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Abstract. One of the simplest molecular motors, a biological
microtubule, is reviewed as an example of a highly nonequili-
brium molecular machine capable of stochastic transitions be-
tween slow growth and rapid disassembly phases. Basic
properties of microtubules are described, and various ap-
proaches to simulating their dynamics, from statistical chemi-
cal kinetics models to molecular dynamics models using the
Metropolis Monte Carlo and Brownian dynamics methods,
are outlined.
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1. Introduction

Living cells are involved in a great variety of movements at the
level of both cellular and intracellular processes. One of the
most striking forms of cell motion is mitosis, a process during
which a cell divides into two daughter cells [1]. A key feature
of this process is the precise distribution of the preliminarily
doubled chromosome set containing genetic information
about the cell structure [2-4]. The error-free delivery of each
chromosome copy into newly formed cells is effected by the
specialized mitotic spindle apparatus [5].

How the mitotic spindle spontaneously forms in the cell
and does mechanical work to move chromosomes are central
questions in biophysics of mitosis. According to the latest
data, the key role in these processes is played by the nontrivial
dynamical properties of a microtubule, a major component of
the spindle [6].

A microtubule is a polymeric protein nanotube around
25 nm in diameter and from a few hundred nanometers to
several tens of micrometers in length [7-9]. The polymer
consists of numerous identical building blocks, protein
(tubulin) molecules [10]. The formation of microtubules is a
nonequilibrium process in which the long slow lengthening
phase during which thousands of tubulin molecules attach to
the tubule is followed spontaneously by the rapid shrinkage
phase during which a microtubule consisting of tens or
hundreds of thousands of molecules can be completely
disassembled. These processes repeat dozens of times in the
same microtubule. The moment of transition from slow
growth to rapid disassembly is referred to as a ‘catastrophe’,
while the reverse process is known as a ‘rescue’. This property
of microtubules, called ‘dynamic instability’, underlies the
functioning of the mitotic spindle.

The mitotic spindle assembly consists of microtubules and
a large number of various proteins bound to the microtubules
and chromosomes [5]. The microtubules grow in different
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Figure 1. (Color online). Schematic representation of a mitotic spindle
apparatus responsible for chromosome movement and segregation during
mitosis. Green color denotes microtubules, blue is for chromosomes.
Microtubules grow from two poles and attach to kinetochores or large
protein complexes located on each daughter chromatid (white ellipses with
black contours).

directions from two spatially separated poles (Fig. 1) and
continuously switch between slow growth and rapid disas-
sembly phases by virtue of dynamic instability. Such a
behavior enables the tips of a microtubule to effectively
explore the intracellular space and attach to special sites on
the surface of each of the two sister chromatids in a
chromosome, called kinetochores. Chromosomes attached
to both poles of the mitotic spindle align under the influence
of microtubules and motor proteins along the plane orthogo-
nal to the spindle axis. After each chromosome becomes
attached to microtubules growing from the opposite poles so
that one kinetochore of a chromosome is attached to
microtubules originating from one pole and the other to
microtubules growing from the opposite pole, the chromo-
somes begin synchronous division. As a result, the sister
chromatids faithfully follow depolymerizing microtubule
tips toward the opposite cell poles.

Dynamic instability arises at constant parameters of the
process and ambient conditions, including the concentration
of protein molecules and temperature. Such behavior is never
observed during the formation of chemical polymers and is in
conflict with the thermodynamics of near-equilibrium pro-
cesses. Dynamic instability resulting from a special construc-
tion is actively used by the cell. Evidently, it can be realized
only in a strongly nonequilibrium system and requires the
consumption of chemical energy. It was shown that cata-
strophic depolymerization can be used to do work [11-13].
The dynamic instability of microtubules underlies the ‘search
and capture’ mechanism whereby they explore space to
capture chromosomes at the beginning of mitosis, while
depolymerizing microtubules are enabled to transfer the
chromosomes toward cell poles at the final stages of mitotic
division.

Mechanisms underlying the dynamic instability of micro-
tubules, i.e., the existence of two states under constant
ambient conditions, have been extensively investigated over
the last three decades [14]. Their study is needed both to
elucidate fundamental problems of cell division mechanics
and to use the above processes in medicine, e.g., to suppress
the division of tumor cells. Moreover, the microtubule
exemplifies a highly nonequilibrium molecular machine, in
fact, the simplest molecular motor, making microtubule
dynamics an extremely interesting physical phenomenon.

2. Experimental data on dynamic
and mechanical properties of microtubules

2.1 Structure of microtubules

Microtubules are structures formed from the heterodimeric
protein tubulin (Fig. 2). Heterodimers are complexes of o-
and B-monomers of tubulin. Linear chains of tubulin
molecules called protofilaments are aligned along the gen-
eratrix of a hollow cylinder roughly 25 nm in diameter.

The bonds between tubulin molecules inside a protofila-
ment are referred to as longitudinal and those between
tubulins of neighboring protofilaments as lateral. In a cell,
microtubules have a fixed number (13) of protofilaments,
whereas the number of protofilaments in growing micro-
tubules varies from 10 to 18 [15, 16]. A microtubule has
polarity: the end that terminates with B-subunits is called the
plus end, and the one terminating with a-subunits is the minus
end. Remarkably, the plus and minus ends have different
characteristics: the former lengthen faster but shorten more
slowly than the latter [17-19]. The polarity of microtubules
also controls the direction of motion of such proteins as
kinesins [20], which move in a highly predetermined direction
along microtubules due to the use of the energy of adenosine
triphosphate (ATP) hydrolysis.

Another interesting structural property of microtubules
is helicity. Protofilaments are generally arranged such that
there is a helical shift of three monomers between the
adjacent protofilaments winding around the microtubule
axis (Fig. 2). Most side surfaces of protofilaments are bound
laterally such that a-monomers of one protofilament interact
with a-monomers of the adjacent one, while f-monomers of

B-tubulin
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dimer
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Figure 2. (Color online.) Ribbon diagram of a microtubule. The left-hand
part of the figure shows the three-dimensional structure of a tubulin
heterodimer; the right-hand part shows the position of a structural subunit
(tubulin heterodimer) in the microtubule lattice. GTP molecules bound to
each monomer are displayed in red, f-monomers in dark green, and
a-monomers in light green. The arrow indicates the seam at which - and
a-monomers interact.
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two neighboring protofilaments interact with each other.
However, the odd pitch of the helix results in the formation
of a so-called seam between a pair of protofilaments, i.e., a
region of the microtubule lattice where lateral interaction
between a- and f-monomers takes place [21]. The molecular
peculiarities of the seam, if any, and their possible role in the
functioning of microtubules remain to be elucidated.

The process of microtubule growth is a sequence of
random attachments of new tubulin molecules to the end of
any protofilament, as is confirmed by results of cryoelectron
microscopy [22, 23], suggesting that the tips of growing
microtubules adopt a straight shape [24-26].

Images of the ends of disassembling microtubules show
that terminal dimers curl to form a ring before they dissociate
[24-26]. It was concluded that longitudinal bonds are stronger
than lateral ones, which explains why disassembly starts from
the rapid breakdown of lateral bonds, while longitudinal
bonds break later. In this case, rather big protofilament
fragments peel away from the microtubule, which accounts
for the depolymerization rate being much higher than the
growth rate.

2.2 Experimental data on dynamic

and mechanical properties of microtubules

It was mentioned in the Introduction that the growth of
microtubules occurs as a series of stochastic transitions from
the slow lengthening phase to the rapid depolymerization
phase and back [27]. Catastrophes and rescues are readily
seen in Fig. 3, exemplifying single microtubule dynamics.

Generally speaking, any reversible polymerization pro-
cess is characterized by growth rate fluctuations. Sometimes,
they are so pronounced that they may lead to the shortening
of a polymer. Could the observed catastrophes and rescues be
such thermal fluctuations? Figure 3b presents the results of
calculations in the framework of a molecular dynamics
models taking thermal fluctuations into account as described
below [28]. The figure illustrates the case where tubulins
attach and detach one after another as during the polymeriza-
tion of a single-chain polymer. Evidently, growth fluctuations
do exist, but their amplitude is much smaller than the
shrinkage after a catastrophe.

A microtubule grows as tubulin dimers sequentially
attach to its end. Each monomeric tubulin in a dimer is
bound to a guanosine triphosphate (GTP) molecule. Soon
after the dimer attaches to a microtubule, the GTP molecule
bound to the B-monomer undergoes hydrolysis and is
converted into a guanosine diphosphate (GDP) molecule
[29, 30], whereas the GTP molecule bound to the a-monomer
is never hydrolyzed [31]. However, dimers in a solution barely
hydrolyze GTP [32]. GTP hydrolysis is accompanied by
release of a large amount of chemical energy, which appears
to be responsible for microtubule ‘destabilization’, making
the system thermodynamically unstable.

According to the modern concept, the molecular mechan-
ism responsible for the ability of microtubules to switch from
time to time between slow growth and rapid depolymeriza-
tion phases is related to the storage of the energy released in
GTP hydrolysis in the form of strained conformation of
tubulin monomers inside the tubule body. A microtubule
grows as GTP-bound tubulin dimers, straightened in the
solution, attach one after another to its end. Protein
conformation in the dimer changes after the attachment,
which causes GTP hydrolysis and release of the chemical
energy of GTP molecules. It is believed that this energy is not
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Figure 3. Phases of dynamic instability of a microtubule. (a) Time
dependence of the microtubule length illustrating growth and shrinkage
phases following in succession as observed by dark field microscopy (see
Ref. [18]). (b) Time dependence of the microtubule growth rate in the
model in [28]. (c) Schematic of microtubule switching between growth and
disassembly phases.

dissipated into heat but is used to alter the equilibrium
conformation of the GDP-tubulin complex [6]. However,
the molecule bound to its neighbors in the tubule wall cannot
relax into a new conformation. This means that new dimers in
the same (GTP) conformation continue to attach to the end of
the growing microtubule, while almost all of its body, starting
from a certain distance from the end, consists of molecules of
different conformations (GDP). Due to this, the largest part
of the microtubule is mechanically strained and unstable.

Owing to continuous attachment of GTP dimers to the
end of a microtubule, it always contains some number of
dimers that have not yet hydrolyzed the GTP molecule. Such
a part, rich in GTP dimers, is called the GTP cap (Fig. 3¢). It
encircles the microtubule tip and thereby prevents relaxation
of the majority of the dimers that have already passed into the
strained state; in this way, the microtubule is protected from
disassembly.

The detailed mechanism of the GTP cap action is a matter
of controversy. According to the classical model, GTP-bound
tubulin dimers stabilize microtubules, because longitudinally
linked GTP dimers tend to form a straight linear chain,
whereas GDP dimers find it energetically favorable to bend
into a horn-like structure with a curvature radius around
20 nm [26, 33-35]. An alternative hypothesis assumes that
both tubulin complexes (with GTP and GDT) have a roughly
identical curved conformation, and tubule stabilization by
GTP dimers is due to lateral bonds between them, which are
stronger than those between GDP dimers [36].

This implies the undeniably important role of GTP
hydrolysis and the accompanying conformational changes in
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tubulin molecules [37]. Indeed, microtubules undergoing
polymerization in the presence of an unhydrolyzable GTP
analog grow continuously and do not experience cata-
strophes [38]. In contrast, microtubules composed of GDP
dimers are highly unstable and prone to disassembly. This
inference is confirmed by results of experiments on cutting
microtubules by a focused UV radiation or a thin needle [33,
39]. In these experiments, microtubules with cut terminal
layers immediately underwent disassembly, starting from the
plus end.

To date, neither the constant nor the mechanism of GTP
hydrolysis have been reliably determined. For this reason, the
scientific community has not yet reached a consensus
regarding the number of GTP dimers on a growing micro-
tubule end; the estimates vary from one to a few dozen layers.
The following data appear to support arguments in favor of a
small size of the GTP cap.

First, earlier attempts to detect GTP tubulin in micro-
tubules by biochemical methods failed, giving reason to
suppose that the number of GTP tubulins inside a micro-
tubule is very small, below the method detection limit [40, 41].

Second, Refs [42, 43] report experiments in which
microtubules were polymerized at different tubulin concen-
trations, after which free tubulin was sharply diluted in order
to see how soon the microtubules begin to disassemble. The
authors hypothesized that if the number of GTP subunits
increases with concentration, then the time before the
transition to disassembly must increase proportionally after
free tubulin dilution. However, this assumption proved to be
invalid, which was interpreted as evidence that the GTP cap
always has the same small size. It fairly well accounts for a
weak dependence of the catastrophe rate on the tubulin
concentration in solution [44]. Moreover, experiments with
an unhydrolyzable GTP analog showed that a single GTP
layer is sufficient to stabilize a microtubule and thereby
prevent its disassembly [45, 46].

Nevertheless, results of certain experiments suggest that
GTP caps may have more than one layer. First, the end of a
growing microtubule frequently shortens locally by more
than 40 nm (5 layers) in the absence of a catastrophe [47].
Second, the end-binding protein-1 (EB1) appears to selec-
tively interact with GTP tubulins within a microtubule [48] by
virtue of its ability to recognize a segment as long as a few
dozen of layers at the end of the microtubule [49]. The size of
the GTP cap identified by EBI increases with increasing the
microtubule growth rate in the presence of increased tubulin
concentration, in conflict with the model of an invariably
monolayer GTP cap.

Time dependences of the catastrophe rate deduced from in
vitro experiments suggest that the probability of the micro-
tubule transition from slow growth to rapid disassembly
increases with time [50, 51]. In other words, ‘younger’
microtubules are less likely to undergo a catastrophe than
‘older’ ones (Fig. 4).

The phenomenon of catastrophe frequency growth with
time is termed ‘aging’. A delayed onset of catastrophes in
young microtubules suggests a multi-stage character of this
process. As is known, the differential distribution of the times
of single-stage events obeys an exponential law, whereas the
nonexponential form of the distribution implies a multi-stage
process [52]. It was shown in experiments that the distribution
of microtubule lifetimes has the form described by the gamma
distribution [50]. This means that a microtubule has to pass
through a few consecutive stages before it experiences a
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Figure 4. (Color online.) Time dependence of catastrophe rate (dots with
error bars): data of in vitro experiments in Ref. [47]. Points for this
dependence were calculated by the formula Y = (f(z))/(1 — F(¢)), where
F(1) is the integral distribution of microtubule lifetimes and f'(¢) is the
probability density function for catastrophe time (the first derivative of
F(1)). The red straight line shows the shape of the dependence in the
absence of ‘aging’.

catastrophe. The longer the microtubule ‘lives’, the more
advanced stage it reaches and the higher is the probability of
its disassembly. If this were a single-stage process, there
would be no delay of catastrophe for a microtubule starting
to grow, and the time dependence of the catastrophe rate
would be constant (see the horizontal straight line in Fig. 4)
[51]. It remains unclear what the multiple events leading to a
catastrophe are. It was thought that a growing microtubule
experiences the influence of certain destabilizing defects [51,
53]. Once formed, such defects persist and accumulation of
three of them leads to a catastrophe. According to an
alternative hypothesis, a defect may correspond to the
spontaneously arising inability of a single protofilament to
bind tubulin (Fig. 5a). One more variant of a destabilizing
event is sequential changes in the growing microtubule tip
structure [54]. In this case, the microtubule tip sharpens as it
grows due to the increasing difference between the lengths of
individual protofilaments; as soon as sharpening becomes
critical, a catastrophe occurs (Fig. 5b).

Neither calculations in the framework of multiple-proto-
filament models nor experimental data in support of the
hypothesis of three irreversible destabilizing defects are
presented in Refs [S1, 53]. At the same time, the results of
numerical simulation and experimental evaluation of the
sharpening of microtubule tips by fluorescent and electron
microscopy presented in [54] seem consistent with the
alternative hypothesis of sequential changes in the growing
tips. However, they were not confirmed in later studies (see,
e.g., [55]). Moreover, the statistical analysis of experimental
data in Ref [56] failed to demonstrate a significant monotonic
increase in the degree of sharpening with time [28].

A catastrophe changes the structure of the microtubule
tip: its roughly cylindrical shape turns into a throat-like one
with protofilaments extended radially outwards (Fig. 3c). It
was shown recently that such a change is of utmost
importance because it enables the depolymerizing microtu-
bule to function as a molecular motor exerting force. In vitro
experiments made it possible to directly observe how radially
extended protofilaments of a microtubule push microspheres
attached to their wall [57]. The pushing force was measured by
optical tweezers (a focused laser beam pulling and trapping
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Figure 5. Hypothesis proposed to describe ageing of microtubules.
(a) Three sequentially accumulated irreversible defects lead to a cata-
strophe. (b) Sharpening of a microtubule continuously growing with time
causes its destabilization and also results in a catastrophe.
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Figure 6. (Color online.) Experiments designed to measure the force
generated by a depolymerizing microtubule. The microtubule is shown in
green color, the laser beam in red, and the microsphere in blue.
(a) Measurement of the force of individual protofilaments in the case of
lateral attachment of the microsphere on the microtubule (data from
Ref. [57]). (b) Measurement of the force of all protofilaments of the
depolymerizing microtubule in the case of end-on attachment of the
microsphere through the ring of the Dam1 complex (data from Ref. [13]).

wavelength-sized dielectric particles) (Fig. 6a). Because the
force generated by one or two protofilaments of a disassem-
bling microtubule is applied to the surface of a microsphere,

the equilibrium condition is the equality of the moments of
forces of the microtubule and the tweezers:

Fop R = Fyrl. (1)

Here, Fop is the optical force being measured that tends to
bring the microsphere back to the center of the trap, R is the
arm of this force equal to the microsphere radius (250 nm),
Fyr is the force generated by the depolymerizing microtu-
bule, and / is the arm of the force Fyt, roughly equal to the
deviation of a curved protofilament from the microtubule
wall (=~ 20 nm). The arm of the microtubule force being
roughly 10 times that of the optical force, the force signal
measured by the optical tweezers is relatively weak. However,
the pushing force of a protofilament is around 2.5-5 pN once
the ratio of the arms is taken into account.

Another series of experiments with an altered measure-
ment configuration was designed to determine the force
generated by the entire microtubule as opposed to individual
protofilaments under imitated intracellular conditions [13].
For this, a microsphere attached to a protein ring of the Dam1
complex with artificially formed protein linkers was sus-
pended from the microtubule (Fig. 6b). It is supposed that
microtubules are similarly attached to a chromosome in yeast
cells, where the role of the ring is played by the same Daml
protein complex and linkers are proteins of the NDC80
complex [58]. Such alteration of the measurement configura-
tion resulted in a multifold increase in the registered force
signal.

Measurements reported in Ref. [13] allowed estimating
the force generated by a microtubule as 30 pN with the
nonideality of the coupling device in the form of the Daml
ring taken into account (efficiency coefficient ~ 40-50%).
This force is rather strong on the cellular scale, being many
times the maximum force generated by motor proteins kinesin
(~ 7 pN[59]) and dynein (~ 1—7 pN [60, 61]) responsible for
the transfer of many intracellular components over micro-
tubules.

It can be speculated based on the above findings that
microtubules are the main sources of mechanical work needed
to move chromosomes. This assumption is confirmed by
experiments in which elimination of minus-terminal motor
proteins from yeast cells did not change the speed of
chromosome movement in mitosis, most likely entirely due
to the microtubule depolymerization [62, 63].

To conclude, there is a wealth of experimental data on
the dynamic, structural, and mechanical properties of
microtubules that must be taken into consideration in the
elaboration of theoretical models of their dynamically
unstable behavior. The most important experimental find-
ings include (1) structural data on the shape of the tips of
growing and disassembling microtubules, (2) dependences of
growth and disassembly rates on tubulin concentrations in a
solution, (3) data on microtubule disassembly after a sharp
dilution of free tubulin, (4) the distribution of microtubule
polymerization times, the so-called microtubule aging phe-
nomenon, and (5) the ability of depolymerizing microtubules
to develop a significant force.

3. Mathematical modeling of a microtubule

Mathematical modeling provides a tool to bring together a
large number of seemingly conflicting data on the dynamics
and structural properties of microtubules. Numerous
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attempts to simulate these filaments have been undertaken
since the discovery of their dynamic instability [12, 53, 54,
64-81].

It is shown in a recent review [53] that neither analytic
nondiscrete models (that do not consider microtubules at the
subunit level) nor discrete single-protofilament stochastic
models of microtubule dynamics can in principle properly
describe the structure, mechanics, and dynamic instability of
microtubules. Therefore, such models are not discussed in this
article, which focuses on the models in which microtubules
composed of 13 protofilaments are considered at the level of
separate dimers.

In the most detailed models, the elementary unit is a
tubulin dimer or, sometimes, a monomer. Tubulin subunits
can attach to a microtubule, detach from it, and change their
nucleotide state as a result of GTP hydrolysis. The attach-
ment of new tubulin subunits at the end of a microtubule
occurs in these models by one of two mechanisms: (1) a
subunit attaches only at the site where it forms both lateral
and longitudinal bonds [64—67, 69] (Fig. 7a), and (2) only the
formation of a longitudinal bond is necessary and sufficient
for the attachment (therefore, subunits attach longitudinally
to all protofilaments of a microtubule) [7]. The detachment of
subunits can be considered disregarding the sequential break-
ing of lateral and longitudinal bonds [64—67, 69] or, alter-
natively, explicitly taking first the breakdown of lateral bonds
and then of longitudinal ones into account [54, 70, 75, 80].

The nucleotide status of subunits (hence, their properties)
changes in accordance with the rules of GTP hydrolysis
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Figure 7. (Color online.) Schematics of molecular-kinetics models of
microtubules. Microtubules are unfolded. Green color denotes GDP
tubulins and red is for GTP tubulins. (a) Chen’s and Hill’s model [64]
(arrows show sites to which a tubulin subunit can attach; (b) The model of
Bayley et al. [65-67]; (c) The model of VanBuren et al. [74]; (d) The model
of Margolin et al. [80]. Red lines indicate sites between protofilaments at
which lateral bonds are broken.

postulated in the models. Three main GTP hydrolysis rules
are discussed in the literature.

(1) Totally random hydrolysis [64, 82], when each GTP
dimer in the microtubule wall can hydrolyze a GTP molecule
with an equal probability;

(2) Induced hydrolysis [66], when GTP hydrolysis in a
given molecule occurs immediately after a new dimer attaches
atop it along the same protofilament;

(3) Vectorial hydrolysis [78, 83, 84], which occurs only at
the GTP/GDP dimer boundary along the axis of the
microtubule.

Unlike the transition of GTP dimers to the GDP state in
accordance with rules 1 and 2, the transition of GTP dimers to
the GDP state in the case of vectorial hydrolysis (rule 3)
occurs in the form of a wave traveling at a constant speed
from the growth initiation site toward the growing micro-
tubule tip. However, it has been shown recently that rule 3 is
invalid, because catastrophes of microtubules in models
postulating vectorial hydrolysis can be observed only
within an unrealistically narrow range of tubulin concentra-
tions [53].

In addition, there are models in which hydrolysis obeys a
combination of the above three rules. One such hybrid model
combines induced and random hydrolysis [85], while another
postulates a combination of vectorial and random hydro-
lysis [68, 86].

Three main classes of models are distinguished in terms of
the calculation algorithm: molecular-kinetic, molecular-
mechanokinetic, and molecular-mechanical models.

Molecular-kinetic (briefly, kinetic) models describe the
evolution of a microtubule as a sequence of discrete attach-
ment—detachment transitions of dimers and hydrolysis using
the kinetic Monte Carlo method [64-67, 69, 74, 80, 87]. In this
approach, each elementary event corresponds to a specific
fixed probability, and the number of such events is limited by
the number of parameters introduced.

Molecular-mechanical models use information about the
location of microtubule subunits in time and the energy
characteristics of molecule interaction for a continuous set
of conditions [12, 70, 71, 75]. This approach requires much
greater computational resources but allows describing the
influence of various geometric and nucleotide states of the
microtubule on dimer detachment [26, 88] without limitation
to a few fixed probabilities.

Molecular-mechanokinetic models are a combination of
kinetic and mechanical models.

The main classes of microtubule dynamical models
differing in algorithms and the degree of detail are system-
atically considered in Sections 3.1-3.3, alongside the changes
in the requirements for models arising from the necessity to
describe new experimental data.

3.1 Molecular-kinetic models
Traditionally, the method of molecular dynamics calculations
is the most detailed method for describing the evolution of a
system of chemically interacting particles, because it explicitly
takes thermal fluctuations into account but considers
chemical reactions as separate physical interactions. Because
the reactions are results of random collisions of diffusing
molecules, the evolution of a system of interacting particles is
a stochastic rather than deterministic process.

Stochasticity at the level of collisions between individual
molecules is frequently ignored, for example, in chemical
kinetics; instead, a deterministic change in the number and
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concentration of reactant molecules is considered. In this
case, the main equation describing chemical transformations
is the law of mass action, the system of differential equations
of the form

dXx .
—L=fi(x,...

X
dr ) N)7

i=1,...,N, (2)
where X is the number of molecules of the ith substance from
the totality of reactants S; (i = 1,..., N), and f; are functions
depending on the specificity of the reactants.

Once the number of reacting molecules of at least one
of the components is sufficiently small, stochasticity may
greatly contribute to the process. New dimers attach to the
end of a microtubule; therefore, the number of dimers in the
microtubule interacting with those diffusing in the solution
is only 13, which means that neither stochasticity nor
consideration of separate interactions can be ignored [89].
In what follows, we describe methods by which the micro-
tubule dynamics are simulated at the level of separate
interactions.

One of the most popular algorithms for microtubule
simulation is the kinetic Monte Carlo method. To give an
insight into this method, we consider a well-stirred system of
N molecules of different reactants {Si,..., Sy} that interact
via M reactions {Ry, ..., Ry}. Let the system be placed in a
certain fixed volume Q at constant temperature. We further
let X;(7) denote the number of molecules of substance S; at
time ¢. The aim is to describe the vector of state X(7) =
(X;i(2),...,Xn(2)) at each time instant, knowing the state
vector at the initial instant X(z9) = Xo.

Each set of reactions can be characterized by two
quantities. One is v; = (vy;, ..., va;), Where v;; is the incre-
ment in the number of S; molecules resulting from the
reaction R;. In other words, if the system is in a state X, it
passes into state the x + v after the reaction R; is completed.
The other quantity characterizing the reaction R; is the
probability per unit time a;, i.e.,

a;(x)dt is the probability that in the state X(t) =X the
reaction occurs within an infinitesimal time interval

[t, ¢+ dz]. 3)

The physical meaning of a;(x) can be explained as follows.
For an S| — ... type reaction involving a single substance,
there is a constant ¢; such that ¢;dz is the probability of a
transformation of S| at the next infinitesimal time step dz. If
the reaction mixture contains x; of S; molecules, the
probability of one of them reacting during the next time
interval d is x;c; dt. Therefore, a;(x) = xic;.

In the presence of two interacting substances and the
reaction R; has the form S;+ S, — ..., then there is a
constant ¢; such that x;x,c;d¢ is the probability of reaction
of a certain pair of molecules, S| —.S,, within a time interval
ds, where x; and x; are the numbers of S; and S, molecules.
Then a;(x) = x;x2¢;. In this case, the quantity ¢; for the
reaction S} — ... is numerically equal to the reaction
constant kj, while in the case of different reactants
Si+8 — ..., ¢g=1k;j/Q [87, 89-91]. For molecules of the
same type, ¢; = 2k;/Q.

We are interested in the conditional probability of the
system transition into a state X(¢) =x from a state
X(tp) = x¢. In the Monte Carlo method, stochastic trajec-
tories X(¢) are found in numerical form instead of finding the
probability density function Fx(, analytically. For this, the

probability function is used:
p(t, j|x,t)dt is the probability that in a state X(t) = X, the
reaction occurs within an infinitesimal time interval

[t+7, t+1+d1. 4)

The exact formula for p(z, j|x, 7) has the form [87, 91]

p(t, j 1%, 1) = a(x) exp (—aop(x) ) , (5)
where
ao(x) =Y ap(x). (6)
j'=1

Equation (5) provides a mathematical basis for simulation
using stochastic chemical kinetics. In (5), 7 is an exponentially
distributed random quantity with the mean equal to the
standard deviation, 1/a¢(x), with j being the statistically
independent random integer variable with the conventional
probability a;(x)/ay(x) (in fact, the weight of a single event).

The following variables are used to describe microtubule
evolution: the parameter j = 1, 2, 3 is one of the three events
(attachment, detachment, or GTP hydrolysis) and a;(x) = k;
is the characteristic onset time of each of the possible events.
The numerical method for finding the stochastic trajectory
X(#) of microtubule evolution is based on Eqn (5). The
simulation procedure is as follows:

(1) initialization of time ¢ = ¢y and the initial state of the
system X = Xg;

(2) for each ith monomer and possible jth elementary
event, a random quantity r;; uniformly distributed over an
interval from 0 to 1 is generated;

(3) all times for each elementary event are found:

o 1n(1—}"l‘/').

lij = T (7)
ij

(4) the event corresponding to the shortest time ¢; is
assumed to have occurred;

(5) the system configuration is updated in accordance
with the selected event and the time is shifted as t — 1 + #;;;

(6) steps 2-5 are repeated.

This approach to the description of microtubule dynamics
was applied in the work by Chen and Hill [14, 64, 92]. In the
model in [64], dating back to 1985, a microtubule is
represented by a helix of 13 protofilaments with a five-
subunit shift along the seam. In this model, subunits can
build into or dissociate from the microtubule only as separate
dimers, regardless of the breakdown of lateral or longitudinal
bonds during dissociation (Fig. 7a). Nor can dimers be
present at the end of the microtubule in the absence of a
longitudinal neighbor and at least one lateral one. The model
uses the random hydrolysis rule, which means that GTP
hydrolysis occurs with a certain probability at any site of the
microtubule, both in the terminal layer of dimers and in a gel.
Although the model allows considering individual probabil-
ities of the GTP-GDP transition depending on the dimer
position, the constants for this transition are chosen to be
identical over the entire microtubule length.

Such a simple approach was used to reproduce transitions
between growth and shrinkage states and to describe the
dependence of the averaged tubulin polymerization rate on its
concentration in the solution known at that time. But the data
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on individual microtubule dynamics were unavailable and the
model disregarded them.

To describe results of new experiments, e.g., the recently
discovered weak dependence of the time of microtubule
transition to depolymerization after dilution of free tubulin,
Bayley and coauthors proposed a different model with the
induced hydrolysis rule in which GTP tubulins are located
strictly in the terminal layer, regardless of the free tubulin
concentration (Fig. 7b) [65, 66, 69]. This model correctly
described dilution experiments and the weak dependence of
the microtubule catastrophe rate on tubulin concentration.

But the above kinetic models had a common drawback:
they did not consider conformation of the tubule end and
therefore could not describe structural data corresponding to
different phases of the microtubule growth. An attempt to
qualitatively consider the microtubule end configuration was
undertaken by VanBuren et al. in 2002 [74] (Fig. 7c). [t was an
important step forward in comparison with preceding models
and became a transient stage toward subsequent mechanistic
approaches to the description of microtubule dynamics. This
model is in excellent agreement with the modern concept of
the microtubule lattice as a B-type lattice, i.e., a left-handed
three-start helix, suggesting that a single longitudinal bond is
enough to enable tubulin molecules to attach to a micro-
tubule.

In this model, each bond corresponds to an energy
depending on the nucleotide composition of interacting
dimers. In other words, the probability of dimer dissociation
depends on whether the nucleotide to which it is bound is
hydrolyzed and on the number of newly formed bonds.

The authors of Ref. [74] were the first to try to consider the
influence of curling oligomers at the end of a microtubule on
dynamic instability under the assumption that the formation
of an outwardly extending throat at the tubule tip is
indispensable for maintaining the disassembly phase.
Because a rapidly disassembling microtubule carries curling
oligomers on its end, the GTP dimers attached to them no
longer act as stabilizers unable to form lateral bonds. To take
this fact into account in the framework of a kinetic model, an
artificial rule was introduced to distinguish between ‘curled’
and ‘uncurled’ tubulin oligomers.

In 2012, to further modify the description of a micro-
tubule, Margolin et al. [80] considered separate breaks of
lateral and longitudinal bonds (Fig. 7d). In the framework of
artificially introduced rules, they restricted the alternation of
bond-breaking and bond-forming processes to those proceed-
ing consecutively ‘from top down’ and ‘from bottom up’,
respectively. To imitate the stabilizing action of adjacent
protofilaments, the authors introduced a coefficient decreas-
ing the probability of breakdown of a lateral bond in the
presence of lateral bonds in neighboring protofilaments.
These rules allow taking the differences in the structure of
growing and shortening ends of microtubules into account
more comprehensively than in earlier models. A unique result
in Ref. [80] was the prediction of interprotofilament ‘cracks’
in the microtubule body. The cracks at the ends of both
growing and shrinking microtubules caused their destabiliza-
tion. Specifically, the probability of catastrophes increased
with increasing the number of cracks.

3.2 Molecular-mechanokinetic models

Another important model describing microtubules with the
help of the kinetic Monte Carlo method was proposed by
Van Buren et al. in 2005 [75] and used later in Ref. [54].

Its fundamental difference from the preceding models was
an attempt to include the interactions inside the microtubule
based on the energy potentials influencing the probability of
breakdowns of dimer—dimer bonds. On these grounds, the
model in [75] is regarded as a molecular-mechanokinetic
one.

Geometrically, a microtubule is represented as a cylinder,
and protofilaments are described as a chain of connected
vectors, with the beginning and the end of each vector being
two longitudinal binding sites of the respective monomer
(Fig. 8).

Each monomer is described by three parameters: two
rotation angles ¢ and 0 and the length D. The angles 6 and ¢
determine the equilibrium bending stress-free direction of the
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Figure 8. Interaction potentials in the model of VanBuren and co-workers
[75]. (a) Angles describing dimer rotation. (b) Dimer bending energy in a
protofilament as a function of the angle between the axis of the dimer and
its preferred direction relative to the underlying dimer in the microtubule
lattice. The preferred angular orientation vector depends on the tubulin
species being considered, either a GTP tubulin (zero angle) or a GDP
tubulin (0.2 rad angle). (c) Lateral and longitudinal bonds. S and d are the
respectively distances between lateral and longitudinal interaction sites.
Ejat(Eiong) is the lateral (longitudinal) interaction energy.
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monomer vector. The angle 6 corresponds to outward
bending of protofilaments, such that 6 =22° for GDP
dimers curling at the end of the microtubule and 0 = 0 for
straight GTP protofilaments. The equilibrium angle is equal
to zero for both states. The deviation of the current vector
position from equilibrium is described by a quadratic
potential. The quantity D is the sum of the monomer length
(4 nm) and extension along the protofilament d. The
interaction between monomers in adjacent protofilaments is
described by the distance between lateral interaction sites .S,
which is calculated given the coordinates {¢, 0, D}. Exten-
sions d and S are described by Hookean potentials with a
break upon achievement of the maximum interaction energy.
The current monomer vector deflects from the equilibrium
one by the angle @. The energy potential is also quadraticin @.
The energy minimization algorithm is used to find coordi-
nates {¢, 0, D} near the end of the microtubule.

This model involves a quasiequilibrium approximation,
which means that the microtubule is considered to be an
equilibrium system at any time instant. The equilibrium
constant is represented in the form

_k+_ AGl(z)tal
K_k_,_eXp<_W » (8)

where k, is the attachment reaction constant expressed in
units [M~" s7'], k; is the detachment constant, AG?,  is the
overall change in the binding free energy for a given dimer,
and kg is the Boltzmann constant. Hence, the calculated

probability of dissociation is

_ ke
© o exp[—AGR,/(ksT)]

©)

When the sum of binding and strain energies for a given bond
is greater than or equal to zero, the bond is considered
broken.

With the energy and dissociation constants being found,
the kinetic Monte Carlo algorithm is used as described above.
The list of possible events realized with the help of the Monte
Carlo method includes bond breakage and GTP hydrolysis.
After each new event is accepted, the Monte Carlo method is
supplemented by the procedure for finding a local energy
minimum of the system [93], and all the preceding steps are
repeated.

In the approach used by VanBuren and coauthors,
microtubule geometry and its influence on the probability of
bond breakage were taken into account because the prob-
ability of dissociation depends on both the bond number and
stress, as well as on the nucleotide base composition of the
bonds. However, this microtubule model is not free from
shortcomings, despite its progressive character. For example,
the form of potentials is described by a nonsmooth function
with a singularity at the bond breakage point; at this point,
the energy gradient decreases abruptly from the maximum
value to zero. More importantly, the described mechanoki-
netic approach disregards thermal fluctuations that may play
a key role in microtubule dynamics.

3.3 Molecular-mechanical models

3.3.1 Static models. In early studies [93, 94] reporting on
detailed analyses of the mechanical properties of microtu-
bules, the microtubule surface was modeled in the form of a
two-dimensional homogeneous anisotropic material with two

orthogonal inner curvatures. One tended to bend the surface
outward, the other to roll it into a cylinder. The main result in
Refs [93, 94] was the computed shape of the end of a
microtubule corresponding to the minimal energy of such a
sheet. The resulting shape, called a ‘structural cap’, provided
a basis for postulating a different dynamic behavior of the
microtubule. However, the abstract description of microtu-
bules as a two-dimensional material was not based on real
structural data, which strongly limited the interpretation of
the results obtained with this model. As mentioned above, the
mechanical description of a microtubule requires a more
detailed consideration at the molecular level.

Molodtsov and coauthors were the first to undertake
mechanistic microtubule modeling at the molecular level [12,
71]. A microtubule was simulated as a left-handed helical
structure with a pitch of three monomers. The elementary
subunit of the model is a tubulin dimer having two lateral
bonds with dimers of neighboring protofilaments and one
longitudinal bond with dimers along the protofilament.
Lateral interactions are described by continuously differenti-
able inter-dimer interaction potentials having virtually the
same shape as protein—protein interaction potentials [95]
(Fig. 9a). The longitudinal potentials of this model have no
discontinuities. The bending potentials inside protofilaments
are assumed to be quadratic:

bending

8k,n (10)

1
(Xk,n) = z B(X/c,n - XO)Z )

To=1 ©or X - (11)
Here, B is the parameter characterizing the rigidity
of longitudinal bonds assumed to be similar for the T- and
D-forms of tubulin, and y; , = Ok, » — Ok—1,, is the angle of
deflection of the kth and (k — 1)th subunits from each other
in the nth protofilament.

Bending of each protofilament is limited by a plane
(Fig. 9b). The equilibrium angle y, can be found from
structural data [34]. For GDP tubulin, X(P ~ 0.2 for each
monomer, whereas GTP dimers tend to form straight config-
urations [26, 96]. The bending energy G, of the nth protofila-

Elat
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Figure 9. (Color online.) (a) Form of the lateral interaction potential in the
models of Molodtsov et al. [12] and Efremov et al. [70]. The lateral bond is
represented by a potential well with a barrier. (b) Illustration of the
interaction between monomers and of spatial limits for protofilament
motion in a microtubule. Violet and red points respectively show lateral
and longitudinal interactions. The protofilament with outwardly extended
upper dimers can bend only in the depicted plane.




782 P N Zakharov, V K Arzhanik, E V Ulyanov, N B Gudimchuk, F I Ataullakhanov

Physics— Uspekhi 59 (8)

ment is represented as the sum

Gn = g]:e;ding(}fk,n) . (12)
k
To describe lateral bond breakage, the potential
e\ 7
Vien(Fie.n) = A( /“") exp (— /f’") (13)
ro ro

was used [95], where ry and 4 are parameters characterizing
the length and the binding energy.

Thus, the total potential energy of a microtubule is the
sum of longitudinal and transverse interactions of all the
points involved, including (1) the sum of potential energies of
longitudinal (flexural) interactions between subunits inside a
protofilament and (2) the sum of interactions among all
lateral contacts in adjacent protofilaments.

The very low microtubule energy facilitated the search for
and analysis of local energy minima of the system by the
conjugate gradient method and thereby allowed estimating
the microtubule stability depending on the size of the GTP
cap and other parameters of the model. However, it was
impossible to simulate microtubule dynamics.

3.3.2 Metropolis pseudodynamics method. The Molodtsov
model [71] was soon supplemented by the Metropolis
algorithm as proposed in [70]. The Metropolis algorithm is a
modified Monte Carlo method for describing the tubulin
subunit dynamics in a microtubule [70].

The Metropolis algorithm [97] is frequently used to
describe the evolution of multi-molecular systems in a
potential electric field. The algorithm can be represented as
follows. We consider a system of N particles with the potential
energy

N

> Vidy),

i=1 j=1

E= i#), (14)

N —

where V' is the potential energy between molecules and dj; is
the maximum separation between particles i and j. To
calculate the equilibrium value of a certain characteristic F
of the system, the formula for a canonical ensemble is used,

[Fexp [ - E/(kgT)] d**pd*gq

= Jexp [ — E/(kgT)] d*Npd*?g

(15)

where d>Vp d*"¢ is the volume element in the 2N-dimensional
configuration space. Because this integral is frequently
impossible to calculate numerically, the approximate Monte
Carlo method is used, in which integration is performed over
arandom sample of points rather than the total set of them. In
other words, an arbitrary position of N particles inside the
system is chosen (i.e., a random point in the 2N-dimensional
configuration space). Then the system energy is computed
from formula (14), and the statistical weight exp [—E/(kT)]
is assigned to a given configuration.

The statistical weight of random configurations in densely
packed systems is frequently very small because the quantity
exp [-E/(kgT)] is very small with high probability. In [98],
Metropolis et al., instead of choosing arbitrary configura-
tions and assigning the weight exp[—E/(kgT)] to them,
proposed choosing configurations with the probability
exp [—E/(kgT)] and assigning an equal weight to them. In

this case, all particles are shifted from the initial configuration
by the rule

X — X—‘-O(ﬁ],
(16)

where o is the maximum allowable displacement and &; and &,
are uniformly distributed random numbers from the interval
(=1, 1). The energy changes due to the shift, AE, are then
calculated. If AE <0, i.e., the displacement decreased the
energy, the configuration is accepted. If AE > 0, the displace-
ment is accepted with the probability exp [-AE/(kgT)].
Every time, a newly generated number &; is taken from the
interval (0, 1): if &3 < exp[—AE/(kgT)], the system passes
into a new state; if & > exp [-AE/(kgT )], the system reverts
to the previous state. The system is considered to have passed
to a new state irrespective of whether the displacement is
accepted. Therefore,

1 f:
F=— F;,
szl J

where Fj is the value of F at the jth step.

Using ergodicity, it can be shown that the method in
question chooses configurations with the probability
exp [—E/(ksT)]. Let v, be the number of systems of the
ensemble in a state r. It can be proved that after a large
enough number of steps, the ensemble tends to the distribu-
tion of the number of molecules by energy states given by

E
Uy ~EXp | — kB—’T .

We suppose that the systems of the ensemble made a step and
let P, P,y = Py, (with &; being distributed uniformly) denote
the probability that this step (whether accepted or not)
resulted in the transition from the state s to the state r. We
also suppose that E, > E;. Then the number of systems
passing from the state r to the state s is v.P,, because
transitions to states with a lower energy are allowed. The
number of systems making backward transitions in the
configuration space is

E. — E
Nt = v, Py, €Xp (— T 'Y) )

The total number of systems that passed from the state s to the

Y_>Y+<xé2a

(17)

(18)

(19)

state r is
Er - Es‘
Ny = Py {vs exp (— T ) — U,.:| . (20)
Hence, for any two states s and r, if
(3 Er - E\'
—> — 21
o ep (< E ) o)

then a greater number of systems pass on average from the
state r to the state 5. Because the system is ergodic, a single- or
multi-step transition from one position to any other position
is possible. In other words, after a sufficiently large number of
steps, the ensemble must be described in terms of the
canonical distribution. Hence, if the transition fails, the old
configuration is regarded as newly realized; this gives a
greater statistical weight to states with a lower energy.
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In 2007, the use of the Metropolis method enabled
Efremov et al. [70] to describe the microtubule disassembly
as a result of lateral bond breakage under the effect of thermal
fluctuations and internal stress in the microtubule lattice. A
disassembling microtubule does work to move chromosomes.
Due to this, the description of depolymerization in a model
containing interaction potentials in the explicit form allowed
considering interactions between microtubules and moving
chromosomes. However, this model still disregards the
attachment of dimers from the solution and GTP hydrolysis,
and it does not therefore describe the dynamic instability of
microtubules. Moreover, the breakdown of longitudinal
bonds at the ends of protofilaments is introduced artificially
to maintain the given mean length of curved protofilaments at
microtubule ends.

3.3.3 Brownian dynamics and microtubule modeling. There is
an alternative method to describe the dynamics of interacting
protein-size particles: the Brownian dynamics simulation
technique based on the solution of the equations of motion
within certain approximations (see below). It has been shown
that in the limit as the coordinate increment tends to zero (i.e.,
the time step tends to zero), the Metropolis method, including
its later realization [99], is equivalent to the Brownian
dynamics method [100, 101]. However, transitions between
sequential system states in the former technique are not
coordinated with time; therefore, it requires an additional
time scale calibration with the use of one experimental
dependence as a reference one. The Brownian dynamics
method does not require such additional calibration.

The use of the Brownian dynamics algorithm in micro-
tubule modeling has become possible with the advent of high-
performance computing techniques and powerful supercom-
puters. We consider this method in greater detail. We write
the Langevin equation

d? dg
Md—lgli —/E‘FF( )+Frand(z)7

(22)
where m is the particle mass, y is the viscosity coefficient of the
Brownian particle, ¢ is its coordinate, Fiang(?) is a random
force, and F(r) = —dU/dq is a systematic force acting on the
particle in an energy field U.

The random force has the following properties:

(1) averaged over the particle ensemble, the random force
is equal to zero (balanced fluctuations), (Frand(?)) = 0;

(2) for time intervals longer than the duration of a collision,
the random force is uncorrelated, (Frand(?1) Frand(%2)) =
a0(t; — 12), where (1) — 1) is the Dirac function.

We ignore the term with the second derivative of the
coordinate with respect to time in Eqn (22), bearing in mind
rapid deceleration over the time ranges of interest [102], and
retain only the differential of the coordinate in the left-hand
side of this equation:

dt dU dt
dq:___+7Frand:dql+dq27

Y dg (23)

where dg; has the meaning of a coordinate increment caused
by systematic forces,

(24)

and dg, is has the meaning of a stochastic displacement of the
Brownian particle during the infinitesimal time dz,

dr

dgy = *7 rand - (25)

When a large enough time interval is considered (much
longer than the characteristic time of a single collision
between the Brownian particle and particles of the solution),
it is possible to find the root mean square amplitude of this
displacement using the Einstein formula (dg?) = 2D dt and
expressing the diffusion coefficient as D = kgT/y, were T is
the temperature in degrees Kelvin; hence, the root mean
square amplitude of the stochastic term is

2kgTA
qu = B t.

Y

(26)

Here, the infinitesimal differential ds is replaced with the
increment At > 7, where 7 is the time of interaction between
particles of the medium.

Stochastic term (26) can be expressed in terms of its
amplitude by multiplying it by a random number N(0, 1)
from the normal distribution [102]:

—_— kg TAt
dgs = dga N(0,1) = Bv N(O, 1). (27)
Applying the Euler method of the first-order precision,
) . dqifl
T g ' L At 28
¢'=q" + =g A (28)

where i is the iteration number, yields a finite-difference
scheme for finding Cartesian coordinates at each next time
interval:

: : At OU o0 / At
qz:qt—l yt gt;l"' ZkBT N(O 1)

where At is the time step (0.2 ns), Uy is the total energy of
the system, r is the monomer radius, # is the medium viscosity
coefficient, y, = 6mry is the particle translational viscosity
coefficient, and y, = 8nr3y is the particle rotational viscosity
coefficient [103].

The lower bound for the time step A7 > t can be roughly
estimated from a single collision time

2}’0

T~y —,

(29)

(30)

where the particle size in the medium is 2ry ~ 5 A, and
it ~ /3kgT/m. Hence, © ~ 107!2 5. The time step in the
finite-difference scheme considered below is At ~ 10710 s,

We used the Brownian dynamics technique described in
preceding paragraphs to create a microtubule molecular-
mechanical model [28]. Geometrically, its design replicates
our earlier models with their aforementioned limitations
that precluded an adequate description of microtubule
dynamics [70, 71]. The elementary structural subunit of a
microtubule is a tubulin monomer represented as a hard
sphere with a radius of 2 nm, two left- and right-hand
interaction points (lateral bonds), and two more (top and
bottom) points (longitudinal bonds) in the microtubule
lattice (Fig. 10).
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Figure 10. (Color online.) Description of interactions inside a microtubule
borrowed from [28]. (a) Composite image of a growing (left) and
disassembling (right) microtubule. The structural unit of the microtubule
is a monomer with four binding sites. GTP dimers are shown in red and
orange colors, and GDP dimers in green. The end of each protofilament of
the microtubule is bound with a probability k,, to dimers from the
solution via formation of a longitudinal bond. (b) Lateral dimer—dimer
interaction. (c¢) Longitudinal interaction. (d) Bending interaction for a
GTP dimer. (¢) Bending interaction for a GDP dimer.

The proposed model has the same spatial limitation as
Efremov’s model [70], in which the motion of each proto-
filament is restricted to one plane containing the microtubule
axis and the given protofilament. For this reason, each
monomer is described by only three coordinates (x;, y;, 7,):
two Cartesian coordinates of the monomer center in the
plane and the rotation angle.

The lateral interaction potential (Fig. 11) described as a
function of the distance r'*' between interacting sites is

represented as a well with the repulsing barrier [70, 71,
95, 104]:

r]lat 2 r]lat

lat Wn k,n

Vi (Fen) :Alal( > exp <——>
’ ro ro

(31)

The longitudinal interaction between monomers in adjacent
dimers is calculated using the formula for the lateral
interaction with the parameters A4, and by, substituted by
Ainter and bipger. The longitudinal monomer—-monomer inter-
action within one dimer is considered to be smooth and is
calculated by the formula

V() = 5 kit (32)
The bending of protofilaments in their motion plane is
described by the bending potential [see formula (10)].

The total energy of the system as the sum of the energies of
lateral, longitudinal, and bending interactions is

13
Ulotal = §
n=1

The summation is over all the 13 protofilaments (the index n)
and each monomer in a protofilament (the index i).

To find the position of a particle at given time instants, we
consider the numerical solution of the Langevin equation of
motion in the Brownian approximation [29]. The kinetic part
of the algorithm describes tubulin attachment to the end of
any protofilament and GTP hydrolysis. These events are
checked every millisecond with the probability

K

(Vs + Vi 4 pjnse g ghendine) (3
=1

k,n
i

P = koncwp per 1 ms, (34)
where ko, is the association constant and ¢, is the tubulin
concentration in the solution. We chose the simplest GTP
hydrolysis rule: with a fixed probability regardless of the
position and the environment of the attached GTP dimer.
During hydrolysis, the equilibrium (zero) value of the angle
% ™) in formula (11) changes to 0.2.

This model is the most detailed one among the currently
available microtubule dynamics models. It describes the
largest set of experimental data in the framework of a single
set of parameters.

10 -
a
=
m
=
§ 0 | | |
g 0.3 0.6 0.9 1.2
—g rlut,nm
(e}
m
—10 F

10 -
b

&

M

2

B0 1 1 |
= 0.3 0.6 0.9 12
"g l,inter’nm
Q

m

—10

Figure 11. Interaction energy potentials in the wall of a microtubule as functions of the distance between binding sites. (a) Lateral interaction potential

between dimers. (b) Longitudinal interaction potential.




August 2016

Microtubules: dynamically unstable stochastic phase-switching polymers 785

4. Advantages and disadvantages
of selected methods

Both kinetic and molecular-mechanical models describe the
dynamic instability of microtubules at the qualitative level. A
nonequilibrium system such as a microtubule can be
described in the framework of kinetic models in terms of
‘equilibrium transition constants’, because microtubule
‘nonequilibrium’ is inherent at the level of bond-breaking
constants, whose value changes jump-wise during the transi-
tion of dimers from the GTP state to the GDP state. There are
no abrupt changes in the coupling constants in mechanical
models, and the role of an energy source for dynamic
instability is the energy of GTP hydrolysis stored during
polymerization in the form of elastic deformation of proto-
filaments in the microtubule wall.

From the quantitative standpoint, kinetic models describe
microtubule dynamics much worse than mechanical models
do. For example, kinetic models based on the Monte Carlo
method describe the following experimental observations:
dependences of the growth rate on the tubulin concentration
in the solution and transitions between growth and short-
ening phases [64-67, 69, 74, 80). However, they do not
describe the weak dependences of the catastrophe rate and
microtubule shrinkage rate on the tubulin concentration.
Moreover, kinetic models describe neither the marked (over
1 s) delay of a catastrophe in the case of soluble tubulin
dilution nor the absence of a dependence of this delay on the
tubulin concentration prior to dilution [42, 43].

In addition, there are thus far no kinetic models describing
microtubule aging [64-67, 69, 80]. An indisputable disadvan-
tage of kinetic models is that they do not describe the
structure of microtubule ends in different dynamic instability
phases, e.g., formation of outwardly curling protofilaments
that markedly affect the microtubule dynamics [64-67, 69].
Although sporadic attempts to account for the formation of
curved protofilaments during transition to polymerization
have been reported [74, 80], they look fictitious and limited.
Models of this class cannot in principle describe results of
experiments on force generation by a dynamic microtubule
because they do not consider the mechanical aspects of
interactions between subunits.

Molecular-mechanical modeling of a microtubule requires
much greater computational resources but has a number of
advantages over kinetic approaches. The explicit considera-
tion of the interaction energy potentials of tubulins and their
mechanics allows describing forces exerted by a microtubule
and taking the influence of various configurations and
nucleotide states on microtubule dynamics into account.

Our most comprehensive molecular-mechanical model
[28] for the first time allowed reproducing a large set of
experimental data on the structure and dynamic instability
of microtubules in the physiological concentration range
within a single set of parameters. The model was used to
describe (1) the concentration dependences of growth,
shrinkage, and catastrophe rates, (2) the shape of the ends
and the length distribution of the bent parts of protofilaments
in a disassembling microtubule, (3) the time dependence of the
catastrophe rate and the nonexponential distribution of
microtubule lifetimes, (4) the dependence of the interval
between the removal of soluble tubulin and the catastrophe
on the microtubule growth rate, and (5) the possibility of
strong force generation by a depolymerizing microtubule.
Moreover, it was shown that the aging of a microtubule can

be attributed to multiple fast reversible transitions at the
microtubule end, such as formation and disappearance of
curved protofilaments at the lengthening ends in a growing
microtubule population.

The main disadvantage of the molecular-mechanical
models is their computational complexity, which made us
confine ourselves to studying dynamic instability under
conditions of an artificially enhanced hydrolysis rate with
the extrapolation of the results to the physiological range and
a reduction in the number of degrees of freedom by restricting
protofilament movements to radial planes. We are planning
to increase the computation speed in future work and make
calculations in the physiological range of hydrolysis constants
without the above geometric limitations.

5. Conclusion

Despite extensive investigations of the properties of micro-
tubules, there are still many questions to be answered. The
more new data appear, the more difficult it is to integrate
them into a single unified picture. Therefore, mathematical
simulation allowing miscellaneous experimental data to be
analyzed in the context of the general picture remains (and
will remain) a vitally important tool for the study of
microtubule dynamics.

The difference between the properties of plus and minus
ends of microtubules awaits theoretical explanation [44],
especially in experiments on cutting microtubules by UV
radiation or a needle [33, 39]. Microtubule rescue mechan-
isms remain obscure [37]. The role, properties, and causes of
the formation of the sheet-like extensions sometimes observed
at the ends of polymerizing microtubules are unknown [56].
Also, many aspects of the mechanisms by which proteins and
low-molecular-weight inhibitors control microtubule
dynamics remain to be elucidated.

In our opinion, an important unresolved problem is the
fundamental mechanism underlying microtubule dynamic
instability, namely, the principle of action of the GTP cap.
On one hand, both classical studies and the recently proposed
molecular-mechanical model demonstrate the validity of the
concept that the GTP cap can stabilize the microtubule owing
to the straight conformation of GTP tubulins forming a
segment on which protofilaments do not tend to curl out-
wardly, unlike GDP tubulins of protofilaments. On the other
hand, there are increasingly more publications suggesting
that GTP and GDP dimers of tubulin have equally curved
conformations. It is therefore necessary to consider an
alternative model in which the GTP cap prevents microtu-
bule disassembly by strengthening lateral bonds between
GTP tubulins or reducing their rigidity rather than by
straightening protofilaments [105]. The value of such a
model is still unclear, because growth with curved protofila-
ments remains hypothetical. Indeed, the addition of new GTP
tubulins can hardly promote stabilization because they attach
to the ends of curved protofilaments and are therefore spaced
too far apart. The probability of spontaneous straightening of
bent protofilaments is rather low, because they must be rigid
enough to allow the depolymerizing microtubule to generate
strong forces [57].

It follows from the foregoing that a promising line of
future research is the combination of the existing models with
even more detailed molecular-dynamics calculations in order
to directly describe tubulin conformation and its influence on
microtubule dynamics.



786

P N Zakharov, V K Arzhanik, E V Ulyanov, N B Gudimchuk, F I Ataullakhanov

Physics— Uspekhi 59 (8)

Acknowledgements

The work was supported by the RFBR grant 16034-60113
mol_a_dk, the grant MK-4819.2015.4 of the RF President for
young scientists, and allocations for programs of the Pre-
sidium of the Russian Academy of Sciences 1.33P and
“Molecular and cellular biology.”

References
1.  Kline-Smith S L, Walczak C E Mol. Cell 15 317 (2004)
2. Cimini D, Degrassi F Trends Cell Biol. 15 442 (2005)
3. Bakhoum S F, Compton D A Curr. Opin. Cell Biol. 24 64 (2012)
4. Nicholson J M, Cimini D Int. Rev. Cell Mol. Biol. 315 299 (2015)
5. Walczak C E, Heald R Int. Rev. Cytol. 265 111 (2008)
6.  Erickson H P, O’Brien E T Annu. Rev. Biophys. Biomol. Struct. 21
145 (1992)
7. Bouchet-Marquis C et al. Biol. Cell 99 45 (2007)
8. Nogales E, Ramey V H, Wang H-W Methods Cell Biol. 95 129
(2010)
9.  Chrétien D et al. Cell Struct. Funct. 24 299 (1999)
10.  Kirschner M W, Mitchison T Nature 324 621 (1986)
11.  Asbury C Letal. Proc. Natl. Acad. Sci. USA 103 9873 (2006)
12. Molodtsov M I et al. Proc. Natl. Acad. Sci. USA 102 4353 (2005)
13. Volkov V Aetal. Proc. Natl. Acad. Sci. USA 110 7708 (2013)
14. HillTL, ChenY Proc. Natl. Acad. Sci. USA 81 5772 (1984)
15.  Meurer-Grob P, Kasparian J, Wade R H Biochemistry 40 8000
(2001)
16. Chrétien D, Flyvbjerg H, Fuller S D Eur. Biophys. J. 27 490 (1998)
17.  Hirose K, Fan J, Amos L A J. Mol. Biol. 251 329 (1995)
18.  Horio T, Hotani H Nature 321 605 (1986)
19.  Mitchison T J Science 261 1044 (1993)
20. Vale R D et al. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355 449
(2000)
21. Desai A, Mitchison T J Annu. Rev. Cell Dev. Biol. 13 83 (1997)
22.  Mandelkow E M et al. J. Cell Biol. 102 1067 (1986)
23.  Wade R H, Chrétien D J. Struct. Biol. 110 1 (1993)
24.  Mandelkow E M, Mandelkow E J. Mol. Biol. 181 123 (1985)
25. Mandelkow E M et al. EMBO J.7 357 (1988)
26. Mandelkow E M, Mandelkow E, Milligan R A J. Cell Biol. 114977
(1991)
27.  Mitchison T, Kirschner M Nature 312 237 (1984)
28.  Zakharov P et al. Biophys. J. 109 2574 (2015)
29. David-Pfeuty T, Erickson H P, Pantaloni D Proc. Natl. Acad. Sci.
USA 745372 (1977)
30. Weisenberg R C, Deery W J, Dickinson P J Biochemistry 15 4248
(1976)
31. Spiegelman B M, Penningroth S M, Kirschner M W Cell 12 587
(1977)
32. Caplow M, Shanks J J. Biol. Chem. 265 8935 (1990)
33. Tran P T, Walker R A, Salmon E D J. Cell Biol. 138 105 (1997)
34. Miiller-Reichert T et al. Proc. Natl. Acad. Sci. USA 95 3661 (1998)
35.  Wang H-W, Nogales E Nature 435911 (2005)
36. Rice L M, Montabana E A, Agard D A Proc. Natl. Acad. Sci. USA
105 5378 (2008)
37. Brouhard G J Mol. Biol. Cell 26 1207 (2015)
38. Hyman A A et al. Mol. Biol. Cell 31155 (1992)
39.  Walker R A, Inoué S, Salmon E D J. Cell Biol. 108 931 (1989)
40. O’Brien ET, Voter W A, Erickson H P Biochemistry 26 4148 (1987)
41. Stewart RJ, Farrell K W, Wilson L Biochemistry 29 6489 (1990)
42.  Walker R A, Pryer N K, Salmon E D J. Cell Biol. 114 73 (1991)
43.  Voter W A, O’Brien E T, Erickson H P Cell Motil. Cytoskeleton 18
55(1991)
44.  Walker R A etal. J. Cell Biol. 107 1437 (1988)
45.  Drechsel D N, Kirschner M W Curr. Biol. 4 1053 (1994)
46. Caplow M, Shanks J Mol. Biol. Cell 7 663 (1996)
47.  Gardner M K et al. Cell 146 582 (2011)
48. Maurer S P et al. Cell 149 371 (2012)
49. Bieling P et al. Nature 450 1100 (2007)
50. Odde D J, Cassimeris L, Buettner H M Biophys. J. 69 796 (1995)
51.  Gardner M K et al. Cell 147 1092 (2011)
52.  Olkin I, Gleser L J, Derman C Probability Models and Applications

(New York: Macmillan, 1980)

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.

75.
76.
77.
78.
79.
80.
81.
82.

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
9s.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.

Bowne-Anderson H et al. BioEssays 35 452 (2013)

Coombes C E et al. Curr. Biol. 23 1342 (2013)

Maurer S P et al. Curr. Biol. 24 372 (2014)

Chrétien D, Fuller S D, Karsenti E J. Cell Biol. 129 1311 (1995)
Grishchuk E L et al. Nature 438 384 (2005)

Lampert F, Hornung P, Westermann S J. Cell Biol. 189 641 (2010)
Carter N J, Cross R A Nature 435 308 (2005)

Mallik R et al. Nature 427 649 (2004)

Gennerich A et al. Cell 131 952 (2007)

Grishchuk E L, McIntosh J R EMBO J. 25 4888 (2006)

Tanaka K et al. J. Cell Biol. 178 269 (2007)

Chen Y D, Hill T L Proc. Natl. Acad. Sci. USA 82 1131 (1985)
Bayley P, Schilstra M, Martin S FEBS Lett. 259 181 (1989)

Bayley P M, Schilstra M J, Martin S R J. Cell Sci. 95 33 (1990)
Martin S R, Schilstra M J, Bayley P M Biochim. Biophys. Acta 1073
555(1991)

Flyvbjerg H, Holy T E, Leibler S Phys. Rev. Lett. 73 2372 (1994)
Martin S R, Schilstra M J, Bayley P M Biophys. J. 65 578 (1993)
Efremov A et al. Proc. Natl. Acad. Sci. USA 104 19017 (2007)
Molodtsov M 1 et al. Biophys. J. 88 3167 (2005)

Sept D, MacKintosh F C Phys. Rev. Lett. 104 018101 (2010)

Sept D, Baker N A, McCammon J A Protein Sci. 12 2257 (2009)
VanBuren V, Odde D J, Cassimeris L Proc. Natl. Acad. Sci. USA 99
6035 (2002)

VanBuren V, Cassimeris L, Odde D J Biophys. J. 89 2911 (2005)
Gregoretti I Vet al. J. Cell Sci. 119 4781 (2006)

Brun L et al. Proc. Natl. Acad. Sci. USA 106 21173 (2009)

Ranjith P et al. Biophys. J. 96 2146 (2009)

Piette BM et al. PLoS ONE 4 6378 (2009)

Margolin G et al. Mol. Biol. Cell 23 642 (2012)

Castle BT, Odde D J Biophys. J. 105 2528 (2013)

Padinhateeri R, Kolomeisky A B, Lacoste D Biophys. J. 102 1274
(2012)

Hinow P, Rezania V, Tuszyniski J A Phys. Rev. E 80 031904 (2009)
Mazilu I, Zamora G, Gonzalez J Physica A 389 419 (2010)
Margolin G et al. Phys. Rev. E 74 041920 (2006)

Flyvbjerg H, Holy T E, Leibler S Phys. Rev. E 54 5538 (1996)
Gillespie D T J. Comput. Phys. 22 403 (1976)

Chrétien D, Fuller S D J. Mol. Biol. 298 663 (2000)

Gillespie D T Annu. Rev. Phys. Chem. 58 35 (2007)

Gillespie D T J. Phys. Chem. 81 2340 (1977)

Gillespie D T Physica A 188 404 (1992)

Hill T L, Kirschner M W Int. Rev. Cytol. 78 1 (1982)

Janosi I M, Chrétien D, Flyvbjerg H Eur. Biophys. J. 27 501 (1998)
Janosi I M, Chrétien D, Flyvbjerg H Biophys. J. 83 1317 (2002)
Jiang L et al. Proteins 46 190 (2002)

Hyman A A et al. Mol. Biol. Cell 31155 (1992)

Metropolis N, Ulam S J. Am. Stat. Assoc. 44 335 (1949)
Metropolis N et al. J. Chem. Phys. 21 1087 (1953)

Rossky P J, Doll J D, Friedman H L J. Chem. Phys. 69 4628 (1978)
Chen J C, Kim A S Adv. Colloid Interface Sci. 112 159 (2004)
Heyes D M, Branka A C Mol. Phys. 94 447 (1998)

Ermak D L, McCammon J A J. Chem. Phys. 69 1352 (1978)
Rotne J, Prager S J. Chem. Phys. 50 4831 (1969)

Laue T, Demeler B Nature Chem. Biol. 7 331 (2011)

Brouhard G J, Rice L M J. Cell Biol. 207 323 (2014)



	1. Introduction
	2. Experimental data on dynamic and mechanical properties of microtubules
	2.1 Structure of microtubules
	2.2 Experimental data on dynamic and mechanical properties of microtubules

	3. Mathematical modeling of a microtubule
	3.1 Molecular-kinetic models
	3.2 Molecular-mechanokinetic models
	3.3 Molecular-mechanical models

	4. Advantages and disadvantages of selected methods
	5. Conclusion
	 References

