
Abstract. Some basic theorems on Killing vector fields are
reviewed. In particular, the topic of a constant-curvature space
is examined. A detailed proof is given for a theorem describing
the most general form of the metric of a homogeneous isotropic
space±time. Although this theorem can be considered to be
commonly known, its complete proof is difficult to find in the
literature. An example metric is presented such that all its
spatial cross sections correspond to constant-curvature spaces,
but it is not homogeneous and isotropic as a whole. An equiva-
lent definition of a homogeneous isotropic space±time in geo-
metric terms of embedded manifolds is also given.
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1. Introduction

We first introduce our conventions and definitions, and then
formulate the theorem.

Definition.A space±time is a pair �M; g�,whereM is a four-
dimensional differential manifold and g is a metric of the
Lorentzian signature �� ÿ ÿÿ� defined on it.

We assume that both the manifold M and the metric g are
sufficiently smooth. Furthermore, we assume that the
manifold is geodesically complete, i.e., any geodesic can be
extended in both directions beyond any value of the canonical
parameter. In general relativity, a space±time manifold is
commonly geodesically incomplete due to singularities of
solutions of the Einstein equations. In this paper, we do not
consider any dynamical equations, focusing on the kinema-

tical aspect only. Therefore, our assumption on the geodesic
completeness is quite natural and, for example, does not allow
considering only a part of the whole sphere.

If the null coordinate line in local coordinates x a,
a � 0; 1; 2; 3, is time-like, �q0; q0� � g00 > 0, where the par-
entheses denote the scalar product, then the coordinate
x 0 :� t is called time. Spatial indices are denoted by Greek
letters from themiddle of the alphabet: m; n; . . . � 1; 2; 3. Then
fxag � fx0; xmg.

Themodern observational data indicate that ourUniverse
is homogeneous and isotropic (the cosmological principle), at
least in the first approximation. Most cosmological models
rely on the following statement.

Theorem 1.1. Let a four-dimensional manifold be the
topological product M�R� S, where t 2R is the time
coordinate and x 2 S is a three-dimensional space of constant
curvature. We suppose that M is endowed with a sufficiently
smooth metric of the Lorentzian signature. It follows that if the
space±time is homogeneous and isotropic, then a coordinate
system t; xm, m � 1, 2; 3 exists in the neighborhood of each point
such that the metric takes the form

ds 2 � dt 2 � a 2g
�
mn dx

m dx n ; �1�

where a�t� > 0 is an arbitrary function of time (the scale factor)
and g

�
mn�x� is a negative-definite constant-curvature metric on S

depending on the spatial coordinates x 2 S only.
Thus, the most general metric of a homogeneous and

isotropic universe has form (1) up to a coordinate transforma-
tion.

The theorem is independent of the dimension of the
manifold M and the signature of the metric g. The érst
condition of the theorem can be replaced by the following:
``Let any constant-time slice t 2 R of the spaceëtime M be a
space of constant curvature.'' An exact deénition of a
homogeneous and isotropic universe is given in Section 3.

Theorem 1.1 is fundamental in relativistic cosmology and
is therefore very important. Metric (1) was originally
considered in [1±11]. We make a few comments on those
parts of the original papers that are related to the form of the
metric.
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Friedmann pioneered the use of metric (1) in cosmolo-
gical models of general relativity [1, 2]. He did not write
about a homogeneous and isotropic universe, but simply
required that all constant-time spatial cross sections
t � const be constant-curvature spaces, and assumed the
metric to have form (1). In his first and second papers,
Friedmann considered spatial cross sections of positive and
negative curvatures.

LemaõÃ tre analyzed solutions of the Einstein equations that
describe a closed universe [3]. However, he did not formulate
Theorem 1.1. A more general class of cosmological models
was considered in [4], but nevertheless the theorem was not
yet formulated.

Robertson gave the theorem in [5, 6], but did not provide a
proof. Instead, he cited papers [12, 13]. The proof consists of
two parts. The first (Theorem 5.1 in Section 5) was proved in
general by Hilbert [12]. The second part (Theorem 5.2 in
Section 5) was proved in one direction by Fubini [13] (see also
[14], Chapter IV, Exercise 3). Namely, Fubini showed that
metric (1) is homogeneous and isotropic, but the converse
proposition that any homogeneous and isotropic metric has
this form was not proved. In [7], metric (1) was derived in a
different way by considering observers possessing certain
properties. By construction, the resulting metric was homo-
geneous and isotropic. However, Robertson proposed (see
the discussion above Eqn (2.1) in [7]) that the spatial part of
the metric describes a constant-curvature space where the
curvature can take only the discrete values �1; 0, and
therefore the general form of metric (1) was not shown.
Metric (49) below fits the construction but is not of form (1).

Tolman obtained linear element (1) on a different basis [8±
10]. In particular, he assumed that there is a spherical
symmetry and that the time-coordinate lines are geodesics.
In addition, he required that the Einstein equations be
satisfied. Homogeneity and isotropy were not discussed in
his papers.

In [11, Section 10], Walker proved Theorem 1.1 in one
direction: metric (1) is homogeneous and isotropic. However,
he did not prove that any homogeneous and isotropic metric
is of this form. In fact, metric (49) given in Section 6 satisfies
Eqn (52) in [11], but is not of form (1).

Furthermore, I browsedmore than 30monographs on the
general theory of relativity, including my favorite books [15±
19] and found a proof of Theorem 1.1 only in [19].

The aim of this paper is to explicitly review the proof of
Theorem 1.1. In Sections 2±4, we briefly review the general
properties of the Killing vector fields and necessary features
of constant-curvature Riemannian (pseudo-Riemannian)
spaces. The proof of Theorem 1.1 is given by two theorems,
5.1 and 5.2. The main idea behind the proof is borrowed from
[16], but the details are different. In particular, the proof of
Theorem 5.1 given in [14] is simpler. In Section 6, we describe
an example metric all of whose spatial cross sections are
constant-curvature spaces, but nevertheless the total metric is
not homogeneous and isotropic. Also, a new equivalent
definition of a homogeneous and isotropic metric is given in
this section.

We hope that the reader is familiar with the basic concepts
of differential geometry, which can be found, e.g., in [20, 21].

2. Killing vector fields

We consider an n-dimensional Riemannian (pseudo-Rieman-
nian) manifold �MM; g� endowed with a metric g�x� �

gab�x� dx a 
 dx b, a; b � 0; 1; . . . ; nÿ 1 and the correspond-
ing Levi-Civita connection G.

Definition. A diffeomorphism

{ : MM 3 x 7! x 0 � {�x� 2MM

is called an isometry of a Riemannian (pseudo-Riemannian)
manifold �MM; g� if the metric remains invariant,

g�x� � {�g�x 0� ; �2�
where {� is the induced map of differential forms.

Because an isometry leaves the metric invariant, it follows
that all other structures expressed in terms of the metric, like
the Levi-Civita connection, the geodesics, and the curvature
tensor, are also invariant.

Map (2) can be represented in coordinate form. Let points
x and x 0 lie in one coordinate neighborhood, and have
coordinates x a and x 0 a. Then the isometry { of the form

gab�x� � qx 0 g

qx a

qx 0 d

qxb ggd�x 0� �3�

relates the metric components at different points of the
manifold.

Proposition 2.1. All isometries of a given Riemannian
(pseudo-Riemannian) manifold �MM; g� form an isometry group
denoted by II�MM� 3 {.

Proof. The composition of two isometries is an isometry.
The product of isometries is associative. The identical map of
MM is an isometry identified with the group unit. Every
isometry has an inverse, which is also an isometry.

For a given metric, Eqn (3) defines functions x 0�x� that
give an isometry. In general, this equation has no solutions
and the corresponding manifold has no nontrivial isometries.
In this case, the unit is a single element of the isometry group.
The larger the isometry group is, the smaller the class of
Riemannian (pseudo-Riemannian) manifolds.

Example 2.1. Euclidean space RRn endowed with the
Euclidean metric dab has an isometry group that is the
inhomogeneous rotation group IIOO�n;RR�, with dim IIOO�n;RR� �
n�n� 1�=2, consisting of rotations, translations, and reflec-
tions.

The isometry group II�MM� can be either a discrete group or
a Lie group.

Definition. If the isometry group II�MM� is a Lie group, we can
consider infinitesimal transformations. In this case, we are
dealing with infinitesimal isometries:

x a 7! x 0 a � x a � EK a ; E5 1 : �4�

Any infinitesimal isometry is generated by a sufficiently smooth
vector field K�x� � K a�x�qa, which is called a Killing vector
field.

Let K � K aqa be a Killing vector field. Then invariance
condition (4) takes the infinitesimal form

LKg � 0 ; �5�
where LK is the Lie derivative along the vector field K. The
coordinate form is given by

HaKb � HbKa � 0 ; �6�
where Ka :� K bgba is a Killing 1-form, and the covariant
derivative

HaKb :� qaKb ÿ Gab
gKg
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is defined by the Christoffel symbols Gab
g (the Levi-Civita

connection).
Definition. Equation (6) is called the Killing equation and

integral curves of a Killing vector field K � K aqa are called
Killing trajectories. Any Killing vector field is uniquely
associated with the 1-form K � dx aKa, where Ka :� K bgba,
which is called a Killing form.

For any Riemannian (pseudo-Riemannian) manifold
�MM; g�, Killing equation (5) always has the trivial solution
K � 0. If the equation has the zero solution only, there are no
nontrivial continuous symmetries.

The Killing trajectories fx a�t�g 2MM with t 2 RR are
deéned by the system of ordinary differential equations

_x a � K a ; �7�
which has a unique solution passing through a point
p � fp ag 2MM for any differentiable Killing vector éeld. For
small t5 1, the trajectory has the form

x a�t� � p a � tK a�p� � o�t� ; �8�
where the integration constant is chosen such that the
trajectory passes through the point p at t � 0.

Any Killing vector field generates a one-parameter
subgroup of the isometry group. If a Killing vector field
vanishes at some point, this point is stationary under the
action of the isometry group generated by the vector field.
Killing vector fields are called complete if Killing trajectories
are defined for all t 2 RR. They must have this property
because the isometries form a group.

A given Killing vector field defines not only an infinitesi-
mal symmetry but also the whole one-parameter isometry
subgroup in II�MM�. For this, we have to find integral curves
(Killing trajectories) passing through any point p 2MM. If
x�0� � p, then there is a diffeomorphism

{ : MM 3 p 7! x�t� 2MM,

corresponding to each value t 2 RR.
The contravariant component form of Killing equation

(6) is given by

gagqbK g � gbgqaK g � K gqggab � 0 : �9�
This equation is linear in both the Killing vector and the
metric. It follows that any twometrics differing by a prefactor
have the same Killing trajectories. Moreover, Killing vector
fields are defined modulo an arbitrary nonzero constant
prefactor. In particular, if K is a Killing vector, then ÿK is
also a Killing vector. If there are several Killing vector fields,
their linear combination is again a Killing vector field. In
other words, Killing vector fields form a vector space over
real numbers, which is a subspace of the vector space of all
vector fieldsX�MM� on the manifoldMM. This space is endowed
with a bilinear form. It is easy to show that the commutator of
two Killing vector fields K1 and K2 is another Killing vector
field:

L�K1;K2�g � LK1
� LK2

gÿ LK2
� LK1

g � 0 :

It follows that Killing vector fields form a Lie algebra i�MM�
over real numbers, which is a subalgebra in the infinite-
dimensional Lie algebra of all vector fields, i�MM� � X�MM�.
This is the Lie algebra of the isometry Lie group II�MM�.

Proposition 2.2. Let a Riemannian (pseudo-Riemannian)
manifold �MM; g� have N4dimMM nonvanishing commuting and

linearly independent Killing vector fields Ki, i � 1; . . . ;N. A
coordinate system then exists such that the metric is indepen-
dent of N coordinates corresponding to Killing trajectories. The
converse statement is that if the metric is independent of N
coordinates in some coordinate system, then the metric has at
least N nonvanishing commuting Killing vector fields.

Proof. For any nonvanishing Killing vector field, there
is a coordinate system where the field has components
�1; 0; . . . ; 0�. For a set of independent commuting vector
fields Ki, this implies that there is a coordinate system
x 1; . . . ; xn such that each Killing vector field has just one
nonvanishing component Ki � qi. In this coordinate system,
Killing equation (9) is particularly simple:

qi gab � 0 ; i � 1; . . . ;N4 dimMM. (10)

This implies that the metric components are independent of
the coordinates x i.

In this coordinate system, theKilling trajectories are given
by the equations

_x i � 1 ; _xm � 0; m 6� i :

We see that the coordinate lines x i are Killing trajectories.
As regards the converse statement, if the metric compo-

nents are independent of N coordinates, then Eqns (10) are
satisfied. These are the Killing equations for commuting
vector fields Ki :� qi.

It follows that in the limit case where the number of
commuting Killing vectors is equal to the dimension of the
manifold N � n, a coordinate system exists such that the
corresponding metric components are constant.

Example 2.2. In the Euclidean space RRn, the metric in
Cartesian coordinates x a, a � 1; . . . ; n has constant compo-
nents gab � dab. This metric has n commuting Killing vectors
Ka :� qa, which generate translations. All coordinate lines are
Killing trajectories.

If a Riemannian manifold �MM; g� has two or more
noncommuting Killing vectors, this does not mean that
there is a coordinate system such that the metric components
are independent of two or more coordinates.

Example 2.3. We consider the two-dimensional sphere
SS2 ,!RR3 embedded into a three-dimensional Euclidean space
in the standard manner. Let the metric g on the sphere be the
induced metric. Then the Riemannian manifold �SS2; g� has
three noncommuting Killing vector fields corresponding to
the rotation group SSOO�3�. It is obvious that there is no
coordinate system where the metric components are indepen-
dent of two coordinates. Indeed, in such a coordinate system,
the metric components are constant and therefore the
curvature is zero. But this is impossible because the curvature
of the sphere is nonzero.

In general relativity, we suppose that the space±time is a
pseudo-Riemannian manifold �MM; g� endowed with a metric
of the Lorentzian signature. Using the notion of a Killing
vector field, we can give the following invariant definition.

Definition. A space±time �MM; g� or its domain is called
stationary if there is a time-like Killing vector field.

Killing vector fields have a number of remarkable
features. We consider the simplest of them.

Proposition 2.3. The length of a Killing vector along the
Killing trajectory is constant:

LKK
2 � HKK

2 � K a qaK 2 � 0 : �11�
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Proof. Contracting Eqns (6) with K aK b yields the
equalities

2K aK bHaKb � K aHaK
2 � K aqaK 2 � 0 :

Corollary. Killing vector fields on a Lorentzian manifold
are oriented time-like, light-like, or space-like.

A metric on the manifold defines two particular types of
curves: geodesics (extremals) and Killing trajectories, if they
exist.

Proposition 2.4. Let �MM; g� be a Riemannian (pseudo-
Riemannian) manifold with a Killing vector field K. A Killing
trajectory is geodesic if and only if the length of the Killing
vector is constant onMM: K 2 � const for all x 2MM.

Proof. AKilling trajectory x a�t� is given by the system of
equations

_x a � K a : �12�

The length of the infinitesimal interval of the Killing
trajectory

ds 2 � gab _x a _xb dt 2 � K 2 dt 2

is constant along the trajectory, i.e., the parameter t is
proportional to the length of the trajectory and is therefore
canonical. Differentiating equation (12) with respect to the
canonical parameter t yields the relation

�x a � qbK a _xb � �HbK
a ÿ Gbg

aK g� _xb ;

which can be represented as

�x a � K bHbK
a ÿ Gbg

a _x b _x g : �13�

Using the Killing equations, we can rewrite the first term in
the right-hand side as

K bHbK
a � ÿ 1

2
g abqbK 2 :

Then Eqn (13) takes the form

�x a � ÿ 1

2
g abqbK 2 ÿ Gbg

a _x b _x g :

The last equation coincides with the geodesic equation if and
only if K 2 � const.

It follows that Killing trajectories differ from the
geodesics in general.

Example 2.4. We consider the Euclidean plane RR2

endowed with the Euclidean metric. This metric is invariant
under the three-parameter inhomogeneous rotation group
IIOO�2�. We let x; y and r;j denote Cartesian and polar
coordinates on the plane. Then the Killing vector éelds
corresponding to rotations and translations are K1 � qj and
K2 � qx, K3 � qy. The squared vector norms are

K 2
1 � r 2 ; K 2

2 � K 2
3 � 1 :

The Killing vector fields K2 and K3 have a constant length on
the whole plane. Their trajectories are straight lines, which are
geodesics. This agrees with Proposition 2.4. The Killing
trajectories corresponding to rotations K1 are concentric
circles around the origin. In accordance with Proposition
2.3, the length of the Killing vector K1 is constant along the

circles, but nonconstant on the whole plane RR2. The
corresponding Killing trajectories are circles, which are not
geodesics.

Example 2.5. We consider a semisimple Lie group GG as a
Riemannian (pseudo-Riemannian) manifold endowed with
the CartanëKilling form as an invariant metric. Then the left-
invariant and right-invariant vector éelds on GG generate right
and left group actions. Both left and right group actions leave
the metric invariant. Therefore, the left- and right-invariant
vector éelds are Killing vector éelds. Their length equals �1.
Hence, the corresponding Killing trajectories are geodesics.

Contracting Killing equation (6) with the metric shows
that the divergence of a Killing vector field is zero:

HaK
a � 0 : �14�

The covariant derivative H b of Killing equation (6) takes the
form

H b�HbKa � HaKb� � DKa � �HbHa ÿ HaHb�Kb � 0 ;

where we used relation (14), and where D :� H bHb is the
Laplace±Beltrami operator on the manifold MM. Using the
equality

�Ha;Hb�Kg � ÿRabg
dKd

for the commutator of covariant derivatives, we arrive at the
following equation for the Killing vector:

DKa � RabK
b ; �15�

where Rab :� Ragb
g is the Ricci tensor.

In the case of a constant-curvature space, the Ricci tensor
is proportional to the scalar curvature [see Eqn (26) below],
and therefore Eqn (15) is simplified to

DKa � R

n
Ka ; R � const :

In other words, each component of the Killing vector is an
eigenfunction of the Laplace±Beltrami operator.

Proposition 2.5. Let X;Y 2 X�MM� be two arbitrary vector
fields on a Riemannian (pseudo-Riemannian) manifold �MM; g�
and K be a Killing vector. Then the following equality holds:

g
ÿ�LK ÿ HK�X;Y

�� g
ÿ
X; �LK ÿ HK�Y

� � 0 ;

where LKX � �K;X � is the Lie derivative and HKX �
K a�qaX b� Gag

bX g�qb is the covariant derivative of a vector
field X along the Killing vector field K.

Proof. Direct verification using the Christoffel symbols
and Killing equations (6).

3. Homogeneous and isotropic spaces

Killing equation (6) imposes severe restrictions on Killing
vector fields, which we have to discuss. Using the formula for
the commutator of covariant derivatives, we find the relation

HaHbKg ÿ HbHaKg � ÿRabg
dKd : �16�

Then, using the identity

Rabg
d � Rbga

d � Rgab
d � 0
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for the curvature tensor and Killing equation (6), we find the
equality

HaHbKg � HbHgKa � HgHaKb � 0 ;

where the terms are related by cyclic permutations. Using this
equality, we can represent (16) as

HgHaKb � Rabg
dKd : �17�

Contracting the indices g and a, we obtain exactly equality
(15) from Section 2.

Equation (17) follows from the Killing equations. How-
ever, they are not equivalent. Nevertheless, Eqn (17) has
important consequences.We assume that Killing vector fields
are real analytic functions, i.e., their components can be
represented as Taylor series converging in some neighbor-
hoodUUp of a point p 2MM.We suppose that all components of
theKilling 1-formKa�p� and their first derivatives qbKa�p� are
given at some fixed point p 2MM. Then the second partial
derivatives of the Killing 1-form q2bgKa can be found from
Eqn (17). Now, we evaluate the covariant derivative of
Eqn (17), thereby obtaining some relation for the third
derivatives, and so on, up to infinity. It is important that all
the relations are linear in the Killing vector components and
their derivatives. It follows that the Killing 1-form compo-
nents in some neighborhood UUp are of the form

Ka�x; p� � Aa
b�x; p�Kb�p� � Ba

bg�x; p��qbKg�p� ÿ qgKb�p�
�
;

�18�

where Aa
b�x; p� and Ba

bg�x; p� are some functions. The
antisymmetry in the indices b and g in the last term is
achieved by expressing the symmetrized partial derivative in
terms of the Killing vector components by means of Killing
equation (6). Therefore, Killing 1-form components in some
neighborhood UUp are linear combinations of the Killing form
and their exterior derivative components at the point p.

The Killing form Ka�x; p� depends on two variables. The
second variable p shows that the form has properties specified
at the point p 2MM. By assumption, representation (18) holds
at any point p 2MM: it is just necessary to know the values
K�p� and dK�p�. We suppose that the functions Ka�x; p� are
real analytic in both variables x and p.

It is assumed that the Killing form components can be
expanded in Taylor series near any point p 2MM. Let UUp be a
neighborhood of the point p where representation (18) holds
and is invertible, i.e., the variables x and p can be replaced
with some new functions A and B. We consider a point q
outside UUp. For this point, an invertible representation like
(18) also holds in some neighborhood UUq. We suppose that a
point q lies close enough to UUp such that the neighborhoods
overlap, UUp \UUq 6� ;. Then, for any point belonging to the
intersection x 2 UUp \UUq, representation (18) holds with
respect to the components of K�p� and K�q� and their
exterior derivatives. We see that the Killing form and its
exterior derivative at q can be linearly expressed in terms of
their values at p. Therefore, representation (18) holds in the
union UUp [UUq. This construction can be extended to the
whole manifold MM. As a result, representation (18) holds for
all points x; p 2MM.

We now assume that a Riemannian (pseudo-Riemannian)
manifold �MM; g� has several Killing vector fields Ki, i �
1; . . . ;N. Then representation (18) holds for each Killing

vector:

Kia�x; p�� Aa
b�x; p�Kib�p�� Ba

bg�x; p��qbKig�p�ÿ qgKib�p�
�
:

�19�

The functions Aa
b�x; p� and Ba

bg�x; p� are the same for any
Killing form, because they are defined by relation (17), which
is linear in the Killing form components and their derivatives.
They are uniquely defined by themetric, the curvature, and its
covariant derivatives. It is supposed that in the resulting
representation, the point p 2MM is arbitrary but fixed, while
the point x 2MM ranges the whole manifold MM.

Equality (17) is a system of partial differential equations
for the Killing form components and has nontrivial integr-
ability conditions. One of them has the covariant form

�Hg;Hd�HaKb � ÿRgda
EHEKb ÿ Rgdb

EHaKE ;

where the square brackets denote the commutator of
covariant derivatives. Substituting the initial equation (17)
for the second derivatives in the left-hand side of this
equation, by straightforward computation we find thatÿ

Rabg
Ed z

d ÿ Rabd
Ed z

g � Rgda
Ed z

b ÿ Rgdb
Ed z

a

�
HzKE

� �HgRabd
E ÿ HdRabg

E�KE : �20�

When the curvature is nontrivial, this equation is a linear
relation between components of the Killing formKa and their
covariant derivatives HbKa. Conversely, if we know some
properties of the Killing form, the resulting equality can
determine the structure of the curvature tensor. In Theorem
3.1 in what follows, Eqn (20) is used to prove the statement
that a homogeneous and isotropic manifold is a constant-
curvature space.

Definition. A Riemannian (pseudo-Riemannian) manifold
�MM; g� of dimension dimMM � n is called homogeneous at a
point p 2MM if there are infinitesimal isometries mapping this
point to any other point in some neighborhoodUUp of p. In other
words, the metric should have Killing vector fields with
arbitrary directions at p. Because Killing vectors form a linear
space, it is necessary and sufficient to have a set of n Killing
forms in the dual space K �g� � dx aKa

�g��x; p�, where the index g
in parenthesis labels Killing forms, such that the following
relations are satisfied:

Ka
�g��p; p� � dg

a : �21�

If a Riemannian (pseudo-Riemannian) space �MM; g� is homo-
geneous at any point x 2MM, it is called homogeneous. In other
words, the isometry group acts onMM transitively.

A Riemannian (pseudo-Riemannian) manifold �MM; g� is
called isotropic at a point p 2MM if there are infinitesimal
isometries with Killing forms K�x; p� such that the given point
is stable, i.e., K�p; p� � 0, and the exterior derivative dK�x; p�
at p takes all possible values in the space of 2-forms L2�MM�jp at
p. This happens if and only if there is a set of n�nÿ 1�=2Killing
forms K �gd� � ÿK �dg� � dx aKa

�gd��x; p�, where the indices g, d
label Killing forms, such that the following relations are
satisfied:

Ka
�gd��p; p� � 0 ; �22�

qKb
�gd��x; p�
qx a

����
x�p
� dgd

ab ÿ ddg
ab :
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If a Riemannian (pseudo-Riemannian) manifold �MM; g� is
isotropic at any point, it is called isotropic.

By continuity, it follows that the forms K �g� and K �gd� are
linearly independent in some neighborhood of p.

Proposition 3.1. Any isotropic Riemannian (pseudo-Rie-
mannian) manifold �MM; g� is also homogeneous.

Proof. If a manifold is isotropic, the Killing forms
K �g;d��x; p� and K �g;d��x; p�dp� satisfy Eqns (22) in some
neighborhoods of the respective points p and p� dp. Their
arbitrary linear combination and therefore arbitrary linear
combination of derivatives

c a
qKb

�gd��x; p�
qpa

:� c a lim
dp a!0

Kb
�g;d��x; p� dp� ÿ Kb

�g;d��x; p�
dp a

are Killing forms for arbitrary constants c a. We differentiate
the Killing form K �gd� with respect to x at the point p. From
the first relation in (22), it follows that

q
qp a Kb

�gd��p; p� � qKb
�gd��x; p�
qxa

����
x�p
� qKb

�gd��x; p�
qp a

����
x�p
� 0 :

Using the second condition in (22), we obtain the equality

qKb
�gd��x; p�
qp a

����
x�p
� ÿdgd

ab � ddgab :

Now, from K �gd� we can build Killing forms that take
arbitrary values dx aaa at the point p, where aa 2 RR. For
this, it is sufficient to assume that

Ka :� ag
nÿ 1

qKa
�gd��x; p�
qp d :

By choosing appropriate constants ag, we find a set of Killing
forms satisfying equalities (21).

Thanks to the theorem, it suffices to use the term
`isotropic universe'. However, we prefer to call it `homo-
geneous and isotropic', because this name emphasizes
important physical properties.

Theorem 3.1. The Lie algebra of infinitesimal isometries
i�MM� of a connected Riemannian (pseudo-Riemannian) mani-
fold MM has the dimension not exceeding n�n� 1�=2, where
n :� dimMM. If the dimension is maximal, dim i�MM� �
n�n� 1�=2, then the manifold MM is homogeneous and isotro-
pic, being a constant-curvature space.

Proof. The dimension of the Lie algebra i�MM� is equal
to the maximal number of linearly independent Killing
vector éelds on the manifold MM. From Eqn (19), it follows
that the number N of linearly independent Killing vectors
cannot exceed the number of independent components of
Killing forms fKa�p�g and their exterior derivatives
fqbKa�p� ÿ qaKb�p�g at a éxed point p 2MM. The number of
independent components of an arbitrary 1-form does not
exceed n, and the number of independent components of its
exterior derivative cannot exceed n�nÿ 1�=2. Thus, we énd a
restriction on the dimension of the Lie algebra of isometries
generated by Killing vector éelds:

dim i�MM�4 n� 1

2
n�nÿ 1� � 1

2
n�n� 1� :

This proves the first statement of the theorem. The real
analyticity is important here because it was used to obtain
representation (19).

The connectedness of MM guarantees that a number of
independent Killing vector fields is defined unambiguously. If
MM has several connected components, the number of
independent Killing vector fields may depend on a particular
component.

There are at most n�n� 1�=2 independent Killing vector
fields on a homogeneous and isotropic manifold. By
Eqn (19), they define all possible Killing vector fields on the
manifold MM. Consequently, if a manifold has the maximal
number of independent Killing fields, it is necessarily
homogeneous and isotropic.

We now prove that any homogeneous and isotropic
manifold is a constant-curvature space. If a manifold is
homogeneous and isotropic, for any point x 2MM there are
Killing forms such that Ka�x� � 0, while their derivatives
HbKa�x� can be arranged into an antisymmetric matrix. As a
consequence, an antisymmetric coefécient atHzKE in Eqn (20)
must be zero. It follows that

Rabg
Ed z

d ÿ Rabd
Ed z

g � Rgda
Ed z

b ÿ Rgdb
Ed z

a

� Rabg
zd E

d ÿ Rabd
zd E

g � Rgda
zd E

b ÿ Rgdb
zd E

a : �23�

If the space is homogeneous and isotropic, then for any point
x 2MM there are Killing forms taking arbitrary values at this
point. From Eqns (20) and (23), it follows that

HgRabd
E � HdRabg

E : �24�

In Eqn (23), we contract the indices d and z and then lower the
upper index. As a result, we express the curvature tensor in
terms of the Ricci tensor and the metric:

�nÿ 1�Rabgd � Rbdgag ÿ Radgbg : �25�

Because the right-hand side of (25) has to be antisymmetric in
d and g, there is the additional restriction

Rbdgag ÿ Radgbg � ÿRbggad � Raggbd :

Contracting the indices b and g yields a relation between the
Ricci tensor and the scalar curvature,

Rad � 1

n
Rgad ; �26�

where R :� gabRab is the scalar curvature. Substituting the
above relation in equality (25) results in the following
expression for the full curvature tensor:

Rabgd � R

n�nÿ 1� �gaggbd ÿ gadgbg� : �27�

Now, to complete the proof, we have to show that the
scalar curvature R of a homogeneous and isotropic space is
constant. For this, we use the contracted Bianchi identity

2HbRa
b ÿ HaR � 0 :

Substituting formula (26) for the Ricci tensor in this identity
yields the equation�

2

n
ÿ 1

�
qaR � 0 :

For n5 3, it follows that R � const.
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The case n � 2 is to be considered separately. Contracting
the indices b and E in Eqn (25) yields the equality

HgRad ÿ HdRag � 0 :

Then, contracting with g ad and using relation (26) yields the
equation qgR � 0, and henceR � const also in the case n � 2.

Thus, the scalar curvature in (27) has to be constant,
R � const, and therefore amaximally symmetric Riemannian
(pseudo-Riemannian) manifold is a constant-curvature
space.

Example 3.1. We consider the Euclidean space RRn with a
zero-curvature metric, i.e., Rabgd � 0. This space obviously
has a constant curvature. It follows that there is a coordinate
system x a, a � 1; . . . ; n such that all metric components are
constant. The Christoffel symbols in this coordinate system
are zero. Equation (17) for Killing vector éelds takes the
simple form

q2bgKa � 0 :

The general solution of this equation is linear in coordinates:

Ka�x� � aa � babx
b ;

where aa and bab are some constants. It follows from Killing
equation (6) that this expression defines the Killing form if
and only if the matrix bab is antisymmetric, i.e., bab � ÿbba.
Therefore, we can define n�n� 1�=2 linearly independent
Killing forms:

Ka
�g��x� � dg

a ;

Ka
�gd��x� � dd

a x
g ÿ dg

ax
d :

Hence, an arbitrary Killing form is the linear combination

Ka � agKa
�g� � 1

2
bdgKa

�gd� :

Here, the n Killing vectors K �g� generate translations along
coordinate axes in RRn, while the n�nÿ 1�=2 Killing vectors
K �gd� generate rotations around the origin. Thus, a zero-
curvature metric has the maximal number n�n� 1�=2 of
Killing vectors, and therefore the space is homogeneous and
isotropic.

It is known that the metric can be diagonalized by linear
coordinate transformations such that the main diagonal
elements are �1, depending on the metric signature. If the
metric is Riemannian (positive definite), it can be mapped
into the the standard form gab � dab. This metric is invariant
under the inhomogeneous rotation group IIOO�n�.

We have proved that a homogeneous and isotropic space
has constant curvature. The converse is also true. This can be
formulated in several steps.

Theorem 3.2. Let �MM; g� be a Riemannian (pseudo-
Riemannian) space of constant curvature with the curvature
tensor given by (27), where R � const is the scalar curvature.
We assume that the metric signature is �p; q�. Then, in some
neighborhood of a point x 2MM, there is a coordinate system
(stereographic coordinates) such that the metric is given by

ds 2 � Zab dx
a dx b

�1ÿ Rx 2=8�2 ; �28�

where

Z :� diag �� . . .�|���{z���}
p

ÿ . . .ÿ|���{z���}
q

� ; x 2 :� Zabx
axb :

Proof. (See, e.g., Theorem 2.4.12 in [22].)
If R � 0, then the full curvature tensor (27) is also zero. It

follows that a zero-curvature space is locally isomorphic to
the Euclidean (pseudo-Euclidean) space RR p; q, and formula
(28) holds.

We consider the case R 6� 0. Metric (28) is the induced
metric on the sphere SS p�q or the hyperboloid HH p�q embedded
into the higher-dimensional pseudo-Euclidean space RR p�1; q.
Indeed, let u; x a be Cartesian coordinates in RR p�1; q. Then the
metric takes the form

ds 2 :� du 2 � Zmn dx
m dx n : �29�

We consider the sphere (hyperboloid) embedded into the
Euclidean (pseudo-Euclidean) space RR p�1; q by means of the
equation

u 2 � Zmnx
mx n � b ; b � const 6� 0 : �30�

To simplify the calculations, we ignore the signs and domains
of the definition of the radicand, which depend on the
constant b and the signature of the metric Zmn. Both signs
and the signature can be properly dealt with in each particular
case.

We introduce spherical coordinates fx ag 7!fr; w1; . . . ;
w p�qÿ1g, where r is the radial coordinate and w denotes
angular coordinates in the Euclidean (pseudo-Euclidean)
space RR p; q �RR p�1; q. Then metric (29) and embedding
equation (30) take the form

ds 2 � du 2 � dr 2 � r 2 dO ; �31�
u 2 � r 2 � b ; �32�

where dO�w; dw� is the angular part of the Euclidean metric
(whose explicit form is not important here). Equation (32)
yields the relations

u � �
�������������
bÿ r 2
p

) du � � r dr�������������
bÿ r 2
p :

Substituting du in (31) yields the induced metric:

ds 2 � b dr 2

bÿ r 2
� r2 dO : �33�

Now, we transform the radial coordinate r 7! r as

r :� r
1� r2=�4b� ) dr � 1ÿ r2=�4b��

1� r2=�4b��2 :
Then the induced metric takes the conformally Euclidean
(pseudo-Euclidean) form

ds 2 � dr2 � r2 dO�
1� r2=�4b��2 :

Returning to the Cartesian coordinates fr; w1; . . . ;
w p�qÿ1g 7!fx ag, we find metric (28), where

R � ÿ 2

b
:
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The above construction shows that the metric on a
constant-curvature space is locally isometric to that of either
the Euclidean (pseudo-Euclidean) space �R � 0�, or the
sphere SS p�q, or the hyperboloid HH p�q, depending on the
metric signature and the sign of the scalar curvature.

Euclidean (pseudo-Euclidean) metric (29) and the hyper-
surfaces defined by Eqn (30) are invariant under the rotation
group OO�p� 1; q� transformations. Hence,

dimOO�p� 1; q� � n�n� 1�
2

; n :� p� q ;

and, in accordance with Theorem 3.1, the number of
independent Killing vectors is maximal and the space of
constant curvature is homogeneous and isotropic.

4. Symmetric tensors
on a constant-curvature space

It was shown in Section 3 that a homogeneous and isotropic
n-dimensional manifold is necessarily a constant-curvature
space with the maximal number n�n� 1�=2 of linearly
independent Killing vector fields. Such spaces are common
in applications. Moreover, they can carry other tensor fields,
for example, matter fields in general relativity. In order to
have a symmetric model, it is necessary to impose a symmetry
condition on both the metric and other fields. In this section,
we find conditions such that the simplest tensor fields on a
constant-curvature space are also homogeneous and isotro-
pic.

Let

T � dx a 
 . . .
 dxb Ta...b

be an arbitrary tensor field on a constant-curvature space SS.
To be specific, we consider covariant tensor fields.We assume
that an isometry { : x 7! x 0 is given. Then the requirement
that a given tensor field is symmetric with respect to the
isometry group has the same form as for metric (2):

T�x� � {�T�x 0� ;

where {� is the map of differential forms. This condition has
the component form

Ta...b�x� � qx 0 g

qx a . . .
qx 0 d

qx b Tg...d�x 0� : �34�

Let an infinitesimal isometry be generated by a Killing tensor
fieldK � K aqa. Then symmetry condition (34) means that the
corresponding Lie derivative vanishes:

LKT � 0 : �35�

The same symmetry condition must be satisfied for any
tensor field with both covariant and contravariant indices.

We now consider the simplest cases common in applica-
tions.

Example 4.1. Let a differentiable scalar field (function)
j�x� 2 C 1�SS� be defined on a constant-curvature space SS. The
vanishing Lie derivative condition then takes the form

K a�x�qaj�x� � 0 :

An invariant scalar field must be constant, j � const, on the
whole SS because the Killing vector field components K a�x�
can take arbitrary values at any point x 2 SS. Thus, a

homogeneous and isotropic scalar field on a constant-
curvature space SS is constant: j�x� � const for all x 2 SS.

Example 4.2. We consider a differentiable covector field
A � dx aAa. Then invariance condition (35) takes the form

K bqbAa � qaK bAb � 0 :

We choose Killing vectors such that the equality Kb�x� � 0 is
satisfied at an arbitrary but fixed point x 2 SS. Moreover,
Killing vectors can be chosen such that the partial derivatives
qbKa are arbitrary and antisymmetric at a given point.
Because qaK b � HaK

b at a given point, the equalities

qaK bAb � qaKbA
b � qgKb�dg

aA
b�

hold. It follows that

dg
aA

b � db
aA

g ;

because the construction works for any point of SS. Contract-
ing the indices a and g yields the equality

nAb � Ab :

Thus, except for the trivial case n � 1, lowering the index
yields Aa � 0. Consequently, if a covector field is homo-
geneous and isotropic, it vanishes identically.

The same is true for vector fields X � X aqa: a homo-
geneous and isotropic vector field on a constant-curvature
space SS necessarily vanishes.

Example 4.3.As a third example, we consider a differenti-
able second-rank covariant tensor Tab. We assume no
symmetry in the indices a and b. The Lie derivative of a
second-rank tensor is given by

LKTab � K gqgTab � qaK gTgb � qbK gTag :

As in the preceding case, we choose the Killing vector such
that the relationK g�x� � 0 is satisfied at a point x 2 SS and the
partial derivatives qaKb are antisymmetric. Then, equating
the Lie derivative to zero, we find

dd
aT

g
b � dd

bTa
g � dg

aT
d
b � dg

bTa
d :

Contracting the indices a and d and lowering g yields

�nÿ 1�Tgb � Tbg � gbgT ; T :� Ta
a :

Transposing the indices b and g and subtracting the resulting
expression, we obtain

�nÿ 2��Tgb ÿ Tbg� � 0 :

It follows that when n 6� 2, an invariant second-rank
tensor is symmetric. Using this symmetry, we find that

Tab � T

n
gab :

Because the trace T is a scalar, it must be constant by
symmetry arguments from the first example. Therefore, a
homogeneous and isotropic second-rank tensor on a con-
stant-curvature space is given by

Tab � Cgab ; C � const : �36�
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This formula holds at n5 3, and for the symmetric part,
at n � 2.

In the two-dimensional case, a homogeneous and iso-
tropic covariant tensor can have an antisymmetric part
proportional to the totally antisymmetric second-rank ten-
sor eab � ÿeba:

T�ab� � ÿT�ba� � Ceab ;

if the symmetry under space reflections is disregarded. The
sign of the totally antisymmetric tensor changes under
reflections: eab 7! ÿ eab. Therefore, a homogeneous and
isotropic tensor invariant under reflections in two dimen-
sions has the same form (36) as in the higher-dimensional
case.

Homogeneous and isotropic contravariant second-rank
tensors and mixed-symmetry tensors

T ab � Cgab; Ta
b � Cda

b

can be considered along the same lines. The resulting
expressions for homogeneous and isotropic tensors are used
in cosmological models, whereTab plays the role of thematter
stress±energy tensor.

5. Manifolds with maximally
symmetric submanifolds

In many physical applications, for example, in cosmology, a
Riemannian (pseudo-Riemannian) manifold MM, dimMM� n,
is a topological product of two manifolds, MM�RR� SS, where
RR is the real line identified with the time and SS is a constant-
curvature space. For any t 2 RR, there is a submanifold SS�MM.
Because SS is a constant-curvature space, it is homogeneous
and isotropic. The corresponding isometry group is generated
by n�nÿ 1�=2 Killing vectors on SS, where n :� dimMM. In this
section, we find the most general form of themetric onMM that
is invariant under the transformation group generated by the
isometry group of the submanifold SS.

Let xm, m � 1; . . . ; nÿ 1 be coordinates on the constant-
curvature space SS. Then the metric on SS is g

�
mn�x�. By

construction, it is invariant under the isometry group
generated by the Killing vector fields Ki � K m

i �x�qm,
i � 1; . . . ; n�nÿ 1�=2.

We suppose that a sufficiently smooth metric g of
Lorentzian signature is defined on the whole MM�RR� SS, and
t 2 RR is the time coordinate, i.e., g00 > 0. We also suppose
that all t � const sections are space-like. Moreover, we
assume that the restriction of the metric g to SS coincides
with g

�
mn for any fixed time. Obviously, such a metric has the

form

gab � g00 g0n
gm0 hmn

� �
; �37�

where g00�t; x� and g0m�t; x� � gm0�t; x� are arbitrary func-
tions of t and x, and hmn�t; x� is a constant-curvature metric
on SS, where t is a parameter. All the metric components are
supposed to be sufficiently smooth in both t and x. The
matrix

hmn ÿ g0mg0n
g00

is negative definite, because themetric gab is of the Lorentzian
signature. Moreover, the matrix hmn is also negative definite
by construction.

First of all, we continue the action of the isometry group
from SS to the wholeMMas follows.We suppose that the Killing
vector field components K m

i �t; x� parametrically depend on t.
We define the action of infinitesimal isometries on MM by the
relations

t 7! t 0 � t ; �38�
x m 7! x 0 m � x m � EK m; E5 1 ;

where K is an arbitrary Killing vector from the Lie algebra
generated by the vectors Ki. In other words, the isometry
transformations do not shift points on the real axis
t 2 RR�MM. This means that Killing vectors are continued to
the whole of MM such that the extra component is absent:
K 0q0 � 0. The continuation is nontrivial if the Killing vector
fields become parametrically dependent on t. The resulting
Lie algebra ofKilling vector fields continued toMM is the same.

Example 5.1. In four dimensions, Killing vector fields
continued to the whole MM�RR� SS generate the isometry
group �MM;GG�, where

SSOO�4� ; SS� SS3 (sphere),

IISSOO�3� ; SS�RR3 (Euclidean space),

SSOO�3; 1� ; SS�HH3 (two-sheeted hyperboloid).

This example is important in cosmology.
We can now define a homogeneous and isotropic space±

time.
Definition. A space±time �MM; g� is called homogeneous and

isotropic if
(1) the manifold is the topological product MM�RR� SS,

where RR is the time axis and SS is a three-dimensional constant-
curvature space endowed with a negative-definite metric;

(2) the metric g is invariant under transformations (38)
generated by the isometry group of SS.

We find the most general form of a homogeneous and
isotropic metric of the universe.

Theorem 5.1. Let metric (37) on MM�RR� SS be sufficiently
smooth and invariant under transformations (38).Then, in some
neighborhood of any point, a coordinate system exists such that
the metric is block-diagonal:

ds 2 � dt 2 � hmn dx
m dx n ; �39�

where hmn�t; x� is a constant-curvature metric on SS for all t 2 RR.
Moreover, the Killing vector field components are independent
of time.

Proof. Let x m be coordinates on SS. We fix one of the
hypersurfaces t � const. The corresponding tangent vector
has spatial components only: X � X mqm. The corresponding
orthogonal vector n aqa must satisfy the relation

n 0X ng0n � n mX ngmn � 0 :

This equality must be satisfied for all tangent vectors X,
thereby giving rise to spatial components of normal vectors

n m � ÿn 0g0nĝ
mn ;

where ĝ mn is the inverse spatial metric, ĝ mngnr � dm
r . It is easy

to show that normal vectors are time-like.

GG�

8><>:
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We now draw a geodesic through each point of the space-
like hypersurface x 2 SS along the normal direction. We
choose the geodesic length s as the time coordinate. Without
loss of generality, we can assume that the initial space-like
hypersurface corresponds to s � 0. Thus, we have built a
coordinate system fx ag � fx 0 :� s; x mg in some neighbor-
hood of the hypersurface SS.

By construction, the lines x a�t� of the form
fx 0 � s; x m � constg, where t :� s, are geodesics with the
velocity vector _x a � da

0 . From the geodesic equation

�x a � ÿGbg
a _x b _x g ;

it follows that G00
a � 0 in the coordinate system under

consideration. Lowering the index a, we find an equation for
the metric components:

q0g0a ÿ 1

2
qag00 � 0 : �40�

By construction, the time-like tangent vector q0 has unit
length. It follows that g00 � 1. Then Eqn (40) takes the form
q0g0m � 0. This differential equation can be solved with the
initial condition g0m�s � 0� � 0, because the vector n is
perpendicular to the initial hypersurface. For differentiable
functions g0m, the equation has a unique solution g0m � 0.
Thus, themetric is of block-diagonal form (39) in the resulting
coordinate system.

The hypersurfaces t � const given above are called
geodesically parallel.

So far, we have ignored the properties of constant-
curvature surfaces. The proof is general and implies that
locally there exists a `temporal gauge' for the metric (or the
synchronous coordinate system).

By construction, the zeroth component of the Killing
vector vanishes, K 0�0; x� � 0, on the hypersurface s � 0.
The �0; 0�-component of the Killing equations, which can be
more conveniently written in form (9), yields the equation
qsK 0�s; x� � 0. For sufficiently smooth functions, this equa-
tion with the initial condition K 0�0; x� � 0 has a unique
solution, K 0�s; x� � 0, for all s admissible in the coordinate
system. As a result, all hypersurfaces s � const in some
neighborhood of the initial hypersurface have constant
curvature.

If metric (39) is block-diagonal, then the �0; m�-compo-
nents of Killing equations (9) take the form qsK m � 0. It
follows that the Killing vector field is independent of time.

The spatial �m; n�-components of the Killing equations are
satisfied because K is a Killing vector field on SS.

Returning to the original notation s 7! t, we obtain
metric (39).

Hilbert introduced coordinates in which the metric takes
block-diagonal form (39) (see Eqn (22) in his paper [12]). The
resulting coordinate system was called Gaussian. However,
the corresponding spatial sections were not constant-curva-
ture spaces, and Killing vector fields were not considered.

If the metric is block-diagonal, Eqn (39), and K � K mqm,
then Killing equations (9) split into temporal and spatial
components:

�a; b� � �0; 0� : 0 � 0 ; �41�
�a; b� � �0; m� : hmnq0K n � 0 ; �42�
�a; b� � �m; n� : hmrqnK r � hnrqmK r � K rqrhmn � 0 : �43�

Theorem 5.2. Under the assumptions of Theorem 5.1,
metric (39) has the form

ds 2 � dt 2 � a 2g
�
mn dx

m dx n ; �44�

where a�t� > 0 is an arbitrary sufficiently smooth function (the
scale factor) and g

�
mn�x� is a constant-curvature metric depend-

ing only on spatial coordinates x 2 SS.
Proof.Killing equations (43) are satisfied because hmn�t; x�

is a constant-curvature metric on SS for all t 2 RR. Theorem 5.1
asserts that Killing vector fields are independent of time.
Thus, differentiating equations (43) in time, we find the
relation

_hmrqnK r � _hnrqmK r � K rqr _hmn � 0 :

This implies that the time derivative of the metric _hmn is a
homogeneous and isotropic second-rank tensor. Example 4.3
says that the time derivative must be proportional to the
metric itself:

_hmn � f hmn ; �45�

where f �t� is a sufficiently smooth function of time.
If f � 0, the proof is trivial, and the metric is already of

form (44) for a � const.
Letting f 6� 0, we introduce a new temporal coordinate

t 7! t 0 defined by the differential equation

dt 0 � f �t� dt :

Equation (45) then takes the form

dhmn
dt 0
� hmn :

The general solution is given by

hmn�t 0; x� � C exp �t 0�g�mn�x�; C � const 6� 0 ;

where g
�
mn�x� is a constant-curvature metric on SS, which is

independent of time. Hence, representation (44) follows.
Theorem 1.1 follows from Theorems 5.1 and 5.2.

6. Example

The explicit form of the Friedmannmetric for a homogeneous
and isotropic universe, Eqn (44), depends on coordinates on
the constant-curvature space. The Friedmann metric in the
stereographic coordinates is diagonal:

g �
1 0

0
a 2Zmn

�1� b0x 2�2

0@ 1A ; �46�

where b0 � ÿ1; 0; 1, Zmn :� diag �ÿ ÿ ÿ� is the negative-
definite Euclidean metric and x 2 :� Zmnx

mx n 4 0. Because
the metric on spatial cross sections is negative definite, the
values b0 � ÿ1; 0; 1 correspond to the respective spaces of
negative, zero, and positive curvature. In the cases of positive
and negative curvature, the stereographic coordinates are
defined on the whole Euclidean space x 2 RR3. In the positive-
curvature case, the stereographic coordinates are defined in
the interior of the ball jx 2j < 1=b0.
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We transform the coordinates as x m 7! x m=a. The result-
ing metric takes a nondiagonal form, while the conformal
factor disappears:

g �
1�

_b 2x 2

4b 2�1� bx 2�2
_bxn

2b�1� bx 2�2
_bxm

2b�1� bx 2�2
Zmn

�1� bx 2�2

0BBBB@
1CCCCA ; �47�

where

b�t� :� b0
a 2�t� �48�

and the dot denotes the time derivative.
We see that the metric of a homogeneous and isotropic

universe can be nondiagonal without the conformal factor.
Moreover, the scalar curvature of spatial cross sections,
which is proportional to b�t�, explicitly depends on time.

Now, we simply discard off-diagonal elements, choose
g00 � 1, and add the scale factor. Then the metric takes the
form

g �
1 0

0
a 2Zmn

�1� bx 2�2

0@ 1A : �49�

This metric contains two arbitrary independent functions of
time: a�t� > 0 and b�t�. It is nondegenerate for any b,
including zero. All t � const sections of the corresponding
space±time are obviously spaces of constant curvature and
are therefore homogeneous and isotropic. The metric is
interesting because, in general, it can be used to analyze
solutions passing through the zero b � 0. If such solutions
exist, the spatial cross sections change the curvature from
positive to negative values and conversely during the time
evolution.

We cannot eliminate an arbitrary function b�t� by means
of a coordinate transformation without producing off-
diagonal terms.

There is a curious situation. On one hand, all spatial
sections ofmetric (49) are homogeneous and isotropic. On the
other hand, any homogeneous and isotropicmetricmust have
form (1). The key is that metric (49) is in general not
homogeneous and isotropic. Indeed, each t � const section
of the space±timeMM is a constant-curvature space, and spatial
�m; n�-components of Killing equations (32) are satisfied, but
the mixed �0; m�-components are not. In the stereographic
coordinates, six independent Killing vectors of the spatial
section are expressed as

K̂0m � �1� bx 2�qm ÿ 2

b
xmx

nqn ;
�50�

K̂mn � xmqn ÿ xnqm ;

where the indices m; n � 1; 2; 3 label Killing vector fields. The
first three Killing vectors generate translations at the
coordinate origin x 2 � 0, while the last three generate
rotations. We see that the first three Killing vector fields
explicitly depend on time through the function b�t�, while
Eqns (42) are not satisfied.

There is another method to see that metric (49) is not
homogeneous and isotropic. Direct calculation yields the

scalar curvature:

R � ÿ 24b

a 2
� 6

�
�a

a
� _a 2

a 2
ÿ 1

1� bx 2

�
4

_a _bx 2

a
� �bx 2

�
� 3

_b 2x 4

�1� bx 2�2
�
;

which explicitly depends on x, and the metric is therefore not
homogeneous and isotropic.

This example shows that the homogeneity and isotropy of
spatial sections are not sufficient for the complete four-
dimensional metric to be homogeneous and isotropic. An
equivalent definition is as follows.

Definition. A space±time is called homogeneous and iso-
tropic if

(1) all constant-time t � const cross sections are constant-
curvature spaces SS;

(2) the extrinsic curvature of hypersurfaces SS ,!MM is
homogeneous and isotropic.

The definition of the extrinsic curvature of embedded
surfaces can be found, e.g., in [19, 23]. In our notation, the
extrinsic curvature Kmn for block-diagonal metric (39) is
proportional to the time derivative of the spatial part of the
metric:

Kmn � ÿ 1

2
_hmn :

The last definition of a homogeneous and isotropic space±
time is equivalent to the definition given in Section 5. Indeed,
the first condition implies that the space±time is a topological
product MM�RR� SS. It follows that the metric can be mapped
into block-diagonal form (39). Then the second condition in
the definition yields Eqn (45), and we can therefore follow the
proof of Theorem 5.2.

We note that the second condition in the definition of a
homogeneous and isotropic universe is necessary because
metric (49) provides a counterexample.

7. Conclusion

In this paper, we have given two equivalent definitions of a
homogeneous and isotropic space±time. We also explicitly
proved Theorem 1.1, which describes the most general form
of a homogeneous and isotropic metric up to a coordinate
transformation. This is the Friedmann metric. Although the
theorem is known, its proof and corresponding definitions
are difficult to find in the literature. It seems that the proof
of Theorem 5.2 and the second definition of a homogeneous
and isotropic space±time were not known before. The proof
of Theorem 5.2 is simple, but not simpler than the one in
book [16]. However, it is well adapted to proving the
equivalence of the definitions.

The research was supported by the Russian Science
Foundation (project No. 14-50-00005).
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