
Abstract. We discuss the problem of the visual recognition of
mirror-like objects, i.e., bodies with an ideally smooth (analytic)
surface. The visual perception of such objects is essentially
dependent on their environment, in contrast to bodies with an
irregular (rough) surface, whose visual images are independent
of the environment.

Keywords: mirror-like object, wave field, scatterer, analytic con-
tinuation, singularities of analytic continuation of the wave field,
carrier of secondary sources, crosscut, Riemann surface, imagery

1. Introduction

As is known, monochromatic waves (both electromagnetic
and sound) can be described by a functionU 1�r� �U 1�x; y; z�
that satisfies the Helmholtz equation

DU 1 � k 2U 1 � 0 ; �1�

where D � q2=qx 2 � q2=qy 2 � q2=qz 2 is the Laplace opera-
tor, k � 2p=l is the wave number, and l is the wavelength of
the simulated oscillations. The function U 1 is referred to as a
wave field in what follows.

If a primary wave field U 0�x; y; z� encounters an obstacle
(scatterer), i.e., a body bounded by a surface S, as it
propagates from a radiation source, then the wave field

reflected (scattered) by the obstacle is found from the
relation (see, e.g., Refs [1, 2]):

U 1�r� �
�
S

�
U�r 0� qG0�r; r 0�

qn 0
ÿ qU�r 0�

qn 0
G0�r; r 0�

�
ds 0 ; �2�

whereU � U 0 �U 1 is the total (incident plus scattered) field,
G0 is the fundamental solution of theHelmholtz equation (the
free-space Green's function),

G0�r; r 0� �
1

4p
exp

ÿÿikjrÿ r 0j�
jrÿ r 0j in three dimensions ;

1

4i
H
�2�
0

ÿ
kjrÿ r 0j� in two dimensions ;1

8>>><>>>:
and q=qn 0 is the differentiation operator along the outer
normal to S.

The function G0�r; r 0� represents the field at a point
M�r� produced by a point-like source located at N�r 0�.
Thus, in accordance with Eqn (2), the field of primary (for
example, light) sources results from the radiation of a large
number of secondary sources located on its surface S. In
other words, what we see is the result of the radiation of
these sources.

We consider a situation where the object under study is
mirror-like, i.e., polished to a sufficient extent to make its
surface roughness features visually imperceptible. An exam-
ple is a perfectly polished sphere like those familiarly used as
Christmas tree decorations. If there are no objects in the
vicinity of such a sphere, then, if illuminated in darkness by a
source of light, the contours of the sphere are somewhat
uncertain.

It is to be noted that the visualization of mirror objects is a
frequent problem for artists, as exemplified by works of the
famous Russian artist Petrov-Vodkin, notably by his `Still
Life with a Samovar', which we reproduce here.

Importantly for what follows, the function U 1�r� that
solves homogeneous Helmholtz equation (1) with
M�r� 2R3n �D, where D is a domain inside S and �D � D [ S,
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�2�
0 is the zeroth-order Hankel function of the second kind.



is analytic everywhere outside D [1] and can therefore be
represented as a power series in the neighborhood of each of
its points of analyticity (an example is the Atkinson±Wilcox
series in 1=�kr� [1, 2]). As is well known, such a series
converges outside a sphere of a radius equal to the distance
from the center of expansion to the most distant singularity
point ofU 1�r�, allowing the functionU 1�r� to be analytically
continued beyond the domain of its original definition [2±4].
The functionU 1�r� necessarily has singular points (otherwise
it would be everywhere zero [2]) and these clearly lie inside or
on the boundary of the domain D.

What are the above-mentioned singular points of the
function U 1�r�? We consider a simple example where a
source of light is placed in front of a plane mirror. When
looking in the mirror, we see the source of light at a point
symmetric relative to S located behind the mirror (Fig. 1).
We see this imaginary source (image) by straight-line
continuation of the rays reflected from the mirror. The
image of the source is exactly the result of the mirror-
reflected field being analytically continued into the region
behind the mirror.

The image obtained is perceived by us as an additional
light source located on the other side of the mirror (Alice's

looking-glass). If we start moving the source away from the
mirror, its wonderland counterpart moves symmetrically
arbitrarily far away.

A totally different situation occurs for reflection from a
nonplanar surface.We imagine that we start bending a planar
mirror by lifting its edges. The space behind the mirror starts
to `shrink' to form a `fold', in which process the possibility
exists for the image to disappear, in part or as wholeÐa
phenomenon familiar to everyone who has happened to view
curvedmirror images in a funhouse. This phenomenon occurs
because in the hypothetical behind-the-mirror medium, the
above-mentioned `folds' form: these are regions in which two
(or more) images should appear simultaneously, with the
disappearing part of the image `hiding in the fold' (see Ref. [4]
for more details).

2. Localization of the singularities
of the analytically continued diffraction field

We now discuss the localization of singularities of the
function U 1�r� in more detail. We consider representa-
tion (2) that and limit ourselves to the case of two dimensions.
We suppose the scatterer boundary S (whichwe consider to be
star-shaped) is specified by the equation r � r�j� and
introduce the complex variable

z � r�j� exp �ij� : �3�

If the quantity j in Eqn (3) is real, the contour C described
by z in the plane z � r exp �ij� is geometrically coincident
with S. However, setting j � j1 � ij2 causes the contour C
to be deformed (in particular, for positive j2, to be
compressed).

Such a deformation is possible until mapping (3) remains
bijective. Also, because the boundary values U�r�jS and
qU�r�=qnjS involve the values U 0�r�jS and qU 0�r�=qnjS, it
follows that the above deformation is bounded by singular
points of the function U 0�r�jS continued to the domain of
complex j.

Clearly, the bijectivity of mapping (3) is violated at a point
for which

z 0�j� � �r 0�j� � ir�j�� exp �ij� � 0 : �4�

It is important to note that Eqn (4) is equivalent to the system
of two equations�

r 0�j� � ir�j�� � 0 ;

exp �ij� � 0 ;

�
�4a�

where the equation exp �ij� � 0 cannot be dropped because
ignoring its roots results in losing some (for certain shapes,
very essential) part of the singularities.

The singularities of the function U 0�r�jS are located at
the `image points' of the primary field source, which they
reach by following the complex characteristics and whose
coordinates are found using the Riemann±Schwarz sym-
metry principle [4, 5].

We now turn to considering another way of defining the
coordinates of the image of a point-like source. Let the point-
like source field be of the form

U 0�r� � 1

4i
H
�2�
0

ÿ
kjrÿ r0j

�
:

K S Petrov-Vodkin, ``Still Life with a Samovar.''

S

Figure 1.Mapping in a plane mirror.
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In coordinates �r;j�, we have
jrÿ r0j2

��
S
� r2�j� � r 20 ÿ 2r0 r�j� cos �jÿ j0�

� �r�j� exp �ij� ÿ r0 exp �ij0�
�

� �r�j� exp �ÿij� ÿ r0 exp �ÿij0�
�
:

The singularities of U 0�r�jS are then located at

r�j� exp ��ij� � r0 exp ��ij0� :

We also note that the function U 0�r� has a singularity at
infinity. The root of the equation r�j� exp �ij� � r0 exp �ij0�
corresponds to the singularity of U 0�r� at the position of the
source, r0 exp �ij0� � x0 � iy0.

We now consider the equation

r�ĵ� exp �ÿiĵ� � r0 exp �ÿij0� � zÿ : �5�

Assuming a real ĵ in Eqn (5), we obtain the same point as in
the preceding case. Therefore, we solve Eqn (5) by assuming
that ĵ � j1 � ij2 is a complex quantity. From Eqns (3) and
(5), we have

zsing exp
ÿÿi2ĵ�zÿ�� � zÿ ;

that is,

zsing � zÿ exp
ÿ
i2ĵ�zÿ�� ; �6�

where zsing � z�ĵ�zÿ��. It is this equation that gives the
coordinates of the `image' of the source. Additionally, it is
necessary to find the image of the infinitely remote point [2].

The above techniques for localizing singularities apply
unchanged to the three-dimensional case where the scatterer
is a body of revolution. It goes without saying that Eqns (4)
and (6) give the coordinates of singularities in the axial cross
section of the scatterer.

In the general three-dimensional case, an analytic defor-
mation of the boundary S can be implemented by introducing
the complex variable

z � r�y;j� exp �iy� �7�

(where r � r�y;j� is the equation for the boundary S in
spherical coordinates), assuming the angle y to be complex
and taking the angle j as a parameter [2].

Having found all singularities of the analytic continua-
tion of the wave field to the interior of the scattering body
(i.e., domain D), we can use the principle of equivalence to
represent the field U 1�r� scattered by this object by using
sources located on a certain surface S that envelopes the
set of singularities. In other words, Eqn (2) can then be
replaced by [2]

U 1�r� �
�
S

�
U�r 0� qG0�r; r 0�

qn 0
ÿ qU�r 0�

qn 0
G0�r; r 0�

�
ds 0 : �8�

Thus, the image of an object is formed by sources located on a
certain support S inside the object. In some cases, as we see in
Section 3, the support of secondary sources S can be located
very deep inside the scatterer.

To see how deep inside the scatterer the support S of the
scattered field sources can be located, we consider some

examples of the localization of singularities of the analytic
continuation of the wave field.

3. Examples of the localization
of singularities of the analytically
continued diffraction field

3.1 Singularities of the scatterer boundary equation
mapped on the complex plane
The singularities of mapping (3) can be found by solving
Eqns (4a). We give examples of solutions of these equations
for various geometries.

3.1.1 Elliptic cylinder. As the first example, we consider the
diffraction of a plane wave on an elliptic cylinder. The
equation for the cross section contour S has in this case the
form

r�j� � b��������������������������
1ÿ e 2 cos2 j

p ;

where b is the minor semiaxis, a � b=
�������������
1ÿ e 2
p

is the major
semiaxis, and e � ���������������������

1ÿ b 2=a 2
p

is the ellipse eccentricity. After
elementary manipulations, we see that the complex root j0 of
the first of Eqns (4a) satisfies

cos2 j0 ÿ i cosj0 sinj0 ÿ
1

e 2
� 0 ;

whence

exp �ij0� � �
e�������������

2ÿ e 2
p ;

and therefore

z01 � z�j0� � �
be�������������
1ÿ e 2
p � �ae � � f

(where 2 f is the interfocal distance), implying that the wave
field singularities inside the ellipse lie at its focuses. A
singularity at the origin corresponds to the second of
Eqns (4a). It can be shown (see Refs [2, 3]) that the wave
field has second-order branch points at the focuses of the
ellipse. To define a single-valued branch, a cut must be made
connecting the points �f .

In three dimensions, with the spheroid-shape scatterer,
the singularities lie at the focuses of the axial cross section of
the spheroid.

3.1.2 Cassini oval. As the second example, let S be a Cassini
oval,

r�j� � a
��������������������������
1� e 2 cos2 j

p
; e < 1 :

The first of Eqns (4a) can then be written as

e 2 cos2 j0 � ie 2 cosj0 sinj0 � 1 � 0 ;

solving which yields

exp �ij0� � �i
�������������
2� e 2
p

e
;

whence

z02 � �i
a

e

�������������
1� e 2

p
;
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and therefore

jz02j �
a

e

�������������
1� e 2

p
> r

�
� p
2

�
� a ; arg z02 � �

p
2
:

Hence, the points z02 lie outside the boundary S (Fig. 2).
Solving the second of Eqns (4a) yields

z�j0� � �
ae
2
� z01 :

These singular points lie inside S because jz01j �
ae=2 < r�0� � r�p� � a

�������������
1� e 2
p

.

3.1.3Multifoil.We now consider the case where the boundary
S is a multifoil whose equation is

r�j� � a�1� t cos qj� ; 04t < 1 ; q � 1; 2; 3; . . . : �9�

I. The case q � 1 has to be treated separately. Curve (9) is
in this case called Pascal's limacË on. As in Section 3.1.2, both
Eqns (4a) should be considered. Solving the second of these
gives

z�j0� �
at
2
� z01 :

This point is readily seen to lie inside S (Fig. 3).
The first of Eqns (4a) now becomes

r 0�j0� � ir�j0� � ÿat sinj0 � ia� iat cosj0 � 0 ;

and has the solution exp �ij0� � ÿ1=t, whence
z02 � r�j0� exp �ij0�

� a

�
1� t

2

�
exp �ij0� � exp �ÿij0�

��
exp �ij0�

� ÿ a

2t
�1ÿ t 2� :

Thus, jz02j � �a=2t��1ÿ t 2�, arg z02 � p, and hence the point
z02 lies outside S (see Fig. 3).

II. Turning now to the cases q � 2; 3; . . . ; the first of
Eqns (4a) becomes

r 0�j0� � ir�j0� � a
�ÿqt sin �qj0� � i� it cos �qj0�

� � 0 :

Setting exp �ij0� � t, we have the following set of solutions
(Ref. [3], Ch. II):

t1m �
"
ÿ1� ������������������������������

1� t 2�q 2 ÿ 1�p
t�q� 1�

#1=q
exp

�
i
2mp
q

�
; �10�

t2m �
"
1� ������������������������������

1� t 2�q 2 ÿ 1�p
t�q� 1�

#1=q
exp

�
i
�2m� 1�p

q

�
; �11�

m � 0; 1; . . . ; qÿ 1 :

Now, noting that z � r�j� exp �ij� [see Eqn (3)] and using
solutions (10) and (11), we find that the singularities of the
analytic continuation of the wave field into the multifoil are
located at points that are at the distance

jz01j � a
q
h
q� ������������������������������

1� t 2�q 2 ÿ 1�p i
q 2 ÿ 1

�
�ÿ1� ������������������������������

1� t 2�q 2 ÿ 1�p
t�q� 1�

�1=q
�12�

from the origin on rays drawn at the angles

arg z01 �
2mp
q

; m � 0; 1; . . . ; qÿ 1 �13�

(see Fig. 4 in which z02 denotes the singularities due to the
continuation of the inner field to the outer region). The roots

0

0

2

ÿ6
ÿ3ÿ4 ÿ2 ÿ1

ÿ2

ÿ4

4

6

1 2 3 4
x

y
z02
z01

Figure 2. Cassini oval.
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Figure 3. Pascal's limacË on.
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of the equation exp �ij� � 0 are mapped to the infinity in the
z plane. We note that, for example, at singularities inside the
scatterer [see Eqns (12) and (13)], the field has a qth-order
analytic branching [3, Ch. II]. More precisely, the character
of the singularity in the neighborhood of the mth singular
point �m � 0; 1; . . . ; qÿ 1� has the form

1�
r exp �ij� ÿ r0m exp �ij0m�

�1ÿ1=q ; �14�

where r and j are polar coordinates of a point in the
neighborhood of the mth singular point with coordinates
r0m � jz01j and j0m � arg z01.

It follows from Eqn (14) that, in particular, as q!1, the
character of the singularity becomes close to the singularity at
a first-order pole. It is also seen [see Eqn (12)] that as t! 0,
the singular points tend to the origin. Thus, passing to a circle
(in three dimensions, to a sphere), i.e., simultaneously letting
q tend to infinity, q!1, and t to zero, t! 0, gives rise to a
single singularity at the center, a singularity which is an
infinite-order pole and hence an essential singularity.

In other words, the field scattered by a circular cylinder
(sphere) can be regarded as being produced by a number of
sources occupying an arbitrarily small volume containing the
origin within it (see also representation (8) in light of the
above) or a single sourceÐan infinite-order multipoleÐat
the center. The question naturally arises as to why, for
example, we still see a sphere rather than a luminous point
at its center. An answer to this question can be attempted only
after considering the second set of singularities, the maps of
the outer sources (singular points).

3.2 Singularities of source images
We can use relations (5) and (6) to find the coordinates of
these singularities. We again consider examples of their
localization for various scatterer geometries.

3.2.1 Ellipse. Equation (5) here becomes

b exp �ÿiĵ���������������������������
1ÿ e 2 cos2 ĵ

p � r0 exp �ÿij0� � zÿ ;

i.e.,

4b 2 exp �ÿi2ĵ� � �zÿ�2
n
4ÿ e 2

�
exp �i2ĵ�� exp �ÿi2ĵ�� 2

�o
:

Solving this equation, we find

exp �ÿi2ĵ� �
"
�2ÿ e 2� � 2

��������������������������������������������������
b 2

�zÿ�2 ÿ
b 2

r 20
e 2 exp �i2j0�

s #

�
�
e 2 � 4

b 2

r 20
exp �i2j0�

�ÿ1
:

Hence,

zsing� r0 exp �ÿij0� exp �i2ĵ�

� r0

�
e 2 exp �ÿij0��

�
2b

r0

�2

exp �ij0�
�

�
"
�2ÿ e 2� � 2

��������������������������������������������
b 2

a 2
ÿ b 2

r 20
e 2 exp �i2j0�

s #ÿ1
: �15�

As seen from Eqn (15), the point at infinity maps to the
origin.

A. Special case e � 0 (circle or sphere). Here, it follows
from Eqn (15)

zsing �
b 2

r0
exp �ij0� ;

the map is at the point of inversion, with the product of the
distances from the center of the circle (sphere) to the source
and to the image equal to the squared radius of this circle
(Fig. 5).

B. We let r0 � b� d, j0 � p=2, and d5 b, assuming that
the source is close to the boundary. Keeping terms of the
order d and neglecting terms of the order d 2, we obtain

zsing � ir0
4�1ÿ 2d=b� ÿ e 2

�2ÿ e 2� � 2

���������������������������������������������
�b=a�2 � e 2�1ÿ 2d=b�

q
� ir0

4ÿ e 2 ÿ 8d=b
4ÿ e 2 ÿ 2e 2d=b

� i�r0 ÿ 2d� :

Hence, approximately [up to �d=b�2], the image is near the
`mirror' point, as it should be in accordance with what our
visual experience suggests. As the source moves away along
the straight line j0 � p=2, its image, as seen from Eqn (15),
moves toward the interfocal cut until, at r0 � 2a=e, it reaches
the point r � 0 on the cut. As r0 is increased further, the
source image intersects the cut (because it appears at
j0 � ÿp=2), and thus appears on the nonphysical sheet of
the Riemann surface. Hence, it turns out that for r0 > 2a=e, as
for the plane-wave excitation of an ellipse, the set of
diffraction field singularities is represented only by the
interfocal segment.

It is important to note that relations (5) and (6) allow
finding not only the coordinates of the point source image but
also the coordinates of the singular points `generated' by the
wave field singularities inside a nearby body, for example, in
the situation shown in Fig. 6.

3.2.2 Pascal's limacË on. We recall the equation for Pascal's
limacË on, r�j� � a� b cosj, 04 b < a. In this case, Eqn (5)
takes the form

�a� b cos ĵ� exp �ÿiĵ� � r0 exp �ÿij0� � zÿ ;

or

exp �ÿi2ĵ� � 2a

b
exp �ÿiĵ� �

�
1ÿ 2zÿ

b

�
� 0 ;

S

Figure 5. Image in a circle and in a sphere.
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whence

exp �ÿiĵ� � ÿa�
��������������������������������
a 2 ÿ b 2 � 2bzÿ
p

b
;

i.e.,

exp �iĵ� � b

ÿa� a
�����������������������������������������
1ÿ �b 2 ÿ 2bzÿ�=a 2

p :

Here, we ignore the solution with the minus sign in front of
the square root because it does not pass into the solution for a
circle at b � 0: exp �iĵ� � �a=r0� exp �ij0�.

Thus,

zsing � r0 exp �ÿij0� exp �i2ĵ�
� r0b

2 exp �ÿij0�
h
2a 2 ÿ b 2 � 2r0b exp �ÿij0�

ÿ 2a
�����������������������������������������������������
a 2 ÿ b 2 � 2r0b exp �ÿij0�

q iÿ1
:

To verify the solution, we set r0 � a� b� d, j0 � 0, and
d5 a� b and again keep terms of the order d and neglect
terms of the order d 2. We obtain

zsing �
b 2�a� b� d�

a 2 � �a� b�2 � 2bdÿ 2a�a� b�ÿ1� bd=�a� b�2�
� �a� b� a� b� d

a� b� 2d
;

or finally

zsing � a� bÿ d :

As in the case of an ellipse, the image lies at the mirror point.
From the examples given, we see that the image of a point

source (singular point) can be sought using a small parameter
expansion.

3.2.3 Parabola. As the last example, we consider the case
where a parabolic cylinder mirror is excited by a point-like
source (more precisely, a current filament) U 0�r� �
�1=4i�H �2�0 �kjrÿ r0j� (Ref. [3], Ch. II). This problem is of
applied interest in the theory of antennas, etc.

We assume that the point-like source field is incident on
the parabola

y � aÿ bx 2 : �16�

The problem is conveniently treated in Cartesian coordinates.
Introducing the complex variable

z � x� iy�x� ; �17�

we can find the points where the bijectivity of mapping (17) is
violated from the equation

z 0�x� � 1� iy 0�x� � 0 : �18�

In the case of the parabola in Eqn (16), Eqn (18) becomes

1ÿ i2bx � 0

and has the solution

x0 � 1

2bi
:

In the complex-z plane, the singular point

z0 � i

�
aÿ 1

4b

�
:

corresponds to this solution. From this point, we should draw
a cut to the point at infinity. The point with coordinates

x0 � 0 ; y0 � aÿ 1

4b
�19�

corresponds to the singular point z0 in the real xy plane,
which is the focus of the parabola.

We now find the coordinates of the point source image.
The discussion is entirely similar to the one above.

We again consider the expression (now in Cartesian
coordinates)

jrÿ r0j2
���
S
� �ÿx� iy�x��ÿ �x0 � iy0�

�
� �ÿxÿ iy�x��ÿ �x0 ÿ iy0�

�
:

It follows that the singularities of U 0�r� occur at
x̂� iy�x̂� � x0 � iy0 � z�0 :

The point z0 � x0 � iy0, which is the point of location of the
source and hence is of no interest, corresponds to the equation
z � x̂� iy�x̂� � z�0 in the z � x� iy plane. We consider the
point for which

x̂ÿ iy�x̂� � zÿ0 ; �20�

where x̂ � x1 � ix2 is a complex quantity. Equation (20) is
equivalent to

2x̂�zsing� ÿ zsing � zÿ0 ; �21�

where x̂�z� is the solution of the equation

x̂� iy�x̂� � z ; �22�

defined everywhere except the points where Eqn (18) holds.
Equation (20) can be written as

x̂ÿ ia� ibx̂ 2 � zÿ0 ;

y1 y2

z

Figure 6. Superellipse near an ellipse.
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and its solution has the form

x̂�zÿ0 � �
i� i

���������������������������������
1ÿ 4ab� 4ibzÿ0

p
2b

;

where the minus-sign solution is redundant because it
becomes wrong at b � 0. Thus [see Eqn (21)],

zsing � 2x̂�zÿ0 � ÿ zÿ0 �
iÿ i

���������������������������������
1ÿ 4ab� 4ibzÿ0

p
b

ÿ zÿ0

� iÿ b�x0 ÿ iy0� ÿ i
������������������������������������������������
1ÿ 4ab� 4ib�x0 ÿ iy0�

p
b

: �23�

Taking the real and imaginary parts of relation (23), we
obtain the coordinates of the point source image in a
paraboloidal mirror.

We now investigate some limit cases (Ref. [3], Ch. II).
First, let jabj5 1 and jbz0j5 1 (a weakly curved surface). We
then see from Eqn (23) that zsing � �x0 ÿ iy0� � i2a. Thus, in
the xy plane, the source image is at the point with the
coordinates

xsing � x0 ; ysing � ÿy0 � 2a ; �24�

i.e., at the same place as for reflection from the y � a plane.
Similarly, for jbx0j5 1 and jby0j5 1 (i.e., in the case of a
near-surface source), the image is again at the point with
coordinates (24).

By comparing this result with those described above when
considering compact scatterers, it is possible to formulate the
following locality principle: if the source is located near a
convex curved surface at a distance that is small compared to
the curvature radius of the surface at the point considered, then
its image is located at (approximately) the same point as in the
case of reflection from the tangent surface.

4. Conclusion

We can now attempt to answer the question raised in
Section 3.1: why do we see a sphere rather than a luminous
point at the center of the sphere? From the examples we have
given in Section 2 and 3, it is clear that if a perfectly polished
sphere (polished, of course, to a scale exceeding the resolving
capability of the human eye) is placed in the field of a plane
wave (for example, if it is illuminated by a laser beam) in a
room with absorbing walls, we indeed see nothing but a
luminous point at the center of the sphere. The brightness of
the point is determined by the properties of the sphere surface;
for example, an ideally polished sphere made of an absorbing
material would be perceived as a dim point. In a usual setting,
for example, we see the same sphere surrounded by many
other objects that are imaged in it and, by the totality of these
images, form a visual image that we perceive as a sphere. If the
sphere surface is rough, thismeans, in fact, that we are dealing
with an object of a nearly spherical shape with many singular
points of the surface that serve as sources of scattered field.

By extending the above discussion to nonspherical
objects, it is possible to understand in general terms why is
we see what we see. Indeed, for a mirror surface body, the
sources of the light it scatters are inside it. This is the reason
why such an object is recognized the better, the more other
objects are close to it and imaged in it. Conversely, if the
surface of the object is rough, the sources of the scattered field
lie in the immediate neighborhood of the surface, dramati-

cally simplifying the problem of recognizing the shape of the
object.

Thus, we arrive at the conclusion that for a scatterer to
have the property of invisibility, i.e., to be poorly recogniz-
able, its shape should be as close as possible to a perfect
analytic surface and be free of irregularities (angles, bulges,
etc.), and its surface should have absorbing properties [2, 4].
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