
Abstract. Over the course of biological evolution, many classes
of living creatures have developed highly effective adhesive
mechanisms that allow them to attach to various kinds of
surfaces having different physical natures and topographies.
The most famous instance of this is the gecko pad, but many
similar examples are found in animals of different sizes and
evolutionary lineages. In recent decades, such adhesive struc-
tures have become the objects of intensive theoretical and
experimental studies, partly due to research aimed at develop-
ing and producing artificial surfaces with similar adhesive
properties. Here, we present a review of research on biological
structures with high adhesion and high friction. We focus our
attention on one particular class of such structures: systems
with elastic fibers interacting with rough surfaces. Other struc-
turally similar systems are discussed as well.

Keywords: adhesion, friction, fibrous structures, gradient materials,
bionics

1. Introduction

Over the last two decades, considerable attention of the
scientific community has been drawn to dry adhesion
inherent in certain biological objects and manifested on
micro- and nanoscales [1±7]. Important experimental and
theoretical studies have been carried out to gain a deeper
insight into this phenomenon.

One of the most famous objects of such research is the
gecko pads, which has been thoroughly investigated in many
laboratories. It was revealed, in particular, that the footpads
of the gecko are covered with an array of microscopic hair-
like bristles (setae), each ending in a thin (5±10 nm) leaf-like
plate (spatula) so small that it conforms to the surface
roughness practically at the molecular level.

From the very beginning, it was supposed that the setal
structure promotes adhesion and its control. The existence of
natural systems capable of increasing the overall contact area
and adhesion to such an extent that animals can literally walk
on walls and ceilings gave impetus to nanotechnology
research and designing analogous artificial systems. Con-
siderable progress has been achieved in the fabrication of
polymeric adhesive surfaces mimicking the structure of the
gecko's footpad setae and spatulae [6±8]. The properties of
certain artificial systems are very similar to those of natural
ones. Some of them aremade of relatively stiff materials, such
as nanotubes or microelectromechanically produced organo-
polymeric nanorods (so-called organorods) [9, 10], which
exhibit good adhesive properties, too.

A natural footpad possessing adhesive properties has a
very complicated structure, and its adhesion ability originates
from a combination of many contributions covering different
scales [4, 11±13]. It has developed over the course of biological
evolution by natural selection and appears to be highly
optimized, even if it probably retains random traits, sort of
rudiments, of a structure that continues to mature sponta-
neously up to the present time. For this reason, there is no
need to reproduce it precisely: suffice it to adopt the principle
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of action of fibers or processes in order to create artificial
structures like nanotubes or elastic mushroom-shaped struc-
tures, making them as manufacturable as possible. Practical
realization of adhesive structures implies the necessity of
numerical simulation to find the optimal relationship among
system parameters [14±16]. Although it is much easier to
model artificial structures than mesoscopic natural objects,
they remain complicated multibody systems moving in all
three dimensions.

The development of artificial adhesive systems entails the
analysis of structures and properties incorporated in the
design of living creatures by nature itself. It is known, for
instance, that the formation of contact between insect
adhesive footpads and various substrates is due to the
footpad's ability to conform to different topographic pat-
terns, which is further strengthened by the presence of specific
micro- and nanostructures on the feet of these arthropods
[17±21]. Moreover, the trapping of cracks in adhesive systems
withmultiple contacts provides additional advantages as they
attach to rough surfaces [22]. The hierarchical organization of
footpad structures in insects, just as in geckos, enables the
formation of multiple contacts and essentially contributes to
the enhancement of overall contact length and total peeling
time [23].

It has recently been shown in Ref. [24] that thin-film-like
spatular tips in setal attachment pads are responsible for the
maximum increase in the contact area under the action of an
applied shear force without slippage along the contact. This
suggests the importance of elasticity of the material of setal
tips for the formation of contact zones in adhesive footpads.
Elastic materials are capable of forming large contact areas
under a minimal load. On the other hand, lengthy structures
from very soft materials are characterized by low mechanical
stability [25]: insect adhesive setae from such materials may
twist and collapse, giving rise to so-called clusterization
(gluing) [26, 27]. Clustering markedly deteriorates the func-
tional properties of adhesive contacts and may contribute to
their disappearance in the absence of proper adaptation. In
other words, adhesive structures of insects exemplify a typical
case of the optimization problem solution over the course of
biological evolution by the formation of thickness and
mechanical property gradients. The thickness gradients in
various adhesive setae of insects are well known owing to
numerous electron microscopic studies [17].

A recent comprehensive study on the structure and
mechanical properties of the tarsal setae material of the
ladybird beetle (Coccinella septempunctata) has demon-
strated the presence of a thickness gradient in each separate
seta [28]. Young's modulus of ladybird setae measured by
atomic force microscopy (AFM) was found to vary from
1.2 MPa at their tips to 6.8 GPa at the bases [28]. Setal tips
were shown to contain a large concentration of the rubber-
like protein resilin [29, 30], whereas their bases are made up
largely of hardened cuticle. A previous analysis made by
contact laser scanningmicroscopy (CLSM) also revealed high
concentrations of a rubber-like protein in the setal tips [28, 31,
32]. Both central and basal parts of the setae preferentially
autofluoresce in blue, yellow, and red due to the presence of
other (presumably hardened) proteins, most probably resilin
(blue) and sclerotized chitin (yellow and red) (Fig. 1). A well-
apparent material gradient was discovered between the
predominantly resilin-containing distal parts and harder
basal portions of the setae. Nanoindentation experiments
with the use of AFM confirmed low values of elastic modulus

at setal tips [(1:2� 0:3� MPa] and their rise near the bases
[(2:43� 1:9�GPa] [28].

Most biological materials are composites. Gradients of
their physical properties are well known, and biological
structure may give rise to unexpected new features, as was
shown in earlier studies concerned with insect cuticle [33, 34],
snake skin [35], human teeth [36, 37], and other biological
composites. Elastic modulus gradients in smooth attachment
structures on insect footpads have been reported in Ref. [38].
Interestingly, elastic modulus gradients on smooth footpads
are different in locusts and grasshoppers. There are gradients
on the hairy adhesive pads of ladybirds [28]. A smooth
adhesive footpad consists of a soft base covered with a
harder layer, in contrast to a hairy pad having a harder base
and a softer tip. The existence of gradients of two different
types enhances adaptability and thereby the adhesive force
acting between a seta and a rough surface.

The opposite directionality of gradients can be explained
by a difference in footpad architectures. Smooth footpads are
formed from branching rods or cellular foams which, in
combination with fluid-filled spaces between solid struc-
tures, hold the shape of the footpad. Moreover, the footpad
incorporates a relatively stiff superficial layer terminating the
fibers.The layer keeps the length of fiber tips at some constant
value (and in species living in arid environments it protects the
footpad from desiccation) [28, 39]. In hairy structures,
adhesive setae are not terminated by a continuous layer and
can potentially buckle and undergo clusterization [27, 40±47].
As a high degree of clusterization leads to a decrease in
functional advantages from multiple contacts [23], this
undesirable effect is suppressed by the presence of gradients
of thickness [18] and mechanical properties [28].

To sum up, there is, as a rule, a material gradient between
setal tips and bases, presumably resulting from optimization
of the adhesive footpad adaptation to the rough surface over
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Figure 1. (Color online.) Morphology and composition of materials of

adhesive tarsal setae. The ventral part of the second fore footpad of a

female ladybird beetle (Coccinella septempunctata) (lateral view). (a) SEM

micrograph (specimen was dried using l-propanol). (b) CLSMmaximum-

intensity projection showing an overlapping of the four different auto-

luminescences mentioned in the text. The arrows indicate the dorsoventral

material gradient in exemplary setae. SÐexemplary seta with spatular

tips, PÐexemplary seta with a pointed tip. Scale barsÐ25 mm. (Take

from Ref. [28].) (Photo courtesy by Nature Publishing Group. # Peisker
et al., 2013.)
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the course of evolution and the simultaneous arrest of fiber
clusterization. Such optimization is supposed to enhance the
efficiency of the adhesive system as a whole. Although the
disadvantages of purely stiff and purely soft fiber arrays are
intuitively clear, it is fairly difficult to judge the advantages
and disadvantages of various gradients: from the fiber base to
the fiber tip or from the tip to the base, and the relationship
between more rigid and less rigid areas. Numerous hypoth-
eses treating this effect are difficult to verify in experiments
with natural biological objects, which adds value to mathe-
matical modeling of systems with such gradients.

Clusterization is a major problem facing the experimental
realization of artificial adhesives motivated by the structural
peculiarities behind the hairy footpads in biological species
[48]. In an artificial system flexible enough to ensure excellent
contact with a natural rough surface, the tiny curved hairs
tend to be closer toward one another and eventually form
clusters within a few attachment cycles [49, 50]. Because such
clusters are usually much bigger than setae, the ability of the
system to maintain good contact with a fractal surface is
greatly compromised. The main problem is posed by the fact
that the interaction forces responsible for cluster formation
are of the same nature as the forces of attraction to the
external surface [44]. Interestingly, the structure of the hairy
surface on the animal footpad tends to form much fewer
clusters. An important cause behind this phenomenon is the
complicated spatial organization of this system. Setae

extending from animal's pad lamellae form an intricate 3D
structure whose complexity is much higher than all that has
been hitherto created artificially along this direction. For
example, the underside of the gecko's footpad is covered with
so-called lamellae carrying arrays of setae 3±5 mm thick that
branch out at the ends into 100±1000 separate nanofibers
that, in turn, terminate in flattened, roughly 15-nm thick [11]
structures (spatulae) 200 nm in length and width [1, 2, 41, 42)
(Fig. 2).

Besides the fact that the division of a large adhesive
contact into numerous separate contacts by itself increases
the adhesive force of this fibrillar system [43±45], the effect is
further strengthened by the specific spatula of each individual
contact [24, 46, 47] and the fact that each seta is a constituent
of a hierarchical structure at different levels (Fig. 3b, c), with
each level of suchmultilevel architectonics being insensitive to
clustering [51, 52]. An important cause of poor clusterization
in a real living creature is its setal tips having a more
sophisticated heterogeneous three-dimensional structure
(Fig. 3) than artificial analogs [49, 50] or the structures
considered in previous models [51].

Fibrillar attachment systems of insects, arachnids, and
reptiles consist of setae [52±70], most of which are terminated
by spatula-like rather than sharpened tips. As mentioned
above, a variety of hypotheses have been proposed to explain
the functional advantages of such contact geometry by an
enhanced adaptability to a rough surface [32], the creation of
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Figure 2. Hierarchical organization of the gecko attachment system.

(a) Longitudinal cross section of the gecko foot with the lamella (thin

horizontal keratinous film) covered with setae in the noncontact state.

(b) Setae (st) in contact with the substrate. Setae branching into single

nanofibers terminated with spatulae (sp); (c) A magnified detail shown as

white rectangle in figure b; (d) Amagnified detail shown as white rectangle

in figure c. Orientation of spatulae in the noncontact state (e, f) and

contact (g) state. Black arrow (dist) indicates distal direction of the toe in

all images in this figure. White arrow points to spatula flipping from the

noncontact orientation to the contact orientation.
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Figure 3. Images of terminal elements in hairy attachment pads of various

animals. (a) Spatula of the beetleGastrophysa viridula in contact with a flat

surface (SEM image). (b) Single spatula of the same species in contact with

a substrate having an average asperity dimension on the order of 300 nm.

(c) Longitudinal cross section of the spatula ofGekko gecko (TEM image).

(d) A set of spatulae of Gekko gecko (cryo-SEM image). (e, f) A hairy

structure of the spider Cupiennius salei in a reflection light microscope

during distal (e) and proximal (f) sliding over a glass substrate (black areas

correspond to the sites of contact between spatulae and the glass surface).
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contacts with the help of a shear force rather than normal load
[1], an extension of the overall detachment line by increasing
the number of spatulae [45], and contact breakage by peeling
off [45, 46, 61].

It is well known that the application of a normal forcemay
increase adhesion [63]. However, the adhesive force in hairy
systems is always smaller than the applied normal force [64].
It may be insufficient to enable walking on the ceiling.
Another way to improve adhesion is to apply a shear force.
In this review, we present a numerical model describing the
dynamics of spatula-like termini during formation of contacts
with a rough surface. Specifically, it will be demonstrated for
the cases of a spatula initially nonparallel to the surface that
the shear increases the contact area. The force to be applied is
optimal if its increase leads to contact area enlargement only
until the already fixed part begins to slip. Maximum adhesion
is just achieved when the pulling force is close to critical value;
this observation appears to be particularly significant for
biological and technical applications.

In Ref. [45], the contact between an individual element,
like spatulae on the fresh footpads of various insects, and the
surface was visualized by cryo-scanning electron microscopy
(cryo-SEM). Some authors observed a thickness gradient
extending from the base to the end of the footpad in a fly
[58], gecko [59], and beetle [60] (Fig. 3b, c). The spatulae
involved in the contact were aligned and oriented oppositely
to the pad direction (Fig. 3a, b). Application of the shear force
to the spider hairy system in a certain direction enlarged the
real contact area [58] (Fig. 3e, f).

Flies, too, make shear movements in the course of
establishing contacts [59]. Some authors emphasize the
strong shear dependence of the measured pull-off force in
the gecko attachment system and even call it `friction
adhesion' [1, 2]. The effective Young modulus for thin plates
made even from relatively strong materials (e.g., keratin or
arthropod cuticle) being very low, such a geometry is of
fundamental importance for adhesion exhibition on rough
surfaces [32] due to the low strain energy stored in thematerial
during contact formation.

Adhesion in such systems was also shown to depend on
the nature of substrate roughness [56]; the dependence is
especially strong for attachment devices having predomi-
nantly spatula-like termini [21]. The importance of such
contact shape for adhesion phenomenon has recently been
demonstrated in experiments with artificial surfaces of
analogous geometry [66±70]. The latest theoretical studies
confirmed the importance of the application of a shear force
to increase the pull-off strength [71]. With these observations
in mind, we divided the process of numerical simulation of
such systems into the following steps, which will be repro-
duced in the present review.

(1) First, the simplest problem of the behavior of an array
of vertically fixed fibers in contact with an adhesive surface
was considered, with special emphasis on determining
optimal fiber elasticity.

(2) Then, these fibers of a modified model were `allowed'
to move orthogonally, which markedly enhanced their ability
to adapt to surface asperities. However, the simultaneous
attraction ofmany fiber ends to the same asperities resulted in
their expected clustering.

(3) An efficient natural tool to prevent clusterization
involves the use of structure gradients or (which is the same
thing) the mechanical properties (stiffness) of fiber material.
This option was also tested in a numerical model.

(4) One more way to avoid clusterization chosen by
natural selection appears to be the nontrivial distribution of
the fibers themselves in a three-dimensional space at the final
level of their organization in the form of peculiar bunches
suspended from a common relatively rigid root. This mode of
increasing system efficiency is considered in the subsequent
modification of the numerical model, with special reference to
efficacious `pulling' that causes not only the turn of spatulae
during their attachment to the surface and significant
enlargement of the total contact area but also a marked
decrease in the clusterization effect after detachment of
spatulae from the contact surface.

(5) Finally, attention was given to an important advan-
tage provided by the structure of fiber ends with characteristic
spatulae that spontaneously developed during convergent
evolution in various species using adhesive attraction to
rough surfaces. Also considered was the stiffness gradient
along the spatula readily observable in experiment. The main
problem in this context was to what extent the aforemen-
tioned `pooling' effect promotes a better spatula adaptation
to the rough surface.

These general and related concrete problems are consid-
ered in Sections 2±6 dealing with numerical simulations of
such systems.

2. Optimal elasticity of fibers interacting
with adhesive surfaces

As was mentioned in the preceding section, it is convenient to
begin with constructing a simple model that concerns with the
motion restricted by the vertical z-direction alone, which is, in
turn, orthogonal to the averaged positions of two contact
plates and to consider the main aspects of a numerical
description of the system in this framework. In such a simple
case, effective elasticity of the modelled fibers, Keff, can be
regarded as an integral quantity reflecting the joint action of
bending stiffness of natural setae and their stretching by
molecular adhesive forces (also called van der Waals forces).
The conceptual structure of such a simplified model is
illustrated in Fig. 4. The solid curve reproduces a minor part
of the fractal rough surface. Such a model resembles, despite
its simplicity, many recently created real adhesive polymer
coatings, such as the carbon filaments [10] mentioned earlier
in the Introduction. These structures are much simpler than
those formed in creatures by natural selection and consist of
dense nanoscale setae made up of almost parallel processes
assuring excellent nanoscale contact with a surface. Artificial

2.0

1.5

1.0

0.5

10 20 30 40
x

z

50 600

0

Figure 4. Conceptual structure of a simplified model (see the text). Solid

line represents a small part of the fractal rough surface. Linear segments

with dots schematically show elastic bonds.
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coatings are characterized, despite their simplicity, by a very
high adhesive force per unit area, �1:6� 0:5� � 10ÿ2 nNnmÿ2,
i.e., 200 times that on the gecko setal footpad. Typical strain±
displacement curves obtained during a load±unload cycle
suggest large adhesion hystereses up to 20-nm scale.

From the theoretical standpoint these model structures
differ, of course, from natural gecko hairs, the thinnest of
which ends with a tiny spatula about the size of a molecule.
But, on the other hand, the simplified model allows us to
confine ourselves to a description of a simple contact force
taking into account only adaptation of the termini (instead of
spatula) to a rough surface. Such a conceptual model
developed in Ref. [14] is presented in Fig. 4. It takes into
consideration both elastic interaction and the chemical
potential connecting each fiber to the surface. The standard
potential of this type is actually the van der Waals potential.
The authors of Ref. [14] used one of the known representa-
tions of the van der Waals potential:

UVdW � ÿ U

12

"
2

�
z

zVdW

�ÿ6
ÿ
�

z

zVdW

�ÿ12#
; �1�

whereU is the characteristic adhesion energy, and zVdW is the
potential minimum position. Each elastic hair can be strained
with a respective energy

Uelastic � Keff�zÿ Z�2
2

: �2�

Here, Z denotes the equilibrium position of a hair tip. As
usual, forces in equations ofmotion are defined by derivatives
of the respective potentials:

FVdW � ÿ qUVdW

qz
; Felastic � ÿ qUelastic

qz
: �3�

For the purpose of numerical studies, it is convenient to
normalize all energies, noise intensity, and spatial scales to
characteristic values of physical quantities. In dimensionless
units, one obtains

UVdW � ÿU�2rÿ6 ÿ rÿ12�
12

; Uelastic � K�zÿ Z�2
2

: �4�

The chaotic behavior in a microscopic system is due to
various causes, such as the fractal structure of the attractive
surface z � w�x�, complicated fiber dynamics, or temperature
fluctuations becoming essential on the nanoscale.

In the numerical model [14], the fractal surface can be
given in the form of an x-coordinate-dependent data block; in
accordance with the standard definition

w�x� � 1

2p

� qmax

qmin

B�q� cos �qx� z� ; �5�

where Fourier series coefficients have the scale-invariant
form,B�q� � c0q

a, and z�x� is the d-correlated randomphase:

z�x�z�x 0�� � d�xÿ x 0� : �6�

Certainly, the real surface w�x� extending from zero
distances to infinity can never be truly fractal; it is so-called
quasifractal including a certain limited spectrum of wave
vectors qmin < q < qmax in formula (5). Its maximum and
minimum amplitudes (i.e., roughness or, in the mathematical

language, standard deviation) are limited, too:Dÿ
w�x� ÿ 
w�x���2E1=2 4A ; �7�

where parameter A describes the characteristic physical
roughness of the surface.

In a certain region of parameters, the total potential
containing adhesive and elastic components has two valleys
(wells) of comparable depths. This total potential is presented
in Fig. 5 in the form of families of curves calculated at
different distances and elastic constants. Evidently, there are
in both cases parameter regions, where the potential passes
through two wells. In accordance with general principles of
physical kinetics, fluctuating parameters can be expected to
give rise to two alternative states of the system, with
comparable energy valleys provoking dynamic jumps of the
fiber ends between two (attached and detached) states. Such
peculiar `exchange of excitations' averaged over time assures
attraction to the surface [14].

As a rough approximation, interhair interactions can be
ignored. Then, the equilibrium is defined simply by the
balance of forces: FVdW � Felastic. However, this seemingly
trivial equation has to be solved numerically for a fractal
surface. The computation procedure needs to be performed
for both different distances between the surfaces and different
asperities A. Each A value gives rise to a family of relations
between the attractive force and elastic constant. However, it
should be taken into consideration that there are many
natural surfaces with similar fractal properties on scales
close to the molecular scale. Therefore, it is natural to
somewhat simplify the enumeration problem as proposed in
Ref. [14] by choosing an optimal close-to-unity elasticity for
normalized equation (4) when roughness is, in turn,A � 1. Of
course, the idealized case ofA � 1 with due regard for overall
normalization to parameters of van der Waals forces
corresponds to practically molecular scales and almost never
corresponds to reality. In fact, this means that an artificial
system must combine two properties, viz. having a soft basal
tissue in order for the system to preliminarily adapt to the
surface on relatively large scales and comparatively stiff short
asperities at the nanolevel. Such type of system modeling was
undertaken in the framework of the dynamic approach. The
following equations of motion were solved numerically:

q2zk
qt 2
� ÿg qzk

qt
� Felastic; k � FVdW; k � z�zk; t� : �8�

U

z0

ÿ0.1
1 4

a

Distance z

K

b

1 4
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0.3

0

0.3

0

Figure 5. Total potential U of elastic and van der Waals forces,

U � Uelastic �UVdW, calculated at a varied distance z0 (a) and coefficient

of elasticity K (b). Arrows indicate the direction of z0 and K growth.
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Random sources z�zk; t� and dissipation g qzk=qt are included
here to reproduce the influence of fluctuations (essential on
such scales), which are usually a combination of thermal noise
and chaotic dynamics, and can be formally described by
introducing a certain effective temperature Teff of the system:

z�zk 0 ; t 0� z�zk; t�

� � Dd�zk 0 ÿ zk� d�t 0 ÿ t� ; D � 2kBgTeff :

�9�

As expected for the case of parameters that are close to
optimal, the dynamic chaos in a potential with two compar-
able minima gives rise to oscillations of the bond ends
between these minima. The effective exchange interaction
facilitates adaptation of the mobile surface to the rigid rough
one. It resembles the effect known in the physics of friction
that manifests itself as an increase in the contact area and
adhesive force acting between the immobile and vibrating
surfaces. The time-averaged probability P�z� of discovering
the end of a fiber at arbitrary z, computed for the optimal
relationship between two types of interactions, is shown in
Fig. 6.

It is worthwhile to note without going into detail that the
numerical experiment was carried out for various surface
roughnesses (with different mean distances between contact
surfaces) and for three different relations between elastic
constants: K < Kopt, K � Kopt, and K > Kopt. The results of
modeling are presented in Figs 7a, b, and c, respectively. Each
vertical cross section shown in grayscale corresponds to a
concrete realization of the P�z�=Pmax�z� histogram. The
darker the color, the greater the probability P�z�.

It follows from Fig. 7 that, since the elastic constant is too
large, all bonds are mainly attracted to the upper plate. They
do not fit properly to the rough surface, and the total
attractive force is too small. In the opposite limit, all fibers
fit the stiff surface `ideally'. But the corresponding `springs'
are too weak in this case to detach them and bring them back
into the initial positions if necessary. Very strong extension
and huge hysteresis are needed to pull this sticky system as a
whole off the adhesive surface. Of course, such a mechanism
is highly inefficient from both biological and technical
standpoints. These data give evidence that an optimal hair
elasticity actually exists in such a system. Moreover, as it
turned out the corresponding fibers must be stiff enough,
despite intuitive expectations.

It is worthwhile to note that a compromise between fiber
stiffness and good adaptation to the surface is also
principally possible due to a certain reserve of attraction,
because even already created systems are to a certain extent

`re-armed' and capable, theoretically, of maintaining a
stronger attraction than is necessary for practical applica-
tions. An additional adaptation can be reached by virtue of
hair motion (rotation, bending) in the horizontal directions,
which we have thus far disregarded. In this case, the hairs are
able to find asperities on the stiff rough surface located
relatively close to but not immediately above them. This
option is discussed in Section 3.

3. Elastic tissue with attached fibers
interacting with an adhesive surface

In Section 2, we described the procedure of numerical
modeling of an artificial structure composed of fibers in
contact with a rough surface owing to van der Waals forces.
The objective of simulations was to find an optimal relation
between the parameters in the case of strong enough
limitations, one of them being the solution of the force
balance equations for a 1� 1-dimensional system with a

1
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Figure 6. Time-averaged histogram of probability of finding the end of a

fiber in position z, normalized to its maximum value, P�z�=Pmax�z�. Gray

solid curves denote numerical expansion of the histogram into three main

states (near each of the surfaces and intermediate).
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Figure 7. Grayscale maps for density histograms and different relations between elastic constants: (a) K < Kopt, (b) K � Kopt, and (c) K > Kopt. Dash-

dotted lines in figure b distinguish the elasticity interval in which the fiber ends are distributed mainly in the middle between the surfaces.
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hair motion allowed only in the vertical direction. Such a
model, despite its mathematical simplicity and convenience,
needs to be further elaborated, in the first place to include
consideration of movements in the direction orthogonal to
the vertical one. There are numerous experimental data
suggesting the significance of such movements, besides
purely theoretical predictions. Specifically, slippage or vibra-
tion in the direction orthogonal to the vertical one can
transfer the energy of macroscopic displacements deep down
to microscopic scales to improve surface adaptation and
increase contact area [11, 13, 15, 16]. In what follows, the
model described in the preceding section will be extended to
take account of this additional degree of freedom. We shall
also consider how the attraction intensity and the film
attachment and detachment scenarios at all depend on
various initial distances, surface heterogeneity, and tilt
angles. The conceptual structure of the generalized model is
illustrated in Fig. 8. The stiff adhesive surface is shown by the
bold line, while thin lines ending with dots denote fibers.
Figure 8a depicts the early stage of the process during which
most bonds are still broken. Figure 8b represents a magnified
part of the same system at the later stage whenmany fibers are
inclined and bent to facilitate contact. Generally speaking, the
fibers cannot acquire an absolutely optimal configuration
and therefore take a certain intermediate position determined
by the `frozen-in kinetics' of the search for such a position.
The resulting configuration can be found only numerically by
solving the respective equations of motion.

On the whole, the equations remain the same as in
Section 2, but the one-dimensional van derWaals potential is
substituted by the two-dimensional one:

UVdW � ÿ U

12

"
2

� jrj
rVdW

�ÿ6
ÿ
� jrj
rVdW

�ÿ12#
; �10�

where U is the characteristic adhesion energy amplitude (as
before), r � fx; zg is the two-dimensional vector, and rVdW is
the position of the potential maximum in two-dimensional
space. However, more intricate changes are needed in the
elastic component of interaction. First, to be able to bend,
elastic hairs must be composed of a large enough number of
separate segments with the ends having coordinates fri; rjg,
j � 1; 2; . . . ; nmax. To shorten calculations, it can be assumed
by way of compromise that only the end of the last segment
interacts with the surface via the van der Waals potential,

which means that the term UVdW � Unmax

VdW in the energy acts
only at j � nmax. In the zero approximation, it is possible, as
before, to sacrifice the interaction between separate fibers.
Each elastic segment can be extended (contracted) with the
elastic energy

Ui j
elastic �

Keff�ri ÿ rj�2
2

: �11�

The essentially new part in the energy of the generalized
model compared with that described in Section 2 is related to
the possibility of fiber bending. Mathematically, such energy
must be constructed so as to prevent mutual deflections of the
vectors directed along each of the two nearest segments:

Ubending � Kbending

�
1ÿ �rj ÿ rj�1��rjÿ1 ÿ rj���rj ÿ rj�1

����rjÿ1 ÿ rj
��
�
: �12�

The forces corresponding to these components of the
model are defined now by derivatives of all contributions to
the energy along the two orthogonal directions:

F z
VdW � ÿ

qUVdW

qz
; F x

VdW � ÿ
qUVdW

qx
;

F z; i j
elastic � ÿ

qUi j
elastic

qz
; F x; i j

elastic � ÿ
qUi j

elastic

qx
;

F z; j
bending � ÿ

qU j
bending

qz
; F x; j

bending � ÿ
qU j

bending

qx
:

Let us introduce dimensionless units, as in Section 2, with
the help of normalization to basic parameters of the system
FVdW; zVdW < 10, S � 0:1K. In these units, one obtains

UVdW � ÿ U

12
�2rÿ6 ÿ rÿ12� ; Ui j

elastic �
K�ri ÿ rj�2

2
;
�13�

U j
bending � S

�
1ÿ �rj ÿ rj�1��rjÿ1 ÿ rj���rj ÿ rj�1

����rjÿ1 ÿ rj
��
�
:

The fractal surface is given in the same way as in Eqns (5)±(7):

z � w�x� � 1

2p

� qmax

qmin

B�q� cos �qx� z� ;

with similarly truncated wave vectors: qmin < q < qmax. All
the distances aremeasured in terms of a fixed interval between
the two nearest fibers, chosen for definitiveness to be
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Figure 8.Conceptual structure of the generalizedmodel (see the text). (a) An early stage of the contact with a variety of disconnected bonds. The lower and

upper bold lines represent parts of the rough surface and flexible tissue, respectively. The lines with black dots show instantaneous positions of elastic

hairs. (b) A closer view of the same system at a later stage of the process when the fibers are distorted and inclined in search of close-to-ideal conditions for

contact with the surface.
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Dxk � const � 1 nm, while the roughness amplitude varies up
to Amax � 10Dxk. The elastic constant K � 1 is chosen in the
same units of adhesion forces and distances; accordingly, the
stiffness is Smax � 10K. The last assumption needed to write
down equations of motion refers to elastic film strains. Let us
assume that the root segment of each fiber is rigidly attached
to the film. This means that the coordinates of tissue segments
coincide with the positions of the first tissue elements:
fx j�1

k ; z j�1
k g. Moreover, the model film is assumed to have

inherent elasticity in the vertical direction:

U 1
elastic �

Kz
1

2
��z 1k ÿ z 1k�1�2 � �z 1k ÿ z 1kÿ1�2� ;

while the distance between its segments in the horizontal
direction is given to unambiguously define the fiber array:
Dxk � const � 1. To maintain a force balance in the vertical
direction z, the film is supported by a certain external force
F z
external which results in the appearance of two boundary

conditions for coordinates fz j�1
k g:

F z; 1
elastic � ÿ

qU 1
elastic

qz
; F z; 1

k � F z
external : �14�

The entire system of dynamic equations under these
conditions can be represented in the form

q2z j
k

qt 2
� ÿg qz j

k

qt
� F z; ji

elastic; k � F z; j
bending; k � F z; j�nmax

VdW; k

� dj1�F z; 1
elastic; k � F z

external� � z�x j
k; z

j
k; t� ;

�15�
q2x j

k

qt 2
� ÿg qx j

k

qt
� F x; ji

elastic; k� F x; j
bending; k� F x; j�nmax

VdW; k � z�x j
k; z

j
k; t� :

Here, dj1 is the Kronecker symbol. The random source z�zj; t�
and terms qzj=qt included in the system are now modified,
too, taking into account the two-dimensionality and multi-
particle nature of the problem:

z�x j

k; z
j
k; t� z�x j 0

k 0 ; z
j 0
k 0 ; t

0�� � Dd�x j 0
k 0 ÿ x j

k�d�z j 0
k 0 ÿ z j

k�d�t 0ÿ t� ;
D � 2kBgTeff :

�16�

The totality of numerical experiments with system (15)
was organized as follows. A new realization of the rough
surface was numerically generated every time, and the film
being bent was placed at a priming distance z0. The film was

initially taken to be flat (given by a straight line in the two-
dimensional model) and the fibers were arranged orthogon-
ally to the film in the form of a regular sequence. At the
beginning, the system was allowed to move naturally in
accordance with equations of motion and boundary condi-
tions (15), (16) and thereby gradually reach an equilibrium
(generally speaking, different for each realization). The time
taken to reach such an equilibrium can be formally estimated
using the relaxation constant: tmax / gÿ1. However, as the
proportionality coefficient is unknown, the a posteriori
estimation appears to be more reliable; in other words, it
should be revived after all quantities being calculated begin to
exhibit the stationary asymptotic behavior. For the problem
under consideration, such a process usually takes time
tmax � 200gÿ1.

There is no need to reproduce here all steps and results of
this time-consuming process. Suffice it to note that at its
intermediate stage the fiber tips as a rule most intensely move
along the surface in the horizontal direction. It is the ability of
the fiber tips to move horizontally that distinguishes this
variant of the model from the one considered in Section 2 [14,
15]. The transverse motion just accounts for the highly
nonuniform distribution of bristles. It can be argued that
such a rearrangement in the horizontal direction compensates
for the fractal structure in the direction of the z-axis.

Figure 9a illustrates the typical fiber redistribution at the
intermediate stage of system evolution during which a
nonuniform fiber density gradually forms, as shown in
Fig. 9b for comparison, r0 � Nfibers=Ltissue. For convenience
of comparing with the real spatial distribution, the regions of
especially high density are marked in Fig. 9a by vertical dash-
dotted straight lines.

Naturally, themechanical properties of the system depend
on fiber stiffness, film roughness and elasticity. Therefore, the
numerical experiments were conducted in a wide range of all
these parameters. They revealed, despite minor concrete
distinctions, one common principal feature: fiber distortion
in the horizontal direction compensates for the fractal structure
in the vertical direction at various roughness amplitudes up to
rather large ones. Admittedly, strong spatial distortions
markedly affect, however, film peeling off the surface,
because a variety of fibers attached to the same surface
asperities detach from them almost simultaneously (ava-
lanche-like detachment), making one of the most important
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Figure 9. Comparison of instantaneous spatial positions of fiber attachments to a surface (a) with the extrema of nonuniformly distributed density, and

(b) normalized to the mean fiber density in the system shown by the horizontal straight line at the unit level. Some regions with a high density of the fiber

spatial localization are marked by vertical dash-dotted lines passing through figures a and b.
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approximations of the model (approximation of noninteract-
ing fiber ends) excessively artificial. As a matter of fact, the
forces of interaction between fiber ends must be of the same
nature as their adhesion to the surface, i.e., comparable with
it. In this case, the fibers arranged in bundles near surface
asperities can remain joined together even after detachment
from the surface. This effect, its consequences, and possible
preventive measures are discussed in Section 4.

4. Fibrillar adhesion with no clusterization:
functional significance of material gradient
in the insect adhesive setae

This section is designed to consider the following issues:
(1) does a material with a composition gradient, as opposed
to one without such a gradient, contribute to proper contact
formation?, and (2) does the material gradient reduce the
tendency toward clustering?

To analyze the influence of setal gradient properties, we
constructed a simple but still realistic model taking into
consideration interfiber interactions and only partly includ-
ing, for operation speed, elements of the models described in
Sections 2, 3. An array of initially parallel fibers is attached to
a rigid base. The gradient of properties is apparent as
continuous variation of fiber elasticity (of corresponding
force Felastic) along their length, from very soft to much
harder (practically rigid). Longitudinal �F kjk� and transverse
�F?j � setal stiffnesses are reproduced through interactions
between discrete segments of the fibers:

F
k
jk � K k�rj ÿ rk�

�
1ÿ �rj ÿ rk�2

dr 2

�
;

F?j � K?�2rj ÿ rj�1 ÿ rjÿ1� :

Here, we confine ourselves to a two-dimensional model in
which vectors rj � fxj; yjg are given by the coordinates of the
beginning of the segment numbered j, k � j� 1. Long-
itudinal force F

k
jk is defined by the potential with two valleys

that tends to maintain a constant distance between points rj
and rj�1, close to the equilibrium length dr of a segment.
Transverse force F?j holds rj close to the mean distance
between a pair of neighbors �rj�1 � rjÿ1�=2 and keeps a
constant angle of 180� with the neighboring segments.

Bearing in mind forces of different natures used by
animals and discussed in Sections 2, 3, we assume that a
surface attracts fiber ends by the totality of capillary and
molecular forces. To increase computation speed in the
model of interest, the attraction is specified in the simplest
mode, namely, by the gradient of the Morse potential
UVdW�r� � U0�1ÿ exp �ÿr=r0��2 with a certain physically
reasonable amplitude U0 � 10 nN nm and the minimum
located at the distance r0 � 0:01 mm from the surface. As
above, the stiff fractal surface [24] has a given spectrum
C�q� � 1=q b, b � 0:9 and a roughness amplitude compar-
able to the distance to the potential minimum: A � r0. The
terminal portions of each fiber interact with one another.
Because this interaction is of the same nature as the attraction
to the surface, it can be described for simplicity by the same
potential Uinteract�rjk� � U0�1ÿ exp �ÿrjk=r0��2 with compar-
able characteristic parameters U0, r0. To increase computa-
tion speed, we may confine ourselves to attractive interaction
between the nearest neighbors: rjk � jrj ÿ rj�1j. On these
scales, the system can be regarded as overdamped, with the
equation of motion including only the first time derivative
qr=qt � F. The total force in this equation accumulates all the
above-described contributions: F � Felastic � FVdW � Finteract.

The model is schematically represented in Fig. 10. The
stiff surface is marked by bold curves. To elucidate the
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functional role of the material property gradient [25], three
types of fibers were considered: (a) long stiff ones with short
elastic ends, (b) long elastic ones connected to the basal plate
by short stiff roots, and (c) relatively stiff ones with short
elastic segments attached to the basal plate. These types are
illustrated in Figs 10a, b, and c.

In all cases, the stiffness of the fibers continuously varies
along the vertical coordinate and is universally described by
the smoothed step-function Y�y�� 1=�1� exp �ÿ�yÿy0�=D��
with regulated position of bend y0 and step width D. The
function Y tends to unity when y5 y0, and gradually goes
to zero in the opposite limit, allowing modeling all the
aforementioned cases with a common approach. To
illustrate the different stiffnesses of fiber segments shown
in Fig. 10, the stiffness was formally divided into three
groups: (1) close to the maximum, (2) less than half of the
maximum (a region around y0 with width D), and (3) less
than 0.1 of the maximum. These parts are conditionally
shown in the plots by different colors. Stiff, medium, and
soft segments are marked by black, dark gray, and light
dots, respectively.

The numerical procedure was organized as follows. The
computer procedure brings an array of originally unper-
turbed (equidistant and parallel) fibers attached to the
horizontal hard base into contact with the numerically
generated rigid fractal surface. The fibers undergo distor-
tions as they interact with the fractal surface and among
themselves. Due to surface heterogeneity, many of them are
attracted to the same individual asperities of the surface and
thereby become gathered into distinctive bundles. For
numerical control, it is convenient to record not only time-
dependent distortions of the fibers but also variations of the
interfiber attractive forces. When the system reaches a
stationary configuration, the process of contact formation
stops. Then, the fractal surface can be formally `removed' to
observe relaxation of the system to some new stationary state.

This procedure allows us to examine whether the system
returns to the initial state and how much time the return, if
any, may take. After elimination of the fractal surface, the
mutual attraction of the fibers collected into bundles
competes only with the elastic forces inside the fibers, and
the further behavior of the system wholly depends on the
magnitude of these forces and their spatial distribution. The
distribution turns out to be different in the above three cases.
The results of their simulation are qualitatively given in
Fig. 11 showing the final configurations of fiber arrays in
reaching the stationary state after removal of the fractal
surface. The figure demonstrates the very apparent distinc-
tion between a highly clustered system having either long
elastic (Fig. 11b) or long stiff (Fig. 11c) fibers with soft bases
and a system having long stiff fibers with short elastic ends.
Only the latter system practically returns to the original
configuration.

Thus, a system returns to the initial state if fibers have
flexible enough ends and stiff shafts almost undeformable
along the remaining length. Such a structure can theoretically
result in strong deformation of the fiber ends and an
insufficiently high total adhesive force. To verify this
assumption, it is necessary to compare adhesive forces in the
above-distinguished three cases: a, b, and c (see Fig. 11).
These forces were accumulated throughout the entire system
during the total attachment time. The maximum forces in
cases (a) and (b) are comparable. Moreover, the potential
barrier, i.e., the difference between force maximum in the
beginning and its minimum after the system perfectly adapts
itself to the surface, is even higher in case (a). Qualitatively,
this effect occurs due to the fact that flexible fiber ends are too
long in case (b), whereas in case (c) (long almost rigid rods
rotating about flexible bases) a good enough adaptation to
the surface is practically unattainable. This accounts for the
significantly smaller maximum of the attraction force in case
(c) than in cases (a) and (b).
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Time-dependent information about fiber strain is con-
venient to accumulate by introducing arrays of distances
fdxjg between contact ends of the nearest neighbors:
dxj � xj�1 ÿ xj, j � 1; 2; . . . ;Nx. The temporal evolution of
each array during an entire attachment±detachment cycle for
all three cases (a±c) is illustrated in Fig. 12. Each line in the
figure corresponds to one concrete time-dependent distance
for a pair of nearest neighbors: dxj � xj�1 ÿ xj. All the
distances are normalized to the initial distance in an
unperturbed homogeneous array, so that dxj � 1 at t � 0.

The evolution of the process is quite apparent from these
diagrams. When many fibers are simultaneously attracted to
an individual asperity of the surface and form clusters, the
distance between their ends virtually vanishes: dxj �
xj�1 ÿ xj ! 0. At the same time, the distance between fibers
in different clusters in general increases. It must correlate with
the characteristic distance between surface asperities, but
actually remains random due to the random distribution of
the asperities (with the characteristic spectral distribution)

over the fractal surface. An ultimately `frozen' configuration
is a result of a compromise between fiber flexibility, the force
of fiber attraction to a surface, and the fiber mutual attractive
force.

After removal of the surface, the fiber array relaxes to a
new stationary configuration depending only on a compro-
mise between elasticity and themutual attraction of the fibers.
In the large time limit, the fiber distribution does not directly
depend on the surface structure and is determined mostly by
material stiffness and gradients. However, the fiber distribu-
tion can keep a memory of the asperity distribution over the
surface, specifying the concrete realization of clusters. At this
stage, depicted in Fig. 13, the time-dependent process is
consistent with intuitive expectations. Specifically, the dis-
tance array returns to its initial distribution only when
comparatively stiff almost everywhere fibers have short
flexible tips. Although Fig. 13 presents a comprehensive
pattern of the evolution of time-dependent arrays, the
overlap of many individual trajectories makes it difficult to
visually estimate the frequency with which concrete distances
encounter one another in the system. It is convenient to treat
these arrays based on distribution histograms P � P�dx� of
distances dxj � xj�1 ÿ xj for each time instant. This informa-
tion is represented in Fig. 14.

The numerical experiment described in this section has
demonstrated that fibers with a gradient structure and high
stiffness over almost the entire lengthwith relatively short soft
ends have an advantage over those with other combinations
of parameters. Such gradients have recently been described in
beetles [28]. However, it can be supposed now that analogous
gradients must have developed in various groups of arthro-
pods over the course of convergent evolution.

5. Spatial model of gecko footpad hairy
structure: functional significance
of highly specialized nonuniform geometry

The data presented in Sections 2±4 provide a basis for
constructing a three-dimensional model with a complicated
spatial geometry and nonuniform distribution of branch
properties in order to clarify the advantages of such a
structure over that exhibiting a flat spatial geometry.

The discrete numerical model is organized as follows.
Imagine a rigid rod fiber which is initially directed at some
angle jt�0 � j0 to the contact surface and is placed at some
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Figure 12.Time-dependent total vertical forces generated during the entire
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state, each of the attachment system by itself tends to a configuration which represents a certain compromise among fiber stiffness, adhesion to the array

of surface asperities, and mutual attraction of the fibers. After detachment, the system relaxes to the asymptotic configuration corresponding to a

compromise between the fiber stiffness and mutual attraction of the produced clusters only.
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fixed distance from it. A set of thinner elastic fibers is attached
to the rod. The conceptual structure of the model is shown in
Fig. 15. For definiteness, the number of elastic fibers is put to
10 �Nx � 10�, and each fiber is constructed of 50 elastic
segments �Ny � 50�, each having the length dR � 0:04 mm,
to correspond to the total length of each fiber according to the
measurements with scanning electron microscopy (SEM)
images (see Fig. 13). The fibers are provided with long-
itudinal �K k� and transverse �K?� stiffnesses. (For certainty
and for simplicity of the model, it is assumed that K k � K?.)
A strain of fibers produces elastic forces proportional to their
stiffness. The longitudinal force F

k
jk is described by a double-

well potential constructed to keep a distance between the
nodes Rj and Rj�1 close to the equilibrium length dR of the
segment: F

k
jk � � K k�Rj ÿ Rk�f1ÿ ��Rj ÿ Rk�=dR�2g, where

Rj is a position of the vector in the middle of segment j,
k � j� 1. This form of the longitudinal force was chosen so as
to be linear at small deflections, but increase nonlinearly at
large deflections, and be able to suppress them. The presence
of these two terms (linear and nonlinear) causes aminimumof
the effective potential at equilibrium length dR. The second
force F?j is directly proportional to the lateral deflections and
tends to keepRj close to the position in the middle between its
nearest neighbors: F?j � K?�2Rj ÿ Rj�1 ÿ Rjÿ1�.

The initial configuration of the fibers was constructed in a
manner to mimic as much as possible the form of such a
structure in a real animal, shown in Figs 2, 3. Each of the
fibers is elastically attached to the unit rigid root rod (bold
straight line in Fig. 15). The fibers have different lengths and
orientations. As a result, their ends are shifted one from
another in all three dimensions: both parallel to the line of the
common base and in two orthogonal directions. To mimic
better the natural structure, individual initial positions of
every single segment were generated numerically. The
resulting configuration is shown in the conceptual image
(see Fig. 15). It reproduces, among other things, the correct
original orientation of the terminal parts (spatulae) of the
fibers that are turned backward to the root rod and their
orientation in the attached state. According to the main
hypothesis, all these components of the structure are
essential for its functional efficiency.

Importantly, an additional degree of freedom in a real
system comes from the rotation of the relatively rigid root
rod. To reproduce it in the model, rotational stiffness B is
introduced, which dynamically tends to keep the root rod
anglej close to a certain priming anglej0 without interfering
with its rotation. In the first approximation, the appropriate
rotational force acting on the root rod is linearly proportional
to the difference j0 ÿ j: f j � B�j0 ÿ j�. For B greater than
0, the force tends to restore the anglej to its equilibriumvalue
j0. As a result, the whole system rotates under the combined
action of this and remaining forces with respect to its initial
position, when the fibers are either attracted to it or forced to
move away.

The surface in three-dimensional space is generated by the
real part of function

Z�x; y� � A

��
dqx dqy B�q� exp �iqxx� iqyy� z�x; y��
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Figure 14. Statistical analysis of the trajectories presented in Fig. 11. The sequences of the histograms show time evolution of the probability of finding a

particular value of the distance between the nearest neighbor fibers dxj � xj�1 ÿ xj in each concrete interval. Cases (a)±(c) are the same as in Figs 10±13.

Starting from an unperturbed configuration (single peak around dxj � dx0 � 1), all the systems evolve in the contact to relatively smoothed distributions

with a very apparent maximum at dx � 0, which corresponds to clusterization. After detachment from the surface, only the distribution presented in

figure (a) returns to the state with the solitary peak P�dx� around dxj � dx0 � 1 that almost ideally coincides with the initial one.
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the ends of the curved lines mark extremely flexible spatula regions.

Fractal surface z generated by the two-dimensional generalization of the

one-dimensional procedure is shown in grayscale above the xy plane. The

z-coordinate of the whole plot is flipped upside down in order not to

shadow the fibers by the fractal surface from above.
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with power-like spectral density B�q� � 1=q b, b � 0:9. As
before, the attraction to the surface is caused by the
intermolecular force given by potential UVdW�rj� �
U0�1ÿ exp �ÿrj=r0��2, where rj is the distance between the
end of each jth segment of a fiber and the surface Z�x; y�,
U � 10 nN nm, r0 � 0:01 mm, and A � r0. Flexible and thin
parts of every fiber interact with corresponding segments of
other fibers in the array. This interaction has the same origin
as their attraction to the stiff substrate:

Uinteract�r� � U0

�
1ÿ exp

�
ÿ rjk

r0

��2
;

and comparable parameters U0 and r0.
The numerical experiment is organized as follows. The

whole system is arranged with respect to the surface so that
the distance separating it from the nearest segment be r0; this
segment, attracted by the surface, gradually drags out the
remaining elements of the system behind it in accordance
with the equations of motion qrj=qt � F j, where the total
force includes all the system interactions: F j � F j

elastic�
F j
VdW � F j

interact. Little by little, the fibers undergo deforma-
tion as they are attracted to the surface and to one another
and begin to pull with them the stiff rod of the base. The entire
system turns, which not only makes it closer to the surface
along the vertical axis but also pulls out the already attached
fragments along the horizontal axis. This effect is especially
apparent in a simplified two-dimensional (2D) model in
which the motion occurs only in the xz plane. In this case,
all instantaneous positions of the fiber segments at discrete
instants of time, as well as the trajectories of their contact
points, can be depicted together on the plane. Such a picture
for the typical scenario is presented in Fig. 16, where
instantaneous positions and trajectories are shown by black
and gray lines, respectively.

Rotation of the root rod is the key difference between this
scenario and the ordinary attraction of a regular grid of
vertical fibers to the surface. As is seen directly from Fig. 16,
this rotation causes a pulling effect that does not require active
control by the animal (or the artificial mechanism) but acts
automatically owing to the structure of the system formed by

natural selection. It was confirmed in earlier experiments and
demonstrated theoretically that such a longitudinal displace-
ment enhances adhesion of thin films [1, 24]. Importantly, in
the course of this pulling process the spatulae attached to the
surface gradually turn oppositely to the direction of motion.
This rotation produces typical configurations that are clearly
seen in SEM images of real gecko hairs gradually attaching to
the surface (Fig. 2g), where spatulae are usually turned in the
direction which is opposite to their original orientation
(Fig. 3e, f).

Themutual shift of the spatula tips in the vertical direction
prevents their clusterization after detachment from the
surface. The structure was optimized by natural selection so
that fibers reciprocally displaced in space release the elastic
energy stored not only in horizontal but also in vertical
directions, which facilitates their separation as they move
away from the surface. On the other hand, a very strong
vertical displacement at a fixed inclination angle j0 of the
basal rod may result in certain fibers remaining very far from
the surface and never coming in contact with it. This poses a
formally mathematical problem of optimization. Its solution
requires a comparison of the fiber structure behavior with and
without mutual attraction between the fibers. To this effect, it
is convenient to visualize the time-dependent fraction of
attached fibers and angle j, as well as their final values,
depending on the different values of a vertical shift D. In the
case of noninteracting fibers, the results are quite trivial. Of
course, the time-dependent behavior of angle j in this
problem is readily predictable. As soon as the very first fiber
attaches to the surface, the angle j starts to grow. The
restoring force f j� B�j0ÿj� works against this rotation
and, in principle, stops the angle j rising at some steady-state
value as t!1. In this limit, the fibers whose tips are
significantly shifted in the vertical direction remain unat-
tached to the surface and do not participate in forming the
total adhesive force. At the same time, the involvement of
additional fibers in the contact increases the adhesive force
and promotes the change in the final angle j as t!1.
Therefore, the result of this self-consistent problem depends
on the totality of all forces that become involved in the
process as it develops.

Quite a different picture appears when the fibers interact
with each other. The system demonstrates a quite apparent
optimum D depending on the shift magnitude, the main cause
being that a very small shift promotesmutual attraction of the
fibers suspended close to one another and descending
synchronously; as a result, they gain the ability to build
clusters before they approach the surface. Such clusteriza-
tion impairs their ability to find a proper position on the
surface andweakens the adhesive force. As before, in the limit
when D!1, the interaction of the fibers becomes too weak
and they behave almost as they do in the absence of
interaction.

One of the important disadvantages of the two-dimen-
sional model is that it fails to reproduce a distance between
the spatulae in the y-direction orthogonal to the basal rod
rotation plane xz. At the same time, the y-coordinate
becomes extremely important when all fibers are in touch
with the surface: first, because the attachment combined
with rotation leads to a turn of the structure, which aligns all
the spatulae in one direction, and second, because they
formally overlap on the surface in two dimensions, which
they do not experience in a real situation. This observation is
well illustrated in Fig. 17 showing two different views of the
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Figure 16. Behavior of the reduced model in xz plane. The fibers and

trajectories of segment contact points are shown by bold black and thin

gray lines, respectively. Initial configuration is presented in the inset. The

arrows show directions of the system motion, which appear owing to the

joint action of attraction of the fibers to the surface and efficient pulling

along the horizontal axis due to induced rotation.
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same configuration of the modelled system attached to the
surface in isometric (Fig. 17a) and almost vertical (Fig. 17b)
projections.

The spatulae thus spaced rapidly return to the initial
position after detachment from the surface. Certainly, this
effect interferes with clusterization and together with hier-
archical organization appears to greatly contribute to the
efficiency of the natural system [51, 52]. At the same time,
pulling effect improves contact in the attached state [24]. It
should be emphasized that these effects are of a purely
mechanical nature and do need regulation once the system is
optimized either by natural selection or by modeling (in the
case of artificial constructions).

6. Shear-induced adhesion: contact mechanics
of biological spatula-involved systems

One of the many problems arising from the behavior of
complicated adhesive systems and awaiting solution is the
generation of spatula contact with a rough surface by a shear
force when the spatula tip is not initially oriented along the
surface. The present section is designed to discuss the
following issues based on the numerical dynamic approach:

(1) What is the role of the thickness gradient in the process
of contact formation?

(2) Does a shear improve contact?
(3) Is there an optimal distance or an optimal shear force

improving contact?
To simulate shear-induced adhesion, we used the model

configuration shown schematically in Fig. 18 presenting the
two-dimensional projection of the system onto the vertical
plane. Spatulae are considered to be elastic plates of variable
thickness brought into contact with a rough surface at a
certain angle 0 < a < p=2 and pulled out in the horizontal
direction by force F.

As usual, attraction to the surface is due to the
van der Waals force generated by potential UVdW�r� �
U0�1ÿ exp �ÿar��2, and the stiff contact surface is fractal. The
adhesive force competes with resistance of the spatulae to
bending. In accordance with the general theory of elasticity
[62], the elastic energy of the flexible plate is given by the

following integral:

Welastic � E

24�1ÿ n 2�
��

dxdy h 3�x; y�
(�

q2z
qx 2
� q2z
qy 2

�2

� 2�1ÿ n�
��

q2z
qx qy

�2

ÿ q2z
qx 2

q2z
qy 2

�)
; �17�

whereE is Young'smodulus, n is the Poisson ratio, andwe put
n � 1=3. The equation of motion has the form

g
qz�x; y�

qt
� ÿ qWelastic�z�

qz
ÿ qUVdW�z�

qz
; �18�

where g is the dissipation factor determining a characteristic
time-scale of relaxation, g � 1. The horizontal component of
the van der Waals force F x

VdW � ÿqUVdW�z�x��=qx competes
with the external shear force F x. When F x exceeds the total
resistance of contact segments (in fact, merely distorted by
force F x

VdW), one has
�
dx dy F x

VdW > jF xj, and the whole
over-damped system begins to move in the horizontal
direction with a speed given by the relation

g
qx
qt
� F x ÿ

�
dx dy F x

VdW : �19�

Equations (18) and (19) make up a complete numerically
solvable system. The typical instantaneous configuration of
the system found numerically is shown in Fig. 19.
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Figure 18.Conceptual diagram of the numerical model. A terminal part of

the spatula is modelled by an elastic plate of variable thickness. It is

brought into contact with the rigid rough surface at a certain angle a and

pulled out in the horizontal direction by force F.
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In theory, it can be expected that the stronger the external
force, the faster the rotating plate is attracted to the surface.
However, if the external force exceeds a certain critical value,
it may tear off the segments beginning to attach, which leads
to their sliding; hence, the problem of optimization. To
address it, we performed two sets of numerical simulations:
one at a fixed initial inclination angle a and varying force F,
and the other at a varying angle and fixed force. The results
are summarized in Fig. 20.

The numerical experiments were organized as follows.
The surface Z�x; y� is generated as a numerical array
�500; 200� whereto an area of 500� 200 nm corresponds,
and themobile plate has a size of 200� 200 nm. It was verified
that such a size of the array is large enough to provide good
statistics for substantial self-averaging of the computable
values. Then, one end of the plate is brought into contact
with the surface at some trial angle a and left in this position
for a certain transient time t0, during which the real
distribution of contact sites in this region is set up sponta-
neously (t0 � 2 ms) at a zero external force, Ft<t0 � 0. At
t � t0, the pulling is turned on. The process is continued up to
the maximum time (tmax � 10 ms), which corresponds to the
observed time for contact formation by the gecko footpad
[46].

Figure 20 shows that different random realizations of the
substrate surface Z�x; y� manifest themselves either only in
small deviations of values or, sometimes, in mutual intersec-
tions of qualitatively similar monotonic curves, but do not
affect the general result. As expected, the higher force leads to
a faster decrease in the inclination angle and to attraction of
the plate to the surface till the force approaches the critical
value, Fcrit � 20 nN; thereafter, the weak horizontal drift
dx � xÿ x0 of the system from its starting position x0 turns
into fast sliding.

It seems natural that although an animal is unable to
precisely optimize the horizontal pulling force, it can
nonetheless control an approach of the total attachment
force to a threshold value, after which a break occurs and
some way or other maintain its strength close to this
threshold without exceeding it. The critical force Fcrit

depends on the initially attached region; consequently, Fcrit

correlates with the initial inclination angle a. Figure 20c

shows the time dependences of the plate area contact
fraction at a constant pulling force F � 10 nN and an
angle varying within the 0:05p=24a4 0:95p=2 range. The
arrow indicates an angle growth direction. Evidently, the
pulling promotes attraction even at very small angles, i.e., the
fraction of attached segments spontaneously increases even
during the transient period t < t0.

It can be concluded that horizontal pulling provides
advantages over vertical load. It probably explains why
most animals having hairy footpads make use, one way or
another, of such horizontal pulling and have developed an
adaptive trait in the form of spatula-shaped tips. The
numerical experiment has demonstrated that this strategy is
efficient in a wide range of forces and initial inclination angles
of the spatulae with respect to the surface; therefore, it is
highly resistant to variations of real conditions.

It can be supposed that artificial adhesives having tips in
the form of a spatula will have advantages over isotropic
mushroom-shaped structures. This feature, together with
material thickness or stiffness gradients [72] and nontrivial
fiber distribution in three-dimensional space [73], can be of
special value for future biologically substantiated adhesive
systems.

7. Conclusions

This review is concerned with the analysis of highly adhesive
and friction-possessing biological microstructures with an
accent placed on the methods of their numerical modeling
and on the search for parameters determining optimal
adhesion on surfaces of different topographies. The original
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simplest model was an array of vertically fixed fibers (setae) in
contact with a rough surface. It was revealed by varying
geometric and elastic properties of the fibers that there is an
optimal elasticity, and as it turned out, in contrast to naive
intuitive expectations, the fibers must be sufficiently stiff. The
model was then extended by adding one more degree of
freedom, namely deflection of the setae in the lateral
direction with respect to the surface.

This degree of freedom allows the setae to adapt to the
local surface topography: their distortion in the horizontal
direction compensates the fractal structure in the vertical
direction at different rough amplitudes, including large
enough ones. The spatial redistribution of the setae has two
essential consequences. First, perturbation of the uniform
distribution markedly affects the process of film detachment
from the surface, because many setae attach to one and the
same surface asperity and detach almost simultaneously.
Second, this effect may result in setal clusterization, because
the fibers fail to separate after they leave the surface. The
attachment of many fiber ends to the same asperities on the
surface facilitates their mutual attraction and subsequent
clusterization.

One of the methods to prevent clusterization is the
introduction of setal stiffness gradients that evolved in many
living creatures through natural selection. The influence of
stiffness gradients has been thoroughly investigated in
numerical experiments, in which it was shown that fibers
that are highly stiff over their almost entire length and possess
only relatively short soft ends have advantages over fibers
with other possible combinations of these parameters.

Another approach to the prevention of clustering also
`used' in many biological structures consists in the creation of
a hierarchical structure, i.e., 3D spatial distribution of the
fibers in the form of distinctive bunches suspended from a
common relatively stiff root. This option for enhancing the
system's efficiency was also considered in the framework of
the numerical model. The spatially separated hairs rapidly
return to the initial position after detachment from the
surface, preventing clusterization and, together with the
hierarchical structure, greatly contributing to the efficiency
of natural systems by improving contact in the attached state.

One of the purely mechanical methods for optimizing
adhesive properties is pulling that optimizes the hair distribu-
tion over the surface. The pulling effect is partially manifested
even in the case of a strictly normal contact with the lateral
hair motion. It is important from both biological and
structural (applied) standpoints that this purely mechanical
effect does not require regulation.

Finally, one of the models simulates the fiber end
structure with a characteristic spatula that spontaneously
formed over the course of convergent evolution in a variety of
biological species using adhesive attachment to rough
surfaces. The model takes into consideration the very
apparent stiff gradient along the spatula.

The main problem in this context is to what extent the
pulling effect improves spatula adaptation to the rough
surface. It was revealed that horizontal pulling has certain
advantages over vertical load. This probably explains why
most animals having hairy footpads make use of this strategy
one way or another and developed an adaptive trait in the
form of spatula-shaped tips. Numerical experiments demon-
strated that this approach is efficient in a wide range of forces
and initial inclination angles of the plates to the surface;
therefore, it is highly resistant to variations of real conditions.

With this inmind, it can be speculated that artificial adhesives
having tips in the form of a spatula will take advantages over
isotropic mushroom-shaped structures [72, 73].

The data obtained can be used to develop new promising
biologically substantiated adhesive systems.
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