
Abstract. The modulational instability mechanisms of intense
Langmuir oscillations in a plasma are reviewed both for field
energy densities below (Zakharov's model) and above (Silin's
model) the plasma's thermal energy density. It is shown by a
one-dimensional example that V E Zakharov's mechanism
involving nonlinear absorption of Langmuir oscillations in plas-
ma also holds for intense cold plasma fields described by
V P Silin's model. It is also shown that the development me-
chanisms of the modulational instability of Langmuir oscilla-
tions are similar for nonisothermal and cold plasmas. Hybrid
models treating electrons quasihydrodynamically and ions as
particles are analyzed in detail, which allows the study of the

direct mechanism by which energy is transferred to ions in the
instability development process.

Keywords: modulational instability, parametric instability, noni-
sothermal and cold plasmas, Zakharov's model, Silin's model,
hybrid models

1. Introduction

Intense Langmuir waves in plasma, which are easily excited
by different sources [1±9], turn out to be parametrically
unstable. This instability is responsible for the excitation of
a short-wavelength oscillation spectrum synchronized in
frequency to the intense Langmuir (pump) wave and for the
formation of deep plasma density caverns filled with a high-
frequency (HF) field. Interest in these processes was due, in
particular, to the opening up of the feasibility of electron and
ion heating. The correct tools for describing the parametric
instability of long-wavelength Langmuir oscillations were
practically developed in the basic work by V P Silin [10] and
V E Zakharov [11]. Even the first one-dimensional numerical
experiments on the parametric decay of Langmuir oscilla-
tions [12] bore out these theoretical predictions [7] (see also
Refs [13, 14] and review [15]). The complete theory of
parametric plasma oscillation decay was presented in mono-
graph [16] more recently.

However, the pronounced interest of the scientific
community was aroused by the effective mechanism of
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wave energy dissipation discovered and clarified by
V E ZakharovÐthe collapse of Langmuir waves in non-
isothermal plasmas [17]. This is the formation of the short-
wavelength perturbation spectrum and plasma density
caverns, which may be described by Zakharov's equations
[17], which were derived with the use of hydrodynamic
equations for electron and ion fluids assuming that the
energy density of the long-wavelength Langmuir field was
lower than the thermal energy density of plasma electrons. In
Zakharov's hydrodynamic model, localization domains of
short-wavelength Langmuir oscillations emerge. The plasma
is forced out of these domains (caverns) under HF radiation
pressure, so that the plasma density turns out to be
appreciably lower than the volume average density. The
subsequent evolution may lead to a so-called collapseÐ the
shrinkage and deepening of the density cavern (the so-called
peaking mode). In this case, the cavern shrinkage, as may be
seen from more general models describing this phenomenon,
should be attended by the electron damping of small-scale HF
spectrum modes and the cavern `collapse' due to HF field
burnup (so-called `physical collapse').

Even early in the study of these processes, analytical
investigations as well as hardware and numerical experi-
ments bore out [18±21] the fact that an appreciable energy
fraction of intense Langmuir oscillations in a nonisothermal
plasma is converted to the energy of the short-wavelength
Langmuir spectrum due to modulation instability. A like
effect was also discovered in stronger fields in cool plasmas
[22, 23], where the field±particle energy transfer mechanism
turned out to be similar. This signifies that the nonlinear
mechanism of Langmuir oscillation absorption operative
when the thermal plasma energy density exceeds the energy
density of theHFfield,whichwasdiscoveredbyVEZakharov
[17], turned out to be applicable also to fields whose energy
density is far greater than the thermal plasma energy.
Subsequently, there followed a wealth of papers dedicated to
this phenomenon, which is of utmost importance to plasma
physics (see, for instance, Refs [24±34]). Special mention
should be made of a paper by E A Kuznetsov [35], who most
correctly derived Zakharov's model equations describing the
modulation instability of Langmuir waves in nonisothermal
plasmas. The reader is referred to reviews [36, 37], which give
an idea of the scale and efficiency of this research.

The phenomenon of wave energy absorption due to the
development of small-scale modulation instability discovered
by V E Zakharov has been elaborated in several applications.
Many models describing these processes differ from the
previous traditional ones, more and more new features are
revealed, and new implications of modulation instability
development are highlighted.

It is clear that there is no way of including several kinetic
effects (for instance, Landau damping) in a hydrodynamic
model. That is why use is commonly made of a phenomen-
ological description of this phenomenon by introducing the
corresponding terms into the system of hydrodynamic
equations. This is admissible to a certain degree, because the
nature of Landau damping has been adequately studied. On
the other hand, the behavior of particles trapped by a spatially
nonuniform field is not quite correctly described by a purely
hydrodynamic treatment: their inertia (significant precisely
for ions) is in fact ignored. This gives rise not only to deep
plasma density caverns of a very small scale, but also to
peaking modes, which are not always adequate for the
physical reality.

To correctly include Landau damping by electrons,
advantage is frequently taken of the kinetic equation for
their distribution function. However, it is good to bear in
mind that the kinetic damping due to electrons can, under
certain conditions, disturb the conditions for modulation
instability development by suppressing the field even at the
stage of forming caverns which may be distorted in shape in
the process. Therefore, there are problems in the interpreta-
tion of the process of modulation instability, whose character
may markedly change on engaging strong kinetic damping.
Furthermore, the kinetic approach, like the hydrodynamic
one, describes the motion of a continuous medium and allows
the existence of physically unpromising solutions with
peakings reaching arbitrarily small scales.

Below, we discuss different models for describing the
modulation instability of intense Langmuir oscillations in
plasma in a one-dimensional representation. As noted by
J M Dawson [38], the choice of one-dimensional models
retains the main features of the processes, while signifi-
cantly simplifying the description and understanding of the
physical phenomena. Furthermore, the main difficulty in
describing plasma in three-dimensional models is not only
the difference in electron and ion masses, but also a very
large number of particles (electrons and ions)Ðon the
order of 1012ÿ1015 or more per unit volumeÐcompeling
the construction of rather intricate models, which never-
theless still remain approximate. This hinders the compar-
ison between hydrodynamic, kinetic models and models
that use, partly or fully, descriptions with the aid of large
particles, particle-in-cell (PIC) method, etc., simulating the
behavior of ions and electrons.

In the one-dimensional models corresponding to the
three-dimensional case given above, the number of particles
corresponding to ions and electrons is on the order of
104ÿ105 per unit volume, and these particles are therefore
close in characteristics to plasma ions and electrons. There-
fore, a description involving particles may turn out to bemore
correct in the framework of a one-dimensional model than a
hydrodynamic description or a description based on the
kinetic equations for their distribution function. This may
permit elucidating the question of the appropriateness of
different ways of process description.

1.1 Nonisothermal plasma
The greatest progress was achieved in the study of the
modulation instability of an intense Langmuir field in
nonisothermal plasmas for a field energy density well below
the electron thermal energy density.

In the one-dimensional case, in a nonisothermal plasma a
small-scale soliton-like cavern forms, where the HF radiation
pressure is balanced by the plasma electron pressure (see, for
instance, Ref. [39]). However, it is possible to observe the
`collapse' of plasma density caverns in these low-dimensional
cases, too, when the HF pressure lowers due to field burnup
caused by Landau damping [40]. Broadly speaking, the
cavern collapse maintains the heating of not only electrons
but also ions; it increases the entire plasma pressure, which
also disturbs the equilibrium state of these structures. In a
supersonic mode of cavern wall motion, the probability of a
physical collapse may rise even in the one-dimensional case.
The modulation instability of an intense Langmuir wave in a
nonisothermal plasma has also resulted in collective ion
excitations, and in the generation of ion-acoustic waves, in
particular [41±44].
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A comparison between the one-dimensional Vlasov±Pois-
sonkineticmodel, which describes the behavior of electrons and
ions with the aid of kinetic equations for the distribution
functions, and Zakharov's hydrodynamic model at the same
parameter values and the same initial conditions was under-
taken, for instance, inRef. [45],where the amplitude of the long-
wavelength field (the pump) did not vary with time. The most
adequate was the comparison for the nonisothermal plasma
case. In the cavern formation early in the nonlinear process in
the constant pump mode, one can see differences in the
formation of density caverns whose shape in the kinetic model
does not correspond to the perturbation structure typical for
themodulation instability. Although in both cases theHF field-
induced plasma expulsion gives rise to lower-density domains,
the magnitude of density changes in Zakharov's model turned
out to be significantly larger than in the Vlasov±Poissonmodel.
Therefore, it was shown that kinetic field damping on plasma
particles can distort the modulation instability process and,
perhaps, lead to other consequences, in particular, giving rise to
groups of fast particles and early disruption of density caverns.

It is highly instructive to compare Zakharov's hydro-
dynamic model with the model which describes electrons
using the kinetic equations for their distribution function
and treats ions hydrodynamically [46]. The case of constant
pumping was also considered here. This model describes
much better the formation of caverns typical for a developed
modulation instability, which are hardly different, early in the
nonlinear process, from the structures of this kind in
Zakharov's hydrodynamic model. A remark is in order
regarding the models which apply this kinetic description of
the electron plasma component and the hydrodynamic
approach to the ion component: not only do they permit
describing the formation of plasma density caverns, but they
are also able to determinemore precisely the characteristics of
the electron velocity distribution, in particular, the electron
temperature, although they remain unable to provide an
answer to questions regarding the ion energy distribution.

In the representation of ions by particles in the framework
of the so-called hybrid models1 (the electrons are described
hydrodynamically, and the ions are treated as large particles),
ion density fluctuations prove to be quite significant [47±49],
at least in the one-dimensional Zakharov's nonisothermal
plasma models under discussion. This speeds up the develop-
ment of modulation instability to the extent that the linear
stage of perturbation growth practically escapes observation
(although this, as noted below, is due to the fact that the
instability increment turns out to be almost the same
throughout a wide range of wavenumber values for the
supersonic modes of the process under discussion).

A treatment in the framework of such hybrid models
would permit taking into account the inertia of ions in the
formation and evolution of plasma density caverns, in
particular, the mechanism of cavern collapse. It is precisely
the direct simulation of the collapse by the particle method
that is `most consistent', in the view of V E Zakharov and his
colleagues expressed in Ref. [50]. Indeed, the kinetic and
hydrodynamic descriptions operate on objects that are small
phase volumes rather than particles, and these phase volumes
become arbitrarily small when passing to the classical limit.
This leads to a smaller inertia of the substance than in its
description by particles.

As for the description methods with the aid of large
particles in high-dimensional models, this is another
extreme. Large particles possess excessive inertia and, there-
fore, they are quite often replaced with local objectsÐ
computation cellsÐ in which the inner contents are aver-
aged. This brings such an approach closer to the hydro-
dynamic scale description, retaining the features of the large-
particle technique and their averaged inertia on a long scale. It
is possible to increase the number of model particles in the
description, decreasing the fraction (charge and mass) in each
of them, although it is hardly possible to approach the real
physical parameters in the three-dimensional (3D) space.

In what follows, the emphasis is placed on one-dimen-
sional hybrid models. For one-dimensional simulations, we
employ �2ÿ5� � 104 model ion-particles (which would
correspond to 1013ÿ1014 such objects in the volume under
consideration in the 3D model), with the characteristics of
these particles already corresponding to single ions. That is
why the dynamics of ion-simulating particles in this case is
largely adequate to the dynamics of plasma ions; further-
more, the particle±field energy exchange mechanisms corre-
spond to the real interaction of ions with the low-frequency
(LF) oscillation spectrum. This signifies that one-dimensional
hybrid models with a large number of particles are able to
provide a correct description of the nonlinear Landau
damping of slow plasma density perturbations on the ions,
leaving beyond the scope of this approach the problems of
describing the details of the electron distribution function.
The inclusion of the nonresonance interaction of ion-particles
with LF spectrum modes and the capture of ions in the
potential wells of such oscillations result in an additional
instability of density caverns arising due to modulation
instability, as well as in the emergence of fast particle groups.

The authors of Ref. [49] undertook a comparison between
two modelsÐ the hydrodynamic and hybrid Zakharov'sÐ
at the same parameter values and the same initial conditions.
Because of a higher level of ion density fluctuations, the
number of caverns in the hybrid model turned out to be
appreciably larger, and they were less deep than in Zakha-
rov's model. The integral characteristics of both models
proved to be practically the same. A drawback of the work
performed by these authors is a nonself-consistent descrip-
tion, i.e., neglect of the effect of the spectrum under excitation
on the pump wave. It should be emphasized that in the cases
of description based on the hydrodynamic Zakharov's model
[49] and of the description in the framework of kinetic
equations for the electron distribution function and hydro-
dynamic treatment for ions [51], the caverns remained
immobile, which was not observed in the hybrid model.

1.2 Cold plasma
With the advent of high-power energy sources, which excited
highly intense Langmuir oscillations whose field energy
density was far greater than the electron thermal energy
density, the model developed by V P Silin [10, 16] and further
elaborated by him and his coworkers when describing the
parametric instability of an intense field in a cold plasma
came into demand. Under these conditions, the dispersion
term in the equation for the Langmuir wave field caused by
thermal plasma motion is rather small and, assuming the
plasma to be cold, may be ignored in many cases.

Indeed, when the field energy density is appreciably higher
than the plasma thermal energy density, modulation instabil-
ity develops, at least early in the process, according to the1 This name was proposed by Clark et al. [49].
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scenario proposed by Silin et al. [10, 22], in whose models a
powerful Langmuir wave in a cold plasma induces intense
electron velocity oscillations whose amplitude is comparable
to the wavelength of the modes of the spectrum under
excitation. In this case, generally speaking, the instability
should be termed parametric [16]. Both Zakharov's and
Silin's models nevertheless turn out to be physically similar
[52]. This is precisely why the term `modulation instability'
applies to the description of the instability of the powerful
Langmuir field in Silin's model as well.

Notably, even in one-dimensional numerical simulations
of the process, proceeding from the hydrodynamic Silin
equations generalized in Refs [53, 54], the modulation
instability developed and a partial energy exchange occurred
between its short-wavelength spectrum and an intense pump
wave. The results of such simulations are in qualitative and
quantitative agreement with the results of numerical experi-
ments performed earlier at the PNLebedev Physical Institute
[22]. A peaking mode, which was characterized by a short-
ening of the cavern scale length and simulation breakdown,
could be observed. It is the latter circumstance that compelled
us to move to a description of ions as particles.

In the hybrid Silin model (electrons are hydrodynamically
described, and ions are treated as large particles), in precisely
the same way density caverns formed, which then collapsed
[48]. This was caused not only by the nonequilibrium initial
state of the caverns (due to violation of the balance between
the HF pressure and the plasma pressure) and the field
burnup effect, but also by the inclusion of inertia of ion-
simulating particles whose number was not large enough in
the numerical experiments. In this case, the ion cavern
`collapsed' and the ion component passed into the particle
trajectory crossing mode [47, 48]. The energy extracted by the
ions was on the order of �me=M�1=3 fraction of the initial
energy of the pumpwave [48] (here,me andM are the electron
and ion masses, respectively). For electrons, the passage to
the trajectory crossing mode could be restrained by the
existence of the ion cavern, which was capable of synchroniz-
ing the ejection of fast electrons and ions at the instant of its
collapse. Experiments were made to produceÐ in the vicinity
of the plasma resonance in a nonuniform plasmaÐa close-
to-Langmuir-frequency field with a high energy density W
exceeding the plasma thermal energy density ne0Te0. These
experiments demonstrated the generation of short fast-
particle pulses against the background of electron heating in
the vicinity of the plasma resonance. In this case, the energy
was removed from the domain of plasma resonance not only
by electrons, but also by ions [55±57] of rather high energy
(see, for instance, review [57]). The domains of electron pulse
sources corresponded to the small dimensions of the plasma
density caverns. The energy fraction stored in the fast ions
after the cavern collapse was roughly consistent with the
theoretical values given in Refs [48, 58±60].

In the literature, the instability of oscillatory electron
motion at the Langmuir frequency relative to immobile ions
was quite often referred to as the oscillatory Buneman
instability. The similarity between the Buneman instability
and the Langmuir wave instability in a cold plasma is attested
to by the fact that the increments and the initial velocities of
the relative motion of electrons and ions are approximately
equal. An analysis of Buneman instability development was
outlined in monograph [6], where a lowering of the velocity
(current disruption) of the relative motion and a growth of

perturbations of the electron and ion components were
observed at the nonlinear stage of the process. This is in
qualitative correspondence with the processes occurring in
the development of the parametric instability of an intense
Langmuir wave in a cold plasma.

The parametric instability of Langmuir waves under the
applicability conditions of Zakharov's equations and Silin's
equations was usually discussed by theorists separately,
although quite often these processes were not distinguished
in experiments. It would therefore be instructive to compare
the behavior of the parametric instability of intense Langmuir
oscillations in hot and cold plasmas in the framework of
hybrid self-consistent models. The bulk of attention was
directed towards the behavior of the ion plasma component.
It turned out that the HF field energy fraction transferred to
ions in the nonisothermal plasma was on the order of
W=n0Te0, while in the cold plasma case an estimate [48] on
the order of �me=M�1=3 was confirmed. In the latter case, the
fraction of fast particles in their energy distribution turned
out to be larger [58±60].

In our paper, special emphasis is also placed on a
comparison of the character of exciting the collective degrees
of freedom in low-frequency motions, particularly, of the
generation of ion waves in the hybrid Zakharov and Silin
models. It is also important to elucidate how the rate of HF
field burnup in plasma caverns affects the character of ion
dynamics. These and other questions are discussed below.

1.3 Comparison between Zakharov's and Silin's models
The main objective of this paper is to discuss different one-
dimensional models in order to describe the modulation
instability of intense long-wavelength Langmuir oscillations
and to elucidate the features of energy transfer to ions and
collective ion perturbations in nonisothermal and cold
plasmas [59±61].

As shown below, the description of the parametric
instability of the intense long-wavelength Langmuir field in
plasmas with the excitation of a short-wavelength Langmuir
oscillation spectrum is universal both for a cold plasma
(i.e., when the field energy density exceeds the thermal
energy density of the medium, W � jE0j2=4p4 n0Te) and
for a nonisothermal plasma (when the plasma thermal
energy density exceeds the field energy density, W �
jE0j2=4p5 n0Te, where E0 is the initial strength of the long-
wavelength Langmuir wave field, n0 is the unperturbed
plasma density, Te is the electron temperature, and the ions
are assumed to be cold). To obtain the systems of equations
for each of Silin's and Zakharov's models, we therefore take
advantage of the approach outlined in V P Silin's book [16].

Although the Silin andZakharovmodels under discussion
were intended for different physical conditions, constructed
relatively long ago, and developed independently for a long
time, there has so far been no clear understanding of the close
relationship between them. In this study, we endeavored to
demonstrate this relationship and highlight the similarity of
the physical mechanisms underlying the phenomena
described by these models, which is important, in particular,
from the methodological standpoint.

2. Cold plasma: one-dimensional Silin equations

First, let us consider the development of parametric instabil-
ity of an external high-intensity long-wavelength Langmuir
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field for a cold plasma, i.e., when the field energy density
exceeds the thermal energy density of the medium:
W � jE0j2=4p4 n0Te. The quasihydrodynamic equations
for particles of sort a are given in the form [16]

qva
qt
� u0a

q
qx

va ÿ ea
ma

E � ÿva q
qx

va ; �2:1�

qna
qt
� u0a

q
qx

na � n0a
q
qx

va � ÿ q
qx
�nava� ; �2:2�

q
qx

E � 4p
X
b

ebnb ; �2:3�

where a � e and a � i stand for electrons and ions, respec-
tively.

The particles are in the field of an external wave (its
wavelength is assumed to be infinite for simplicity of
calculations) and oscillate with a velocity u0a �
ÿ�eajE0j=mao0� cosF.

The components of the external wave field strength are
defined as follows:

E0� ÿ i

2

�jE0j exp �io0t� if�ÿ jE0j exp �ÿio0tÿ if�� : �2:4�
Eliminating

En � ÿ 4pie�ni; n ÿ ne; n�
k0n

;

in the Fourier representation we rewrite the first equation of
system (2.1)±(2.3) in the following form
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Below, we take advantage of the following variables
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where
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0
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In this case, Eqns (2.1) and (2.2) may be written out as
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n�ek0E0=meo2
0� � n�ek0E0=meo2

0� � an, where the quantity
kn � nk0 defines the discrete set of the wavenumbers of the
short-wavelength spectrum modes. For electrons, Eqns (2.9)
and (2.10) may be written out in the form

qne; n
qt
ÿ ye; nik0nen0 � ÿik0n

X
m

ne; nÿmye;m ; �2:11�

qye; n
qt
ÿ 4pei
k0nme

ÿ
ne; n � ni; n exp �ian sinF�

�
� ÿik0

X
m

mye; nÿmye;m : �2:12�

We resort to the representation
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and to the well-known expansion
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Expressions (2.16) and (2.17), which are proportional to
J0�an�, correspond to slow motions, while expressions (2.18)
and (2.19), which are proportional to J�2�an�, are determined
by the contribution from the second harmonic to the
nonlinearity.

In Refs [52, 53], use was made of the representation
u
��1�
n � �k0nen0v ��1�n =o0 � ik0nE

��1�
n =4p, where v

��1�
n �

� ieE
��1�
n =mo0. In this case, we collect on the right-hand

side the terms responsible only for electron nonlinearity to
obtain the equation for short-wavelength perturbations in the
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following form
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u ��1�n

� ini; n
o2

peJ�1�an� exp ��if�
2o0

�
exp ��io0t�

� o2
0

en0
n exp ��io0t�

X
m

ni; nÿm
m

�
u ��1�m J�2�anÿm� exp ��2if�

� u ��1�m J0�anÿm�
� � k0nen0

o0
I ; �2:20�

where the electron nonlinearity contribution Imay be written
out as

I � ÿ q
qx

�
v ��1�

�
qv �1�

qx
v �ÿ1� ÿ qv �ÿ1�
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� v ��1� q2

qx 2
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� v ��1� q
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qx
v ��1�

�
� v ��1� q

qx

�
qv ��1�

qx
v ��1�

�
:

It is evident that the right-hand side of Eqn (2.20), which
corresponds to the contribution of electron nonlinearity in
the one-dimensional case under consideration, is equal to
zero, which was independently noted inVP Silin's [10, 15] and
V E Zakharov's [11] work earlier.

If the resonant field is represented in the form
�E �1�n exp �io0t�� E

�ÿ1�
n exp �ÿio0t��=2, as was done in

E A Kuznetsov's work [35] [see Eqn (3.10) below], then
E
��1�
n ! E

��1�
n =2 � ÿ4piu ��1�n =k0n and Eqn (2.20) may be

written out differently:

qE ��1�n

qt
� i

o2
pe ÿ o2

0

2o0
E ��1�n � 8popeni; n

2k0n
J�1�an� exp ��if�

� i
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2en0

X
m

ni; nÿm
�
E ��1�m J�2�anÿm� exp ��2if�

� E ��1�m J0�anÿm�
� � 0 : �2:21�

The equation for the pump wave is also given by:

qE ��1�0

qt
� i

o2
pe ÿ o2

0

2o0
E
��1�
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� 8po0

2en0k0

X
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ni;ÿm
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�
u ��1�m J�2�aÿm� exp ��2if�

� u ��1�m J0�aÿm�
� � 0 : �2:22�

From the pumpwave representation corresponding to the
selected oscillation velocity u0a � ÿ�eaE0=mao0� cosF, we
obtain 2 E0 ! ÿiE0 and E �0 ! iE �0 , and Eqn (2.22) for E0

may be rewritten [52] by expressing the density perturbations

in terms of the electric field strengths of the modes:

qE0

qt
ÿ iDE0 � ÿ o0

2en0

X
m

ni;ÿm
�
E �ÿ1�m J2�am� exp �2if�

� E ��1�m J0�am�
�
; �2:23�

where D � �o2
pe ÿ o2

0�=2o0. Here, again, the terms propor-
tional to J0�an� on the right-hand side of Eqn (2.23)
correspond to slow motions, while the terms proportional to
J�2�an� are determined by the contribution of the second
harmonic to the nonlinearity.

The slowly time-varying electric field strength may be
represented as

�En � ÿ 4pi
k0n

ni; n

�
1ÿ J 2

0 �an� �
2
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J 2
2 �an�

�

� 1

2
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�
ÿ ink0
16pen0
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X
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m exp �ÿ2if�

� E �ÿ1�nÿmE �ÿ1�m exp �2if�� : �2:24�

This permits describing ions by large particles, whose
equations of motion are of the form

d2xs
dt 2
� e

M

X
n

�En exp �ik0nxs� ; �2:25�

and the ion density is defined by the relationships

ni; n � eni; n � en0
k0
2p

� p=k0

ÿp=k0
exp

ÿÿink0xs�xs0; t��dxs0 : �2:26�
It should be noted that the description of ions as large

particles, as shown in Ref. [48], permits, among other things,
improving the stability of the numerical computation scheme.
Using Eqns (2.9) and (2.10), in which the right-hand sides
may be ignored due to their smallness, it is possible tomove to
a hydrodynamic ion description. In this case, the equation for
the ion density assumes the form [52]

q2ni; n
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X
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J0�an�E �1�nÿmE
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64p2en0
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X
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�1�
m exp �ÿ2if�

� E �ÿ1�nÿmE
�ÿ1�
m exp �2if��� : �2:27�

As is easily verified, for the lower sign the complex-
conjugate Eqn (2.22) takes on the form (in the summation,

2 This practically implies that jE0j exp �if� ! jE0j exp �ifÿ ip=2�, since
the phase f0 � ip=2 is related to the choice of the form of the oscillation

velocity.
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the umbral index may be replaced, m! ÿm)

q�E �ÿ1�ÿn ��
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� � 0 : �2:28�

At the same time, for positive indices this equation may be
written out as

qE �1�n

qt
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pe ÿ o2
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� E �1�m J0�anÿm�
� � 0 : �2:29�

It is easy to see that Eqns (2.28) and (2.29) are identical
at E

�ÿ1�
ÿn � �E �1�n �� and ni;ÿn � n �i; n. In precisely the same way,

it may be verified that similar transformations yield
E
�ÿ1�
n � �E �1�ÿn �� and ni; n � n �i;ÿn. The ion charge perturba-

tions possess symmetry: ni;ÿn � n �i; n. In this case, to correctly
describe the instability process, it would suffice to use the HF
field componentsE

�1�
n ,E

�1�
ÿn , andE

�1�
0 , as well as the ion charge

perturbations ni; n for positively defined values of index n. This
can be done, since the remaining quantities are expressed in
terms of them, i.e., it is possible to abandon the use of the
upper index. Under these conditions, the systems of equations
of the hydrodynamic (2.21), (2.23), (2.27) and hybrid (2.21),
(2.23), (2.26) models can be written out in the form as follows.

2.1 Equations of Silin's hydrodynamic model
under the conditions W � jE0j2=4p4 n0Te

In this case, the equations have the form
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�
:

2.2 Equations of Silin's hybrid model under the conditions
W � jE0j2=4p4 n0Te

In this case, the equations take on the form
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�En exp �ik0nxs� ; �2:31�

ni; n � en0
k0
2p

� p=k0

ÿp=k0
exp

ÿÿink0xs�xs0; t��dxs0 ;
qE0

qt
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2en0
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E �ÿmJ2�am� exp �2if� � EmJ0�am�

�
:

The term y�n=nM�6En in the first equations of systems (2.30)
and (2.31) models the damping of HF spectrum modes on
electrons, with nM � 20 and D � �o2

pe ÿ o2
0�=2o0. Further-

more, a dispersion term proportional to b� k20v
2
Te=2o0 was

added to the first equations of systems (2.30) and (2.31).

3. Nonisothermal plasma:
one-dimensional Zakharov equations

Let us derive the equations describing the instability of
intense long-wavelength Langmuir field in a nonisothermal
plasma with the excitation of a short-wavelength Langmuir
oscillation spectrum, when the thermal energy density of the
plasma exceeds the field energy density:W � jE0j2=4p5 n0Te

(the so-called Zakharov model). The plasma electron beha-
vior may be described hydrodynamically, when the phase
velocities of the Langmuir waves exceed the electron thermal
velocity. The ions may also be described both hydrodynami-
cally and as large particles. As noted above, these equations
were set up most correctly in Ref. [35]. Below, however, for
generality of treatment we take advantage of V P Silin's
approach outlined inmonograph [16], which was employed in
Refs [52, 53] to describe the parametric instability of intense
long-wavelength Langmuir field in plasmas.

We restrict ourselves to a one-dimensional treatment. In
this case, the electron velocity ve and density ne obey the
following equations:

qve
qt
� e

me
E� 1

mene

qPe

qx
� ÿve q

qx
ve ; �3:1�
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qne
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� n0

q
qx

ve � ÿ q
qx
�neve� ; �3:2�

q
qx

E � 4pe�ni ÿ ne� ; �3:3�

where E � ÿ qf=qx, E and f are the oscillation electric field
strength and potential, Pe � neTe is the pressure, Te is the
electron temperature in energy units, vTe �

�������������
Te=me

p
is the

electron thermal velocity, ni is the density of plasma ions, and
n0 is the unperturbed density of both the electrons and the
ions.

We express the electric field as a series expansion

E �
X
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En exp �iknx� �
X
n

En exp �ink0x� ;

where the quantity kn � nk0 defines the discrete set of
spectrum mode wavenumbers.

Rewriting Eqns (3.1) and (3.2) gives
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qne; n
qt
� n0ik0nve; n � ÿik0n

X
m

ne; nÿmve;m ; �3:5�

ik0nEn � 4pe�ni; n ÿ ne; n� : �3:6�

Eliminating En � ÿ4pie�ni; n ÿ ne; n�=k0n brings Eqn (3.4) in
the form
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Following Ref. [14], we represent the electron density and
velocity, as was done in Ref. [35], in the form

ÿ ene; n �
X
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�3:10�

We take advantage of the linear relationships u
��1�
nÿm �

� �k0�nÿm�en0oÿ10 v
��1�
nÿm to find the nonresonant quantities
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The equation for resonant quantities then takes on the

form
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The right-hand side of Eqn (3.15) defines the so-called
electron nonlinearity, which comes to nought in the one-
dimensional case, as shown in V E Zakharov's work [11] (see
also paper [35]). Specifically, the right-hand side of Eqn (3.15)
is equal to �k0nen0=o0�I, with I satisfying the identity
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Therefore, we can write out the equation for the resonant
density perturbations:
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or, going over to the electric field strength
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qE ��1�n

qt
� i

o2
pe ÿ o2

0 � k 2
0 n

2v 2Te
2o0

E ��1�n

� i
o0

2n0

X
m

ni; nÿmE ��1�m � 0 : �3:19�

The ions may be described as large particles whose
equation of motion takes the form (2.25), and the density is
defined by expression (2.26). The slowly varying component
of the electric field may be specified as follows. For slow
motions, the following approximation holds true [35]:

ne � n0 exp

�
e �fÿU

T

�
: �3:20�

Therefore, retaining the first terms in the expansion of the
Poisson equation, we obtain
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: �3:21�
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Here, �f and �En � ÿik0n �fn are the potential and strength of
the field averaged over fast oscillations. For theHF potential,
we have
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Un exp �ik0nx� ; �3:22�

with
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It is evident that the left-hand side of Eqn (3.21) may be
ignored when k 2

0 n
2v 2Te=o

2
pe � v 2Te=v 2

F 5 1, and then the
strength of the field averaged over fast oscillations equals

�En � ÿik0n �fn � ÿik0nni; nT
en0

�ÿik0ne
4mo2

pe

X
m

E �1�nÿmE
�ÿ1�
m : �3:24�

The ions may be described hydrodynamically as well. The
equations for the slow perturbations of the ion density and
velocity take the form
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qvi; n
qt
ÿ e

M
�E � ÿik0

X
m

mvi; nÿmvi ;m : �3:26�

We assume the right-hand sides of Eqns (3.25) and (3.26)
to be small and ignore them. Then, the density perturbations
must obey the equation
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where the velocity of sound cs �
�������������
Te=M

p
.

Equations (3.19) and (3.27), which take on the forms
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when o0 � ope, are known as Zakharov's equations [11] in
the one-dimensional case.

As is easily verified, for the upper sign the complex-
conjugate Eqn (3.19) assumes the form
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At the same time, for negative indices, this equation may be
written out (in the summation, the umbral index may be
replaced: m! ÿm) as
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It is easy to see that Eqns (2.26) and (3.31) appear identical
at E

�ÿ1�
ÿn � �E �1�n �� and ni;ÿn � n �i; n. In precisely the same way,

it may be verified that similar transformations yield
E
�ÿ1�
n � �E �1�ÿn �� and ni;ÿn � n �i; n. Therefore, ion density

perturbations possess symmetry: ni;ÿn � n �i; n. In this case, to
correctly describe the ion cavern it would suffice to use theHF
field components E

�1�
n , E

�1�
ÿn , and E

�1�
0 , as well as the ion

density perturbations ni; n, since the remaining quantities are
expressed in their terms, i.e., it is possible to abandon using
the upper index. Under these conditions, system of
Eqns (3.18), (3.27) may be written out in the form

qEn

qt
ÿ i

o2
pe ÿ o2

0 � k 2
0 n

2v 2
Te

2o0
En ÿ i

o0

2n0

X
m

ni; nÿmEm � 0 ;

�3:32�
q2ni; n
qt 2

� k 2
0 n

2c 2s ni; n � ÿ
k 2
0 n

2

16pM

X
m

EnÿmE �ÿm : �3:33�

Below, we restrict ourselves to the consideration of a so-called
supersonic instability mode, whereby q2ni; n=ni; nqt 2 4 k 2

n c
2
s .

When describing ions as particles, advantage can be taken of
the equations of motion (2.25) and expression (2.26) for the
ion density, where the slowly varying electric field strength is
given by

�En � ÿik0n �fn � ÿik0nni; nT
en0

�ÿik0ne
4mo2

pe

X
m

EnÿmE �ÿm : �3:34�

For the pump field, which is a high-amplitude long-
wavelength Langmuir wave in the case under consideration,
we obtain the following equation

qE0

qt
ÿ i

o0

2n0

X
m

ni;ÿmEm � 0 : �3:35�

Under these conditions, the systems of equations of the
hydrodynamic (3.32), (3.33), (3.35) and hybrid (2.26), (3.32),
(3.34), (3.35) models may be written out in the form as
follows.

3.1 Hydrodynamic Zakharov's model (supersonic mode)
under the conditions W � jE0j2=4p5 n0Te

In this case, the system of equations takes on the form

qEn

qt
ÿ i

o2
pe ÿ o2

0 � k 2
0 n

2v 2
Te

2o0
En � y

n 6

n 6
M

En

ÿ i
o0

2n0

�
ni; nE0 �

X
m6�0

ni; nÿmEm

�
� 0 ;

q2ni; n
qt 2

� ÿ k 2
0 n

2

16pM

�
EnE

�
0 � E0E

�
ÿn �

X
m6�0; n

EnÿmE
�
ÿm

�
; �3:36�

qE0

qt
ÿ i

o0

2n0

X
m

ni;ÿmEm � 0 :

3.2 Hybrid Zakharov's model
under the conditions W � jE0j2=4p5 n0Te

In this case, the system of equations is written out as

qEn

qt
ÿ i

o2
pe ÿ o2

0 � k 2
0 n

2v 2
Te

2o0
En � y

n 6

n 6
M

En

ÿ i
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2n0

�
ni; nE0 �

X
m6�0
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�
� 0 ;
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�En � ÿik0n �fn � ÿik0nni; nT
en0

�ÿik0ne
4mo2

pe

�
EnE

�
0 � E0E

�
ÿn �

X
m6�0; n

EnÿmE
�
ÿm

�
;

d2xs
dt 2
� e

M

X
n

�En exp �ik0nxs� ;
�3:37�

ni; n � n0
k0
2p

� p=k0

ÿp=k0
exp

ÿÿink0xs�xs0; t��dxs0 ;
qE0

qt
ÿ i

o0

2n0

X
m

ni;ÿmEm � 0 ;

where the term y�n=nM�6En in the first equations of systems
(3.36) and (3.37) models the damping of HF spectrum modes
on electrons, with nM � 20.

For an 5 1, the equations of hydrodynamic (2.30) and
hybrid (2.31) Silin's models coincide, in view of the represen-
tation J1�an� � an=2, J0�an� � 1, and J2�an� � a 2

n =8, with the
equations derived for the nonisothermal plasma of hydro-
dynamic (3.36) and hybrid (3.37) Zakharov's models, respec-
tively, correct to the magnitude of detuning and with the
inclusion of the substitutions E0 ! ÿiE0 and E �0 ! iE �0 .

4. Linear theory

We restrict ourselves to the treatment of the most interesting
long-wavelength pump case. From Zakharov's equations
(3.36) in the linear case, with the use of representation
qE=Eqt) iO, it is possible to obtain the dispersion relation
for the nonisothermal case in the supersonic limit
q2ni; n=ni; n qt 2 4 k 2

0 c
2
s n

2:

ÿO 2�O 2 ÿ D 2� � DA � 0 ; �4:1�

where the detuning D � v 2Ten 2k 2
0 =2op and

A � 1

2

me

M

k 2
0 n

2v 2
Te

2ope

jE0j2
4pn0Te

o3
pe :

On the other hand, by linearizing Eqns (2.30), we arrive at
precisely the same dispersion relation for the cold plasma
case, where, however, D � D0 � �o2

pe ÿ o2
0�=2o0 and the

quantity A � J 2
1 �an�o3

pem=M. We note that dispersion rela-
tions (4.1), for an 5 1 and with the changes E0 ! ÿiE0 and
E �0 ! iE �0 , coincide in these two cases in deciding on the
appropriate choice of the detuning. The positive definiteness
of the detuning D � v 2

Ten
2k 2

0 =2ope in Zakharov's model is
evident. As for the detuning D � �o2

pe ÿ o2
0�=2o0 in Silin's

model, it was shown in monograph [9] that it is also positively
defined and is of order d, at least in the conditions of long-

wavelength Langmuir oscillation excitation by a high-current
relativistic electron beam.

Table 1 gives the values of the normalized quantities
d 0 � O=ope and A 0 � A=o3

pe, which correspond to the two
models describing the modulation instability of Langmuir
waves.

In Zakharov's model, the correction d 0 � O=ope normal-
ized to the Langmuir frequency should, generally speaking,
be written out in the form

�d 0�2 � �D
0�2
2
�

��������������������������������
�D 0�4
4
� B�D 0�2

s
; �4:2�

where

B � 1

2

me

M

jE0j2
4pn0Te

: �4:3�

With an increase in D 0, the magnitude of
��D 0�4 � 4B�D 0�2�1=2 ÿ �D 0�2 increases monotonically with-
out a pronounced maximum, and for small �D0�2 5B we
therefore have O 2 � ÿD 0 ����Bp . In this case, jO 2j < B and the
instability increment is given by

ImO � jOj �
�
k 2
0 n

2v 2
Te

2o2
pe

�1=2�
1

2

jE0j2
4pn0Te

me

M

�1=4

ope : �4:4�

For large �D 0�2 4B, the quantity O 2 � ÿB, and the
instability increment in this case is

ImO � jOj �
�
1

2

jE0j2
4pn0Te

me

M

�1=2

ope : �4:5�

Hence, it follows that the increment increases with
perturbation wavenumber to reach its highest value (4.5) for
large values of the wavenumber.

In Silin's model, for a detuning magnitude of �D 0�3 �
� A 0=2 or, which is the same, D 0 � �me=2M�1=3J 2=3

1 �anm�, the
relative increment reaches the following values [14]

d 0 � � i���
23
p �A 0�1=3 � � i���

23
p
�
me

M

�1=3

J
2=3
1 �an� : �4:6�

For perturbations with the wavenumber km � k0nm, for
which anm � 1:84, the magnitude of the Bessel function is
largest and the relative increment for such perturbations
reaches its highest value

d 0max � �0:44i
�
me

M

�1=3

: �4:7�

Table 1.Key parameters of the linear theory for Zakharov's and Silin's models.

Parameter Zakharov's model Silin's model

Correction squared to the normalized frequency �d 0�21 �
�D 0�2
2
�

��������������������������������
�D 0�4
4
� A 0�D 0�

s

Detuning D 0 �D 0�n �
o2

pe � v 2Tek 2
0 n

2 ÿ o2
0

2o2
pe

� v
2
Tek

2
0 n

2

2o2
pe

D 0 � D 00 �
o2

pe ÿ o2
0

2o2
pe

Coefécient A 0 A 0 � A 0�n� � 1

2

me

M

k 2
0 n

2v 2Te
2ope

jE0j2
4pn0Te

A 0 � A 0�n� � me

M
J 2
1 �an�
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Therefore, the highest increment in Silin's model is exhibited
by the wave vectors for which anm � 1:84. As instability
develops, the amplitude of the pump wave lowers and the
increment peak shifts to shorter wavelengths.

It is significant that the values of the highest parametric
instability increments in Zakharov's model for supersonic
perturbations become higher with a decrease in their scale.
And, while in Zakharov's model a lowering of the pump field
amplitude results in a lowering of the increments throughout
the instability domain, in Silin's model this process shifts the
increment peak to the short-wavelength domain without
decreasing its magnitude (4.7). Therefore, the energy transfer
to the short-wavelength part of the spectrum in the two
models proceeds largely due to the linear perturbation
growth mechanisms.

Furthermore, mention should be made of an explosive
amplitude growth of the instability spectrum modes in
the supersonic regime of intense Langmuir field decay in
a nonisothermal plasma under the conditions W �
jE0j2=4p5 n0Te, which is due to the high values of the
increment practically throughout the instability domain. It
is precisely this explosive growth of spectrum amplitudes that
has been observed in many numerical experiments early in the
process.

5. Modulation instability of Langmuir waves
in a cold plasma

5.1 Silin's hydrodynamic model
The instability of a powerful long-wavelength (the wave-
length is assumed to be infinite) Langmuir wave (pump
wave) with the excitation of a short-wavelength Langmuir
excitation spectrum may be described by the equations of
Silin's hydrodynamic model (2.30) provided that W �
jE0j2=4p4 n0Te.

We utilize the following variables and parameters: b �
k 2
0 v

2
Te=2o0, D0 � o0�1ÿ o2

pe=o
2
0�=2, d � �me=M�1=3ope, a �

ek0E0=meo2
0, t � dt, Nn� u

�1�
e; n=en0n, Mn � �vi; n=en0��o0=d�,

vi; n is the Fourier component of the ion density,
En � jEnj exp �iCn� is the slowly varying complex amplitude
of the electric field strength of plasma electron oscillations
with wavenumbers kn � nk0, where k0 is the sufficiently small
scale selected in the wavenumber space, and an � an, n are
nonzero integers not equal to �1, i.e., n�ek0E0=meo2

0� �
nk0b � an. The density and electric field perturbations are

related by the expression En � 4pieNn=2k0n; the term
y�n=nM�6En in the first of Eqns (2.30) models the damping
of HF spectrum modes on electrons, with nM � 20. The
following initial conditions are prescribed: b � 10ÿ2d,
ÿnmax < n < nmax � 40ÿ100, ajt�0� 6� 10ÿ2, Cnjt�0 � 0,
Mnjt�0 � 3� 10ÿ4, and Nnjt�0 � 10ÿ4=n. The characteristics
of the instability mode spectrum as functions of time are
collected in Fig. 1.

It is significant that the rapid extension of the
perturbation spectrum to the short-wavelength domain is
largely due to the instability of the pump wave, which
follows from a consideration of the linear increment.
Indeed, the detuning D � �o2

pe ÿ o2
0�=2dope reaches the

value of �me=2M�1=3J12=3�anm� for the highest increment of
the linear instability normalized to the Langmuir wave
frequency [14]:

d
ope
� i���

23
p
�
me

M

�1=3

J
2=3
1 �an� : �5:1�

With a lowering of the pump wave amplitude, the increment
maximum shifts towards higher wavenumbers without chan-
ging its value. Furthermore, the pump wave favors the
locking of growing spectrum modes, thereby forming the
spatial structure of the cavern (the dimples in the electron and
ion plasma densities, which, generally speaking, do not
coincide in shape) and the HF filling. By solving the system
of Eqns (3.19), one may verify [54] that the energy stored in
the short-eavelength part of the Langmuir wave spectrum
driven by the pump wave increases, this part of the spectrum
rapidly broadening in wavenumber space. The instability
results in a shortening of cavern linear dimensions in the
configuration space and the formation of relatively steep
density gradients whose breaking should generally result in
an intense spectrum energy transfer to the plasma electrons.
However, there is no way of describing this process in the
framework of the model under consideration. The ion density
behavior also shows a tendency for a transition to the peaking
mode. It is precisely this instability of the numerical
computation setup that compelled moving to a description
of ions as particles.

5.2 Silin's hybrid model
In Silin's hybrid model, electrons are described hydrodynam-
ically, and ions are treated as large particles. The model
equations (2.31) were solved choosing the same varied
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Figure 1. Formation of a wave packet of Langmuir waves upon the development of instability [54]. One can see the mode locking (lower panels) and the

spectrum broadening Nn � Nn exp �iCn� (upper panels) for the points in time t � 4 (a, b), 7 (c, d), and 8 (e, f) [46].
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parameters as with the equations of the hydrodynamicmodel.
In the simulations, we used the relationship k0xs � 2pxs; the
ion-simulating particles, which were taken to be 50 per
spectrum mode, were uniformly distributed over the interval
ÿ0:5 < xs < 0:5. An analysis of the process dynamics showed
[48] that this model, too, exhibited the formation of density
caverns which were subsequently disrupted. In this case, the
disruption was not attended by simulation breakdown. The
cause of cavern disruption lay with the field burnup and the
inertia of the ion-simulating particles whose number did not
exceed 5� 103 in the numerical experiment; the number of
spectrum modes ranged from 40 to 100.

In so doing, the ion cavern collapsed and the ion
component passed into the mode of particle trajectory
crossing [47, 48]. The energy extracted by the ions turned
out to be on the order of �me=mi�1=3 fraction of the initial
energy of the pumpwave [48] (here,me andmi are the electron
and ion masses, respectively). Figure 2 shows the behavior of
the pump wave for low absorption levels and small initial
fluctuations. The bulk of pump field energy goes into the
energy of the short-wavelength Langmuir spectrum due to the
instability; next, it is possible to observe a partial energy
exchange between the spectrum and the pump wave, and the
ion cavern collapses for t > 40, i.e., it passes into the particle
trajectory crossing mode.

More recently, the instability development in hybrid
models was considered at length in papers [58, 59]. The bulk
of attention was on modes with a strong absorption of short-
wavelength spectrum energy due to Landau damping, which
was phenomenologically introduced. The rate of HF mode
damping determined the rate of field burnup in the density
caverns, fromwhich the HF field forced out the particles. The
bulk of instability energy was initially concentrated in the HF
field of the short-wavelength Langmuir spectrum; simulta-
neously, a low-frequency (LF) perturbation spectrum was
formed. Next, the HF spectrum energy was largely trans-
ferred to electrons. In this case, the generated density caverns
collapsed, the ion trajectories crossed, the ion density
perturbations smoothed out, and their scale became longer.
The relationship between ion perturbations and the HF field
became weaker and the instability saturated. On experiencing
several small oscillations, the amplitude of the fundamental
wave stabilized at a relatively low level. The bulk of energy
was now contained in the perturbations of the plasma
electron component. Some small energy fraction on the
order of �me=mi�1=3 of the initial wave energy was transferred
into ion kinetic energy.

5.3 Comparison between Silin's hydrodynamic
and hybrid models
The spectrum behavior convinces us that a density cavern
forms in the interaction domain, with the cavern dimensions
decreasing rapidly [48]. For low energy absorption levels in
the system, the instability subsequently transfers to the
regime of partial energy exchange between the excited
modulation instability spectrum and the pump wave.
However, a further decrease in cavern dimensions, i.e., a
collapse occurring in the absence of electron pressure in a
cold plasma, leads to a simulation breakdown in the
hydrodynamic model. On the other hand, the ion inertia,
which is naturally included in the hybrid model, permits
avoiding such a breakdown. On passing to the trajectory
crossing mode, the ions disrupt the cavern and the instability
saturates. In this case, it is possible to elucidate the ion

velocity distribution. The energy acquired by the ions is on
the order of �me=mi�1=3 fraction of the initial pump wave
energy [48]. Most likely, the energy stored in the short-
wavelength Langmuir spectrum is to be largely transferred to
the plasma electrons as well. For the electrons, the passage to
the trajectory crossing mode (hydrodynamic equations are
not applicable in this case for describing electrons) may be
hindered by the existence of the ion cavern, which is capable
of timing the ejection of fast electrons and ions at the instant
of its disruption.

6. Modulation instability of Langmuir waves
in a nonisothermal plasma

The instability of a powerful long-wavelength Langmuirwave
attended by the excitation of a short-wavelength Langmuir
oscillation spectrum may be described by the equations of
hydrodynamic (3.36) or hybrid (3.37) Zakharov's models,
provided thatW � jE0j2=4p5 n0Te. We discuss the compar-
ison between these models in the numerical experiments
described by Clark et al. [49].

In this section, we consider two models: the traditional
hydrodynamic Zakharov model (3.36) and the hybrid
Zakharov model (3.37). In these systems of equations, the
authors of Ref. [49] replaced the last equation for the pump
with the equation in the framework of simple weak pump
attenuation dynamics. To this end, the researchers put all the
parameters equal, the mass ratio was assumed to be
me=M � 1=�16� 1836�, the plasma was considered as iso-
thermal, the computational domain L � 1:8� 103lde,
600 spectral modes were invoked for the hydrodynamic
description, and 3000 positions were employed for the hybrid
description, i.e., the coordinate plane was divided into this
number of segments. As in allied studies (Refs [45, 46]), the
authors of Ref. [49] considered the nonself-consistent case of
a constant or slowly varying field of an intense Langmuir
wave, which was unaffected by the spectrum of short-
wavelength perturbations being excited. However, as in the
previous case, an important result of this comparison is the
revelation of the differences in the process dynamics described
by the different models.

First and foremost, Clark et al. [49] noted a significantly
faster perturbation growth in the hybrid model, which they
attributed to the large magnitudes of ion density perturba-
tions on their selected coordinate grid. Integral character-
isticsÐ the HF short-wavelength spectrum energy at the
initial stage of the development of modulation instabilityÐ
turned out to be similar (Fig. 3).

At the initial stage of the developed regime of the process,
it was revealed that the relationship between the relative ion
density perturbations dni; n=n0 and the short-wavelength field

0.2

a�t�
0.1

0
30 37 44

t
Figure 2. Pump field amplitude a�t� as a function of time t in the hybrid

model for a weak absorption of the short-wavelength oscillation energy

[40].
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energy density jE j2 �Pn jEnj2 held true (Figs 4 and 5):

dni; n
n0
/ jE j

2

8
: �6:1�

Here, for ease of comparison, we chose similar instability
regimes which are characterized by about the same peak field
amplitudes and density perturbations. First of all, mention
should be made of an appreciably greater number of plasma
density caverns and significant ion density fluctuations.
Accordingly, the number of soliton-like short-wavelength
field density perturbations is also greater in the hybrid
model. The maximum cavern depths in the hybrid model are
always smaller; the characteristic dimensions along the
system are similar. Estimates of ion heating under conditions
of a constant or slowly varying pump field are hardly of
interest, because the authors ignored the effect of the short-
wavelength spectrum on the pump.

7. Comparison between Zakharov's
and Silin's hybrid models

Below, we compare the development dynamics of the
modulation instability of an intense Langmuir wave in two
cases of significant interest. In the first case, described by
Silin's model, the field energy density is far greater than the
thermal energy density of a cold plasma. In the second case,
described by Zakharov's model, the field energy density is
much lower than the thermal energy density of the non-
isothermal plasma, where the ion temperature is well below
the plasma temperature.

We emphasize the efficiency of energy transfer to ions and
ion perturbations arising from the development of modula-
tion instabilities in nonisothermal and cold plasmas in the
framework of the hybrid models.

For each model, we also considered two particular cases:
those of light and heavy ions. The parameters employed in
these considerations are collected in Table 2. Also of interest
is ascertaining how the HF spectrum damping, and accord-
ingly the field burnup in density caverns, affect the energy
transfer to the plasma ions.

The number of ion-simulating large particles was selected
as follows: 0 < s4S � 20;000. The large particles were
uniformly distributed over the interval ÿ1=2<x< 1=2, x �
k0x=2p, vs � dx=dt, initial conditions for the particles were
dxs=dtjt�0 � vsjt�0 � 0, and the number of spectrum modes
ÿN < n < N, N � S=100. The initial normalized intense-
oscillation amplitude a0�0��ek0E0�0�=meo2

pe � 0:06. The
initial HF mode amplitudes are defined by the expression
enjt�0 � en0 � �2� g� � 10ÿ3 in Silin's model, and by the
expression enjt�0 � en0 � �0:5� g� � 10ÿ4 in Zakharov's
model, where g 2 �0; 1� is a random number; ek0En=meo2

pe �
en exp �icn�, and cnjt�0 were also randomly distributed over
the interval 0ÿ2p. For ion density perturbations nni and the
slowly varying electric field perturbations �En, use wasmade of
the also dimensionless representations

Mn �Mnr � iMni � nniope

n0d
� ope

d

� p=k0

ÿp=k0
exp �2pnxs� dxs0 ;

ek0 �En

meo2
pe

� Enr � iEni :

The code implementing the mathematical model of the
problemwas written using the JCUDA technology. The latter
provides interaction with the CUDA technology from Java
code and furnishes the possibility of performing high-speed
parallel computing with a graphics processor.

The instability development in hybrid models (2.31) and
(3.37) was considered in papers [58, 59]. The HF mode
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Figure 3. Time �t� dependence of the ratio between the field energy density

and the electron thermal energy density for the hydrodynamic (1) and

hybrid (2) Zakharov models [41].
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damping rate determined the rate of field burnup in density
caverns, fromwhich the HF field forced out the particles. The
bulk of instability energy was initially confined in theHF field
of the short-wavelength Langmuir spectrum; simultaneously,
an LF perturbation spectrum formed. Next, the HF spectrum
energy was largely transferred to electrons. In this case, the
formed density caverns collapsed, the ion trajectories crossed,
the ion density perturbations smoothed out, and their scale
became longer. The relationship between ion perturbations
and the HF field became weaker and the instability saturated.
Having endured several oscillations, the principal wave
amplitude was stabilized at a sufficiently low level. The bulk
of energy was now contained in the perturbations of the
plasma electron component. Some small energy fraction of
the initial energy passed to ion kinetic energy. The energy
density Ekin transferred to the ions was estimated by the
expression

Ekin

W0
� 0:27I

M

me

d 2

o2
pe

; �7:1�

whereW0 is the initial energy density of the intense Langmuir
wave, I �Ps�dxs=dt�2 is the appropriately normalized ion
energy, and d is the instability linear increment. The energy
fraction of the intense Langmuir wave transferred to the ions
was defined by the ratio W0=n0Te in the nonisothermal
plasma case (Zakharov's model), and by the ratio �m=M�1=3
in the cold plasma case (Silin's model).

Below, we consider in greater detail the integral energy
distribution, and the appropriate distribution for LF pertur-
bations in particular [60, 61]. We discuss the peculiarities of
the excitation of LF collective ion-acoustic wave motions in a
nonisothermal plasma, and of LF oscillations in Silin's
model. Special emphasis is laid on the role of HF spectrum
absorption responsible for the HF field burnup in density
caverns. We will elucidate how this process affects the
excitation of the LF spectrum modes and, most important,
the form of the ion distribution function and the total energy
acquired by the ions.

7.1 Results of numerical simulations
For the parameters nM � 20 and Y � y=d � 0:05 determin-
ing the character of absorption of an HF energy, Fig. 6 shows
the energy of the principal wave, the energy of the small-scale
Langmuir spectrum, as well as the energies transferred to
plasma electrons and ions normalized to the initial energy of
the principal wave.

An analysis of numerical simulation data suggests that the
energy of an intense long-wavelength Langmuir wave is at
first transferred to the energy of the HF short-wavelength
Langmuir spectrum. It is at this stage that plasma density
caverns filled by the HF field form. Next, the HF field burns
up due to damping on electrons, included phenomenologi-
cally in these models (simultaneously transferring its energy
to the plasma electrons). Under these conditions, the caverns
collapse, LF waves are excited, ion trajectories cross, and the

Table 2. Parameters of numerical simulations for hybrid models.

Model Light ions
M=me � 2� 103

Heavy ions
me=M � 8� 10ÿ6

Silin's model �me=M��o2
pe=d

2� � 0:43

d=o0 � 0:44�me=M�1=3 � 0:034

o0=d � ope=d � 29:4

�me=M��o2
pe=d

2� � 0:1

d=o0 � 0:44�me=M�1=3 � 0:0088

o0=d � ope=d � 113:6

Zakharov's model �me=M��o2
p=d

2� � 2n0Te=W � 20

o0=d � 2�n0Te=W�1=2�M=me�1=2 � 282:6

d=o0 � d=ope � 3:5� 10ÿ3

�me=M��o2
p=d

2� � 2n0Te=W � 20

o0=d � 2�n0Te=W� 1=2�M=me�1=2 � 2234:4

d=o0 � d=ope � 4:5� 10ÿ4
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Figure 6.Relative values of the principal wave energy (1), the small-scale Langmuir spectrum energy (2), the energy transferred to plasma electrons (3) and

ions (4) for Zakharov's (a, b) and Silin's (c, d) models for light (a, c) and heavy (b, d) ions.
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energies of the collapsed caverns and the LF spectrum are
transferred to ions.

It is possible to determine the root-mean-square ion
velocity s�vs� �

������������������P
s v

2
s =S

p
at the end of numerical simula-

tions to obtain s�vs� � 0:015 for light ions, and s�vs� � 0:006
for heavy ones in Zakharov's model. In Silin's model,
s�vs� � 0:002 for light ions, and s�vs� � 0:0005 for heavy
ones. The total energy of particles in the chosen normal-
ization I �Ps�dxs=dt�2 takes the values 4.689 and 0.808 in
Zakharov's models for light and heavy ions, respectively,
whereas in Silin's models the respective values are 0.086 and
0.005. The differences in total energy between the models are
attributable to the differences in the magnitude of the linear
increments, and that between light and heavy ions is due to
the choice of ion mass. It is possible to construct a normal
distribution proceeding from the root-mean-square velocity,
and then the particles that are outside of it (primarily in the
so-called tails of the distribution function) possess 13.8% (for
the light ions) and 9.2% (for the heavy ions) of the total
energy in Zakharov'smodel. In Silin'smodel, these figures are
appreciably higher: 25.6% (light ions) and 13% (heavy ions).
Therefore, a substantially larger fraction of fast particles
would be expected in the case of instability of an intense
wave in a cold plasma.

Of interest is not only the ion energy distribution, but also
the excitation of collective ion oscillations (Fig. 7), and so we
determine the frequency of the mode with the wave vector nk0
for these oscillations:

dFn

dt
� ÿ

 
d

dt
Mnr����������������������

M 2
nr �M 2

ni

q ! 
Mni����������������������

M 2
nr �M 2

ni

q !ÿ1
; �7:2�

where the phases Fn of the LF spectrum modes may be
determined from the expression

Mn �Mnr � iMni �
����������������������
M 2

nr �M 2
ni

q
exp �iFn� :

Notice that the LF spectrum intensity in the nonisother-
mal plasma case (Zakharov's model) is rather high in a wide

wavenumber range and corresponds to the spectrum of an ion
sound after the disruption of density caverns, which was
discovered in the numerical experiments [41±44]. By contrast,
long-wavelength oscillations prevail in the spectrum for a
cold plasma.

In the normalization adopted above, the kinetic ion
energy is defined for both models as

1

2

� 1=2

ÿ1=2
dxs0

�
dxs
dt

�2

; �7:3�

and the collective excitation energies in Zakharov's and Silin's
models have the respective forms

1

8p2
m

M

1

n 2
M

d
ope

X
n

jMnj2 ;
�7:4�

1

8p2
m

M

X
n

1

n 2

�
1ÿ J 2

0 �an� �
2

3
J 2
2 �an�

�
jMnj2 ;

these oscillations being named ion-acoustic ones in Zakhar-
ov's model. Figure 8 plots the variation of the ion energy and
the LF field energy with time.

Attention should be drawn to the fact that the LF field
energy is much lower than the ion energy in all the cases
considered above. The lowering of the field energy with time
takes place due to energy transfer to the ions, as well as due to
the disruption of plasma density caverns, as pointed out in
Ref. [43].

The selected rate of HF field burnup in caverns is
defined by the quantity Y � y=d � 0:05. It would be
instructive to elucidate how the simulated data depend on
this parameter. Evidently, not only does the decrease in this
parameter slow down the HF field burnup in the caverns,
but it also broadens the HF mode spectrum, i.e., increases
the fraction of its small-scale components, which deepens
the plasma density caverns and raises the kinetic energy of
the ions expelled from the caverns. As the HF mode
damping becomes weaker, the ion velocity distribution
function in the two models approaches progressively closer
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Figure 7. Amplitude of the LF spectral modes and dependence of the frequency on the mode wavenumber for Zakharov's (a, b) and Silin's (c, d) models

for light (a, c) and heavy (b, d) ions; 1ÐMn spectrum, and 2Ðsmoothed average qFn=qt at the developed instability stage.
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to the normal distribution, i.e., the Maxwellian function,
which is depicted in Fig. 9.

Table 3 lists the degree of departure of the numerically
simulated velocity distribution from the normal velocity
distribution of the closest shape (see Fig. 9).

Figure 10 depicts that the highest value of ion-acoustic
oscillation energy is hardly changed with a decrease in HF
field absorption for nonisothermal plasmas, but the LF
spectrum formation speeds up. In cold plasmas, by contrast,
the intensity of long-wavelength LF oscillations is appreci-
ably increased with a decrease in HF mode absorption.
Subsequently, the LF spectrum is suppressed in transferring
its energy to ions.

As would be expected, the energy, which is eventually
transferred to the ions, increases with a decrease in HF
spectrum absorption in about the same proportion in both
nonisothermal and cold plasmas (Fig. 11).

In summary, we note that scales of ion density perturba-
tions shorter than the Debye ion radius rDi � vTi=opi do not
make a contribution to the formation of low-frequency
electric fields due to the screening effect. In terms of
rDik0=2p, the Debye ion radius may be estimated [50±52] as

rDik0
2p
� RDi /

�
vik0
2pgL

�
d
ope

�
M

me

�1=2

� hvsi d
ope

�
M

me

�1=2

:

�7:5�

In the developed instability mode, this quantity gives
RDi 4 10ÿ3, and the number of ion density spectral modes

does not exceed the quantity 1=RDi, which is not at variance
with the analysis performed in this work.

8. Conclusions

It was shown that the mechanism of nonlinear Langmuir
oscillation absorption occurring when the plasma thermal
energy density exceeds the HF field density, which was
discovered by V E Zakharov in 1966, also applies to those
fields whose energy density far exceeds the thermal plasma
energy density. We discussed the similarity of the modulation
instability of long-wavelength Langmuir oscillations in hot
and cold plasmas, described by Zakharov's and Silin's
equations, respectively. The character of perturbation excita-
tion possesses the same symmetry, and the mechanisms of a
broad short-wavelength spectrum excitation are also similar.
Zakharov's equations for nonisothermal plasmas under
conditions when the field energy density is below the thermal
energy density of the medium may be derived from Silin's
equations for low-temperature plasmas, when the field energy
density is substantially higher than the thermal energy density
of the medium. Indeed, by lowering the field energy density, it
is easy to move from the case analyzed by V P Silin and his
colleagues to the case described by Zakharov's equations.

The energy transfer across the spectrum in Zakharov's
and Silin's models is not only related to the field restructur-
ingÐ to the interaction of the modes between themselvesÐ
but is largely a consequence of the linear instability. The
maximal increments increase upon shortening the perturba-
tion scale in Zakharov's model. The virtually constant
increment value in a broad wavenumber range in the super-
sonic regime gives rise to an explosive growth of plasma
density caverns. In Silin's model, the peak increment shifts
towards the short-wavelength domain with a decrease in the
pump amplitude, which was confirmed by research data on
the nonlinear stage of the process. It is also significant that the
peak increment in cold plasmas remains invariable on
decreasing the pump field amplitude, while the increments in
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Table 3.Departure of the simulated velocity distribution from the normal
distribution.

Absorption
level

Hybrid Zakharov's
model

Hybrid Silin's
model

Y � 0:05

Y � 0:015

Y � 0:001

19.9%
9.9%
6.9%

13%
13.4%
8.8%

684 A G Zagorodny, A V Kirichok, V M Kuklin Physics ±Uspekhi 59 (7)



0

ÿ0.04 ÿ0.02 0.02 0.04
vs vs

vs

0 ÿ0.004

ÿ0.005

ÿ0.006 ÿ0.002 0.002 0.004

0.005

0.0060

800

600

400

200

0

N�vs�
600

400

200

0

N�vs�

400

300

200

100

0

N�vs�

ÿ0.04 ÿ0.02 0.02 0.040
vs

400

300

200

100

0

N�vs�

a

b

d

e

ÿ0.04 ÿ0.02 0.02 0.040 vs

250

200

150

100

50

0

N�vs�
c

ÿ0.010 ÿ0.005 0.005 0.0100
vs

400

500

300

200

100

0

N�vs�
f

Figure 9. Ion velocity distributions in Zakharov's (a±c) and Silin's (d±f) models for light ions;Y � 0:05 (a, d), 0.015 (b e), and 0.001 (c, f).

0.2 0.4 0.6 0.8 1.0 1.2
t

0

a

1.0� 10ÿ5

0.5� 10ÿ5

2 4 6 8
t

0

b
2.0� 10ÿ7

1.5� 10ÿ7

1.0� 10ÿ7

0.5� 10ÿ7

1
2
3

1
2
3

Figure 10. LF spectrum energy as a function of time t in Zakharov's (a) and Silin's (b) models for light ions;Y � 0:05 (1), 0.015 (2), and 0.001 (3).

0.2 0.4 0.6 0.8 1.0 1.2
t

0

a
1
2
3

2.0� 10ÿ4

1.5� 10ÿ4

1.0� 10ÿ4

0.5� 10ÿ4

b
1
2
3

2 4 6 8
t

0

3� 10ÿ6

2� 10ÿ6

1� 10ÿ6

Figure 11. Ion kinetic energy as a function of time t in Zakharov's (a) and Silin's (b) models for light ions; Y � 0:05 (1), 0.015 (2), and 0.001 (3).

July 2016 One-dimensional modulational instability models of intense Langmuir plasma oscillations using the SilinëZakharov equations 685



nonisothermal plasmas under the same conditions become
lower throughout the instability domain.

The most significant implication of developing the
instability of intense Langmuir waves in plasmas is the
transfer of a part of the field energy to the plasma ions and
LF oscillations. There is good reason to solve this problem by
considering hybrid models, where the electrons are described
by quasihydrodynamic equations, and the ions are treated as
large particles. The instability processes involving intense
long-wavelength Langmuir oscillations turn out to be similar
both in hot and in cold plasmas [48, 49].

An analysis of numerical simulation data suggests that
the instability of an intense long-wavelength Langmuir
wave excites an HF short-wavelength Langmuir spectrum
and an LF short-wavelength spectrum. The plasma density
caverns filled with the HF field are formed at precisely this
stage. Next, the HF field burns up due to damping on
electrons included phenomenologically in the models,
transferring its energy to plasma electrons. Under these
conditions, the caverns collapse, natural LF waves are
excited, ion trajectories cross, and the energies of the
collapsed caverns and the LF spectrum are transferred to
ions. As noted earlier [48], when the field energy density is
lower than the thermal energy density of the medium, the
fraction of field energy transferred to ions in a nonisother-
mal plasma is proportional to the ratio of the field energy
and the plasma thermal energy. In a cold plasma, the field
energy fraction transferred to ions is on the order of the
increment-to-frequency ratio or is proportional to the cubic
root of the electron-to-ion mass ratio, which is virtually the
same thing. In the heavy-ion plasma, the energy transferred
to the ion component is appreciably lower than for light
ions. In this case, the energy fraction transferred to ions in a
cold plasma is inversely proportional to the cubic root of the
ion mass. In the hot plasma case, with an increase in ion
mass the decrease of the energy fraction transferred to ions
becomes more significant [58±60]. The ion energy distribu-
tion in Silin's hybrid model exhibits a large fraction of fast
particles.

The intensity of the LF spectrum (ion-acoustic waves) in
nonisothermal plasmas (Zakharov's model) is of the same
order of magnitude in a broad wavenumber range. In a cold
plasma (Silin's model), long-wavelength oscillations prevail
in the LF spectrum. In this case, the LF field energy turns out
to be much lower than the final energy of ions in all the cases
considered here. The LF field energy lowers with time due to
the energy transfer to the ions.

The lowering of the HF field absorption level corresponds
to the moderation of HF field burnup in caverns and
broadens the HF mode spectrum, which makes the plasma
density caverns deeper and increases the kinetic energy of the
ions ejected from the caverns. As the HF mode damping
weakens, the ion velocity distribution function in the two
models progressively approaches in shape the normal dis-
tribution, i.e., the Maxwell function, which permits introdu-
cing the ion temperature. The highest value of ion-acoustic
oscillation energy is hardly changed with a decrease in HF
field absorption in a nonisothermal plasma, but the LF
spectrum formation proceeds faster. In a cold plasma, the
intensity of precisely the long-wavelength LF oscillations is
high, this intensity increasing with a decrease in the level of
HF mode absorption. It is significant that the energy
eventually transferred to ions increases with a decrease in
HF spectrum absorption.
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9. Appendix A. Reflection of electromagnetic
waves from a bounded plasma

The following problem [62] demonstrates the constructive-
ness of V P Silin's approach to the description of the
parametric instability of an intense field in plasmas.
Intense electromagnetic fields acting on the plasma surface
give rise to significant oscillations of the electron compo-
nent. In this case, the electron thermal motion may be
ignored and the plasma is treated as cold. The effect of
such an electromagnetic field on the surface of a cold
plasma was comprehensively analyzed in V P Silin's mono-
graph [16].

Below, we generalize this approach to a self-consistent
description of the effect of external electromagnetic
radiation normally incident on the plasma boundary,
attended by the excitation of a broad spectrum of surface
oscillations.

Let an electromagnetic wave with the components
�0;Hy;Ez�, where jHyj � jEzj � E0, be normally incident on
a plasma half-space �x < 0� with an unperturbed constant
plasma density n0. The field intensity of the incident wave is
assumed to be high enough, and the thermal scatter of the
plasma electrons is ignored �E 2

0 > 4pn0Te�. For the perturbed
surface charge density, namely

sa � lim
r!0

� r

ÿr
n 0a dx ;

where ea, ma, and n 0a are the charge, mass, and perturbed
charged density of the particles of sort a, we write out the
following system of Silin's equations, which he formulated in
monograph [16]:

exp
�
iaan sin �o0t� j�� q2na; n

qt 2
� o2

a

2

X
b

nbn � 0 ; �A:1�

where

na; n � easa; n exp �ÿiaa; n sin �o0t� j�� ;

aa; n � eanEz�kz � 0�
mao0c

; o2
a �

4pe 2n0
ma

;

o0t� j is the phase of the field with kz � 0 in a plasma, and
o0 is the incident wave frequency. The wavenumber of such
perturbations is kzn � no0=c. The solution to Eqn (A.1) will
be sought in the form of a series [16]:

na; n �
X�1
s�ÿ1

u �s�a; n exp �iso0t� : �A:2�

For ion density surface perturbations, one may keep only
the first term of the series. The terms in the sum for ne; n,
proportional to exp ��io0t�, exceed the remaining terms of
the series, but it is necessary to keep the terms corresponding
to the `zero' and second harmonics. We restrict ourselves to
the inclusion of symmetric ion perturbations u

�0�
i; n � u

�0�
i;ÿn.
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Furthermore, the relations

u �0�e; n� u �0�e;ÿn ; u ��2�e; n � u ��2�e;ÿn ; u ��1�e; n � ÿu ��1�e;ÿn ; �u �1�e; n��� u �ÿ1�e; n

take place.
The self-consistent generalized system of Silin's equa-

tions, which takes into account the retroaction of the field of
the excited short-wavelength spectrum of surface oscillations
on the reflected wave (the parameters of the incident wave,
evidently, are invariable) is given in the form

due; n
dt
� �yn ÿ iD1o0�ue; n � i

o0

2
J1�an�ui; n exp �ij� ; �A:3�

d2ui; n
dt 2

� ÿo0
me

M
J1�an�

�
ue; n exp �ÿij� � u �e; n exp �ij�

�
;

�A:4�

D�Rÿ R0� � 8p
en0E0

X
n

ui; n
�
J0�an�u �e; n exp �ij�

ÿ J2�an�ue; n exp �ÿij�
�
; �A:5�

where

1� R � j1� Rj exp �ÿij� � an exp �ÿij�
b0n

;

o0 � �1ÿ D1�ope���
2
p ; b0 �

2eE0

meco0
; R0 � ÿD �0

D0
;

D0 � e0
k0
� ic

o0
; e0 � 1ÿ o2

pe

o2
0

; k 2
0 � ÿ

o2
0e0
c 2

;

D1 �
�
me

mi

�1=3

D ;

R is the amplitude reflection coefficient, ue; n � u
�1�
e; n , and

ui; n � u
�0�
i; n .

The terms proportional to J0�an� and J2�an� correspond to
the respective contributions from the `zero' and second
harmonics to the nonlinear interaction. From Eqns (A.3)±
(A.5) it is possible to derive the relationship

1ÿ jRj2 � 16p
eb0n0cE0

X
n

1

n

�
djue; nj2

dt
� 2ynjue; nj2

�
; �A:6�

which embodies the energy conservation law.
To numerically solve Eqns (A.3)±(A.5), we go over to the

variables

t �
�
me

mi

�1=3

o0t ; yn � ny0

�
me

mi

�1=3

o0 ;

ue; n � jue; nj exp �ijn� ; Nn � 4p
�
me

mi

�1=6

Eÿ10 jue; njb 1=2
0 ;

Mn � 4p
�
me

mi

�ÿ1=6
Eÿ10 jui; njb 1=2

0 :

The properties of surface wave damping are such that it
becomes stronger with an increase in the oscillation wave-
number [63]. In the course of instability development, the
spread in phasejn decreases rapidly in a time on the order of a
few t to form the electron and ion surface density domains
with rapidly decreasing scale length. This same effect of mode
locking leads to a strong interaction of the short-wavelength
instability spectrum with the reflected wave and gives rise to
significant reflectivity oscillations for a low dissipation in the

interval R � 0:5ÿ1:3 (Fig. 12). The inclusion of losses
narrows the spatial instability spectrum, lowers the integral
level of spectrum energy, and moderates the instability
development, with the reflectivity not exceeding unity in its
oscillations.
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