
Abstract. This paper develops the theoretical concept of a
bubston, a stable gas bubble that exists in pure water and in
electrolyte water solutions in equilibrium with their gaseous
environment. A theoretical model of ion adsorption on a water
surface is constructed and used to quantitatively describe the
double electric layer that forms. These results also enable a
thermodynamic description of a bubston structure in the
water±gaseous environment system to be performed. It is
shown that for certain temperatures and certain concentrations
of dissolved impurity ions the emergence of such a structure is a
first-order phase transition. The unique role of helium as a
gaseous environment in the context under study is established:
in this case, a bubston structure does not appear whatever the
initial ion concentration, and the solubility of helium itself
increases with increasing temperature. The mechanism of for-
mation of experimentally observed bubston clusters is dis-
cussed.

Keywords: stable gas bubbles, thermodynamically equilibrium
systems, ionic adsorption at the water surface, double electric
layer, first-order phase transition

1. Introduction

When studying cavitation phenomena, there long posed the
problem of explaining the existence of stable gas bubblesÐ
cavitation nucleiÐ in pure water containing no foreign
microparticles (or any cracks in the walls of the cuvette in
which the water is held). The necessity of existing such species
follows from the fact that, as was shown in numerous studies
devoted to this phenomenon, the threshold of the mechanical
strength of water (i.e., the magnitude of the negative pressure
p that leads to the formation of a cavitation pocket) is always
substantially lower (by at least an order of magnitude), in
spite of the careful purification of the water, than the
molecular strength of water p � � sn 1=3 � 3� 103 atm
(s � 102 erg cmÿ2 is the coefficient of surface tension, and
n � 3:3� 1022 cmÿ3 is the number density of water mole-
cules). The only factor that can be responsible for such a
decrease in the threshold of strength may be the existence in
water (as well as in some other liquids) of stable gas bubbles
(cavities) in a sufficiently high concentration. This point of
view became generally accepted long ago; however, for many
years it has not been theoretically or experimentally sub-
stantiated. An important circumstance that attracted wider
interest in this problem was the fact that a similar situation
was observed in recent years in the case of the phenomenon of
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optical (laser) breakdown of water: the threshold for the
breakdown of carefully purified water is always substantially
lower than the values that correspond to the threshold of
ionization of the molecular structure of the liquid water itself.
And here, also, as was shown for the first time in paper [1], the
physical reason lies in the existence of stable gas bubbles that
fall into the focal region of the laser beam. In them, as in free
gas, a breakdown occurs due to the development of an
electron avalanche.

Two principal questions remained unsolved: first, how
can gas bubbles arise in a continuous medium (water) that is
in equilibrium with an external gaseous medium (e.g., with
ambient air);1 and, second, why do such bubbles become
stable after they appear?

The first question arises, strictly speaking, only if the
liquid is not near the boiling temperature or in a superheated
state. Otherwise, vapor bubblesÐnuclei of the new phaseÐ
can arise in it with a noticeable probability as a result of
thermal fluctuations; these bubbles, in turn, can serve as
nuclei of cavitation and optical breakdown. However, far
from the boiling point the probability of the formation of
vapor nuclei is extremely small; therefore, their role in the
problem considered is ruled out. As to the second question, it
is a priori obvious that the stability of a gas bubble cannot be
ensured only due to the mechanism of surface tension. In this
case, the necessary condition for the stability of the bubble
would be as follows: pb � p� 2s=R (where pb is the gas
pressure inside the bubble, p is the external pressure, and R
is the bubble radius). However, this condition simultaneously
indicates that relative to the gas inside the bubble the solution
itself is unsaturated; therefore, a diffusive escape of gas
particles should occur from the bubble into the liquid, i.e.,
the bubble should become dissolved. At the same time, as long
ago as the first quarter of the 20th century, experiments [2]
were performed that showed that on the water surface (in
particular, on the surface of an air bubble in water) there are
electric charges. Alty [2] reported that their presence could be
qualitatively explained by a selective (with respect to the
charge sign) adsorption of ions, which are always present in
water, on the surface. However, this idea of the selective
adsorption of ions was not developed further for a long time.
The first attempt to take into account the role of adsorbed
ions in the stability of gas bubbles was presumably under-
taken in paper [3]. However, the concept of the selective
adsorption of ions was not developed in that study; therefore,
the problem of the stability of bubbles with allowance for the
adsorption of ions proved to be only posed, but not
completely solved. The next attempt to solve the problem of
the stability of a bubble was undertaken in paper [4], where
the term bubston itself (an abbreviation of `bubble stabilized
by ions') was introduced. However, the results obtained in
Ref. [4], just as in the subsequent study [5], proved to be
insufficient for the establishment of an unambiguous depen-
dence of the parameters of stable bubblesÐbubstonsÐon
the properties of the solution itself.

The failure of the above-mentioned and other attempts to
completely solve the problem of the stability of gas bubbles in
liquid ionic solutions (in particular, in water) was eventually
due to a lack of theoretical concepts concerning the mechan-
ism of selective adsorption of ions on the surface of an

aqueous ionic solution. Such a problem has recently been
solved in Ref. [6]. The present publication, which has the
character of a monograph, is devoted to a description of the
theoretical aspects of the appearance of stable mesoscopic
cavitiesÐbubstonsÐ in aqueous solutions of strong electro-
lytes that are in equilibrium with an external gaseous medium
far from the boiling temperature. As a result of this
theoretical work, the foundations were laid for the experi-
mental study of various properties of the bubston structure
arising in such a medium depending on the parameters of the
problem: the concentration of ions, temperature, and pres-
sure. Numerous experimental data concerning these pro-
blems, which were obtained by one of the authors of this
paper, N F Bunkin, and his colleagues, are presented in the
Conclusion, but only in the form of references to published
works. In this case, we mean only solutions of strong
electrolytes, i.e., those with given concentrations of impurity
ions independent of temperature. It is important to note that
the intrinsic aqueous ionsH� andOHÿ that arise as a result of
the thermal electrolytic dissociation of water molecules are
not dissolved ions in the commonly accepted understanding
of the dissolution phenomenon, since their concentration is
unambiguously determined by the water temperature and is
independent of the presence of any ionic sorbents in water.
This constitutes the essential distinction from the solutions
with a given amount of a strong electrolyte, in which the total
number of ions, including adsorbed ones, is retained, whereas
the number of truly solved (free) ions (their concentration) is
not retained in the presence of sorbents. It is obvious already
from the above that the presence in the liquid (in particular, in
water) of only intrinsic ions cannot, in general, lead to the
formation of bubstons, since this would mean an increase in
the free energy of the liquid only due to the absorption of heat.
The free energy could increase in this case due to the
emergence of the surface of bubstons and their electric
fields, whereas the absorption of heat could occur as a result
of the dissociation of the molecules of the liquid itself. But
such a process, as is known from thermodynamics, is
impossible.

Further, we will theoretically consider mainly `canonical'
ionic solutions, by which we mean the aqueous solutions of
Na� and Clÿ ions (i.e., of the NaCl salt) that have been
thoroughly purified of any colloid particles. It is precisely
such solutions that, on the one hand, permit one to advance
sufficiently far in the physical understanding of the appear-
ance of a bubston structure in them, and, on the other hand,
are the direct products of various technologies of the water
purification. There are grounds to assume that in ultimately
purified water the ions of Na� and Clÿ always exist in
concentrations exceeding those of other impurity ions. The
dominating role of such ions first of all follows from the
composition of salts dissolved in the world reserves of water.
The solid residue of sea water, which is almost the same for
both oceans and open seas, has, as is known [7], the following
composition: NaCl, 78.32%; MgCl2, 9.44%; KCl, 1.69%;
MgSO4, 6.4%, and CaSO4, 3.9%. After the first stage of
purification (distillation, ion-exchange sorption), only inor-
ganic ions are retained in the water, irrespective of the type
and geographic location of the source of water on Earth. At
the second stage of purification, the separation of the retained
ions is carried out by filtration through a porous wall
(technology of back osmosis, or Milli-Q technology). As a
result, the ions with the smallest radii remain. In particular,
Na� ions (their radius is di � 0:98 A

�
) and Clÿ ions

1 It is certainly assumed that the liquid is under stationary conditions and a

constant active source of gas that is introduced into it (generator of

bubbles) is absent.
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(di � 1:81 A
�
) fall into this category and, therefore, should

represent the dominant component of impurity ions in such a
purified water.

Water is perceived as being extremely pure if its electrical
resistivity l at room temperature t � 25 �C is close to
l � 1:8� 107 O cm. This value of l is mainly determined by
the intrinsic ions H� and OHÿ at this temperature, i.e., in fact
it is the `intrinsic resistivity' of water. Indeed, the total
resistivity (measured in the process of the purification) is
defined as

l � lwl1
lw � l1

� lw
1� lw=l1

; �1:1�

where lw is the intrinsic water resistivity, and l1 is the
`impurity' water resistivity (i.e., caused only by impurity
ions). While the water is purified of impurity ions, its
resistivity l1 increases, and the measured resistivity l tends
to amaximumvalue lw. Independent experimental data [8] on
measured mobilities of H� and OHÿ ions at t � 25 �C,
according to the Nernst relationships, give the following
values of the diffusion coefficients of these ions:
DH� � 9:27� 10ÿ5 cm2 sÿ1, andDOHÿ � 5:07� 10ÿ5 cm2 sÿ1.
Since at such a temperature the number density of the ions in
pure water is niw � 6� 1013 cmÿ3 �pH � 7�, for the intrinsic
resistivity of water we have

lw � T

e 2niw�DH� �DOHÿ� � 2:1 CGSE � 1:9� 107 O cm :

�1:2�
Hereinafter,T is the temperature in energy units (at t � 25 �C,
T � 4:1� 10ÿ14 erg). The thus obtained value lw of resistivity
is only 5% higher than the extreme value 1:8� 107 O cm.
Such a divergence may, of course, be due to the errors in
measuring both the mobilities of H� and OHÿ ions and the
extreme value of the resistivity itself. However, if we assume
that the true value of the intrinsic resistivity of water lw is
equal to precisely 1:9� 107 O cm, then the lower value of the
measured extreme resistivity l � 1:8� 107 O cm should be
referred to the small contribution (which is not removed by
the purification) of impurity ions to l. Assuming that these
impurity ions are Na� and Clÿ, let us determine their number
density ni at which the total resistivity is l < lw. According to
(1.1) and (1.2) and to the following formula

l1 � T

e 2ni�DNa� �DClÿ� ; �1:2a�

we obtain

ni � niw
DH� �DOHÿ

DNa� �DClÿ

�
lw
l
ÿ 1

�
: �1:3�

The diffusion coefficients of the Na� and Clÿ ions in water at
room temperature are well known, being equal to
DNa� � 1:36� 10ÿ5 cm2 sÿ1 andDClÿ � 2:03� 10ÿ5 cm2 sÿ1;
therefore, according to the above values of DH� and DOHÿ ,
the second multiplier in expression (1.3) is equal to 4.2.
Correspondingly, we obtain

ni � 2:52� 1014
�
lw
l
ÿ 1

�
cmÿ3 : �1:4�

Hence it follows that at l � 1:8� 107 O cm, when
lw=lÿ 1 � 5:55� 10ÿ2, the number density of impurity
ions is ni � 1:4� 1013 cmÿ3. This value should be considered
the minimum number density of the Na� and Clÿ impurity
ions reached as a result of the purification of water using
Milli-Q technology at temperature t � 25 �C.

It is important to note that formula (1.4) determines the
number density of properly dissolved (free) Na� and Clÿ ions
in water with an arbitrary resistivity l < lw. Hereinafter, we
will denote this density as n s

i . In the case of the existence of a
bubston structure in the ionic solution, some of the dissolved
impurity ions prove to be not free (they are adsorbed on the
surface of gas bubbles), and enter into the composition of the
ionic shells that surround the bubbles, forming so-called
double electric layers. In this case, the number density of the
properly dissolved ions is ns

i � sn 0
i , where n 0

i is the total
number density of the dissolved ions, and the quantity s
determines the fraction of free ions (its values lie in the range
of 0 < s4 1).We will see below that the quantity s enters into
a number of parameters that determine, at given values of the
temperature and the number density of ions n 0

i , the
characteristics of the bubston structure of the solution.

Table 1 lists the values [calculated from formula (1.4)] of
the number density n s

i of the properly dissolved Na� and Clÿ

ions in water at t � 25 �C, which correspond to seven values
of the solution resistivity.

It can be seen from the data given in the table that the
water purified in this or another wayÐaccording to the
Milli-Q technology (l � 1:8� 107 O cm) or double distilla-
tion (l � 106 O cm)Ðrepresents a solution of Na� and Clÿ

ions with the number density of ions falling in the range
1:4� 1013 cmÿ3 < n s

i < 4:5� 1015 cmÿ3. Solutions with lar-
ger values of n s

i should be considered as specially prepared
solutions of the NaCl salt in carefully purified water. This
refines the concept of a canonical ionic solution we intro-
duced above. All numerical estimates given in this paper refer
to the ion number densities n s

i > 1014 cmÿ3.
A quantitative consideration of the problems that are

touched in this paper is carried out in terms of the Gaussian
absolute system of units (CGSE). The dielectric constant e of
water is assumed to be equal to 80; the Bjerrum length
lB � e 2=eT that is frequently encountered in formulas is
assumed to be equal to 7:0� 10ÿ8 cm; the specific energy of
the surface tension is s � 73 erg cmÿ2; the radius of the water
molecule is dl � 1:38 A

�
, and, finally, the radii of the Na� and

Clÿ ions are 0.98 and 1.81 A
�
, respectively.

2. Model of the adsorption of ions dissolved
in water on its surfaceÐa boundary with gas

Let us consider an impurity ion with a charge e that is located
in water at a depth z from its surface serving as a flat
boundary with a gas medium. In a wide range of z values,
when nÿ1=3 5 z5 aD, where n � 3:3� 1022 cmÿ3 is the
volume number density of water molecules �nÿ1=3 � 3:2 A

� �,
aD � �8plBn s

i �ÿ1=2 is the Debye radius (n s
i is the number

density of impurity ions in water far from its surface; at n s
i �

3� 1015 cmÿ3, the magnitude of aD � 0:1 mm), the force
effect of the surface on the ion under consideration can be

Table 1

l, O cm 1:8� 107 6� 106 2� 106 106 3� 105 105 3� 104

n s
i , cm

ÿ3 1:4� 1013 5:4� 1014 2:1� 1015 4:5� 1015 1:6� 1016 4:8� 1016 1:6� 1017
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described in terms of macroscopic electrostatics: the ion as a
separate charge e is repulsed from the surface with an `image
force' whereto a potential energy corresponds [9]:

W0 � e 2�eÿ 1�
4z�e� 1�e �

e 2

4ez
�2:1�

(for water, e � 804 1). The physical meaning of the condi-
tions indicated for the depth z is as follows: as z5 aD, the
Debye screening of the ion can be ignored, the ion can be
considered a separate charge, and the inequality z4 nÿ1=3

points out the applicability condition of the macroscopic
electrostatics, i.e., the validity of formula (2.1) itself. It can be
assumed that at small z the potential is approximately written
out as formula (2.1) up to z values that are no less than
3nÿ1=3 � 9:6 A

�
. At the same time, it is obvious that with a

further decrease in z from the level of 3nÿ1=3, when the
macroscopic description stops being valid, the repulsion
force acting on the ion should first decrease and then pass
into the attraction force to individual surface water mole-
cules. This means that the maximum energy Wmax of the
repulsion of an ion from the surface is approximately
W0�z � 3nÿ1=3� � 4:7� 10ÿ3 eV. It is just such a potential
barrier that separates the ions dissolved in water from its
surface. However, at room temperatures Wmax

0 =T � 0:2;
therefore, in the process of their thermal motion, the ions
are capable of reaching the surface of the water. The
minimum possible value of z in this case should be scaled as
d0 � �dl � di�, where dl � 1:38 A

�
is the radius of the water

molecule, and di is the ion radius. This corresponds to the
representation of the surfacemonomolecular layer of water as
the plane z � 0, on which the centers of moleculesÐ `hard
spheres' with radii dl � 1:38 A

�
Ðare located. The specific

number density (per unit area) of water molecules in such a
layer has a random nature; its average values g1 are estimated
as gl � n 2=3 � 1015 cmÿ2, where n � 3:3� 1022 cmÿ3 is the
average volume number density of water molecules. Simulta-
neously, the average spacing between the molecules in the
surface layer is �gl=2�ÿ1=2 � 1:58 A

�
. All the distances in such a

model are the spacings between the centers of the correspond-
ing `spheres'. For the Na� ions �di � 0:98 A

� �, the scale
d0 � 2:36 A

�
; for the Clÿ ions �di � 1:81 A

� �, we obtain
d0 � 3:19 A

�
.

It is obvious that at z � d0 the dominating role belongs to
the interaction of the ion with separate surface water
molecules; the energy of this interaction, as is well known, is
written out as ÿbe 2=2r 4, where b � 1:47� 10ÿ24 cm3 is the
average polarizability of water molecules, and r is the distance
between the molecule and the ion. For the Na� ions at
z � r � d0 � 2:36 A

�
, the attraction energy of the ion to the

molecule (`ion affinity') is 0.34 eV; for the Clÿ ions at
z � d0 � 3:19 A

�
, this energy equals 0.10 eV. Since this energy

is proportional to 1=r 4, it can be assumed that the ion sticks
only to one water surface molecule, transforming into an
adsorbed ion with a certain lifetime. The surface density of
adsorbed ions g in this case is determined by the concentration
of the dissolved ions, and the above given ion affinity energies
for the Na� and Clÿ ions coincide with the values of the
adsorption energy UAD of these ions: UNa�

AD � 0:34 eV, and
UClÿ

AD � 0:10 eV. It follows from the above that the maximum
possible surface number density g of adsorbed ions is
gmax� gl� 1015 cmÿ2.

The above picture exposing the interaction of an ion with
surface molecules of water is described by the potential

W1�z�, which is written out as

W1�z� � l
zn
ÿ 1

2

be 2

z 4
: �2:2�

Here, the first term defines the repulsion energy �l > 0�
caused by the impossibility of overlapping the electron shells
of the ions and water molecules. In the adopted `hard-sphere'
model, the exponent n should be sufficiently large (see below).
The energy W1�z� passes through minimum at the point
z � z0, at whichW 0�z0� � 0 andW 00�z0� > 0. Simple calcula-
tions show that

W1�z0� �Wmin
1 � ÿ 1

2

be 2

z 20

�
1ÿ 4

n

�
;

W 00
1 �z0� �

10be 2

z 60

�
n� 1

5
ÿ 1

�
:

Hence, it can be seen that in our model we should assume that
n4 4 and z0 � zmin � d0. At n � 40, we obtain

Wmin
1 � ÿ 1

2

be 2

d 4
0

; W 00
1 �z0� �

70be 2

d 6
0

: �2:3�

Thus, the total potentialW1�z� of the ion interaction with
the water surface in the entire range of z values, zmin �
d0 < z <1, looks like what is plotted in Fig. 1. When in an
electric field with such a potential, the ions can reach the
surface of the solution and be adsorbed on it. According to
the above, the adsorption energy of the ions is given by

UAD � ÿWmin
1 � be 2

2d 4
0

: �2:3a�

For theNa� ions, this energy is 0.34 eV� 33 kJmolÿ1; for the
Clÿ ions, it is 0.10 eV� 9.7 kJ molÿ1. The second formula in
Eqn (2.3) makes it possible to determine the frequency n of ion
vibrations in an adsorbed state:

n � 1

2p

�����������������
W 00�z0�

m

r
; �2:3b�

zz1

W�z�

W min

zmin

W max

0

Figure 1. Dependence of the potential energy of an ion in water at a
distance z from the surface; z1 � 3nÿ1=3 � 9:6 A

�
, zmin � d0, Wmax �

W0�z1� � 4:7� 10ÿ3 eV, and Wmin � ÿbe 2=2d 4
0 . For the Na� ions, d0 �

2:36 A
�
, and Wmin � 0:34 eV. For the Clÿ ions, d0 � 3:19 A

�
, and

Wmin � 0:1 eV.
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where m is the ion mass. For the Na� ions, this frequency is
n � 9:5� 1012 sÿ1; for the Clÿ ions, n � 3:1� 1012 sÿ1.

To establish the adsorption equilibrium, it is necessary
that the desorption energy UD � �Wmax�UADÿUa� be
sufficiently large compared to T (in order for there to be a
significant potential barrier preventing the thermodesorption
process). Here, Wmax � 4:7� 10ÿ3 eV for ions of both signs,
andUa is the activation energy of adsorption, i.e., in our case,
the repulsion energy of the probe adsorbed ion from the water
surface layer due to the lateral Coulomb interaction of this
ion with all other adsorbed ions.

The maximum value of the energy Ua corresponds to
meeting the following conditions: (1) the surface number
density g of adsorbed ions passes through maximum, i.e., it
is equal to gl � 1015 cmÿ2; (2) the z coordinate of only one
probe ion exceeds its minimum value d0 and is equal to
z � d0 � z1, where z1 > 0, and (3) the sign of all adsorbed
ions coincides with the sign of the probe ion. To determine
this energy, we take advantage of one particular result 2 which
follows from theGauss electrostatic theorem. In our problem,
the infinite medium is formed from a gas �e2 � 1�, the
insulator evolves from a water solution �e1 � e � 80�, and
the solid angle is DO � 2p. The formula for E�r� that is given
in footnote 2 defines the strength of the field created at the
point of the location of the probe ion by adsorbed ions taking
up positions far from the probe ion. Let us consider the
surface of the solution as a plane in the polar coordinate
system �r;j; z� with the polar z-axis passing through the
probe ion. Then, the elementary surface charge dq �
eglr dj dr under the condition of �z1=r�2 5 1 creates, accord-
ing to the general formula at the point of the location of the
probe ion, a field of strength dE � �2 dq=er2� r=r, with the
projection of this strength onto the normal (z-axis) being
�2 dq=er2�z1=r � 2eglz1 dj dr=er2. The total force F�z1�
acting on the probe charge is thus determined through the
multiplication by the probe charge e and integrating with
respect to j in the interval �0; 2p�, and with respect to r in the
interval �r0;1�. Here, r0 is the average distance between the
adsorbed ions. As a result, we arrive at

F�z1� � 4pe 2glz1
er0

;

and the maximum activation energy Ua of adsorption
corresponding to this force is equal to

Ua �
� z1

0

F�z1� dz1 � 2pe 2glz
2
1

er0
�2:4�

(gl � 1015 cmÿ2, and r0 � 1:58 A
�
). Under equilibrium condi-

tions, the quantity z 21 should be set equal to the average
square of thermal fluctuations of the oscillator coordinate,
i.e., equal to z 2 � �T=m�=�2pn�2, wherem is the ionmass, and
n is the frequency of ion oscillations in the adsorbed state. For
the Na� and Clÿ ions, these values are equal to 3:83� 10ÿ23 g
and n � 9:5� 1012 sÿ1, and 5:92� 10ÿ23 g and n �
3:1� 1012 sÿ1, respectively (see above). Based on formula

(2.4), we obtain for the activation energies UNa�
a �

4:2� 10ÿ4 eV, and UClÿ
a � 6:1UNa�

a � 2:6� 10ÿ3 eV.
Given the energiesUD andUa and the frequencies n of the

ion oscillations in the adsorbed state, we can consider the
problem of the selective character of the process of the ion
adsorption. The lifetime of an ion in the adsorbed state is
t � nÿ1 exp �UD=T �. Therefore, the ratio between the Na�

and Clÿ ion lifetimes in these states is given by

tNa�

tClÿ
� nCl

ÿ

nNa� exp

�
UNa�

AD ÿUClÿ
AD �UClÿ

a ÿUNa�
a

T

�
: �2:5�

According to the above-made quantitative estimates,
nCl

ÿ
=nNa� � 0:33, and

UNa�
AD ÿUClÿ

AD �UClÿ
a ÿUNa�

a � �0:24� 2:2� 10ÿ3� eV ;

therefore, tNa�=tCl
ÿ � 4� 103. Hence it follows that the Clÿ

ions cannot compete with the Na� ions from the viewpoint of
adsorption. Note that the lifetime itself of the Na� ion in the
adsorbed state, tNa� , according to our estimates equals
7� 10ÿ8 s. This result can be considered as one more reason
indicating the impossibility of the formation of bubstons via
the adsorption of the intrinsic ions of water on its surface: the
adsorption of the H� and OHÿ ions would lead to the
formation of the H3O

� and H3O
ÿ
2 ions, whose lifetime, as is

well known, is several orders of magnitude less than the value
of tNa� obtained above.

3. Appearance of bubston nuclei
in aqueous ionic solutions

From the physical viewpoint, it is of interest to consider the
following question: how can cavities of amesoscopic size arise
in water in a state far from the boiling point? We will, as
before, proceed from the assumption that even the most
purified water represents a solution of Na� and Clÿ ions
and of particles of a neutral gas with which the solution is in
equilibrium. Themesocavities arising in such solutions will be
called bubston nuclei. The process of the formation of such
nuclei is identical to the process of the nucleation of ionic
crystals of the NaCl salt in the Na� and Clÿ aqueous
solutions. The crystallization process itself begins from the
formation of droplets of an ionic condensate, i.e., of ionic
NaCl crystallites of mesoscopic dimensions. Having arisen
with some probability, such a droplet can remain quasistable
only if the concentration of dissolvedNa� andClÿ ions in it is
sufficiently large. In supersaturated solutions such a droplet
will continue growing (with a probability close to unity) with
the formation of macroscopic NaCl crystals. In the solutions
far from saturation, the mesodroplets cannot retain their
stability; their decomposition occurs, which has the character
of a `Coulomb explosion', which leads to the formation of
mesocavities in the solution.

The mechanism of the formation of bubston nuclei
outlined above requires greater detail and, first of all, poses
the question of growth of ionic droplets: how they arise and
how they grow? It is assumed that there are no stable
inhomogeneities (e.g., in the form of foreign condensed
particles) in the solution and, thus, the only `defects' of the
structure of the aqueous ionic solution comprise neutral
particles of a gas that are contained in the solution. It is
precisely on such defects, in our opinion, that the growth of
ionic droplets begins as a result of dissolved ion diffusion

2 The field strength at an arbitrary point of space at a distance r from

a point charge q located at the vertex of an infinite cone (or pyramid)

with a solid angle DO, which is uniformly filled with an insulator with

a dielectric constant e1 and is embedded into an infinite uniform

medium with a dielectric constant e2, is equal toE�r� � �e=r 2��r=r��e2�
�e1 ÿ e2�DO=4p�ÿ1.
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towards them. The primary step is the formation of `gas
particle� ion' ionic complexesÐ `ionic dimers', which arise
via the attachment of ions to neutral particles. The ion affinity
(attachment) energy of dissolved gas particles is of an
electrostatic nature (see Section 2) and is defined by the
formula U � be 2=2�dg � di�4, where b is the electron polariz-
ability of the gas particles, dg is their radius, and di is the ion
radius. If the lifetime td of such dimers is sufficiently large,
then, as a result of diffusion of surrounding ions towards the
`surface' of a dimer, a condensation of ions can occur and,
with a certain probability, droplets with a spatial arrange-
ment of ions in the form of a simple cubic lattice are produced,
where the spacing between the nearest ions of different signs is
a � �dNa� � dClÿ� � 2:8 A

�
, i.e., it is equal to half the lattice

parameter. Due to such an arrangement of the ions, the
Coulomb attraction between ions with opposite signs of the
charges becomes stronger than the repulsion between ions of
the same sign. In other words, all the ions in the droplet are
located in sufficiently deep potential wells and the droplet
becomes mechanically stable. The direct calculation of the
Coulomb interaction of a single ion from a droplet with all
other ions shows that the smallest number of condensed ions
of both signs, at which mechanical stability is attained,
reaches 27. In this case, 14 ions of one sign occupy
6 vacancies of the first coordination shell (with a radius of a)
and 8 vacancies of the third coordination shell (with a radius
of

���
3
p

a); the other 13 ions of the opposite sign occupy
12 vacancies of the second coordination shell (with a radius
of

���
2
p

a) and one site of the original dimer. With such a
`trilayer' structure of the droplet, the interaction energy of
one ion with 26 other ions of the droplet proves to be equal to
w1 � ÿ1:3e 2=a on the first shell, to w2 � ÿ2:0e 2=a on the
second shell, to w3 � ÿ1:0e 2=a on the third shell, and to
w0 � ÿ2:1e 2=a at the site of the original dimer. The droplet
takes the form of a cube with the lengths of edges 2a � 5:6 A

�
.

Such a droplet, consisting of 27 ions, can be called a `dry
droplet' to emphasize that its absolutely stable state is
observed only outside the solution, i.e., when the interaction
of its ions with water molecules is absent. As to the solution,
in it, owing to the polarization of the water that surrounds the
droplet, under the action of the Coulomb field of the
composing ions, a significant decrease (in absolute magni-
tude) occurs in the binding energy between the ions
themselves, i.e., of the depths of the potential wells (in which
they are located). The most significant decrease in the binding
energy is characteristic of the ions that occupy the third
coordination shell. A simple estimate based on the electro-
static Gauss theorem (see Footnote 2) shows that the binding
energy jw3j for these ions decreases by a factor of eDO=4p
(here, e � 80 is the dielectric constant of water, and
DO � 4pÿ p=2 � 7p=2 is the solid angle at which the water
is viewed from the point where the ion is located on the third
coordination shell), i.e., by a factor of almost 70, and becomes
equal to jw 03j � e 2=70a � 0:073 eV; in this case, one finds
jw 03j=T � 2:8. A significant decrease is also observed for the
binding energies of other ions that compose the droplet. As a
result, the ionic bond in the droplet becomes unstable because
of thermal processes, which leads to the droplet decomposi-
tion (Coulomb explosion) and thereby to the formation of a
mesocavity with radius Rn � a � 3 A

�
.

As was already noted, one of the necessary conditions for
the realization of the above formation mechanism of
mesocavities is that the lifetime td of the ionic dimers arising
in the solution be sufficiently large, and during this time they

can grow (with a finite probability) to an ionic droplet with
radius a � 2:8 A

�
. Let us give some quantitative estimates

referring to this problem. The time td� nÿ1d exp �U=T �,
where nd is the frequency of the dimer vibrations, and U is
the energy of ion affinity of the gas particles introduced
above. According to the well-known formula of classical
mechanics, the respective relation for the frequency is
nd � �1=2p�

������������������
w 00�0�=mp

, where w�x� � be 2=2�d0 � x�4, d0 �
dg � di, m is the reduced mass of a gas particle and an ion,
w 00�0� � 10be 2=d 6

0 , w�0� � U � be 2=2d 4
0 , and the lifetime is

then given by

td �
�����������
4md 6

0

be 2

s
exp

�
be 2

2d 4
0T

�
: �3:1�

It is of interest to determine the time td for four types of
dimers: �N2�Na��, �N2�Clÿ�, �He�Na��, and �He�Clÿ�,
which correspond to two cases where the aqueous solution
resides in equilibrium with (1) nitrogen (air), and (2) a helium
external medium. For the dimer �N2 �Na��, we have
b � 1:76� 10ÿ24 cmÿ3, d0 � 1:58� 0:98 � 2:56A

�
, m �

2:1� 10ÿ23 g, and formula (3.1) gives td � 2:4� 10ÿ8 s. For
the dimer �N2� Clÿ�, d0 � 1:58� 1:81 � 3:39 A

�
, m �

2:6� 10ÿ23 g, and td � 2:6� 10ÿ11 s. For the dimer
�He�Na��, b � 2:0� 10ÿ25 cmÿ3, d0� 1:22� 0:98 � 2:2A

�
,

m � 0:57� 10ÿ23 g, and td � 2:6� 10ÿ12 s. For the dimer
�He� Clÿ�, d0 � 3:03 A

�
, m � 0:6� 10ÿ23 g, and td �

1:2� 10ÿ12 s. It can be seen that the lifetime of the dimer
�N2 �Na�� is four orders of magnitude greater than that of
the dimer �He�Na��, which indicates the extremely impor-
tant role of helium in the problem under consideration.

The characteristic time of a droplet formation via
diffusion towards an ionic dimer of the surrounding ions is
tdr � a 2=D eff

i , whereD eff
i is the effective diffusion coefficient,

which substantially differs from the diffusion coefficients of
Na� and Clÿ ions (which at t � 25 �C are equal to
1:36� 10ÿ5 cm2 sÿ1 and 2:0� 10ÿ5 cm2 sÿ1, respectively).
The physical meaning of this coefficient is that it defines only
those diffusion flux D eff

i Hni of the Na� and Clÿ ions towards
the surface of the growing ionic droplet that remains stable,
i.e., when the Na� and Clÿ ions that come onto each droplet
are arranged into a simple cubic lattice. Fluxes that do not
satisfy this condition are excluded, since they lead to a
premature decomposition of the droplet. We assume that
the diffusion coefficient D eff

i is equal to a�DNa� �DClÿ�=2,
where a5 1, and has the sense of the growth probability of
the droplet to a size a, remaining stable. In this case,
tdr � a 2=a�DNa� �DClÿ� � �5� 10ÿ11=a� s �a � 2:8 A

� �,
and, correspondingly, the necessary condition for the forma-
tionof amesocavity takes the form td > tdr ��5� 10ÿ11=a� s.
But since a5 1, the lifetime of the dimers should satisfy the
condition td 4 5� 10ÿ11 s. These estimates of the lifetime td
give evidence that the last condition can be fulfilled only if the
growth of the droplet occurs on the dimer �N2 �Na��, for
which td � 2:4� 10ÿ8 s. The probability a in this case should
exceed 2� 10ÿ3; this means that at least two dimers
�N2 �Na�� from a thousand dimers should grow to the
dimensions of a droplet with radius a. The question of
whether such values of a can be realized remains open and,
therefore, it cannot be considered that the formation of
mesocavities precisely occurs according to the above mechan-
ism. At the same time, the above consideration leads to an
important conclusion: the presented mechanism of the
bubston nucleation is a fortiori ruled out in the case of a

September 2016 Bubston structure of water and electrolyte aqueous solutions 851



helium ambient medium (for which td � 10ÿ12 s). This, in
turn, makes it possible to suppose that in the last case the
bubston structures in aqueous NaCl solutions (canonical
solutions) are completely impossible. In the next sections of
this paper, this supposition will be confirmed based on a
thermodynamic consideration of the problem.

4. Double electric layer on the surface of a gas
bubble located in an aqueous ionic solution

Let us consider an aqueous solution of NaCl salt in which
there exists a gas bubble of radius R5 10 nm. Such a radius
significantly exceeds the average spacing between the water
molecules in the surface layer, which, according to our
estimates, is 1.58 A

�
(see above). Therefore, we can assume

that the adsorption of ions on the surface of such a bubble
occurs in the same manner as on the free surface of the
solution.

Owing to the adsorption of Na� ions with an average
number density g, the unit area of the bubble acquires a
positive charge eg; the entire adsorbed charge isQ1 � 4pR 2eg.
As a result, an electric field is induced in the solution with a
close-to-spherical symmetry, whose strength differs from zero
only for r5R (r is the distance from the center of the bubble).
Thus, the arising electric field with a potential j�r� and a
strength E�r� � ÿdj=dr creates a so-called double electric
layer (DEL). Around a positively charged bubble carrying a
chargeQ1, a negatively charged shell is formed with a density
of the electric charge r�r�, which is pressed to the surface of
the bubble due to the electrostriction pressure pstr�r� �
�e=8p�E 2�r� (where e is the dielectric constant of water).

The potential j�r� is determined from the Poisson±
Boltzmann equation

�rj�00
r
� ÿ 4p

e
r�r� �4:1�

with the boundary conditions j�1� � 0, and ÿj 0�R� �
E�R� � Q1=eR 2. The charge density is then given by

r�r� � e

�
n s
i exp

�
ÿ ej�r�

T

�
ÿ n s

i exp

�
ej�r�
T

��
; �4:2�

where n s
i is the number density of the dissolved (free) impurity

ions far from the bubble surface. Let us first consider the case
where F � ej�R�=T5 1 and, therefore, according to formula
(4.2), r�r� � ÿ2n s

i e
2j�r�=T. Substituting this expression into

Eqn (4.1) and solving the obtained equation gives the
following result:

j�r� � Q1

e�1� kR�
exp

ÿÿk�rÿ R��
r

;
�4:3�

E�r� � Q1�1� kr�
e�1� kR�

exp
ÿÿk�rÿ R��

r 2
;

where k � �8plBn s
i �1=2, and lB � e 2=eT � 7� 10ÿ8 cm. In this

case, the density of the electric charge in the DEL,
r�r� � ÿ2ns

i e
2j�r�=T, is written out as

r�r� � r�R� R
r
exp

ÿÿk�rÿ R�� ; r�R� � ÿ Q1k 2

4pR�1� kR� :
�4:3a�

The total electric charge of the bubble (together with the
charge of the DEL) in the �R; r� layer is equal, according to

Eqn (4.3a), to

Q�r� � Q1 � 4p
� r

R

r 2r�r� dr � Q1
1� kr
1� kR

exp
ÿÿk�rÿ R�� :

�4:4�
It can be seen that for all r5R the total charge of the bubble
is positive and, upon moving from the surface of the bubble
(i.e., with increasing r), its gradual neutralization comes into
play, causing Q�1� � 0. According to formulas (4.3) and
(4.4), the strength E�r� � Q�r�=er 2, i.e., it corresponds to the
Gauss electrostatic theorem. The electric energy related to the
bubble is then takes the form

WE � e
2

�1
R

r 2E 2�r� dr � Q 2
1

4Re
2� kR

�1� kR�2 : �4:4a�

All the quantitative characteristics of the DEL obtained
above depend, according to Eqns (4.3)±(4.4a), on the
specified values of the parameters for the problem: bubble
radius, number density of dissolved ions, and temperature.
However, the surface density g of adsorbed ions (or the charge
Q1 � 4pR 2eg) remains uncertain. The dependence of g on the
specified parameters under equilibrium conditions is deter-
mined from the condition of the minimum of the total free
energy of the DEL per adsorbed ion, i.e., according to
formula (4.4a), of the minimum of the quantity

f � 4pR 2s�WE

4pR 2g
� s

g
� pRe 2g�2� kR�

e�1� kR�2 : �4:5�

The equilibrium value of g is the root of the equation
df=dr � 0 [at a constant value of k, i.e., at the unaltered
distribution of the charge density r�r�]. This root is written
out as follows:

g �
�

es
pRe 2�2� kR�

�1=2

�1� kR� �

�
es

2pRe 2

�1=2

; kR5 1 ;�
esk
pe 2

�1=2

; kR4 1 :

8>>><>>>:
�4:6�

All the above results were obtained under the condition of
F � ej�R�=T5 1 (Debye approximation). Now, we should
check whether the results obtained satisfy this condition.
According to Eqns (4.3) and (4.6), we have

F �

�
8pslBR

T

�1=2

; kR5 1 ;�
16pslB
kT

�1=2

; kR4 1 :

8>>><>>>: �4:7�

The first variant of this formula gives F �18R 1=2 [nm]; the
second variant yields F �2:2�106=�n s

i [aÊ uÈ
ÿ3]�1=4. Since

R5 10 nm and n s
i 4 1020 cmÿ3 (i.e., the number density of

the ions in the NaCl solution is close to saturation), for both
limiting values of kR we have F4 1. This means that the
Debye approximation used above for the description of a
DEL arising around the bubble in an aqueous ionic solution is
inapplicable, in principle.

Below, we give a description of the DEL on a bubble
based on the condition F � ej�R�=T4 1. In this case, the
distribution of the charge density r�r� is presented in the form
analogous to formula (4.3a):

r�r� � r�R� R
r
exp

ÿÿb�rÿ R�� ; �4:8�

852 N F Bunkin, F V Bunkin Physics ±Uspekhi 59 (9)



where r�R� and b are to be determined. In this case, the total
electric charge in the �R; r� layer is defined as

Q�r�� Q1� 4pRr�R�
b 2

h
�1� bR�ÿ �1� br� exp ÿÿb�rÿ R��i :

�4:8a�
Since Q�1� � 0, we obtain

r�R� � ÿ Q1b
2

4pR�1� bR� ; �4:8b�
Q�r� � Q1

1� br

1� bR
exp

ÿÿb�rÿ R�� ; r5R ;

i.e., formulas (4.3a) and (4.4) upon the substitution k! b.
The electric energy associated with the bubble is equal,
according to formula (4.4a), to

WE � Q 2
1

4Re
2� bR

�1� bR�2 ; Q1 � 4pR 2eg : �4:8c�

The potential j�r� under the condition j�1� � 0 is calcu-
lated from the equation j 0�r� � ÿQ�r�=er 2, where Q�r� is
defined by formula (4.8b). Thus, we obtain

j�r� � Q1 exp
ÿÿb�rÿ R��

e�1� bR�r ; r5R ; �4:9�

which also coincides with formula (4.3) upon the substitution
k! b.

It will be seen from the further description that in the case
under consideration, where F4 1 and R5 10 nm, the
parameter bR is always more than unity and, based on
Eqns (4.2), (4.8b), and (4.9), we obtain two independent
equations

gb � n s
i e

F ; �4:9a�
g
b
� F

4plB
: �4:9b�

The magnitude of F in these equations remains uncertain
(with the only condition that F4 1) and these equations
should be supplemented with a third independent equation.
This equation, just as in the Debye approximation, follows
from the condition of the minimum of the total free energy of
the DEL per adsorbed ion, i.e., from the minimum of the
quantity f determined by Eqn (4.5) with the substitution
k! b under the condition of bR4 1. Correspondingly,
according to Eqn (4.6), we obtain the sought-after third
equation as

g �
�
esb
pe 2

�1=2

: �4:9c�

The simultaneous solution of equations (4.9a)±(4.9c)
gives

g � g0
F
; b � b0

F 2
; �4:10�

where g0 � 4s=T � 7:1� 1015 cmÿ2, b0 � 16pe 2s=eT 2 �
6:3� 109 cmÿ2 (t � 25 �C), and the magnitude of F satisfies
the equation

F 3eF � n �

n s
i

; �4:10a�

where n � � g0b0 � 64pe 2s 2=eT 3 � 4:5� 1025 cmÿ3. Formu-
las (4.10) and (4.10a) represent the dependences of g, b, and F
on the ion number density n s

i at a given temperature. The first
formula in (4.10) defines the adsorption isotherm. The
logarithmic derivatives with respect to n s

i are written out as

n s
i

g
dg
dn s

i

� 1

F� 3
;

n s
i

b

db

dn s
i

� 2

F� 3
;

n s
i

F

dF

dn s
i

� ÿ 1

F� 3
:

�4:10b�

Since F4 1, all these derivatives are small in absolute
magnitude compared to unity. With increasing volume
number density n s

i of ions, the surface density g of adsorbed
ions increases slowly, and the `thickness' �bÿ1� of the DEL
decreases. It is also seen from these formulas that the
parameters g, b, and f are independent of the adsorption
energy UAD of the ions. Only the lifetime of ions in the
adsorbed state depends on the latter energy (exponentially,
see Section 2), whereas the structure of the DEL itself is
unambiguously determined by the parameters n s

i , s, and T of
the solution. This circumstance indicates that results (4.8c),
(4.9), and (4.10a) obtained for the canonical solution are in
fact applicable also to other aqueous solutions of univalent
ions (e.g., for the LiCl and KCl solutions). This, however,
does not mean that the threshold for the formation of a
bubston structure in aqueous solutions of univalent ions is
also independent of the type of these ions (for more detail, see
the discussion below).

As was noted above, the intrinsic ions of water, i.e., H�

and OHÿ, cannot lead to the formation of stable gas bubbles
(bubstons), but these ions can affect the structure of the DEL
of the bubbles arising due to the adsorption of impurity ions
(in the canonical solution under consideration, Na� ions). In
the solutions based on pure water, for which the hydrogen
index is pH � 7 (neutral solutions), the number densities of
the H� and OHÿ ions are identical �niw � 6� 1013 cmÿ3). In
this case, according to formula (4.2), the charge density in the
DEL is r�R� � ÿe�n s

i � niw�eF and, correspondingly,
Eqn (4.10a) is transformed into F 3eF � n �=�n s

i � niw�
(formulas (4.10) remain unaltered in this case). Hence, for
n s
i > 1014 cmÿ3 in neutral aqueous solutions, the H� and

OHÿ ions do not produce any effect on the DEL structure. At
the same time, in the aqueous solution of the NaCl salt with
the addition of, for example, hydrochloric acid (acidic
solutions, pH < 7), the number density of H� ions is
10ÿpH � 6� 1020 cmÿ3 (and can significantly exceed the
impurity ion density n s

i ), while with the addition of an alkali
(alkaline solution, pH > 7), the density of OHÿ ions is
10pHÿ14 � 6� 1020 cmÿ3 (and can also exceed the impurity
ion density n s

i ). In these cases, the effect of the H� and OHÿ

ions on the DEL structure can become quite significant.

5. Thermodynamics of a bubston structure
of aqueous solutions of electrolytes

The results considered in the previous sections concerning
with the problems of the ion adsorption on the surface of
water and the formation of a double electric layer on it, were
obtained based on model concepts. These results form the
initial data for the elaboration of a thermodynamic approach
to the problem of the appearance of a stable structure of
gaseous bubbles in aqueous ionic solutions being in equili-
briumwith an external gaseousmedium.We shall call it as the
bubston structure of aqueous solutions of electrolytes. The
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system that will be considered below consists of two
subsystems interacting between themselves: an aqueous
ionic solution with a sufficiently large volume V (the
necessity to impose a restriction on V will be seen from the
discussion presented below), and an external gaseousmedium
with a volume V0 4V. In the state of thermodynamic
equilibrium, the parameters of the bubston structure, i.e.,
the radius R of the bubstons, their density nb (number of
bubstons per unit volume of the solution), and the specific
volume content of the free gas contained inside the bubstons,
Kv � �4p=3�R 3nb, should be defined by three parameters of
the system: temperature T, pressure p, and the total number
density n 0

i of the dissolved ions (for canonical solutions, of
Na� andClÿ ions). The thermodynamic results have a general
phenomenological character; therefore, the extent of the
quantitative correspondence between these results and the
experimental data on the observation of bubston structures
may serve as a criterion of the validity of the model concepts
assumed to provide the basis as concern the adsorption of
ions and the formation of a double electric layer.

The system under consideration has a substantial feature:
one of its components, namely, the gas bubbles that arise in
the presence of a gas dissolved inwater, tend to float up and to
exhibit Brownian movement. Therefore, the description of a
bubston structure is, in general, a kinetic problem. A
thermodynamic description is possible only under certain
restrictions put on the parameters of the system itself. The
most obvious restriction follows from the requirement that
the arising structure be stationary and homogeneous over the
volume of the solution, i.e., its parameters, such as the radius
R of the bubstons and their density nb must be independent of
the time and of the site of observation inside the solution. This
requirement, in fact, means that the equilibrium bubston
structure corresponds to the case of Archimedes' buoyancy
and the Brownianmovement of already equilibrium bubstons
that are nucleated in all points of the volume V on dissolved
gas particles and ions. A characteristic time of the transfor-
mation of a bubston nucleus into an equilibrium bubston of
radius R is determined by the rate of diffusion of ions and gas
particles towards its surface; i.e., it is on the order of R 2=Di; g,
where Di; g are the diffusion coefficients of ions and gas
particles in water, which by order of magnitude coincide
with one another and are� 10ÿ5 cm2 sÿ1. This time should be
small compared to the characteristic time R=uA of the
Archimedes' buoyancy of a separate bubston and of the
Brownian movement of a separate bubston, R 2=Db. Here,
the quantities that follow

uA � 4

15

gR 2

n
; Db � T

5prnR
�5:1�

are, correspondingly, the rate of the Archimedes' floating up
of bubstons and their diffusion coefficient.3 The two above
conditions for the time R 2=Di; g lead to the following
restrictions on the bubston radius (the numerical estimates

refer to room temperatures):

R 3 5
15

4

nDi; g

g
; or R < 3 mm ; �5:2�

R4
T

5prnDi; g
; or R > 3 nm : �5:2a�

Apart from this restriction on the bubston radius R, we will
also impose a limitation on the density of bubstons nb,
assuming that it is so small that the processes of the
Brownian movement of separate bubstons occur indepen-
dently of one another. Such a `Brownian independence' is
realized when the time between the `collisions' (time of the
Brownian approach) of two bubstons, n

ÿ2=3
b =�2Db�, is large

compared to the timeR 2=Db of the Brownian displacement of
a bubston over a distance equal to its radius, i.e., when
R 2n

2=3
b < 1=20, or

nb <
1

90R 3
� 1:1� 1019

�R �nm��3 �cm
ÿ3� : �5:2b�

This poses, in fact, a limitation on the value of the parameter
Kv � �4p=3�R 3nb; upon fulfillment of inequality (5.2b), we
have

Kv <
4:2

90
� 4:7� 10ÿ2 : �5:2c�

Thus, we will be interested only in such solutions to the
problem of the determination of the bubston structure
parameters which satisfy conditions (5.2)±(5.2c).

The discussed feature of the system under consideration
also manifests itself in its thermodynamic description
implying the allowance for boundary conditions on the
free solution±gas surface. Owing to the Archimedes' buoy-
ancy and to the Brownian movement, the bubstons reach
the surface of the solution, where they disappear (are
destroyed). The related ions entering the DEL (both basic
ions and counterions) pass into the solution (become free),
and the free gas contained in the bubstons passes into the
external gaseous medium. As a result, an excessive density
ns
i of free ions arises at the interface and is permanently

maintained, which leads to the appearance of a permanent
diffusion flux of these ions into the solution, thereby
ensuring their uniform distribution over the entire volume.
The escape into the external medium of the gas contained
inside the bubstons that reach the solution surface is
compensated for under stationary conditions by the
thermal flux of gaseous particles from the external medium
onto the interface. This boundary condition, which specifies
a certain quantitative linkage among the parameters of the
bubston structure, complements the condition of thermo-
dynamic equilibrium.

5.1 Thermodynamic potential of an ionic solution
and of an external gaseous medium
According to the above concepts explaining the formation of
bubston nuclei (see Section 3), no nuclei arise in the ionic
solution (first subsystem) isolated from the external gaseous
medium (second subsystem) because of the absence of
dissolved gas particles in it, and the bubston structure is
absent. The thermodynamic potential (Gibbs free energy) of
these two subsystems at a temperature T and a pressure p is

3 In deriving these formulas for uA and Db in the equality of the

Archimedes' force �4p=3�R 3rg to the Stokes force FST the latter is

assumed to be equal to 5prnRu (where u is the velocity of a bubston; n is
the kinematic viscosity of water; r is the water density, and g is the

acceleration of gravity). This corresponds to taking into account the fact

that the bubston is surrounded by a layer of water that is `frozen-in' to the

DEL. In this case, the mobility is defined as m � u=FST � 1=5prnR, and
the diffusion coefficient is Db � mT � T=5prnR.
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written out as [10]

F1� Nm0�
(
I0

�
T ln

I0
2:72N

� ci

�
� I0

�
T ln

I0
2:72N

� �ci

�

ÿ 2

3

e 3

e 3=2

�
pn
T

�1=2

N

�
2I0
N

�3=2
)
; �5:3�

F2 � G0T ln
p

p0
; p0 � T

�
mT

2p�h 2

�3=2

: �5:3a�

In formula (5.3), the following quantities are specified: N is
the total number of molecules of the solvent (water), m0 is the
chemical potential of the solvent, and I0 is the total number of
dissolved ions (for the canonical solution, the number of basic
Na� ions and of Clÿ counterions). The first term in curly
brackets in formula (5.3) refers to the basic ions; the second
term refers to the counterions; themagnitudes ofci and

�ci for
both types of ions (they are determined below) depend on
temperature (and, in general, on pressure). Notice that each
of these two terms coincides in the general form with the
thermodynamic potential of the neutral dissolved particle
with the number I0 [cf. with the last term in formula (5.4)
below], with the substantial difference that, in the case of ions,
the magnitudes of ci and

�ci depend not only on T and p but
also on the charge of the ions. The third term in the curly
brackets is the so-called correlation correction, which takes
into account the Coulomb interaction between the ions;
n � 3:3� 1022 cmÿ3 is the number density of water mole-
cules; e � 80 is the dielectric constant of water, and e is the
elementary charge. In formula (5.3a), G0 is the total number
of gas particles in the external medium, which is a specified
number; T ln �p=p0� is the chemical potential of an ideal gas;
m is the mass of a gas particle, and �h � h=2p (h is the Planck
constant).

After the establishment of thermal and mechanical
contacts between the subsystems considered, their thermo-
dynamic potentials become

F 01� Nm0�
(
Is

�
T ln

Is
2:72N

� ci

�
� �Is

�
T ln

�Is
2:72N

� �ci

�

ÿ 2

3

e 3

e 3=2

�
pn
T

�1=2

N

�
Is � �Is
N

�3=2
)

� B

�
G1 T ln

p1
p0
� 4pR 2s�WE � 4p

3
R 3�pÿ p1�

�
� G2

�
T ln

G2

2:72N
� cg

�
; �5:4�

F 02 � �G0 ÿ BG1 ÿ G2�T ln
p

p0
: �5:4a�

Here,B is the total number of gas bubbles with a radiusR that
arise in the solution; G1 is the number of gas particles inside
one bubble;G2 is the total number of gas particles dissolved in
the liquid; Is and �Is are the total numbers of properly
dissolved (free) basic ions and of counterions, respectively;
the magnitude ofcg for the dissolved gas particles depends on
temperature (and, generally speaking, on pressure); s is the
coefficient of surface tension at the water±gas interface;WE is
the energy of the electric field of a single bubble, which is
created by the ions adsorbed on its surface and by the ionic
shell (i.e., by the DEL), and p1 is the gas pressure inside the
bubbles, which is related to the radiusR and to the number of

particles G1 via the Clapeyron equation:

p1 � G1T

�4p=3�R 3
: �5:4b�

In the representation of F 02 by formula (5.4a), it is assumed
that the dissolution of gas particles in the liquid does not lead
to a decrease in the number density of gas particles ng in the
external medium; consequently, the external pressure p � ngT
remains unaltered. To ensure this condition, it is sufficient
that the volume of the external gaseous medium be signifi-
cantly larger than the volume of the liquid.

The change in the thermodynamic potential of the entire
system after the establishment of contact, DF � �F 01 � F 02�ÿ
�F1 � F2�, is written out as

DF � ÿ�BG1 � G2�T ln
p

p0
� G2

�
T ln

G2

2:72N
� cg

�
� B

�
G1T ln

p1
p0
� 4pR 2s�WE � 4p

3
R 3�pÿ p1�

�

�
(
Is

�
T ln

Is
2:72N

� ci

�
� �Is

�
T ln

�Is
2:72N

� �ci

�

ÿ 2

3

e 3

e 3=2

�
pn
T

�1=2

N

�
Is � �Is
N

�3=2
)
� const ; �5:5�

where the last term (const) is equal to the term in curly
brackets if the quantities Is and �Is are replaced by a given
number I0 taken with the opposite sign.

According to what was said at the beginning of this
section, the parameters of the solution in the equilibrium
state, such as the number density n s

i of the properly dissolved
ions, the number density n s

g of dissolved gas particles, and the
radius R and the number density nb of gas bubbles, are
established as identical over the entire volume of the
solution. Our task is to determine the equilibrium values of
these parameters depending on temperature T, pressure p,
and total number density of the dissolved ions, n 0

i � I0=V (V
is the volume of the solution). This task is reduced to finding
the values of these parameters that correspond to a minimum
change DF in the potential.

Further, we will use the results obtained in Section 4 for
the structure of the DEL on the surface of a gas bubble;
namely, we assume that the energy WE is determined by
formula (4.8c), while the surface density g of the adsorbed
ions and the thickness bÿ1 of the double layer are determined
by formulas (4.10), and (4.10a). In addition, it should be
taken into account that the solution on the whole remains
electrically neutral; therefore, Is � I0 ÿ B�I1 � I �� � �Is �
I0 ÿ B�I �. Here, I1 is the number of basic ions adsorbed on
the surface of a single bubston; I � and �I � are the numbers of
basic ions and counterions located inside the screening ionic
shell of one bubston. Since I � � �4pR 2=b�n s

i e
ÿF and �I � �

�4pR 2=b�n s
i e

F, we have �I �=I � � e 2F 4 1; hence, it follows
that I1 � �I � and

Is � �Is � I0 ÿ BI1 ; �5:5a�
n s
i � �n s

i � n 0
i ÿ nbI1 ; �5:5b�

where n 0
i � I0=V is the total number density of dissolved ions,

and nb � B=V is the number density of bubstons.
One of the independent parameters of the system under

consideration, apart from G1, G2, and R, is the above-
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mentioned (in Section 1) quantity s � Is=I0 � n s
i =n

0
i , which

defines the fraction of the properly dissolved ions; its values
lie in the range 0 < s < 1. At s � 1, the equality n s

i � n 0
i is

fulfilled; consequently, adsorption is absent, as is the bubston
structure �nb � 0�; at s � 0, all the dissolved ions are
adsorbed, i.e., they are located inside the double layers, and
nb � n 0

i =I1.
By rewriting Eqn (5.5) taking into account that Is �

�Is � sI0 and that the energy WE is determined by formula
(4.8c), we obtain

DF � ÿ�BG1 � G2�T ln
p

p0
� G2

�
T ln

G2

2:72N
� cg

�
� B

�
G1T ln

p1
p0
� 4pR 2s� 4p

3
R 3�pÿ p1�� e 2I 2

1 �x� 2�
4eR�x� 1�2

�

� 2TI0s

(
ci � �ci

2T
ÿ 1ÿ ln

n

sn 0
i

ÿ 4

3

�
sn 0

i pl
3
B

2

�1=2
)
� const ;

�5:6�
where x � bR, lB � e 2=eT, and the last term (const) is equal to
the penultimate term with the opposite sign at s � 1.

5.2 Equations defining the stationary point
of the system under consideration
The bubston structure of the system under consideration
corresponds to its thermodynamically equilibrium state,
when the potential difference DF has a minimum value. This
is achieved at the stationary point of expression (5.6) as a
function of the variablesG1,G2,R, and swith allowancemade
for Eqns (5.4b) and (5.5a), which can be represented more
conveniently as

I1 � I0�1ÿ s�
B

: �5:6a�

The stationary point itself is determined from the condition of
vanishing the derivatives �DF�0G1

, �DF�0G2
, �DF�0R, and �DF�0s.

These derivatives correspond to the minimum of DF, when
Sylvester's criteria are fulfilled (see below).

Based on expression (5.6) and with allowance for
expressions (5.4b) and (5.6a), we find

�DF�0G1
� ÿBT ln

p

p0
� BT ln

p1
p0
� BT ln

p

p1
; �5:6b�

�DF�0G2
� T ln

G2

N
� cg ÿ T ln

p

p0
; �5:6c�

�DF�0R � B

�
4pR 2�pÿ p1� � q

qR

�
4pR 2s� e 2I 2

1 �x� 2�
4eR�x� 1�2

��
;

�5:6d�

�DF�0s � 2T I0

(
ci � �ci

2T
ÿ fÿ e 2I1�x� 2�

4eRT�x� 1�2

�
�
1� x�x� 3�
�x� 1��x� 2�

1ÿ s

2s

�
s

b

qb
qs

��)
: �5:6e�

When obtaining Eqn (5.6e), we used the formulas
B�qI 2

1 =qs� � ÿ2I0I1, BI 2
1 � I0I1�1ÿ s� [see Eqn (5.6a)], and

qx=qs � �x=s��s=b�qb=qs. The quantity f in formula (5.6e) is
written out as

f � ln
n

sn 0
i

� 2:5�sn 0
i l

3
B �1=2 : �5:6f�

Formulas (5.6c) and (5.6e) contain yet undetermined quan-
titiescg,ci,

�ci, and �s=b�qb=qs. As to the quantity �s=b�qb=qs,
it is equal, according to formula (4.10b), to 2=�F� 3�.

Let us now turn to the determination of the energies cg,
ci, and

�ci. As was already noted, the above expressions for
the potentials of dissolved ions and counterions (in the
absence of bubbles) [see Eqn (5.3)] coincide, to an accuracy
of a correlation correction, with the potential of the solution
of neutral gases [see Eqn (5.4)] with the replacements I0 ! G2

and ci;
�ci ! cg. It is well known (see, e.g., book [11], Section

81) that all these energies have the same physical nature and
are determined by the energy U of dissolved particles in the
force field created by the molecules of the solvent (of water in
our case) as follows:

c � U� T ln

"
n

�
2p�h 2

mT

�3=2
#
; �5:7�

where m is the mass of the dissolved particles, and n is the
number density of the water molecules. The second term on
the right-hand side of Eqn (5.7) formally coincides with the
chemical potential of an ideal gas with a number density n of
particles (Ref. [10], Section 45). The energy U is equal to the
minimum work which should be spent to introduce into
water an ion (in the case of ionic solutions) or a neutral
particle (in the case of a dissolved gas). In the latter case, the
energy U is determined by the minimum work of the
formation in the water of a cavity necessary for the
introduction of a neutral particle with radius dg. This energy
is calculated in Appendix A and is defined by the expression

Ug� u 2
s r

2 NA

M

29d 6
l

35
�a 3ÿ 23=2�2 � 6:7� 10ÿ3�a 3 ÿ 23=2�2 eV;

�5:7a�
where us is the sound velocity in water, r is the mass density of
water, M � 18 is the molecular mass of water,
NA � 6� 1023 molÿ1 is the Avogadro constant, dl is the
radius of the water molecule, and a � ag � 1� dg=dl. The
last variant of formula (5.7a) corresponds to the certain
values of us � 1:49� 105 cm sÿ1, r � 1 g cmÿ3, and
dl � 1:38 A

�
. The dependence of Ug on T and p is determined

by the dependence of the sound velocity us and density r on
the same quantities.

In the case of an ionic solution, the energyU is defined by
formula (5.7a) at a � ai � 1� di=dl with an addition of the
energy of electrostatic interaction of the introduced ion with
the water molecules. As a result, the total energy for the Na�

ions is Ui � 0:834 eV, and �Ui � 0:870 eV for the Clÿ ions.

5.3 Equilibrium parameters
of the system under consideration
The equilibrium parameters of the `ionic aqueous solution �
external gaseous medium' system under consideration are
determined by solving four equationsÐ�DF�0G1

� 0,
�DF�0G2

� 0, �DF�0R � 0, and �DF�0s � 0Ðsubject to Sylves-
ter's criteria. According to formula (5.6b), it follows from the
condition �DF�0G1

� 0 that, if B 6� 0 (i.e., if bubstons exist),
then

p1 � p ; �5:8�

i.e., the gas pressure inside the bubstons in equilibrium is
equal to the external pressure p.
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The condition �DF�0G2
� 0, according to formula (5.6c),

gives

G2

N
� n s

g

n
� p

p0
exp

�
ÿcg

T

�
;

where n s
g � G2=V is the number density of the properly

dissolved gas particles, and p0 is determined by formula
(5.3a). The substitution into the right-hand side of the last
formula, according to formula (5.7), of the expression

cg � Ug � T ln

"
n

�
2p�h 2

mT

�3=2
#

leads to the following dependence of the number density n s
g of

the properly dissolved gas on its number density ng � p=T in
the external gaseous medium:

n s
g � H0ng � H0

T
p ; �5:8a�

H0 � exp

�
ÿUg

T

�
: �5:8b�

In Appendix A, the values of the energy Ug for nitrogen
(0.332 eV) and helium (0.10 eV) have been obtained. At
T � 298 K, we obtain HN2

0 � 2� 10ÿ6 in the first case, and
HHe

0 � 0:019 in the second case, i.e., HHe
0 =HN2

0 � 104.
Dependence (5.8a) formally reflects the content of the

Henry law: the number density n s
g is proportional to the

number density ng or, at a given temperature, to the pressure
p � ngT. However, the temperature dependence of the
coefficient H0=T in equality (5.8a) contradicts the experi-
mental data, according to which the solubility of gases at a
constant pressure decreases with increasing temperature or
passes through an extremum, whereas q�H0=T �=qT > 0
(since Ug=T > 1). A principal exception to the above-
established dependence is helium, for which the solubility in
water at a constant pressure indeed increases with increasing
temperature. This contradictory situation is resolved if we
take into account that the Henry law defines the dependence
of the total content of gas in a unit volume on the pressure p,
i.e., the number density is given by

n 0
g � n s

g �
4p
3

R 3nbng � �H0 � Kv�ng � H1p : �5:8c�

Here, H1 � �H0 � Kv�=T is the true Henry coefficient, and
Kv � �4p=3�R 3nb. We will see below that in the case of a
helium external medium the bubston structure is absent, i.e.,
Kv � 0; therefore, the solubility of helium should indeed
increase with increasing T. The problem of the temperature
dependence of the coefficient H1 for other gases requires a
separate consideration with allowance for the temperature
dependences of the bubston parameters R and nb.

At p � p1 and B 6� 0, the condition �DF�0R, according to
formula (5.6d), leads to the equation

q
qR

�
4pR 2s� e 2I 2

1 �x� 2�
4eR�x� 1�2

�
� 0 ; x � bR : �5:9�

Notice that the differentiation of the second term in this
equation with respect to R should be carried out at constant
values of b and I1 � Q1=e, since the changes to these
quantities caused by the processes of the ion diffusion occur
significantly more slowly than the process of the change in the

pressure due to the mechanical change in the magnitude ofR.
Equation (5.9) determines the condition of the mechanical
equilibrium of a bubston. Indeed, the pressure exerted on the
surface of a bubble in the direction of the external normal to
its surface, which is related to the surface tension energy
Ws � 4pR 2s, has the form

ps � ÿ 1

4pR 2

qWs

qR
� ÿ 2s

R
; �5:9a�

whereas the ponderomotive pressure on the bubble surface in
the same direction, which is related to the electric field energy
WE, is given by

pE � ÿ 1

4pR 2

q
qR

�
e 2I 2

1

4eR
x� 2

�x� 1�2
�
� e 2I 2

1 �x 2 � 3x� 1�
8peR 4�x� 1�3 :

�5:9b�
Theminus sign in formula (5.9a) indicates that the pressure ps
is directed inward toward the bubble and is determined by the
Laplace formula. According to formulas (5.9a) and (5.9b),
equation (5.9) takes on the form

2s
R
� pE � e 2I 2

1

8peR 4

x 2 � 3x� 1

�x� 1�3 �5:10�

and represents the condition of the mechanical equilibrium
for a bubston. Notice that the external pressure p of the gas
does not enter into this condition, since it, according to
formula (5.8), is balanced by the pressure p1 of the gas that
is inside the bubstons.

In the entire range of ion number densities being
considered (see Table 2 below) and for R5 10 nm, the values
of the parameter F are such that the magnitude of
x � bR � b0R=F

2, in agreement with formulas (4.10) and
(4.19a), turns out to be large compared with unity. In this
case, equation (5.10), taking into account that I1 � 4pR 2g,
takes on a form that is independent of R:

bÿ1 � es

p�eg�2 ; �5:11�

which coincides with formula (4.9c) obtained from the
condition of the equilibrium for the DEL of the bubbles.
Hence, we arrive at the conclusion that all bubbles with radii
that satisfy the condition

R4 bÿ1 � es

p�eg�2 �5:11a�

are mechanically stable, i.e., they constitute bubstons. It
follows from formulas (4.10) that for n s

i > 1014 cmÿ3 the
number density g is greater than 4� 1014 cmÿ2. In this case,
condition (5.11a) means that R4 5 A

�
, or R > 5 nm, i.e., the

radii of bubstons in canonical solutions always exceed 5 nm.
Notice that this restriction imposed on the size of bubstons
formally coincides with condition (5.2a), which has quite a
different physical meaning. The sense of the new restriction
onR in formula (4.11a) can be easily understood if we write it
down as

2s
R

5
2p�eg�2

e
: �5:11b�

A bubston can be represented as a virtual spherical capacitor
filled with water. The inner electrode in such a capacitor
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coincides with the surface of the bubble, i.e., its radius is
R1 � R. The effective radius of the outer electrode is
R2 � R1 � 1=2b, and the electric capacitance is defined as
C � R1R2e=�R2 ÿ R1� � 2ebR 2 (since bR4 1). In this case,
the energy stored in the capacitor is WE �
Q 2

1 =2C � Q 2
1 =4ebR

2 and it coincides with expression (4.8c)
(for bR4 1). Under equilibrium conditions, the electrodes
have specific charges ��eg� (per unit area). According to
formula (5.11b), the equilibrium between bubstons is ensured,
since for all R > 5 nm the pressure due to the surface tension
that compresses the bubble (the inner electrode) is small
compared to the pressure due to the mutual attraction of the
charges of the `capacitor-bubston'.

We now turn to the last equation of system (5.6b)±(5.6e).
Substituting into it, according to formula (5.7), the relation

ci � �ci

2T
�Wi

T
ÿ ln

n0
n
; �5:12�

where

Wi � Ui � �Ui

2
; n0 �

� ��������
m �m
p

T

2p�h 2

�3=2

: �5:12a�

Here, Ui and �Ui are the energies introduced in Section 4,
which are equal to 0.834 eV forNa� ions and 0.870 eV for Clÿ

ions, m and �m are the masses of these ions, and
n0 � 1:5� 1026 cmÿ3. Taking into account that x4 1,
I1 � 4pR 2g, and with allowance made for formulas (4.9b),
(5.6f), and

s

b

qb
qs
� 2

F� 3
;

equation (5.6e) takes on the following form:

�DF�0s � 2T I0

�
Wi

T
� ln

sn 0
i

n0
ÿ F

4

�
1� 1ÿ s

s

1

F� 3

�
ÿ 2:5�sn 0

i l
3
B�1=2

�
: �5:13�

The quantity F satisfies equation (4.10a) at n s
i � sn 0

i (the
aqueous solution is assumed to be neutral, pH � 7) and,
therefore, eF=4 � �n �=sn 0

i �1=4=F 3=4 (n � � 4:5� 1025 cmÿ3).
As a result, the equation �DF�0s � 0 after some transforma-
tions can be represented as

n 0
i � n1 exp

�
ÿ 4Wi

5

�
1

T
ÿ 1

T0

��
1

sF 3=5
exp

�
1ÿ s

s

F=5

F� 3

�
� exp

�
2�sn 0

i l
3
B�1=2

�
; �5:13a�

where

ni �
�
n0�n ��1=4

�4=5
exp

�
ÿ 4Wi

5T0

�
; �5:13b�

and T0 � 4:1�1014 erg (at t � 25 �C). In this case,
�n0�n ��1=4�4=5 � 1:3� 1026 cmÿ3, and n1 � 4:1� 1014 cmÿ3.
The last term in formula (5.13a) for all n 0

i 4 1020 cmÿ3 is close
to unity and is disregarded below (it is due to the introduction
of the correlation correction in formulas (5.3), (5.4), and (5.5).
In equation (5.13a), it is only the thirdmultiplier that depends
on s; as s increases from 0 to 1, it decreases monotonically and
at s � 1 has a minimum value 1=F

3=5
1 . Hence, for s < 1 (the

necessary condition for the existence of bubstons), equation
(5.13a) has a solution s � s�n 0

i � only if the total number
density n 0

i of the dissolved ions satisfies the inequality

n 0
i >

n1

F
3=5
1

exp

�
ÿ 4Wi

5

�
1

T
ÿ 1

T0

��
� �n 0

i �th : �5:14�

This means that some temperature-dependent threshold
number density �n 0

i �th exists for the formation of bubstons.
At T � T0, we have �n 0

i �th � 4:1� 1014 cmÿ3=F 3=5
1 , where

F1 � 18:5 is the root of the equation F 3
1 e

F1 � n �=�n 0
i �th �

�4:5� 1025=4:1� 1014�F 3=5
1 � 1:1� 1011 F

3=5
1 . The threshold

ion number density in this case is

�n 0
i �th � 7:1� 1013 cmÿ3 ; t � 25 �C : �5:14a�

The dependence of s on the values of n 0
i > �n 0

i �th at
t � 25 �C is determined from equation (5.13a), which can be
represented as follows:

ln
z

y
� �yÿ 1� F=5

F� 3
� 3

5
ln

18:5

F
; �5:15�

where y � 1=s, and z � n 0
i =�n 0

i �th is the overshoot of the
threshold. This equation should be supplemented by equa-
tion (4.10a):

F 3eF � y
n �

n 0
i

� y

z

n �

�n 0
i �th
� 6:4� 1011

y

z
:

As a result, we obtain

ln
z

y
� F� 3 lnF � 27:2 : �5:15a�

The simultaneous solution to equations (5.15) and (5.15a)
determines the dependence of y on z, i.e., of s on n 0

i , and the
dependence of F on y, i.e., of F on n 0

i . The numerical values of
these solutions are given in Table 2.

Table 2

n 0
i , cm

ÿ3

M, mol lÿ1
1015

1:7� 10ÿ6
3� 1015

5� 10ÿ6
1016

1:7� 10ÿ5
3� 1016

5� 10ÿ5
1017

1:7� 10ÿ4
3� 1017

5� 10ÿ4
1018

1:7� 10ÿ3
3� 1018

5� 10ÿ3
1019

1:7� 10ÿ2
3� 1019

5� 10ÿ2

s � 1=y 0.17 0.10 7:0� 10ÿ2 5:3� 10ÿ2 4:1� 10ÿ2 3:3� 10ÿ2 2:8� 10ÿ2 2:4� 10ÿ2 2:0� 10ÿ2 1:8� 10ÿ2

n s
i � sn 0

i , cm
ÿ3 1:7� 1014 3:0� 1014 7:0� 1014 1:6� 1015 4:1� 1015 1:0� 1016 2:8� 1016 7:2� 1016 2:0� 1017 5:4� 1017

F 17.7 17.2 16.5 15.8 15.0 14.3 13.4 12.7 11.8 11.1

10ÿ14g, cmÿ2 4.0 4.1 4.3 4.5 4.7 5.0 5.3 5.6 6.0 6.4

Kv 0:86� 10ÿ7 2:0� 10ÿ7 5:9� 10ÿ7 1:4� 10ÿ6 3:5� 10ÿ6 8:0� 10ÿ6 2:0� 10ÿ5 4:5� 10ÿ5 1:1� 10ÿ4 2:1� 10ÿ4

Z2 � �1=Kv�3=7 1:0� 103 730 460 320 220 150 102.0 73.7 49.4 37.7
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The above-found solutions to equations �DF�0G1
� 0,

�DF�0G2
� 0, �DF�0R � 0, and �DF�0s � 0, which determine the

stationary point of the potential DF � 0, are written in the
explicit form by formulas (5.8) and (5.8a), and in the implicit
form by equations (5.10) and (5.13a). Now, we should show
that this point corresponds to the minimum of the potential
DF, i.e., that these equations determine the equilibrium
parameters of the system under consideration.

A necessary and sufficient condition for this is Sylvester's
criterion. In our case, it requires that all four determinants of
the symmetrical matrix aik composed of the values of the
second derivatives of DF with respect to the parameters G1,
G2, R, and s at the stationary point be positive (the first of
these determinants is simply a11 � �DF�00G1G2

�. According to
formulas (5.6b)±(5.6e) with allowance for (5.4b) and (5.6a)
and taking into account that x4 1, we obtain for the diagonal
terms of this matrix:

a11 � �DF�00G1G1
� BT

G1
; a22 � �DF�00G2G2

� T

G2
;

a33 � �DF�00RR � B�12pRp� 32ps� ;

a44 � �DF�00ss �
2T I0
s

�
1� I0lB

4RBx

1� s 2

2s

�
:

The nonzero off-diagonal matrix elements have the form

a13 � �DF�00G1R
� a31 � �DF�00RG1

� ÿ 3BT

R
;

a34 � �DF�00Rs � a43 � �DF�00sR �
lBT I0
BR 2x

1ÿ s 2

2s
:

The determinants corresponding to this matrix are (to an
accuracy of terms of order 1=x) given by

D1 � a11 � BT

G1
; D2 � a11 0

0 a22

���� ���� � BT 2

G1G2
;

D3 �
a11 0 a13
0 a22 0
a31 0 a33

�����
����� � BT 2

G1G2
32ps ;

D4 �
a11 0 a13 0
0 a22 0 0
a31 0 a33 a34
0 0 a43 a44

�������
������� �

16psI0B 2T 3

G1G2s
:

All these quantities are positive, i.e., Sylvester's criterion is
fulfilled.

6. Radius and density of bubstons

As was shown in Section 5, the condition of the mechanical
equilibrium (5.10) that follows from the equation �DF�0R � 0
for R > 5 nm degenerates into an independent-of-R equality
(5.11). Therefore, to determine the radius R of bubstons and
their number density nb depending on the concentration n 0

i of
ions, two additional independent equations should be
invoked. They follow, first, from the yet unused condition of
the conservation of the total number of ions in the solutionÐ
both adsorbed (i.e., bound in the DEL) and the properly
dissolved (i.e., free) ions. This condition can be represented,
according to expression (5.5a), as follows:

nb � n 0
i �1ÿ s�
4pgR 2

; �6:1�

where n 0
i is the total number density of dissolved ions (a

specified quantity). The dependence on n 0
i of the quantities s

and g that enter into formula (6.1) is determined by the
equations (4.10), (4.10a), and (5.13a) (see Table 2). The
second additional equation follows from the condition of
the conservation of the number of neutral particles in the
entire system. This condition is derived in Appendix B and is
written out as follows:

�Kv=w1�T�1� R 4=S1�
5prn�Dg=dg�R 2H0

� 1 ; �6:2�

where Kv � �4p=3�R 3nb, w1 � pR 2n
2=3
b , H0 � exp �ÿUg=T �,

Dg is the diffusion coefficient of gas particles in water, dg is the
radius of these particles, S1 � 3T=4prg � 10ÿ17 cm4,
n � 10ÿ2 cm2 sÿ1 is the kinematic viscosity of water, r is its
density, and g is the acceleration of gravity. The dependence
of the left-hand part of formula (6.2) on the parameter H0 is
quite significant: HHe

0 =HN2

0 � 104.
Let us first consider the case where the aqueous solution is

in equilibrium with a helium external medium. Here, Dg �
6:8� 10ÿ5 cm2 sÿ1, dg � 1:22 A

�
, Dg=dg � 5:6� 103 cm sÿ1,

Ug � 0:1 eV,H0 � exp �ÿUg=T � � 2:0� 10ÿ2, and equation
(6.2) can be represented as follows:

0:2K 1=3
v

1� 10ÿ11�R �nm��4
�R �nm��2 � 1 : �6:3�

It can be seen that for R5 3 nm and for R4 3 mm�
3� 103 nm, we have Kv < 4:7� 10ÿ2 �K 1=3

v < 0:36�, i.e., in
the range of parameters that corresponds to the realized
bubston structures [see formulas (5.2)±(5.2c)], the value of
the left-hand part in formula (6.3) is much less than unity.
This is equivalent to the situation where the first term in
equation (B.7) is negligibly small compared to the other two
terms of the equation, i.e., the flux of the bubston-induced
ejection of gas particles from the aqueous ionic solution is
absent. Thus, in the case under consideration, there are no
bubston structures which could contribute to gas equilibrium
at the interface. In this case, equation (B.7) is satisfied at
nb � 0, w1 � pR 2n

2=3
b � 0, and it corresponds to the condi-

tion of gas equilibrium for the `bubstonless' solution. Thus,
we can conclude that in water with an arbitrary concentration
of ions that resides in equilibrium with a helium medium, the
bubston structure is absent.

This result reveals a unique new property of helium. First,
it removes the above-noted contradiction with the experi-
mental data concerning the temperature dependence of the
helium solubility in water. Since Kv � 0 in the case of helium,
the true Henry coefficient isH1� H0 � exp �ÿUg=T �; hence,
the solubility of helium at constant pressure should increase
with increasing temperature [since q�H0=T �=qT > 0] rather
than decrease, as is observed for other gases. Another new
property of water being in equilibrium with helium (`helium
water') is that such water allows quite significant overheat-
ings: at a helium pressure of 1 atm, overheatings to 200 �C are
observed. The very fact that such overheatings exist indicates
that the nuclei responsible for the bubble-like boiling of usual
pure water residing in equilibrium with air are bubstons
existing in it rather than vapor bubbles spontaneously arising
in it with increasing temperature (as is usually assumed).

Quite a different situation is observed in the case of a
nitrogen external medium. In this case, equation (6.2) also
takes on the form of expression (6.3), but its right-hand part is
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replaced by the expression

a � �Dg=dg�N2

�Dg=dg�He

HN2

0

HHe
0

� 1:95� 10ÿ5 ; �6:3a�

where DN2
g � 1:63� 10ÿ5 cm2 sÿ1, dN2

g � 1:56 A
�
, and

HN2

0 � 2� 10ÿ6. Notice that the transformation of equation
(6.2) to the form (6.3) with the replacement of the unity on the
right-hand side by a quantity a5 1 relates not only to
nitrogen but also to other gases (except for atomic hydro-
gen). For the nitrogen external medium, equation (6.2) takes
on the following form:

R � Sn
1=3
b

�
1� R 4

S1

�
; S1 � 10ÿ17 cm4 ; �6:4�

S � 4T

�Dg=dg�HN2

0 15prn
: �6:4a�

At t � 25 �C, we have S � 1:7� 10ÿ10 cm2.
Thus, to determine R and nb in the case of the nitrogen

external medium, we should solve the system of equations
(6.1) and (6.4). Eliminating the variable nb from these
equations, we obtain

R � S 3=5�n 0
i �1=5

�4pg�1=5
�1ÿ s�1=5

�
1� R 4

S1

�3=5

; �6:5�

or, in the dimensionless form:

Z 5=3 � 1� kZ 4 : �6:5a�
Here, the notion was used as follows

Z � R
�4pg�1=5

S 3=5�n 0
i �1=5

1

�1ÿ s�1=5
; k � S 12=5�n 0

i �4=5
�4pg�4=5

�1ÿ s�4=5 1

S1
;

�6:5b�

where S � 1:7� 10ÿ10 cm2, and S1 � 10ÿ17 cm4. For the ten
values of the total number density n 0

i of dissolved ions and
corresponding values of g and s represented in Table 2,
Eqn (6.5a) has two roots: Z1 � 1 and Z2 � �1=k�3=7. Accord-
ing to formulas (6.5b) and (6.1), two branches of solutions
correspond to each of these roots:

R �1� � S 3=5

�
n 0
i �1ÿ s�
4pg

�1=5

; n
�1�
b � n 0

i �1ÿ s�
4pg�R �1��2 ; �6:6�

K �1�v �
4p
3
�R �1��3n �1�b ;

R �2� � Z2R
�1� ; n

�2�
b � n

�1�
b

Z 2
2

; K �2�v � Z2K
�1�
v : �6:6a�

The numerical results for these solutions at t � 25 �C are
listed in Table 3. It can be seen from this table that the first
branch of the solutions in the entire range of the ion
concentrations considered �1:7� 10ÿ6 4M4 1:7� 10ÿ2�
satisfies all three conditions (5.2), (5.2a), and (5.2c) of the
applicability of our thermodynamic description of the
bubston structure, whereas the second branch does not
satisfy these conditions. Therefore, only those solutions that
refer to the first branch should be assumed the physically
realizable solutions. At the same time, at enhanced ion
concentrations �M > 1:7� 10ÿ2� solutions characteristic of
the first branch do not satisfy the condition (5.2c); therefore,
they cannot be considered as physically realizable either. This
conclusion about the physical realizability of the solutions
obtained does not naturally mean that for M > 10ÿ2 the
bubston structure in canonical ionic solutions is completely
absent. The mechanism of the spontaneous formation of
bubston nuclei that has been considered in Section 4 exists
at all concentrations of Na� and Clÿ ions; therefore, the non-
realizability of the obtained solutions at enhanced ion
concentrations means only that in these cases a kinetic
(rather than thermodynamic) description of the phenom-
enon under consideration is required.

It can be seen from expression (6.5) that owing to a very
weak dependence of g and s on the ion number density n 0

i (it
can be seen from Table 2) the main dependence of the
parameters R, nb, and Kv of the bubston structure on n 0

i

takes the following form

R � �n 0
i �1=5 ; nb � �n 0

i �3=5 ; Kv � �n 0
i �6=5 : �6:7�

The above bubston structure allows, in general, the
formation of bubston clusters. This problem is considered in
the following section.

7. Formation of bubston clusters

At sufficiently large ion number densities and, consequently,
at large number densities of bubstons, the possibility of their
mutual interaction should be taken into account. This can
manifest itself in sticking bubstons together and, correspond-
ingly, in the formation of bubston clusters. The reason for the
possibility of such sticking together is that in the process of
movement of bubstons (Archimedes' buoyancy and Brow-
nianmotion) their DEL (a screening negative ion shell) can be
distorted, as opposed to the equilibrium shell which is
determined by the distribution of the charge density r�r�
according to formulas (4.8) and (4.8b). As a result of such
distortions, the negative charge of the ion shell can randomly
and equiprobably both decrease and increase (in absolute
magnitude), unlike the equilibrium adsorbed positive charge

Table 3

n 0
i , cm

ÿ3

M, mol lÿ1
1015

1:7� 10ÿ6
3� 1015

5� 10ÿ6
1016

1:7� 10ÿ5
3� 1016

5� 10ÿ5
1017

1:7� 10ÿ4
3� 1017

5� 10ÿ4
1018

1:7� 10ÿ3
3� 1018

5� 10ÿ3
1019

1:7� 10ÿ2
3� 1019

5� 10ÿ2

R �1�, nm
R �2�, mm

9.6
9.6

12.1
8.8

15.5
7.1

19.2
6.15

24.1
5.2

28.8
4.3

37.2
3.7

46.3
3.4

57.8
2.9

72.2
2.6

n
�1�
b , cmÿ3

n
�2�
b , cmÿ3

1:8� 1011

1:8� 105
3:6� 1011

4:8� 105
7:7� 1011

3:7� 106
1:45� 1012

1:4� 107
2:9� 1012

6:0� 107
5:8� 1012

2:6� 108
1:1� 1013

1:1� 109
2:0� 1013

3:9� 109
4:0� 1013

1:6� 1010
7:2� 1013

5:0� 1010

K �1�v
K �2�v

6:6� 10ÿ8

6:6� 10ÿ4
2:6� 10ÿ6

1:9� 10ÿ3
1:2� 10ÿ5

5:6� 10ÿ3
4:3� 10ÿ5

1:4� 10ÿ2
1:7� 10ÿ4

3:7� 10ÿ2
5:8� 10ÿ4

8:7� 10ÿ2
2:4� 10ÿ3

0.24

8:3� 10ÿ3

0.61

3:3� 10ÿ2

> 1

> 0:1

> 1
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4pR 2ge. In the first case, the bubston becomes positively
charged; in the second case, it becomes negatively charged.
The positive bubstons thus arising prove to be mechanically
unstable and rapidly annihilate (are dissolved), since in this
case the pressure due to the mutual attraction of the
electrodes of the spherical `capacitor-bubston' decreases
[right-hand side of condition (5.11b)]; this especially con-
cerns bubstons with small radii R. Negative bubstons, on the
contrary, acquire additional stability due to an increase in the
right-hand part of formula (5.11b), and their lifetime
significantly exceeds that of positive bubstons. Thus, there is
all the reason to assume that under stationary conditions at
each value of the ion concentration the bubstons of three
types appear in the solution: neutral, positively charged, and
negatively charged. The radii R of all these types are identical
and are determined by formula (6.5), but the number densities
n
���
b and n

�ÿ�
b of the positively and negatively charged

bubstons are always small compared to the number density
nb of neutral bubstons given by formula (6.6), and the number
density n

���
b of positive bubstons, in turn, is small as

compared to the number density n
�ÿ�
b of negative bubstons:

nb 4 n
�ÿ�
b 4 n

���
b .

The existence of both neutral and charged bubstons in the
solutions gives rise to an electrostatic attraction between the
neutral and charged bubstons, as well as between the negative
and positive bubstons; upon their sufficiently close approach-
ing, the formation of bubston clusters occurs, i.e., aggregates
consisting of stuck together bubstons, which have a certain
fractal dimensionality, gyration radius Rcl, mass Ncl, and
number density ncl. Here,Rcl is the radius of the sphere which
includes mainly all bubstons of the cluster, Ncl is the number
of bubstons in this sphere, and ncl is the number of clusters in a
unit volume. According to the above concepts, such clusters
are homogeneous in composition, i.e., at a given number
density of dissolved ions, all bubstons that enter into a cluster
have the same radius R. The mechanism of the formation of
clusters themselves has a diffusion character: a diffusion flux
of both neutral and charged bubstons, which stick to the
nucleus and to each other, is directed onto a nucleus of a
cluster (this can be a single bubston or a group of already
stuck together bubstons). In this process, a charged sticky
bubston does not lose its charge and the neutral bubston
remains neutral. This ensures the stability of the cluster,
which on the whole becomes negatively charged, since
n
�ÿ�
b 4 n

���
b .

The mass Ncl of the arising cluster is determined by the
total number of bubstons coming as a result of diffusion
towards the growing cluster nucleus during a characteristic
time of its Archimedes' floating-up, i.e., in a time
tAcl � Rcl=u

A
cl , where uA

cl � �4=15�gR 3Ncl=nRcl is the velocity
of the cluster floating-up. Thus, the mass Ncl should satisfy
the equation Ncl � 4pR 2

cl�Db=R�nbtAcl , where Db � T=5prnR

is the diffusion coefficient of bubstons. Hence, we obtain

Ncl �
�����������������
3TnbR

4
cl

rgR 5

s
: �7:1�

Since Ncl / R 2
cl, in the considered model of the formation of

bubston clusters their fractal dimensionality is equal to two.
Let us determine their number density ncl. If all free bubstons
passed into the clusters, then, from the condition of the
conservation of the total number of bubstons (both free and
bound in the clusters) in the solution, their number density ncl
would equal to nb=Ncl. But it is well-known that only part of
the bubstons equal to �R=Rcl�3 passes into the clusters, which
corresponds to the probability that in the solution there is at
least one bubston locating in the center of a sphere of radius
Rcl, which, due to the diffusion of surrounding bubstons
towards this bubston, will transform into a cluster with a
gyration radius Rcl. Thus, one has

ncl � nb
Ncl

�
R

Rcl

�3

: �7:2�

Substituting formula (7.1) into formula (7.2), we obtain

ncl �
������������������
rgnbR 11

3TR 10
cl

s
�

���������������������
rgR 8Kv

12:6TR 10
cl

s
; Kv � 4p

3
R 3nb : �7:3�

The gyration radiusRcl is determined from the condition that
the characteristic time R 2

cl=Db of the formation of clusters be
small compared to the time tAcl . Assuming that
R 2

cl=Db � 0:1tAcl , we find

Ncl � 0:1
3

4p
T

rgR 4
: �7:4�

The substitution of the last formula into Eqn (7.1) gives

R 4
cl � 8� 10ÿ4

T

rgKv
: �7:5�

At T � 293 K, the radius is Rcl [nm]� 1:3� 102=K 1=4
v . From

equations (7.1)±(7.3), we obtain

ncl �cmÿ3�� 2�103
�
rgKv

T

�7=4

R 4� 104�R �nm��4K 7=4
v ; �7:6�

Ncl � 0:1
nbT

rgRKv
� 4� 10ÿ11nb �cmÿ3�

R �nm�Kv
: �7:7�

The values of the cluster parameters Rcl, ncl, and Ncl at
t � 25 �C, which are determined according to formulas
(7.5)±(7.7), are given in Table 4 along with the values of the
parametersR and nb of the free bubstons that coexist with the
clusters (at a given number density n 0

i of ions).

Table 4

n 0
i , cm

ÿ3

M, mol lÿ1
1015

1:7� 10ÿ6
3� 1015

5� 10ÿ6
1016

1:7� 10ÿ5
3� 1016

5� 10ÿ5
1017

1:7� 10ÿ4
3� 1017

5� 10ÿ4
1018

1:7� 10ÿ3
3� 1018

5� 10ÿ3
1019

1:7� 10ÿ2

Rcl, mm 4.6 3.2 2.2 1.6 1.1 0.84 0.60 0.42 0.31

ncl, cmÿ3 1:5� 10ÿ3 3:6� 10ÿ2 1.4 31.0 8:6� 102 1:5� 104 5:0� 105 1:3� 107 2:9� 108

Ncl 1:1� 106 4:6� 105 1:7� 105 6:8� 104 2:8� 104 1:4� 104 4:9� 103 2:1� 103 8:4� 102

R, nm 9.6 12.1 15.5 19.2 24.1 28.8 37.2 46.3 57.8

nb, cmÿ3 1:8� 1011 3:6� 1011 7:7� 1011 1:4� 1012 2:9� 1012 5:8� 1012 1:1� 1013 2:0� 1013 4:0� 1013
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The formation of clusters, generally, should lead to a
decrease in the number density of free bubstons; this density
n 0b is determined from the condition of the conservation of the
total number of bubstons in the solution: nb � nclNcl � n 0b.
According to formulas (7.2), we arrive at

n 0b � nb

�
1ÿ

�
R

Rcl

�3�
; �7:8�

and from expression (5.2d), we have�
R

Rcl

�3

� 4:2� 10ÿ7�R �nm��3 K 3=4
v : �7:8a�

It can be seen from Tables 3 and 4 that the value of
�R=Rcl�3 is maximum at n 0

i � 1019 cmÿ3, when R � 57:8 nm
and Kv � 3:3� 10ÿ2. In this case, �R=Rcl�3 � 10ÿ2. Thus,
upon forming a bubston±cluster structure, the number
density of free bubstons n 0b at all the densities of ions under
consideration remains close to nb, i.e., the value of the number
density of bubstons in the absence of clusters. This is
connected with one more, no less important, result: the
number density of clusters ncl, according to formula (7.6)
and Table 4, is alsomaximum at n 0

i � 1019 cmÿ3 and amounts
to around 3� 108 cmÿ3, which is several orders of magnitude
less than the number density n 0b of free bubstons. A similar
relationship between ncl and n 0b is also retained at other ion
densities. In turn, as a consequence of these two results, the
flux of the free gas that comes onto the surface of the solution
due to the escape of clusters onto the surface proves to be
negligibly small compared to the flux that is determined by
the emergence of free bubstons onto the surface. Thus, the
formation of clusters does not change the condition of gas
equilibrium on the solution±gas interface that was repre-
sented in the form (6.2).

The above-considered model describes the formation of
compositionally homogeneous clusters. At the same time, the
electrostatic character of the interaction between bubstons
supposed in the model indicates the possibility of the
formation of a more complex type of clusters in the solution,
namely, of aggregates consisting of clusters of the above type
with random gyration radii. It is obvious that the average
density of such clusters of the `second order' should be small
compared to the average number density ncl of clusters of the
`first order'.

8. Formation of a bubston structure
as a first-order phase transition

It has been shown in Section 5 that the necessary condition
s < 1 for the existence of bubstons is fulfilled if the total
number density of dissolved impurity ions is n 0

i > �n 0
i �th,

where �n 0
i �th stands for a temperature-dependent threshold

density:

�n 0
i �th � �n 0

i �th�T0� exp
�
ÿWb

�
1

T
ÿ 1

T0

��
; �8:1�

�n 0
i �th�T0�� 7:1�1013 cmÿ3 (T0 � 298 K� 4:1�10ÿ14 erg�

25 �C), andWb � 0:8�Ui � �Ui�=2 � 0:682 eV. On the �n 0
i ;T �

plane, the dependence of �n 0
i �th on the temperature is

represented by a curve that increases slowly with tempera-
ture (Fig. 2). At a given value of T, the points n 0

i > �n 0
i �th

correspond on this plane to values of s < 1, which means the

existence of a `bubston phase' in the solution; the points
n 0
i < �n 0

i �th are associated with a `homogeneous (bubstonless)
phase' of the solution. Such a transition at a given tempera-
ture of the aqueous ionic solution from a homogeneous phase
into a bubston phase should be considered a first-order phase
transition. The order parameter in this case is the quantity
Kv � �4p=3�R 3nb, which changes jumpwise (from zero to
some finite value) and characterizes the relative fraction of
the volume free of liquid, which is filled with gas. It follows
directly from the Le Chatelier±Brown principle that the heat
of the transition from the homogeneous phase into the
bubston phase is negative, i.e., heat is released (similar to
how this occurs in the transition of liquid water into ice).

The general conclusion about the existence of a phase
transition in the `aqueous ionic solution � external gaseous
medium' system does not agree with the previous conclusions
that in the case of an external helium medium the bubble
structure is impossible at any concentration of ions. This
contradiction is solved as follows. The inference about the
existence of a phase transition was made based only on one
necessary condition for the existence of bubstons, namely,
s < 1. But this condition is insufficient for the formation of a
bubston phase. It is necessary, in addition, as was shown in
previous sections, that in the presence of bubstons a condition
(6.2) of the gaseous equilibrium be also fulfilled. In the case of
a nitrogen or some other (except for helium) gaseousmedium,
this condition is fulfilled, whereas in the case of helium this
condition can be fulfilled only in the absence of the bubston
phase. Thus, the `aqueous ionic solution � external helium
medium' system differs from other similar systems in the
absence in it of the phase transition under consideration. It
should be said that the existence of such `exclusiveness' is not
somewhat new in the physics of phase transitions; as an
example, we may mention glasses which remain amorphous
in all their condensed states irrespective of temperature (the
physics of the phenomenon here is, naturally, different).

Above-obtained result (8.1) refers to the aqueous solution
of NaCl salt. But the energy Wb � 0:8�Ui� �Ui�=2 and,
consequently, according to formulas (5.13a) and (5.13b), the
preexponential factor depend on the type of dissolved
impurity ions (see Appendix A). For univalent ions (e.g., in
LiCl or KCl solutions), the energy Wb can easily be
determined via the same formulas given in Appendix A that

n 0
i

T

Homogeneous phase,
s � 1, Kv � 0

Bubston phase,
�n 0

i �th �cmÿ3� � 7:1� 1013 exp ÿWb
1

T
ÿ 1

T0

� �� �
;

s5 1, Kv4 0

Figure 2. Curve of the `bubston phaseëhomogeneous phase' equilibrium
for an NaCl solution. In the equilibrium curve, one has s � 1, Kv � 0,
Wb � 0:6282 eV, and T0 � 298 K (t � 25 �C).

862 N F Bunkin, F V Bunkin Physics ±Uspekhi 59 (9)



were obtained for an NaCl solution with the corresponding
replacement of the values of the ionic radii: dNa� �
0:98A

� ! dLi� � 0:68 A
�
or dNa� � 0:98 A

� ! dK� � 1:33A
�
.

It is also important to note that the above value of the
threshold density �n 0

i �th � 7:1� 1013 cmÿ3 at T � 298 K
proves to be on the order of magnitude close to the value of
the minimum number density (at this temperature) of
impurity ions in water, n s

i � 1:4� 1013 cmÿ3 (when its
resistivity is l � 1:8� 107 O cm, see Table 1), which is
achieved with modern technologies of the water deioniza-
tion. This circumstance makes it possible to assume that the
mechanism of the deionization itself in such technologies lies
in the elimination from the water (by filtration) of bubstons
(which accumulate impurity ions): the deionization stops
when all bubstons prove to be filtered away. Hence, it follows
that the employed technologies of the deionization do not, in
principle, allow us to reduce at a given temperature the ion
concentration to below �n 0

i �th�T �.

9. Conclusion

The above theoretical aspects of the existence of stable gas
bubblesÐbubstonsÐ in the aqueous solutions of electro-
lytes residing in equilibrium with an external gaseous
medium, as was said in the Introduction, have led to
numerous experimental investigations in this field. The
results of this work, given, for instance, in Refs [12±24],
make it possible to estimate the degree of the completeness
of current investigations into this phenomenon in the physics
of water.
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Appendix A

To determine the energy U�T; p�, we will proceed from
modern concepts of the structure of water as a (locally)
tetrahedral network of H2O molecules interacting via hydro-
gen bonds. The coordination polyhedronÐa regular tetra-
hedronÐhas edges of length a0 � �4=

���
6
p �l0, where l0 � k2dl

is the distance to the four nearest neighbors, which is equal to
the radius of the circumscribed sphere of the tetrahedron, and
dl � 1:38 A

�
is the radius of the water molecule. The coeffi-

cient k determines the degree of packing (`looseness') of the
water structure. The volume of such a tetrahedron, which
coincides with the specific (per molecule) volume of water, is
given by

v0 �
���
2
p

12
a 3
0 �

���
2
p

12

�
4���
6
p
�3

k 3�2dl�3 � 26d 3
l k

3

35=2
: �A:1�

Under normal conditions, v0 � 1=n � 3:04� 10ÿ23 cm3

(n � rNA=M � 3:3� 1022 cmÿ3 is the number density of
water molecules, r is the mass density of water, NA is the
Avogadro constant, and M � 18 is the molecular weight of
water). By substituting this value of v0 into (A.1), we
conclude, taking into account that d 3

l � 2:63� 10ÿ24 cm3,
that k � ���

2
p

under normal conditions.

For neutral dissolved gas particles, the sought-after
energy U is equal to one-fourth of the minimum work that
should be expended to produce a uniform extension of water
and, consequently, of its coordination tetrahedron in such a
manner that four cavities are formed with dimensions
sufficient for the location of particles with a radius d in
them. The requirement for the minimum work appears to
reduce to the necessity that in the extended state the spacing l1
between the nearest water molecules be equal to 2dl � 2d; in
other words, the structure of `extended water'Ðwater with
vacant cavitiesÐ should have the maximum packing density
�k � 1�. The length of the edges of the extended tetrahedron is
a1 � �4=

���
6
p �l1 � �8=

���
6
p �dla, where a � 1� d=dl, and the

volume of the tetrahedron is equal to

v1 �
���
2
p

12
a 3
1 �

26d 3
l a

3

35=2
: �A:2�

Thus, the specific volume of water at k � ���
2
p

, according to
formulas (A.2) and (A.1), should be increased by

Dv � �v1 ÿ v0� � 26d 3
l

35=2
�a 3 ÿ 23=2� �A:3�

for the formation of four required cavities. The sought-after
energy U can be represented in the following form

U � 1

4

�
E�V� ÿ E�V1�

� � 1

8

�
d2E

dV 2

�
V�V0

�DV�2 M

NA

� 1

8

���� dpdV
����
V�V0

�DV�2 M

NA
: �A:4�

Here,E�V� is the specific (per unit mass) internal energy of the
liquid (water) related exclusively to the forces of the
interaction between the molecules (elastic energy),
V0 � v0NA=M � 1=r is the equilibrium specific volume of
water, and DV � DvNA=M. The pressure inside the liquid is
P � ÿdE=dV; at V � V0, the pressure comes to nought:
P � 0, dP=dV < 0, and jdP=dVjV�V0

� 1=bV0 � u 2
s r

2,
where us is the velocity of sound in water (b is the isothermal
compressibility of water). Taking these formulas into
account, the substitution of formula (A.3) into (A.4) gives

U � u 2
s r

2 NA

M

29d 6
l

35
�a 3ÿ 23=2�2 � 6:70� 10ÿ3�a 3ÿ 23=2�2 eV:

�A:5�
The last formula was obtained at us � 1:49� 105 cm sÿ1,
r � 1 g cmÿ3 (t � 20 �C), and dl � 1:38 A

�
. The dependence of

U on T and r is determined by the dependences of the sound
velocity us and density r on these quantities.

For nitrogen molecules, d � dg � 1:58 A
�
, the parameter

a � 1� dg=dl � 2:143, and, according to formula (A.5),
Ug � 0:332 eV. For helium atoms, d � dg � 1:22 A

�
,

a � 1:884, and, according to formula (A.5), the energy takes
the value of Ug � 0:10 eV.

When the dissolved particles are ions, the sought-after
energyUi is summed from the elastic energy, which is defined
by formula (A.5) at d � di (ion radius), and the energy of the
electrostatic interaction of the incorporated ion, first with five
molecules of water entering into the tetrahedron (four
molecules in its vertices and one in its center), and, second,
with all other molecules of water, i.e., the energy e 2=2die (e is
the dielectric constant of water). The first of these energies is
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equal to 2be 2=2x 4
1 � 3be 2=2x 4

2 , where x1 � dl � di, and
x2 � x1

����������
57=9

p
. For Na� ions, this energy is equal to

0.707 eV; for Clÿ ions, this energy is 0.214 eV. The energy
e 2=2die for theNa� ions is 0.0915 eV; for theClÿ ions it equals
0.0675 eV. Thus, the full electrostatic energy for Na� ions is
equal to 0.802 eV; for Clÿ ions, it is 0.264 eV. The elastic
energy for the Na� ions, according to formula (A.5), is
0.032 eV; for the Clÿ ions, �Ui � 0:605 eV. As a result, the
total energy Ui for the Na� ions is 0.830 eV; for the Clÿ ions,
�Ui � 0:870 eV. Finally, the energy Wi � �Ui � �Ui�=2 �
0:852 eV.

Appendix B

In equilibrium, the flux j1 (per unit area) of gas particles that
escape from the solution into the external gaseous medium is
compensated for by the flux j2 of such particles that come
onto the interface from the external medium and penetrate
into the solution. If the bubstons are absent �nb � 0�, the flux
j1 is of a purely diffusive character and is determined by the
diffusion coefficient Dg of the gas dissolved in the liquid, by
the radius dg of gas particles, and by the number density
n s
g � H0ng, where ng � p=T is the density of the gas in the

external medium, and H0 � exp �ÿUg=T � [see formulas
(5.8a) and (5.8b)]. The dimensional method yields

j1 � � j �Dg
� Cns

g

�
Dg

dg

�
� Cng

�
Dg

dg

�
H0 : �B:1�

The dimensionless constant C is the probability that the
dissolved gas particles that fall onto the interface as a result
of their diffusive escape from the solution (pass into the
external medium). In the case of the absence of bubstons
that we consider here, we assume thatC � 1. The compensat-
ing flux j2 from the external medium is defined as (see
monograph [10])

j2 � ng�vw0 ; �B:2�

where �v � ���������������
T=2pm

p
is the average value of the normal

(relative to the interface) component of the thermal velocity
of gaseous particles that fall onto the boundary, m is their
mass, and w0 is the probability of the penetration of such
particles into the solution. From the equality � j1�Dg

� j2, it
follows, according to formulas (B.1) (atC � 1) and (5.7), that

w0 � Dg=dg
�v

H0 : �B:3�

In the case of the existence of bubstons in the solution,
the flux j1 is composed of three parts. The first is the
diffusion flux of the dissolved gas � j1�Dg

, which is deter-
mined from the formula (B.1), but in this case the constant C
is equal to 1ÿ w1 rather than to unity, where w1 is the
probability that the gas particle reaching the interface due to
diffusion proves to be captured by a surface bubston. The
stationary surface density of such bubstons4 can be assumed
to be equal to n

2=3
b and, correspondingly, the probability is

w1 � pR 2=n
ÿ2=3
b . Add to this that all bubstons in the solution,

including surface bubstons, can be considered to be trapsÐ
exchangers of dissolved gas particles. When having collided
with a bubston, a gas particle is trapped, but under
equilibrium conditions (when Ng � �4p=3�R 3ng � const) an
exchange occurs between the trapped particles and other
identical particles that escape from the bubston into the
surrounding solution. Thus, the surface bubstons serve as a
screen for gas particles, preventing their escape from the
solution. Notice that the probability w1 � pR 2n

2=3
b can be

related to the parameter Kv � �4p=3�R 3nb, so that
w1 � 1:21K 2=3

v .
Thus, in the presence of bubstons, the diffusion flux of the

dissolved gas that escapes the solution is described, according
to expression (B.1), by the formula

� j1�Dg
� ng

�
Dg

dg

�
H0�1ÿ w1� ; �B:4�

where w1 � pR 2n
2=3
b . Along with the flux � j1�Dg

, there come
contributions to the gas flux j1 from the processes of the
transfer onto the interface of the free gas containing inside the
bubstons that are lost at the interface; the gas contained in
them passes (is thrown out) into the external medium. Such
processes, as was said at the beginning of Section 5, are the
Archimedean buoyancy and Brownian motion. The first
process makes a contribution equal to � j1�A � Ng� jb�A,
where Ng � �4p=3�R 3ng, � jb�A � nbuA is the Archimedean
flux of bubstons, where uA � �4=15�gR 2=n is the rate of their
floating up [see Eqn (5.1)]. The contribution to the gas flux j1
from the Brownian motion of bubstons is determined by their
diffusion flux � jb�Db

� nb�Db=R� towards the interface and is
given by � j1�Db

� Ng� jb�Db
� Ngnb�Db=R�, where Db �

T=5prnR [see Eqn (5.1)]. When using these formulas for the
fluxes � j1�A and � j1�Db

, it is assumed that after the moment of
bubston reaching the interface, they are lost with a prob-
ability of 1, with the escape of Ng � �4pR 3=3�ng gas particles
into the external medium (a similar assumption was made
when using formula (B.1), in which we assumed that C � 1 at
nb � 0). Thus, the contribution to the flux j1 from the total
flux of the free gas takes the form

� j1�A � � j1�Db
� Ngnb

Db

R

�
1� R 4

S1

�
; �B:5�

where

Ng � 4p
3

R 3ng ; S1 � 3T

4prg
: �B:5a�

Under terrestrial conditions, the parameter S1 is approxi-
mately equal to 10ÿ17 cm4. Under microgravity conditions
(on board a space vehicle), the second term in parentheses on
the right-hand side of formula (B.5) is always small. Under
equilibrium, the flux (B.5) of the free gas and the diffusion
flux (B.4) are compensated for by the flux j2 of gas from the
external medium, which in the absence of bubstons is
determined, according to relations (B.2) and (B.3), by the
formula

j2 � ng
Dg

dg
H0 : �B:6�

A substantial circumstance is that the presence of a bubston
structure in the solution �nb 6� 0� does not exert an effect on
the flux of gas that penetrates into the solution, i.e., this flux,

4 This quantity determines the number of bubstons that at each time

moment reside inside an element of a plane layer of a solution of thickness

n
1=3
b with a unit area that adjoins the interface. Each surface bubston

disappears, but due to the constant flux of bubstons coming onto the

surface, it is replaced by another bubston. As a result, the surface density

of the permanently renewed bubstons remains stationary.
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as before, is determined by the formula (B.6). Indeed, in this
case j2 can be represented as

j2 � ng�vw 00w
0
1 � ng�vw0�1ÿ w 01� ; �B:6a�

where w 01 is the probability that a gas particle falling normally
onto the interface from the external medium collides with the
`shadow' of the surface bubston (i.e., with its projection onto
the interface). It is obvious that this probability coincides with
w1 � pR 2n

2=3
b . In the last expression, w 00 is the probability of

penetrating such a particle with a thermal velocity �v into the
solution. This probability, since the particle trapped by a
surface bubston is replaced by another particle which comes
out into the solution, proves to coincide with w0. Assuming
that w 01 � w1 and w 00 � w0 in formula (B.6a) and taking into
account formula (B.3), we obtain formula (B.6). As a result,
according to relations (B.4), (B.5), and (B.6), the condition of
equilibrium at the interface takes on the following form:

4p
3

R 3nb

�
Db

R

��
1� R 4

S1

�
�Dg

dg
H0�1ÿ w1� � Dg

dg
H0 : �B:7�

By substituting Db � T=5prnR and Kv � �4p=3�R 3nb into
this equation, we arrive at

�Kv=w1�T�1� R 4=S1�
5prn�Dg=dg�R 2H0

� 1 ; �B:8�

where Kv=w1 � 0:83K 1=3
v .
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