distribution near the impurity atom, measured along the X-direction
shown by the arrow. The lower part of the figure displays STM images of
interacting atoms « and b (on the left) and a map of the normalized local
tunneling conductivity distribution near impurity atoms, measured along
the X-direction.
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Figure 11. Images of the normalized tunneling conductivity in a 10 x 10-nm GaAs (110) surface area near interacting silicon impurity atoms separated
from each other by a distance of 3 nm for the key potentials at the tip of an STM. Images are taken from Fig. 10 for selected tunneling voltages. The above
tunneling conductivity distributions are not normalized, so that the contrast of images only illustrates a relative values for the minimum and maximum

densities of states.

asymmetry of the initial state of the interacting pair of Si
atoms, which was observed in the difference between the
STM/STS images of these atoms at zero voltage across the
transition area.

In the experimentally observed spatial distribution of
local tunneling conductivity, two ‘switching on’ and ‘switch-
ing off” episodes of each state associated with atoms a and b
are seen when the tunneling voltage changes. In the vicinity of
each of these atoms, after ‘switching on’, there is an excess of
tunneling conductivity within the voltage range of 0.6-0.7 V,
which is much greater than the width of the energy level of the
localized state. The transition from one state to another for
atoms « and b takes place when the voltage varies within the
interval on the order of 0.15 V, which is comparable to the
width of the energy level of the localized state. At the same
time, in the vicinity of an isolated impurity Si atom, there are
no characteristic features that clearly appear in the region of
two interacting atoms.

Figure 11 displays the spatial distributions of the normal-
ized tunneling conductivity near the interacting atoms a and »
for the potentials at the STM tip corresponding to the key
states of these atoms. The sequence of these images shows the
energy dependence of the regions of mutually overlapping
electron densities (obtained frame by frame), from which the
‘on’ and ‘off” moments of switching the interaction, as well as
the electronic state symmetry, are determined. The magnitude
of the state overlap depends on the applied potential and,
consequently, can be controlled by an external electric field.

The tunneling conductivity map (see Fig. 11) allows us to
analyze the behavior of the local tunneling density of states
near each atom and makes it possible to determine its
relationship with the states of interacting electrons with a
given energy.

The explanation for these effects can be given in the
framework of models similar to the one used by Anderson
[18], which takes into account the Coulomb interaction
between electrons, as well as the effect of the tunneling
potential on the position of the energy levels of impurity
atoms (see Section 6, Fig. 14). The interaction of the impurity
states with those of the continuous spectrum is assumed to be
not too small, such that the change in the impurity state
energy via the Coulomb interaction of the localized charges is
governed by the mean values of occupation numbers for a
fixed value of the applied potential.

This situation differs from the effects driven by the
Coulomb blockade associated with the discreteness of the
localized state occupation numbers. Indeed, the Coulomb
blockade, in the presence of both an intraatomic Coulomb
interaction and an interatomic interaction, causes the
appearance of peaks in the tunneling conductivity spectrum
with a change in the voltage across the contact, whose width is
on the order of the width of the level of localized states (and
does not exceed 0.1 eV). However, the presence of a tunneling
interaction between impurity atoms can lead to a redistribu-
tion of the localized charge between atoms and to the effect of
tightening the energy levels of the localized states with respect
to each other in a certain interval of applied voltage. As a
result, to adequately describe the experimental data obtained,
it is necessary to take into account the following factors.

The appearance of an excess of the local tunneling
conductivity in the vicinity of an impurity atom is observed
if |eqp) (V) — EF| < T (I is the broadening of the localized
atom level, and &,(;) is the impurity atom energy levels). In this
case, if the applied voltage exceeds the width of the level,
leV] > I', then the local tunneling conductivity can increase in
passing the energy of the localized state through both the
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Fermi level Esg of the sample and the Fermi level of the tip,
ETF = ESF —el.

The Coulomb interaction of localized electrons can be
described using the self-consistent mean-field approximation
in the Anderson model. This approximation is quite applic-
able when the energy U,; of the localized electrons’
Coulomb interaction at impurity levels does not greatly
exceed critical value U,,. Therefore, the Coulomb interaction
oflocalized electrons within a certain range of applied voltage
can lead to the appearance of two different energy states for
electrons with opposite spins on a separate impurity atom.

The presence of interaction between atoms leads to a more
complicated distribution of localized charges over the STM
contact region. There is a significant redistribution of the
localized charge between atoms, so that it is possible to
stabilize the energy levels of one of the atoms near the Fermi
level of the sample or the tip and tighten the energy levels with
respect to each other.

Taking into account these factors makes it possible to
explain the observed effects and allows constructing
theoretical models to predict nontrivial phenomena aris-
ing in interactions of localized states formed by atoms,
atomic defects, quantum dots, etc. This will be discussed in
Section 6. A practical possibility of controling the electronic
structure of a system of interacting atoms was demonstrated
for the first time in these experiments. For each interacting
atom, the resonant tunnel current channel can be repeatedly
switched ‘on’ or ‘off’, depending on the applied potential in
such a system. These effects can become a basis for the
implementation of new elements of semiconductor nanoelec-
tronics based on the use of isolated and interacting impurity
atoms in a semiconductor matrix.

2.5 Nonequilibrium effects

and multiparticle d-orbital interaction of impurity atoms
The appearance of nonequilibrium charges in the tunnel
junction region containing impurity atoms can greatly
change the initial local density of states and the tunneling
conductivity spectra in the presence of Coulomb interactions.
Such changes may also result from changes in the tunnel
amplitudes upon rapid Coulomb potential activation, which
arises in the presence of nonequilibrium occupation numbers
on the impurity atom. This situation is analogous to the effect
of the appearance of power-law singularities in the metal
X-ray absorption spectra [19]. Singularities manifest them-
selves in STM experiments if the rate of tunnel transitions
from energy level of the deep impurity atom to the STM probe
metal tip significantly exceeds the relaxation rate of non-
equilibrium distribution of the electron occupation numbers
on the impurity atom, and its energy level is empty. As a
result, the Coulomb interaction between the charged impurity
and the conduction electrons sharply engages, leading to a
change in the tunnel amplitude value.

The response of the conduction electrons in the metal tip
of the STM probe to the abrupt change in Coulomb potential
is essentially different from the one-particle picture. In this
case, one can expect the formation of power-law singularities
in the current—voltage characteristics, when the magnitude of
the applied potential approaches the value of the impurity
atom energy level. An attempt to describe the appearance of a
singularity in the current—voltage characteristics was first
made in Ref. [20]. The authors, however, confined them-
selves to qualitative arguments on the renormalization of the
tunnel amplitude, using the well-known result [19], which led

Figure 12. STM image of the Mn impurity state on the InAs(110) 5 x 5nm
surface at voltages across the sample Vs = —0.5 V (a) and V5 = +0.7 (b).

to wrong conclusions and which will be discussed in more
detail in Section 7.

Similar effects were observed in the STM study of Cr and
Mn impurity states on the InAs(110) surface [21]. Singular
features were most clearly manifested in low-temperature
STM/STS studies of impurity Mn atoms. Figure 12 shows
the STM images of the surface relief near the doping Mn atom
for different values of the tunnel voltage. A bright image
(protrusion) of a cross-like shape was observed for the
negative voltage Vs on the sample within the localization
region of the Mn impurity state, which turned into a dark oval
image (dip) at a positive voltage V.

The dependence of the normalized tunneling conductivity
on the potential and the current STM images in the
localization region of the Mn impurity state is shown in
Fig. 13. At a negative voltage across the sample, a cross-like
image persists in the range —1 < Vy < —0.5 V, which
corresponds to the electron density of the d-orbitals hybri-
dized to the states of the InAs lattice for the Mn impurity
atom in the valence band (Fig. 13a—c). At low voltages this
impurity state exhibits a filling close to a single one. When the
applied voltage approaches the value corresponding to the
energy &; of the acceptor level, in the voltage range
leV — &4 < T the tunneling conductivity increases in the
region of localization of the d-orbitals. Parameter I' corre-
sponds to the broadening of the energy level ¢; caused by
interaction with the states of the continuous spectrum of the
semiconductor valence band and the states of the STM probe.
As a result, in the localization region of the Mn impurity
atom, the tunneling current and the local tunneling con-
ductivity increase due to an increase in the local density of
states in the semiconductor. This density of states directly
reflects the nonspherical symmetry of the localized impurity
d-level. An additional amplification of the tunneling current
and conductivity arises upon involvement of nonequilibrium
Coulomb interaction between the impurity and the charge
carriers in the region of the tunnel junction.

The Coulomb interaction of a positively charged impurity
atom and conduction electrons at voltages close to the energy
of the localized state leads to the following dependence of the
tunneling current on the voltage:

Ve D2 W
) V[(eV—ed)z-l—yz} ’ .

where W is the average value of the impurity atom Coulomb
potential, y = 7, + 7, (74, is the rate of tunneling transitions
to the leads of the tunnel junction), v is the density of
electronic states at the tip of the STM probe, and D is the
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Figure 13. Normalized tunneling conductivity and current STM images in localization region of the Mn d-orbital impurity state. Insets a—g correspond to
the spatial distribution of normalized tunneling conductivity for different values of the bias voltage. The bias voltages corresponding to the insets are
indicated by arrows. Insets al—gl show images of current spatial distribution (/(¥)) for voltages corresponding to insets (a, b, f, g) located directly under

the current STM images.

conduction band width in the metal. One can expect, there-
fore, an additional increase in the tunnel current value in the
vicinity of the impurity atom, whenever the voltage at the
contact approaches threshold value eV = ¢,.

Figure 13 shows the increase in tunneling conductivity in
the vicinity of an impurity atom as the voltage applied across
the tunnel junction approaches the value of the energy of the
localized state. Clearly, the peak in the tunneling conductivity
in the neighborhood of the impurity level is not governed by
the Kondo effect, since the voltage across the tunnel junction
(~ 400 meV) exceeds the energy level width of the impurity
atom (~ 100 meV). If the potential difference across the
tunnel contact is near zero, the cross-like structure of the
local density of the impurity state becomes unresolved in
STM images of the surface section shown in Fig. 13. For the
voltage in the ranges —1 < V< —0.3Vand 0.5 < V< 1.5V,
a bright spot is clearly present in the spatial distribution of the
local tunneling conductivity in the vicinity of the impurity
atom. On the other hand, it should be stressed that within the
voltage range 0.5 < V' < 1.5 V the impurity atom takes the
form of a dark spot for the tunneling current spatial
distribution, which corresponds to a local decrease in its
magnitude.

Thus, the Coulomb interaction between the impurity state
and the conduction electrons for continuous spectrum states
at the STM tip significantly changes the tunneling amplitudes
and leads to the formation of characteristic features in the
tunneling current and in the tunneling conductivity, when the
magnitude of the applied voltage approximates the energy of
the impurity atom. In this case, the current-voltage char-
acteristics may have an asymmetric form due to the different
dependences of the phase factor on the applied voltage: below
or above the threshold voltage. Therefore, by changing the
distance between the tip of the STM probe and the surface, it
is possible to vary the behavior of the current-voltage
characteristics.

3. Tunneling processes peculiarities
in low-dimensional structures

The results of modern experimental studies of tunneling
processes in low-dimensional structures or in mesoscopic
systems, and especially in nanoscale structures, cannot be
treated within the framework of the standard theory of
tunneling phenomena based on the use of the equilibrium
distribution function of tunneling particles. It is implicitly
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assumed that the nonequilibrium particle relaxation rate is
much higher than the tunneling rate. To adequately describe
the tunneling processes in such STM structures and contacts,
consideration of relaxation processes along with the recon-
struction of the electronic spectrum within the contact leads
and the influence of localized states should be properly taken
into account.

A general approach to the description of these processes
can be based on the use of the Keldysh diagram technique,
which makes it possible to take into consideration in a self-
consistent manner both the renormalization of the initial
spectrum of the system due to tunneling processes and the
relaxation of nonequilibrium particles [22].

This approach includes the model Hamiltonian of the
following system:

I:I:I:]O+]:Iimp+l:llun+]:[inl7 (3)

where the Hamiltonian A, describes the isolated leads of the
tunnel junction:

Hy = Z ek Ch Crp + Z (ep = €V)CprCp » (4)
kelL,o pPeER, o

clj(p)ﬂ / Ch(p)s ATC the creation/annihilation operators for non-
interacting electrons with momenta k(p) and energies ¢, on
the left L (sample) and right R (STM-probe tip) leads of the
tunnel contact, respectively.

The Hamiltonian I:Iimp corresponds to impurity states
localized in the region of the tunnel junction and accounts
for the Coulomb interaction of localized electrons:

Himp = stdjda + UZn:,’nd’”. (5)
d,o d,o

In this expression, nj =dtd,  the operator d(d))
corresponds to the creation/annihilation of an electron with
spin ¢ at the impurity level, and U is the magnitude of the
Coulomb interaction of electrons at the energy level of the
localized state. Tunneling processes through an intermediate
state between the contact leads are generally described by the
Hamiltonian

ﬁtun = Z de(d:cka + c]:;dcr) + Z Tpd(d;cpc + C;da) .
k,d, o
' (6)

It is usually assumed that the tunneling amplitudes Ty (,)q
do not depend on the momentum and describe the transitions
of electrons from one lead of the tunnel junction to the other
through intermediate localized states. The Hamiltonian Hin
describes the presence of various kinds of interactions in the
system, such as that with a thermostat, the electron—phonon
interaction, the interaction of localized electrons with con-
duction electrons in the tunnel junction leads, and so on.

Let us start with a model system described by Hamilto-
nian (3), in which the term Hi, is absent, and the leads of the
tunnel junction are in thermodynamic equilibrium. The
expression for the tunneling current can be written out using
the Keldysh diagram technique for nonequilibrium processes:

]( V) =1 Z de(cﬁ,da - d:ckg) =2Re Z deGlfd<
k,0,d k.o,d

= —2Re Z TGl - (7)
p.o.d

p.d,c

The last equality is a consequence of the continuity equation.
The Green’s functions in the Keldysh diagram technique are
determined in a standard way by using Dyson equation [23].
In fact, in order to find the tunneling current, it is sufficient to
find only functions G j; and G, which are related as follows:

() = (=1)2n4(w) Im Ggy(0) . )

In this case, the tunneling current is given by

. . do
1) = 2in | 6~ 2 1m G) 52 ©)

where 9,0 = V{(r) 1 T{,)q» and G* is the advanced Green’s
function. In this approach, the presence of localized electrons
in the Coulomb interacting system leads to a self-consistent
change in the retarded Green’s function G,

In many cases, to correctly describe tunneling phenom-
ena, it is necessary to take into account both the renormaliza-
tion of the electronic spectrum and the finite relaxation rate of
nonequilibrium electrons in the contact leads in a self-
consistent manner. To model the relaxation, we can intro-
duce an additional interaction with the thermostat into the
Hamiltonian:

Hin =Y g(k —p')ey by + hoce, (10)
kp'c
where
1 , ,
gl ') = 5 [etr)exp [k = p')e] ar, (1)

g(r) is the effective matrix element of the interaction with the
thermostat, g(r) — 0in the region of the tunnel barrier and on
its boundaries, bpfa is the creation operator of an electron in
the thermostat in the state (p’c), L is the characteristic size of
the system, and dis its dimension. The thermostat resides in a
state of equilibrium that does not change under perturbation
g(r).

Now, the equations for the Green’s function in the
Keldysh technique contain an additional intrinsic energy
part of 2, caused by the interaction with the thermostat:

5 =Y ek —p)g (K —p) Gl (). (12)
p/

It is reasonable to assume that the thermostat is a system
of randomly located scatterers at points R; [or g(r) is a
random function] and

gk —p)gk’—p)=N""Y glexplik —k')R]. (13)

For the continuous spectrum states under a chaotic
distribution of such centers, one obtains

i =gindae Y Gl (), (14)
p/

where 77 = N;/N is the average concentration of scatterers,
and
an/c
ot

LTy de (Gii®) — G()) = —2T(m — %), (15)

Iy = gtmiv, (o). (16)
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However, if one is interested in the current contribution
from the bound states localized near the microcontacts of
states, then we can choose another limiting case for the
thermostat model, namely, its local activation. In this case,
3 does not depend on kand k', i.e.

s =g Glw), I =ingtv(w) =il(w). (17)
p

We will give more detail on the last case.

An explicit form of the retarded Green’s function GR can
be found within the framework of this model. For example,
the following relations hold true:

_ 1 - iFkN(w)

G () =T Zw) (18)

Z(w) = (1 —i[tN(w)) (0 — &g + iy, (w)) — TZN(w), (19)

where
Nw)=> Gi(w), (20)
iy =i T, vy (o) = iy,(0), (21)

where v, () is the density of electronic states p'.

From the explicit form of the Green’s function, it is
possible to determine the conditions for the formation of
bound states being split off from the boundary of the original
spectrum due to the tunneling interaction [24].

4. Bound states split off from boundaries

of the original spectrum by tunneling interaction
The spectrum of the investigated system is determined by the
poles of the Green’s function GX. If the broadenings of the

electronic states y » and Iy are small, the collective bound state
energy in the band gap is given by

o —&e4— TP N(w) =0 (22)

or

w— &g — T,fjda o(¢) =0,

(23)

w—&

where vo(¢) is the bare density of states in the continuous
spectrum. Equation (23) has a purely real solution in the
regions m > ¢, and w < &, where g and ¢, are the lower and
upper bounds of the spectrum ¢, respectively. The value of w
corresponds to a localized state lying in the band gap. The
energy of this state depends on the value of T} and on the
specific form of bare density of states vy (e).

If the approximate expression vo(e) = (&, — &) is taken
for the density of states of a two-dimensional electron system,
then, in the region w > ¢,, one has

wzéd:wO‘F‘sva (24)

7 (25)

@y = (& — &) exp {f

For a quasi-one-dimensional character of v(¢) near the
boundary of the spectrum, we have

2
T2
= k —1
& =& + Wl 3
&y — &4

(26)

where W) is the effective width of the quasi-one-dimensional
band. It is easy to see that the amplitude of the wave function
Y, of the bound state in the contact region is determined by
the residue of function GR(w,0) = 3",,, G, () at the pole
w = 5(1.
This gives
-1

aPlgof? = U dm(a)(@—s)1}2“@%@)(@—8)2 |
(27)

where « is the lattice constant, and D is the spatial dimension
of the system. In the case of a two-dimensional band one finds

|‘//0‘2 = (ev — 8d)2 WZwOTl\iK‘a P ) (28)
where W, = ¢, — & is the width of the 2D band.

It turns out that, even though an exponential reduction in
the tails of the wave function takes place at the characteristic
length Ry ~ a(W/ wo)l/ P the size of the effective localization
region is not determined by Ry, but by the value of

(ol )P

5. Appearance of induced tunneling conductivity

The presence of split-off bound states may lead to the
appearance of induced tunneling conductivity. In the sta-
tionary case, focusing on the contribution to the tunneling
current from the bound state, we can assume that

Gy (@) = =2in (@) Im G, (w) , (29)
G(0) = =2ing(w) Im G (), (30)

where n;(w) and ny(w) are occupation numbers for states k
and d, respectively.
The tunneling current is given by

1= =252 1 (0) m G (o) (na) ~ (@)

T
_ zj‘;_: Ii(@) Im GR(0,0) (m (@) — (@), (31)
where
ImGR(w,0) =1m Y Gl (o), (32)

kk’

and n), () is the Fermi distribution function for states p’ with
energy o. Distributions of n)(w) and n},(w) differ in the
position of the Fermi level.

For the case of a two-dimensional system of electrons, by
taking into account that for w ~ &, one arrives to

> Im G () = Im G (o) (e, — e0) T,
kk’

(33)

we obtain the following expression for the tunneling current
in the approximation 72vo > 7, I's:

2prk (HPO, (?Id) — nl?(ﬁd))
[TaT(ey —ea) > +T]Z"(a)

(34)

where Z'(24) " = (Tyxvo) *exp [—(, — eq)en T2
Quantities y, and I' entering formula (34) are determined
for w ~ &4. If &, lies between Er and Er — eV, the tunneling
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current is different from zero due to the appearance of a new by Hamiltonian Huun:
collective state ;. R . .

We recall once again that the position of &; with respect to Hyn = Z T(CigCpo F CpoCis) - (39)

the boundary of the band depends on the applied voltage V.
This is due to the difference between characteristic energies
being changed additionally by the value of e}. It should be
noted that, even in the absence of localized states in the
contact region, the presence of a finite relaxation rate of
nonequilibrium carriers leads to a modification of expression
(1) for the tunneling current. In this case, taking into account
the carrier relaxation processes, the formula for the tunneling
current acquires the form [25]

Tzvk(w)vp(w) [n,,(a))— n(w — eV)]Fka
T2v, 0 + T2vi Il + Tyl

I~ 21tede . (35)

Here, I, are the carrier relaxation rates in the contact leads,
and T is the amplitude of the tunneling transitions between
the contact leads. When Iy, > T2, the expression trans-
forms to standard formula (1). Relaxation in the system
reduces the tunnel current, while a change in the local density
of states and the appearance of a nonequilibrium local
electron distribution in the region of the tunnel junction can
significantly distort its spectral characteristics. Consequently,
the current is determined by the weakest link in the chain in
the presence of relaxation.

It is possible to modify the results obtained for a model of
a thermostat with chaotically distributed scatterers. Note that
for such a model one has

Zkk, g,n(ﬁkk/ZG ) (36)

where 7 is the scatterer mean number per unit cell.

In contrast to the formulas in which the tunneling current
is determined by the relaxation rate in the local electron
density

INde( ne— %) Tm GR (e, 0)vy ()2 (37)

the tunneling current now determines the rate of change of the
particle total number:

I~ de v (@)% —n%) Im S GR () (38)
k

It turns out that near the energy of the split-off level,
expressions (37) and (38) differ by 7|y,| 2, where i, is the
amplitude of the wave function of the bound state at point
r =0. Consequently, if the concentration 7 of relaxation
centers is such that, in the region of localization of the
bound state S~ |y,| "> there is only one such center on
average, then both expressions determining the tunneling
current simply coincide.

Thus, when analyzing modern STM/STS experiments, it
is necessary to substantially modify the familiar description of
tunnel contacts [26]. The idea that tunneling current value
reflects the initial density of states in the material becomes
incorrect. A change in the local density of states and the
appearance of electron nonequilibrium distribution are
possible even in the absence of localized states. In this case,
terms I-Alimp and H,, are absent in Hamiltonian (3), while the
tunneling processes between the contact leads are described

k,p,o

A change in the local density in the contact leads vy gy can
be determined using the Keldysh diagram technique as
follows [27]:

40

L(R)
W= Im Y Gkk,:—
k,k’eL(R) 14 T2vp

(40)

A locally nonequilibrium distribution of electrons can be
found from the expression

Z Gk<,k' =

k,k'eL

20
2ivy

. “~“"r 2
(1 + TZVEVg)z T vLVRnP(w))

(nk( )+

= 2minp vy , (41)
where v and v} are unperturbed densities of states in the left
and right leads of the tunnel junction, 7., (w) are equilibrium
Fermi distribution functions for electrons in the leads of the
tunnel junction, and vi. and vg are local densities of states in
the contact region, when tunneling transitions are taken into
account.

As a result, the expression for the tunneling current reads

2,050
4T “vivg

_ de T [1e(e0) — 1y ()] 42)

Thus, the interaction of a sample with a closely spaced tip
during tunneling makes the initial density of states distorted,
and in some cases new bound states appear that play a
particularly important role in dielectrics, CDWs on the
surface, surface bands in semiconductors, etc. At a potential
difference, when the original bands do not overlap, a nonzero
current can be observed. A contribution to the current from
impurities with energy levels lying deep below the Fermi level
appears. In particular, in low-dimensional systems, an
induced tunneling current can appear at voltages correspond-
ing to the energy of the band gap, due to the localized states
split off from the boundaries of the spectrum [see Eqn (34)].

The fact that the position of a bound state depends on the
value of tunneling matrix element 7 in a complicated way
implies a nonexponential (and sometimes nonmonotonic)
dependence of the tunneling current on the distance to a
sample in a potential region on the order of the energy of such
states. This model of tunneling processes involving split-off
localized states makes it possible to explain many experi-
mental data, for example, a sharp increase in the tunneling
conductivity when observing CDWs on the surface of an LC
and a distance decrease between a sample surface and an STM
tip, described in Section 2.1.

6. Anderson model for describing nonequilibrium
impurity states with correlated electrons

In this section, we analyze the experimental spectra of
tunneling conductivity based on the nonequilibrium interac-
tion of impurity states. The behavior of tunneling conductiv-
ity over a wide range of voltages from +2.5 V to —2 V (the
typical value of the Kondo temperature does not exceed
1 meV) was investigated in the STS experiments described in
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Figure 14. Schematic presentation of the tunnel structure in the presence of
interacting impurities.
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Section 2.4. Therefore, the influence of the Kondo effect on
the formation of tunneling characteristics is negligible. The
investigated system is put into a weak magnetic field B, so that
the splitting of levels does not exceed their broadening.

Coulomb interaction of electrons localized on impurity
atoms is taken into account in a self-consistent manner using
the mean-field approximation. It turns out that if the limiting
voltage across the contact changes, the difference in energy
for electrons of opposite spins on each impurity atom can
greatly increase. A sharp increase in spin asymmetry occurs as
well, leading to a transition from the ‘paramagnetic’ regime to
the ‘magnetic’ one. A further increase in the applied voltage
makes a reverse transition from the ‘magnetic’ state to the
‘paramagnetic’ one also possible. In addition, the conditions
under which the interaction between impurity atoms leads to
an enhancement of the magnetic regime in a nonequilibrium
state are revealed. The interaction between impurity atoms
also gives rise to a redistribution of nonequilibrium charges
localized near impurities. Therefore, the stabilization of
impurity levels becomes possible in the vicinity of the Fermi
level for any contact leads, as well as the mutual approaching
of interacting impurity energy levels in a certain range of
applied external voltages.

If two simple atoms a and b are located near the surface of
a semiconductor and the STM tip is located above atom «a
(Fig. 14), the tunneling transitions between the localized
states of atom « and the STM tip are determined by the
tunneling rate y,. The transition rates between localized states
on impurity atoms a and b and states of a continuous
spectrum of a semiconductor are characterized by the
corresponding kinetic parameters y, and y,.

Kinetic parameters y,, ,, and y, are determined from the
Hamiltonian of the investigated structure. The interaction
between impurity atoms leads to a direct ‘hopping’ of an
electron from one atom to another with the corresponding
transition amplitude 7. Energies of impurity atoms « and b at
zero voltage across the contact are different, since atom «
manifests itself in the STS spectra at V' = 0, while atom b does
not (see Section 2.4, Fig. 11). The difference between the
positions of levels of localized states can be caused both by the
inhomogeneous potential of the crystal lattice of a semicon-
ductor and by the arrangement of atoms in different near-
surface layers of the semiconductor matrix. Differences
between the energies of localized states of impurity atoms

can lead to different energy values of the intrasite Coulomb
interaction.

The amplitude 7 of the electronic transition between
impurity atoms does not exceed the relaxation rates y, and
7, arising from hybridization of localized states with the states
of a continuous spectrum of the semiconductor matrix. The
reason is, according to experimental results, that the distance
between the impurities studied is approximately 3 nm. This
assumption means that, because of energy level broadening,
their equilibrium splitting due to the interaction does not
reveal itself in the density of states of the system studied. But
the kinetic processes based on this interaction, leading to a
redistribution of the charge between impurity atoms, are
greatly modified. The presence of a weak magnetic field
does not allow the resolution of energy level splitting for
electrons with opposite spins in the experiment. This is
because the splitting does not exceed the width of the levels
(2uB < TI') at low voltages across a tunnel junction (u is the
magnetic permeability).

Let us consider the peculiarities of tunnel characteristics
over impurity atoms in the regime of variable valence, for
which the parameters of the system satisfy the conditions
e/l ~1, U> ¢ ', 2uB < I'. In this regime, the Coulomb
interaction of localized electrons can be self-consistently
accounted for in the mean-field approximation:

&) =¢] +aV+U,n, ), & =e¢f +pV+Upyn, %), (43)

Sa(b) = Sa(b) F ,uB. (44)

The initial level position depends on the applied voltage as
a consequence of the existence of an external electric field in
the contact region (term o}, where « < 1, takes into account
approximately the influence of the external field), and due to
the Coulomb interaction of localized electrons, the magnitude
of which is determined by the nonequilibrium distribution of
the electron density at a fixed voltage across the contact.

The impurity state occupation numbers are nonequili-
brium quantities and can be self-consistently determined from
the system of kinetic equations. Interactions between impur-
ity atoms leads to the dependence of nonequilibrium occupa-
tion numbers of one of the impurity atoms (7X°) on the
corresponding occupation numbers of another atom (1;7).

The Hamiltonian of the system has the form (3), in which
the part ﬂimp corresponds to impurity states and takes into
account the Coulomb interaction of localized electrons:

N U
§ + a § § +
Himp = 8:610_ as +7 I/Z:I/lia + 8}{; ' brr
a a a

U
+7b;n(fnfa.
+

In this expression, n¢ = aa_, where operator a, annihi-
lates an electron with spin ¢ at the impurity atom a,
n? =brb,, b, destroys an electron on atom b with spin g,
and ¢,, ¢, are the energy levels of impurity atoms a and b,
which in general depend on the applied voltage.

Hen is responsible for tunneling transitions between
impurity states and each of the contact leads; it has the form

Hun =Y Tpaley p05 +hc) + Y Typlc, bs +hc)
p.o p.o

(45)

+) Tialef a0 +he). (46)
k,o
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Interactions between impurities are included in the term expression for the tunneling current:
~ v, (v, + n )
i = 3" T(alb, + bta,). 47) V) —e i+ 1y
za: T (Va + 76 (76 + 16) + 73114
Green’ls functions G $°, which determine the magnitqde c?f o v+ M5\ [ GRe (©,7)
the tunneling current, can be found from the system of kinetic “ Uy, aa
equations [23]. .
As noted above, when using the Keldysh diagram LTI (RS,GAH (o, V))}
technique, the energy part 2 itself may include different Vb Mo
types of interactions. In the case of interest, however, it is x (npo(w) — n,?(w _ eV)) dow, (53)

reasonable to assume that 2 is determined by tunneling
transitions between impurity states and contact leads, along
with the interaction between impurities themselves only. The
employment of this approximation is completely justified,
since the strongest interaction in this case is the Coulomb
repulsion U, which is included in the unperturbed impurity
Green'’s function Gy.

The kinetic coefficients that determine the tunneling
processes can be represented in the form

1(@) = 1| TeaPo(@) (@) = 7 Ty vp(0)

(48)

Va(w) = n|TP0‘2VP(w) ) r= Va + Vb + Yk -

The key issue of our approach is the self-consistent
condition, which must be satisfied by the nonequilibrium
electron occupation numbers on the impurity atoms »; and
ng:

4 1 o A
n :fl[dwna(w)ImG

a aa
T

(), ng = %de ng (o) Im G} (o) .
(49)

The nonequilibrium occupation numbers n?(w) and
ng(w) are determined from the system of kinetic equations,
a detailed derivation of which can be found in paper [17]. The
total electron density for each of the atoms of the impurity
complex can be determined from the system of equations

(e +1,) (g (@) —nj(a)) + I
n;:np"(a)+//(yb ’7)(/»() p()) Vpt ab

(k +2a) b +16) + 7015 (50)
n = no(h) Yelle (nf (@) = n7(@) = (7o + 70 Tab
b Ok +72) (75 + 16) + 7470
where
n° =T*ImRy,,

nm—zwjhn(RM2;65%w0(mm»—nAw»dw,

1 _
Ny (a) = EJ do njy () Im G (w) (51)
and
Ra_bl == G(}z_l _ G()Ab_l - IF (52)

This is a system of nonlinear equations for N> because
energies sa”<b> and functions Ga%”, Gﬁf’, R, depend on the
electron occupation numbers with opposite spins.

In the equilibrium case, V"= 0 and, consequently, n =
ng(a) = nf (a).

Substituting the nonequilibrium occupation numbers on
the impurity found from the kinetic equations into the

expression for the tunneling current, we obtain the final

where for each fixed value of the voltage across the contact,
the self-consistently determined nonequilibrium occupation
numbers n. and ng enter into functions G‘E’, G(E), and R,
As expected, the tunneling current depends only on the
difference between the electron distribution functions in the
contact leads. The first term in the expression for the
tunneling current describes the renormalization of the
relaxation rate for the nonequilibrium electron density on
impurity atom «a due to its interaction with the neighboring
impurity atom b:
Volls

. 54
Vb + Ne ( )

Va—>ya+

If there is no interaction between impurity atoms, 7= 0,
n = 0, then expression (53) simply describes a current flowing
through an impurity localized state [23].

The second term in formula (53) is responsible for
redistribution of a charge between the interacting impurity
atoms. As a result of this redistribution, the tunneling
conductivity obtained from Eqn (53) is no longer propor-
tional to the density of states on the impurity.

The considered system of two interacting Anderson
impurities is the simplest example of a multichannel tunnel
structure that exhibits interactions between different tunnel-
ing channels. This can lead to some interference effects, which
greatly complicates the investigation of tunneling processes in
such systems.

As a result of a self-consistent analysis of the proposed
model, it is possible to reveal various behavior regimes in the
tunneling conductivity in the vicinity of interacting impurity
atoms over a wide range of voltage variations across the
contact. In numerical calculations, the coefficients o and S,
which describe a change in the energy of impurity levels in an
external field, are valued as o« ~ 0.3 and ff ~ 0.1.

If y, <7,,7,, then, in a certain range of values of the
voltage across the contact, the energy difference for electrons
of opposite spins significantly exceeds I'. Therefore, one of
the impurity atoms (atom ) can be in the ‘magnetic’ state.
When the applied voltage is varied, the transitions from the
‘paramagnetic’ mode to the ‘magnetic’ one and vice versa may
occur (Fig. 15a). As the tunneling voltage changes, such
transitions lead to two-fold switching of atom a ‘on’ and
‘off” in the spectrum of tunneling conductivity spatial
distribution (Fig. 15b). This has been observed in experi-
ments (see Section 2.4).

Yet, the energy levels of impurity atoms are stabilized in
the vicinity of the Fermi level of one of the contact leads (the
tip of the STM or the sample), while the voltage across the
contact varies over a wide range comparable to the value of
the Coulomb interaction U. In the tunneling conductivity
spectrum obtained over one of the impurity atoms, two peaks
appear, the width of each being comparable to the value of the
Coulomb interaction and greatly exceeding the tunnel width
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Figure 15. Two anomalously wide distinct peaks in the tunneling
conductivity spectrum, which are in good agreement with experimental
STS curves. (a) Dependence of the energy of atoms « and b on applied
voltage. Typical values of parameters (eV) are: ¢ = —0.25, &) = —0.5,
U,=16, Uy,=05, y,=0.2, y,=0.2, y,=0.05, ¢ = S(? —0.3, g =
e —0.1; T=0.2. The solid lines correspond to ¢ and ¢, °. The dashed
lines correspond to the mean value of &, = (1/2)(ef + ¢, ?), because the
atom b is close to its paramagnetic state for a given set of parameters.
(b) Dependence of normalized tunneling conductivity on applied voltage.

of the levels of localized states. This agrees with the
experimental data given in Section 2.4.

7. Exciton-like Coulomb correlations
and singularities of tunneling characteristics

At present, it is fairly well understood that for small tunneling
contacts the Coulomb interaction can strongly influence the
observed density of states due to the appearance of none-
quilibrium charge in the contact region. Yet the effects that
can be described using the mean-field approximation as in the
previous section are unusual and interesting [28-31].

In addition, there is an interesting possibility of renorma-
lization of the tunneling amplitude itself thanks to Coulomb
interactions. Such a change cannot be reduced to a modifica-
tion of the local density of states along with the electron
distribution. In this section, it will be shown that taking into
account vertex corrections in tunneling amplitudes results in
the appearance of a singularity in the current—voltage
characteristics [32], analogous to those that arise at the edge
of X-ray absorption spectrum in metals [33]. These singula-
rities must manifest themselves when the tunneling current
flows through deep impurity states on the semiconductor
surface. The most favorable conditions to develop this
singularity are those under which the rate y, of tunneling
into a metal electrode (for example, in a tunneling microscope
needle) becomes larger than the relaxation rate y, of a
nonequilibrium charge on impurity.

As will be shown for y, > y,, the impurity level becomes
almost empty when the voltage across the tunneling junction
exceeds the impurity energy level. In a sense, we can say that
at that moment the potential of the impurity ion is ‘switched
on’ abruptly. By analogy with the case of a step-like (in time)
activation of an ion core potential upon knocking out an
electron by gamma radiation, one can expect the appearance
of power-law singularities in the current—voltage character-
istics. To what extent this analogy really applies can be
clarified by calculating within the framework of the non-
equilibrium diagram technique only. Such an assumption was
put forward in the work by Matveev and Larkin [20], though
the authors confined themselves to qualitative reasoning on
renormalization of tunneling amplitude, which led to a series
of wrong conclusions.

Let us consider a semiconductor—impurity state-metal
type tunneling system described by Hamiltonian (3). For
simplicity, we shall consider a ‘neutral single-electron’
impurity. The Coulomb interaction in equilibrium makes
the state of impurities single-filled. For sufficiently large
tunneling constants, the Coulomb interaction on the impur-
ity itself can be ignored if we are interested in conductivity at
voltages close to the position of impurity energy level ;. A
nonequilibrium level filling becomes small under these
conditions, which suppresses intraatomic Coulomb effects.
We also note that the Kondo regime is known to be irrelevant
at such high voltages [34, 35] and makes no contribution to
developing singularities on tunneling characteristics.

The most important thing in this problem is that the
Coulomb interaction of an electron (or, more correctly, a
hole) on an impurity with the conduction electrons in metal is
taken into account:

o + ¥
Hy, = E Wi ol cxg(1 — ¢ i) -
kk’ga’

(55)

Hamiltonian Hj, describes the scattering of conduction
electrons on the ion Coulomb potential, which is no longer
compensated for if the electron moves from a localized state
to the contact leads. Since the Kondo regime is not formed
under given conditions, it is sufficient to consider the current
in the first order in tunneling amplitude 7j,. The Coulomb
interaction with a positively charged hole on an impurity does
not lead to an electron spin flip. Therefore, one can consider
the tunneling amplitude renormalization for each spin
independently. To simplify the expressions, we will replace
the exact Coulomb interaction by a constant equal to the
mean value of the screened Coulomb potential, which
corresponds to taking into account the s-scattering of
conduction electrons by point potential Wyx = W.

The calculation of the current can be started within the
framework of the nonequilibrium diagram technique with an
expression written in terms of Green’s function G < (in what
follows, the charge of the electronis e = 1):

V) =ImJ(V), J(V)=iy_ de TraGLy - (56)
k,o

Here, we introduced the tunnel ‘response function’ J( V), since
this quantity gets renormalized in the Coulomb interactions.

In order not to consider separately the effect of the
constant part of the Coulomb interaction and the ion core, it
is simpler to move to the hole representation for electrons on
impurity: d,» = ¢, ,. Then, the Coulomb interaction is simply
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written down as

4 SR E + +
Hint =W Ckack’ada’dﬂ’

kk'oo’

(57)

with constant W < 0. We shall introduce no special notation
for the hole Green’s functions, by understanding G4, and Gy
as functions with hole operators.

If one ignores the Coulomb interaction in the lowest order
in Ty, the usual expression for the tunneling current is
immediately obtained in terms of hole Green’s functions:

I =i 3 4o TG ()63 (o) + G ()67 (-o).
k,o

(58)

Substituting the corresponding expressions for the Keldysh
Green’s functions and after summing over the momenta k, we
obtain

JO(V):ydew{ n()

B —iyng(w)
o+eV—ei—iy (w+eV—eg) +72]

(59)

where the standard rate of tunneling transitions y, = T2y
appeared, and v is the density of states in the metal needle.
Kinetic parameter y = y, +7,, where y, corresponds to the
relaxation rate of the electron distribution on the localized
state. In this system, this relaxation rate is also determined by
tunneling transitions, but into the bulk states of the
semiconductor: y, = szdv,,n. (Generally, other types of
relaxation processes can be included in the relaxation
parameter y,,.)

Nonequilibrium occupation numbers n,(®) in formula
(59) are electronic. These are determined from the kinetic
equations for function G<. At low temperatures, from
equation (59) we obtain

. g — eV
JO(V):yk{lnX—i(y—l‘ arccot (FI ¢ )
Y

Y

+ " arccot <ﬂ)>} , (60)
Y Y
where X means
g —eV+1y
X=2—"" 77 1
on (61)

D is the width of the conduction band in a metal (or, more
accurately, the quantity inversely proportional to the density
of states v). Setting apart the imaginary part from In X and
using formulas (56), (59), and (60) we can reproduce the usual
formulas for the tunneling current:

) —el
JOV)=pIn|X|+i % {arccot (%) — arccot (Z—dﬂ
(62)

These expressions were written down in a somewhat non-
standard form for a connection to a subsequent rendering,
since quantity J°(¥) is the basis element for higher orders in
perturbation theory.

Let us consider the effect of Coulomb interactions on
tunneling amplitude [36]. The vertex corrections are not
always small, and the results obtained near the threshold
voltages (when the Fermi level in metal crosses the impurity
level) using the many-particle approach differ greatly from
the single-electron picture. Corrections to the tunneling

~>

e — +

W+ w; —wy

Figure 16. Coulomb corrections to tunneling amplitude Tj,. Solid lines
designate Green’s functions Gy of electrons in metal, dashed lines show the
impurity Green’s functions G,. (a) Ladder approximation, and (b) parquet
diagrams (Coulomb wavy lines are replaced for compactness by black dots
in interaction vertices).

amplitude are shown in Fig. 16. It is easy to see that the first
correction has a logarithmic divergence near the threshold
values of voltage: eV = ¢,. The divergence is cut off by finite
relaxation rates and rates of tunneling transitions:

J'(V) =i Z de T (G ()G (—w) Tl
k,o

~ G ()G (~0)Tig ™) - (63)
The effective tunnel matrix elements vary due to the Coulomb
interaction as follows:

Tkld77 = _ideWZjdwl (Gkalf(wl)G;dR(—wl)
k.o

+ G (01)G g7 (~o1)) - (64)

As we have seen in deriving formulas (58) and (59), the
first combination of Green’s functions in integral GZ=GIR
makes a logarithmically large contribution for |¢; — eV] < .
Therefore, even if the Coulomb interaction itself is not strong,
Wv < 1, then parameter WvIn (y2/D?) can be on the order of
unity or greater. The tunnel vertex 7.\ " differs from 7,17~
only in sign, so that we can write

Tyt =-Ty =-TuL, (65)
where L is expressed as
L=Wvin|X|+id|,

D = i {arccot <8d — eV) — arccot (%ﬂ .
Y Y Y

The appearance of singularities in tunneling conductivity
is most easily described in the ladder approximation shown in
Fig. 16a.

The ladder diagrams can be summed up exactly, since for
each pair of Green’s functions the integration over frequen-
cies can be carried out independently. Then, one obtains

JMyy =TI M+ L+ L2+ ] =
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Using formulas (60) and (66), we obtain the following voltage
dependence of the current:

I(V) = ImJ () = 5, Im In|X]+i0
1 — Wy(In|X|+i®)

= M [arccot <8d — eV) — arccot (S—dﬂ
Y v Y
— eV 2.2 2
X {(1 — Wvin {%})
2 L vq2) !
+ (Wv)? ylz {arccot <M> — arccot (ﬁﬂ } . (68)
Y Y Y

A peak is superimposed on the ordinary stepwise
dependence of current on voltage, related to the passage of a
localized level, which gives rise to an additional increase in the
current near the threshold voltage el = ¢,. It is known that if
logarithmic parameter Wvln (y2/D?) becomes too large, the
ladder approximation ‘overestimates the role’ of perturba-
tions, leading to singularities that are too strong. Thus, for
Wvin (y2/D?) > 1, formula (68) would give two sharp peaks
symmetrically located along the voltage axis near &;. This
behavior is an artifact of the ladder approximation, although
it correctly indicates the presence of an additional peak near
the threshold voltage.

As for diagrammatic series of perturbation theory of the
type as in this problem, we can improve the ladder approx-
imation by summing up so-called parquet graphs. The fact is
that in the presence of a large logarithmic parameter, the
ladder diagrams do not belong to the unique class of ‘singular’
diagrams containing the maximum degree of the logarithm. If
one looks at the first diagram in Fig. 16b, it will be seen that a
new ‘loop’ appears from the Green’s functions GGy, as the
corresponding integral contains a large logarithm at a small
‘total energy’ (w + ). But a significant integration domain
over w and w is just a region of low frequencies w. It is this
region that makes a greatest contribution to logarithmic
factor L when integrating other pairs of functions G&,GQI(R .
Thus, the central loop also introduces a logarithmic factor
into the overall result.

Our method consists in leaving the most divergent
terms proportional to (Wv)"L"*! in the nth order of
perturbation theory, the terms keeping the maximum
power of a large logarithm for a given order. Such terms
are described by a series of parquet diagrams obtained by
successive substitution of two types of loops instead of
simple Coulomb vertices, similarly to what was done for
constructing two second-order diagrams from the first-
order one (see Fig. 16b). Parquet diagrams describe
electron scattering in a metal on the impurity Coulomb
potential in the two ‘most singular’ channels. For such a
series of diagrams, we can write out approximate integral
equations which represent some generalization of the
Bethe—Salpeter equation. Integral equations can be solved
with a logarithmic accuracy [37, 38].

We face the parquet case ‘in its pure form’ when
occupation numbers for the local level are very small,
ng < 1—that is, when Ty <k In this case, the entire
diagram series contains only (4+) loops successively
inserted into the place of interaction vertices. A combination
of Green’s functions G,~G X, which gives logarithmic factor L
(66) upon integrating, is what remains in each such loop.
Summation of the parquet series of diagrams leads to the

expression [37]
1 —exp(—2L)

J( V) = 'yk 2 WV

(69)
The current is determined by the imaginary part of J(V), so
that the answer from the leading approximation containing
the real part of logarithmic integrals alone is insufficient.
From the form of expression (59), it is clear that to all
integrals containing the Fermi distribution 7, the imaginary
part iy enters additively with energy ¢;. Therefore, the same
sum of diagrams will lead with logarithmical accuracy to
answer (69) in which L = WvIn X (X = (eg — eV +1iy)/D).

This result can be generalized for arbitrary values of ny.
The highest contributions with respect to the logarithmic
parameter are those that appear in the imaginary part of
J(V), when the GRG; summand is accounted for only in one
pair of functions. Moreover, it is easy to see from formulas
(62) and (66) that the imaginary part proportional to ny
enters into all expressions in exactly the same way as the
imaginary part of the basic logarithmic integral. This allows
us, in the first order in the ratio of the imaginary part to the
logarithmically large real part, to write out the answer for
Im J(V) from formula (69):

(70)

I(V)=ImJ(V) :"Vk[ 8 1 —exp(_zL)}(p'

OolnX 2Wy

In this expression, L no longer contains its imaginary part,
retaining the real logarithm only [see formula (66)]. Substitut-
ing explicit expressions for L and @, we obtain the final
expression for current:

—Wy
ViVp D2
I(V) = [(2“/2

Vo L(eV —eq)
eq— eV &4
X |arccot . — arccot 7 s
/

where W < 0. The parquet approximation is more accurate
than the ladder one, allowing us to describe the behavior of
the current—voltage characteristics near the threshold. We
note, however, that if one takes into account the imaginary
parts of the Green’s function, which is necessary for tunnel
problems, the restriction in the perturbative series by the
parquet diagrams is an approximation since, strictly speak-
ing, we disregard a series of diagrams that have the same order
of magnitude in powers of In|X|. Nevertheless, both the
ladder approximation and the parquet diagram series unequi-
vocally indicate the appearance of a peak in the current—
voltage characteristics, which is associated with Coulomb
correlation effects. Formula (71) allows us to estimate the
value of an additional peak and general behavior of the tunnel
characteristics.

In addition to the case considered, when the tunneling of
electrons from the impurity level creates a positively charged
hole, it is also feasible that, for a different voltage polarity, the
electron after tunneling will occupy the impurity state,
creating an additional repulsive potential for electrons in the
metal. In this case, formula (71) also defines the tunneling
current, but the sign of Coulomb interaction should be
changed to the opposite one: W > 0. Coulomb correlations
lead to current suppression near the threshold, while its
dependence on voltage has a power-law character.

Examples of tunnel characteristics calculated for these
two possible cases are given in Fig. 17.

(71)
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Figure 17. Current—voltage curve for various values of Coulomb interac-
tion. The current is plotted in dimensionless units //ey. (a) w = Wv < 0,
eq=04¢eV,and(b)w=Wv>0,¢e,+U=04¢eV,y/y=3,¢e4/y =40.

We note that in Ref. [39] the correct assumption on the
possible appearance of such a singularity was put forward.
However, an attempt to apply the language of penetration
coefficients found for the equilibrium case has led to a
completely incorrect formula for the current at arbitrary y,
and y,. Another wrong conclusion concerns the use of the
parquet approximation for a completely filled level, n; ~ 1,
while the analysis of the nonequilibrium situation shows that
a simple parquet series is reproduced in the opposite limit of
ng < 1. The possibility of the existence of suppressed con-
ductivity near the threshold at a different voltage polarity has
also been missed.

An experimental study of a GaAs surface doped with Mn
atoms [33] revealed that tunnel characteristics measured at
the impurity location point differ significantly from those
over the rest of the surface and correspond to the behavior
described by formula (71).

Results of calculations are displayed in Fig. 17. Its main
feature is that the tunneling conductivity itself near the
impurity atom is suppressed at positive voltages of 0.5-1.5V,
while the normalized differential conductivity has a peak. It is
this unusual behavior that formula (71) describes for a
positive sign of Coulomb interaction.

A singular behavior of the current—voltage characteristics
can arise when two coupled quantum dots undergo tunneling
through a system in the presence of Coulomb interaction of
charges localized at various points. In this case, thanks to the
interaction of localized electrons with a continuous spectrum
in the contact leads, the electron energy levels in quantum
dots acquire a finite width. The behavior of current—voltage
characteristics when the voltage across the contact is varied
might be described by formulas analogous to Eqn (71),
provided the tunneling level width y plays the role of the
band width v~!.

8. Conclusion

In this review, we described experimental data obtained using
scanning tunneling microscopy/spectroscopy, which most
clearly manifest an influence of nonequilibrium tunneling
effects and electron spectrum reconstruction. We also
propose a theoretical explanation based on the self-consis-
tent consideration of the nonequilibrium distribution of
electrons and the change in the electron density of states in
the tunneling contact area with flowing tunneling current.
The theory explains the appearance of induced tunneling
conductivity in low-dimensional and nanoscale structures
which results from the emergence of bound states in the
band gap and at a finite relaxation rate of nonequilibrium
electrons.

The presented theoretical approach makes it possible to
understand the causes of the anomalous band gap width
experimentally observed in semiconductors, resulting from
the appearance of nonequilibrium charges in the tunnel
junction region. Our theoretical analysis explains the appear-
ance of tunneling conductivity peaks near boundaries of the
semiconductor band gap, whose position depends on the
geometry of the experiment and weakly varies upon chan-
ging the initial impurity level energies. The peaks in tunneling
conductivity appearing in a semiconductor band gap are
accompanied by a decrease in the density of states in the
allowed spectrum region, as opposed to its unperturbed
value. A theoretical analysis of nonequilibrium interference
effects driven by tunneling through interacting impurity
atoms in the Anderson model has been experimentally
confirmed by STS studies of interacting impurities on the
surface of semiconductors.

An experimental study of impurity atoms on a semicon-
ductor surface with deep energy levels by scanning tunneling
microscopy/spectroscopy methods revealed a nonmonotonic
dependence of tunneling current on the voltage across the
tunnel junction. According to the proposed theoretical
model, this behavior can be explained by the formation of
singularities in current—voltage characteristics, caused by the
renormalization of the tunneling amplitudes driven by the
exciton type Coulomb interaction for certain kinds of
impurity atoms.

This study was supported by the Russian Science
Foundation under the grant 16-12-00072.

References

Binning G et al. Phys. Rev. Lett. 50 120 (1983)

Marczinowski F et al. Phys. Rev. Lett. 99 157202 (2007)

Feenstra R M Phys. Rev. Lett. 63 1412 (1989)

Madhavan V et al. Phys. Rev. B 64 165412 (2001)

Morgenstern M et al. Phys. Status Solidi B 210 845 (1998)

Mahieu G et al. Phys. Rev. Lett. 94 026407 (2005)

Sullivan J M et al. Phys. Rev. B 68 235324 (2003)

Wolf E L Principles of Electron Tunneling Spectroscopy (New Y ork:

Oxford Univ. Press, 1985); Translated into Russian: Printsipy

Elektronnoi Tunnel’noi Spektroskopii (Kiev: Naukova Dumka,

1990)

9.  Maslova N Setal. JETP Lett. 67 146 (1998); Pis'ma Zh. Eksp. Teor.
Fiz. 67 130 (1998)

10. Maslova N Set al. Phys. Status Solidi A 131 35 (1992)

11. Maslova N Set al. Solid State Commun. 95 507 (1995)

12. Zheng J F et al. Phys. Rev. Lett. 72 1490 (1994)

13.  Depuydt A et al. Phys. Rev. B 602619 (1999)

14.  Maslova N S, Panov V I, Savinov SV Phys. Usp. 43 531 (2000); Usp.
Fiz. Nauk 170 575 (2000)

15.  Marczinowski F et al. Phys. Rev. B77 115318 (2008)

PN R W=



1086 P 1 Arseev, V N Mantsevich, N S Maslova, V I Panov Physics— Uspekhi 60 (11)

16. Depuydt A et al. Appl. Phys. A 66 S171 (1998)

17.  Arseev P I, Maslova N S, Panov V 1, Savinov S V JETP 94 191
(2002); Zh. Eksp. Teor. Fiz. 121 225 (2002)

18.  Anderson P W Phys. Rev. 124 41 (1961)

19.  Mahan G D Phys. Rev. 163 612 (1967)

20. Matveev K A, Larkin A I Phys. Rev. B46 15337 (1992)

21.  ArseyevPI, Maslova N S, Panov VI, SavinovS VJETP Lett.76 287
(2002); Pis’'ma Zh. Eksp. Teor. Fiz. 76 345 (2002)

22.  Keldysh L'V Sov. Phys. JETP 201018 (1965); Zh. Eksp. Teor. Fiz. 47
1515 (1964)

23.  Arseev P1 Phys. Usp.58 1159 (2015); Usp. Fiz. Nauk 1851271 (2015)

24.  Arseyev P I, Volkov B A Solid State Commun. 78 373 (1991)

25.  Arseev P I, Maslova N S JETP 75 575 (1992); Zh. Eksp. Teor. Fiz.
102 1056 (1992)

26. Arseev P I, Maslova N S, Mantsevich VN JETP 115 141 (2012); Zh.
Eksp. Teor. Fiz. 142 156 (2012)

27. Maslova N S, Arseyev P I, Mantsevich V N Solid State Commun.
241 20 (2016)

28. Bardeen J Phys. Rev. Lett. 6 57 (1961)

29. Feenstra R M, Fein A P Phys. Rev. B 32 1394(R) (1985)

30. Zheng Z F, Salmeron M B, Weber E R Appl. Phys. Lett. 64 1836
(1994)

31. Lengel Getal. J. Vac. Sci. Technol. B 11 1472 (1993)

32.  Renner Ch, Fischer O Phys. Rev. B 51 9208 (1995)

33.  Arseyev P I, Maslova N S Solid State Commun. 108 717 (1998)

34. Domke Cetal. J. Vac. Sci. Technol. B 16 2825 (1998)

35.  Pacherova O et al. Czech. J. Phys. 49 1621 (1999)

36.  Arseev Pletal. JETP Lett. 72 565 (2000); Pis'ma Zh. Eksp. Teor.
Fiz. 72 819 (2000)

37.  Arseyev P I, Maslova N S, Savinov S V JETP Lett. 68 320 (1998);
Pis’'ma Zh. Eksp. Teor. Fiz. 68 299 (1998)

38.  Beenakker C W J Phys. Rev. B 44 1646 (1991)

39. Kaminski A, Glazman L I Phys. Rev. B 61 15927 (2000)



	1. Introduction
	2. Experimental results
	2.1 Charge-density waves and induced conductivity
	2.2 Peculiarities of the electronic structure of pure semiconductor surfaces
	2.3 Microscopy and spectroscopy of isolated impurity states on semiconductor surfaces
	2.4 Nonequilibrium interaction of impurity states
	2.5 Nonequilibrium effects and multiparticle d-orbital interaction of impurity atoms

	3. Tunneling processes peculiarities in low-dimensional structures
	4. Bound states split off from boundaries of the original spectrum by tunneling interaction
	5. Appearance of induced tunneling conductivity
	6. Anderson model for describing nonequilibrium impurity states with correlated electrons
	7. Exciton-like Coulomb correlations and singularities of tunneling characteristics
	8. Conclusion
	 References

