
Abstract. Dissipative solitons (also known as auto-solitons) are
stable, nonlinear, time- or space-localized solitary waves that
occur due to the balance between energy excitation and dissipa-
tion.We review the theory of dissipative solitons applied to fiber
laser systems. The discussion context includes the classical
Ginzburg±Landau and Maxwell±Bloch equations and their

modifications that allow describing laser-cavity-produced
waves. Practical examples of laser systems generating dissipa-
tive solitons are discussed.

Keywords: dissipative solitons, optical solitons, fiber lasers,
mode-locked lasers, generation of short pulses

1. Introduction. Optical solitons

The concept of solitons [1]Ð stable, localized, particle-like
physical structures produced in the nonlinear interaction of
distributed waves (physical fields)Ð is one of the fundamen-
tal unifying ideas of modern theoretical physics and mathe-
matics [2±21]. The energy localization of a space±time
distributed field under the action of nonlinearity is a quite
general physical phenomenon appearing in different fields of
physics. The theory of solitons has found applications in
practical and applied problems in various fields of science
such as hydrodynamics, plasma physics, nonlinear optics,
molecular biology, field theory, and astrophysics. Dynamic
solitons appear due to the balance between linear (for
example, dispersion or diffraction) and nonlinear effects.
More complex solitons exist, for example, topological
solitons, which appear in systems with topologically non-
trivial ground states. Examples of topological solitons include
vortices, domainwalls, optical 2p-pulses, and other structures
(see details in [22±24]).

In the theory of integrable nonlinear equations, in
particular, the inverse spectral transform theory, soliton
solutions of an integrable partial differential equation
correspond to reflectionless potentials for the associated
scattering problems [3, 4, 12±14]. In the mathematical
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literature, the term `soliton' is often used only to refer to the
solutions of integrable equations, whereas the term `solitary
nonlinear wave' is used for nonintegrable models. However,
many characteristics of solitons, important in applications,
are not related to the integrability of the corresponding
mathematical models. In this review, we use the term soliton
in a broad sense by considering nonintegrable nonlinear
models that have solutions describing coherent localized
structures. A stable (particle-like) behavior is a key character-
istic in such a physical definition of solitons.

Two important classes of solitons, conservative and
dissipative, can be distinguished. Conservative solitons
appear in so-called transparent media, where losses are
negligibly small, the energy supply to the system is absent,
and localization is the result of a balance between the linear
spread of a wave packet (for example, due to diffraction or
dispersion) and nonlinear compression (for example, self-
focusing). Optical dissipative solitons (autosolitons) are
stable nonlinear light wave packets, localized due to the
balance between energy supply and loss in a physical system.
In the theory of dissipative solitons, it is often impossible to
separate conservative and dissipative effects.

The history of optical solitons is closely connected with
two basic models: the Ginzburg±Landau equation and the
nonlinear Schr�odinger equation (NSE). They are used to
describe a variety of physical phenomena. The Ginzburg±
Landau equation is widely used in physics to describe the
dynamics of dissipative nonlinear systems in the presence of
amplification, losses, and other effects depending on the
specificity of a physical problem, for example, linear or
nonlinear dispersion, saturating amplification, and (or)
losses. This equation was first proposed by Ginzburg and
Landau in the context of phase transitions in the theory of
superconductivity [25]. Since then, the Ginzburg±Landau
equation has been used for describing various physical
phenomena, including convection [26, 27], the theory of
mode-locked lasers [28], general models in nonlinear optics
[29], and many other physical problems (see, e.g., [9, 10, 30]
and the references therein).

An NSE predecessor appeared in Bogoliubov's micro-
scopic theory of superfluidity (the model of a weakly
interacting Bose gas) [31] describing the spectrum of a
condensate. We note that the possibility of instability
(widely known as the modulation instability) was also
mentioned in this classic work in 1947. In the 1960s, the
classic NSE was applied for studying the atomic Bose gas and
became known in this field as the Gross±Pitaevskii equation
[32, 33]. Somewhat later, the NSE was used to analyze high-
power laser beams [34±37] and to describe the hydrodynamic
wave instability [38]. The NSE is widely used in many other
important physical applications [39]. In 1972, Zakharov and
Shabat demonstrated the integrability of the NSE, which
initiated numerous investigations of the mathematical prop-
erties of this model [40]. Mathematically, the NSE can be
considered as the conservative limit of the generalized
complex Ginzburg±Landau equation. The NSE is one of the
most important nonlinear mathematical models in optics and
is applied in optical signal processing, data transmission,
pulse compression, optical signal shaping, frequency con-
verters, and various nonlinear optical devices. Many of these
applications are based on the existence of a stable NSE
solution in the form of a fundamental soliton. Because the
optical soliton is a stable pulse and can be used as an
elementary information bit, it plays an important role in

nonlinear concepts of data communication and digital data
storage and processing.

In this review, we focus our attention on dissipative
solitons. First, we consider dissipative solitons in the context
of the Ginzburg±Landau and Maxwell±Bloch equations. We
then discuss methods for describing dissipative solitons in a
laser cavity. And finally, we present examples of practical
laser systems in which dissipative solitons appear.

2. Basic mathematical models

2.1 Maxwell±Bloch model
Basic models for describing a fiber laser are constructed using
Maxwell's equations of the electrodynamics of continuous
media supplemented with corresponding matter equations.
We assume that all materials forming a laser medium are
nonmagnetic, with the magnetic permeability equal to unity.
Of practical interest is the regime of a single transverse mode,
and the transverse structure of the field can therefore be
assumed to be fixed. We also assume for simplicity that the
polarization of radiation is fixed; then Maxwell's equations
reduce to scalar one-dimensional equations

1

c

q ~D

qT
ÿ q ~H

qz
� 0 ;

1

c

q ~H

qT
ÿ q ~E

qz
� 0 ; �1�

where z is the longitudinal coordinate (along the laser axis),
T is time, c is the speed of light in a vacuum, and ~E, ~H, and ~D
are the electric and magnetic strength and electric induction
components. Further simplifications are achieved for the
unidirectional propagation of quasi-monochromatic radia-
tion (the slowly varying envelope approximation) in a
medium with a fast (inertialess) response. For such radia-
tion, a slowly varying envelope A (compared to the mean
optical period 2p=o0) can be introduced by the relation

~E�z;T � � Re
�
A�z;T � exp �ik0zÿ io0T �

�
; �2�

where k0 is the wave number for the carrier frequency o0.
Then the propagation of a pulse through a fiber with the
linear absorption coefficient G and the Kerr nonlinearity
coefficient g of the refractive index is described in the
coordinate system comoving with the pulse with a group
velocity vg (t�Tÿz=vg) by the standard generalized NSE [41]

qA
qz
� ÿi b2

2

q 2A

qt 2
� b3

6

q 3A

qt 3
� igjAj2Aÿ GA ; �3�

where b2 and b3 are the second- and third-order dispersion
coefficients (higher-order dispersion is neglected). All the
parameters in this equation are effective characteristics
integrated over the transverse dependence of the field for a
particular mode of an optical fiber [41].

In the case of the resonance nonlinearity of a medium
realized under laser amplification or saturable absorption, the
form of matter equations requires specifying the medium
model. The medium polarizability ~P is introduced by the
relation ~D � ~E� 4p ~P and is determined as the specific dipole
moment of themedium. For fiber amplifiers and lasers, where
amplification is provided by pumping rare-earth impurity
ions in amatrix, the resonance nonlinearity is typical. Because
the relaxation time of operating levels is quite long, the
resonance response cannot be considered to be instant
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(inertialess), while the finite spectral width of amplification
and absorption bands automatically leads to quadratic and
higher-order dispersion. The limit cases are the slow [28, 42,
43] and fast [44±48] relaxations. In this review, we consider
only two limit cases: comparatively long laser pulses, for
which the slowly varying amplitude approximation can be
used, and extremely short laser pulses with the spectral width
comparable to the central frequency. The active elements of
fiber lasers are silica fibers dopedwith rare-earth ionsNd,Yb,
Er, Ho, and Tm. Lasing occurs in the three- or four-level
arrangement (Fig. 1a). Pumping excites a group 3 of high
levels of active centers, from which fast relaxation occurs to
the higher operating level 2, and hence the model reduces to
the effective two-level arrangement (Fig. 1b) [49]. As a result,
the resonance interaction of radiation with active centers is
described by equations for the density matrix (the superscript
(a) refers to an active center)

q
qT

r�a�21 � ÿ
�
io �a�21 �

1

T
�a�
2

�
r�a�21 ÿ i

ma ~E

�h

ÿ
r�a�22 ÿ r �a�11

�
;

q
qT

r �a�22 � ÿ
1

T
�a�
1

r �a�22 ÿ i
ma ~E

�h

ÿ
r�a�21 ÿ r�a�12

�� p ; �4�

q
qT
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1

T
�a�
1

r�a�22 ÿ
1

T
�a�
11

r�a�11 � i
ma ~E

�h

ÿ
r�a�21 ÿ r�a�12

�
:

Here, r11 and r22 are populations of the upper 1 and lower 2
operating levels with lifetimes T

�a�
1 and T

�a�
11 , nondiagonal

elements r12 � r �21 determine the dipole moment of the
medium (see below), o21 is the transition frequency, m is the
dipole transition matrix element, p is the upper level pump
rate, T

�a�
2 is the dipole moment relaxation time, and �h is the

Planck constant. In the case of homogeneous broadening (all
active centers with the concentration na are identical), the
polarization is ~P �a� � namar

�a�
12 � c:c: Inhomogeneous broad-

ening is described by the statistical scatter of parameters of
the centers (first of all, the transition frequency). A two-level
saturable absorber (the superscript (p)), for which pumping is
absent and the lower level 1 can be assumed to be the ground
level (T

�p�
11 � 1), is described similarly:
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In this case, the total population of two operating levels is
conserved: r �p�11 � r �p�22 � 1. Taking the low concentration of

resonance centers into account, their contribution to medium
polarization can be assumed to be additive, and hence for
homogeneous broadening we have

~P � ~P �m� � ~P �a; p�;

~P �a; p� � npmpr
�p�
12 � namar

�a�
12 � c:c: �6�

The term ~P �m� describes the nonresonant part of the matrix
polarization with the linear component ��ê0 ÿ 1�=�4p�� ~E and
the nonlinear component including the Kerr nonlinearity
factor g. Here, ê0 is the permittivity of the matrix nonreso-
nantly interacting with radiation, its operator form taking the
frequency dispersion of the matrix into account.

System of equations (1), (4)±(6) is sufficient for simulating
the propagation of extremely short optical pulses in a fiber
nonresonantly and resonantly interacting with the medium.
Simplifications are achieved in the regime of unidirectional
quasi-monochromatic radiation. Similarly to (2), we can then
introduce the slowly varying polarization

~P�z;T � � Re
�

�P�z;T � exp �ik0zÿ io0T �
�
: �7�

In this case, quasi-optical equation (3) is replaced by

qA
qz
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2

q 2A

qt 2
� b3

6

q 3A

qt 3
� igjAj2Aÿ GA� ĜA ; �8�

where ĜA � 2pi�k0=e0�o0�� �P �a; p�. The real part of this
expression for the zero phase of the amplitude A is propor-
tional to the gain (for active parts of the fiber) or saturable
absorption, while the imaginary part is proportional to the
resonance component of the nonlinear refractive index.
Amplification and resonance absorption are proportional to
the difference between populations of two operating levels.
Therefore, it is convenient to pass from Eqns (4) and (5) for
the density matrix to Bloch equations for macroscopic
quantities, resonance polarization (7) and the population
difference N �a; p� � na; p�r�a; p�22 ÿ r�a; p�11 �. In the resonance
approximation, ignoring rapidly oscillating quantities, for a
saturable absorber, instead of (5), we obtain

q �P �p�

qT
� ÿ

�
ido�p� � 1

T
�p�
2

�
�P �p� ÿ i

m 2
pA

�h
N �p� ;

�9�
qN �p�

qT
� ÿ 1

T
� p�
1

ÿ
N �p� ÿN

�p�
0

�ÿ b �p�

�h
Im
ÿ
A �P �p��

�
;

where do�p� � o�p�21 ÿ o0 is the working transition detuning
from the carrier frequency,N

�p�
0 is the equilibrium population

difference in the absence of the field (in the case under study,
N
� p�
0 � ÿn, which means that all the centers in the absence of

radiation are at the lower level), and b�p� � 1 (the value of this
parameter is determined by whether the lower level is the
ground level). In the comoving coordinate system, the
derivative q=qT in the left-hand sides of (9) is replaced by
q=qt.

For amplification in the four-level arrangement, assuming
the rapid decay of the lower working level (T

�a�
11 5T

�a�
1 ,

r�a�11 5 r�a�22 ), we obtain the same equations with the replace-
ment of superscripts � p� ! �a�,N �a�0 �npT

�a�
1 , and b �a� �1=2.

Bloch equations (9) are required for the description of the
coherent self-mode-locking regime (the pulse duration is
considerably shorter than the relaxation times T

�a; p�
2 ) in the

0

3

1

1 2

2

a

b

Figure 1. Level diagram.
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slowly varying envelope approximation [50]. In the most
widespread incoherent self-mode-locking regime (relaxation
times T

�a; p�
2 are small compared to the pulse duration),

polarization sets in rapidly and, as follows from the first
equation in (9),

�P �a; p� � ÿi m
2
a; pA

�h

N �a; p�

ido�a; p� � 1=T
�a; p�
2

: �10�

Equations (9) then reduce to kinetic equations for the
population differences

T
�a; p�
1

qN �a; p�

qt
� N

�a;p�
0 ÿ

�
1� jAj

2

I
�a;p�
s

�
N �a; p� ; �11�

which supplement and close Eqns (8) and (10). Here, the
saturation intensity

I �a;p�s � �h 2

b �a; p� m2a; p

T
�a; p�
2

T
�a; p�
1

�ÿ
do�a;p�

�2 � 1ÿ
T
�a;p�
1

�2 � �12�

is introduced.
Finally, in the quasi-continuous regime with qN �a;p�=qt�0

(`fast' amplifying and absorbing media), population differ-
ences change adiabatically with the radiation intensity
I � jAj2:

N �a; p� � N
�a; p�
0

1� I=I
�a; p�
s

: �13�

In this case, the field dynamics are described by the unified
equation

qA
qz
� ÿi b2

2

q 2A

qt 2
� b3

6

q 3A

qt 3
� igjAj2Aÿ GA� 2pk0

�he0�o0�

�
X

m�a; p

m2m
ido �m� � 1=T

�m�
2

N
�m�
0

1� I=I
�m�
s

A : �14�

We note that the equilibrium values of the population
difference for the amplifier and absorber have opposite
signs: N

�a�
0 > 0 and N

�p�
0 < 0. With the frequency selectivity

of amplification and losses in the approximation quadratic in
the frequency deviation taken into account, the coefficient b2
becomes complex.

Although the above equations are obtained for a `single-
pass' fiber, they can be generalized for the dynamics of a fiber
laser if the relative changes in the radiation and amplification
(absorption) amplitudes per pass are small and the pulse
duration tp and relaxation times of the medium are shorter
than the round-trip timeTR in the cavity [28, 43]. Then (small)
lumped losses on laser mirrors can be replaced by losses
distributed over the cavity length L: G � �1ÿ Rm�=L, where
Rm is the product of the amplitude reflection coefficients of
the ring cavity mirrors. Another consequence of the assump-
tion about the small change in the radiation amplitude per
pass is that the resonance amplification and absorption of the
medium only weakly change per pass under the action of a
pulse with the duration tp much shorter than the round-trip
time TR of light in the cavity. As a result, amplification
and absorption can be averaged over the time TR:
N �a; p� ! hN �a; p�i � Tÿ1R

� TR

0 N �a; p��z; t� dt. By introducing
the saturation energy density W

�a;p�
s � I

�a; p�
s TR, we use (11)

to obtain

hN �a; p�i � N
�a; p�
0

1� 1=W
�a;p�
s

� TR

0

ÿjA�z; t�j2� dt : �15�

Accordingly, the field dynamic equation takes the form
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In addition to this case of a ``slow amplifier and absorber,''
also of interest is themixed case of the ``slow amplifier and fast
absorber,'' combining (14) and (16):

qA
qz
� ÿi b2

2

q 2A

qt 2
� b3

6

q 3A

qt 3
� igjAj2Aÿ GA� 2pk0

�he0�o0�
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a

ido �a� � 1=T
�a�
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�a�
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1� 1=W
�a�
s

� TR

0

ÿjA�z; t�j2� dt
� m 2

p

ido �p� � 1=T
�p�
2

N
�p�
0

1� I=I
�p�
s

�
A : �17�

In [51], the effective two-level model for an erbium
amplifying medium was combined with the standard equa-
tion describing the propagation of light in an optical fiber for
simulating an ytterbium fiber laser with strongly nonlinear
intracavity radiation dynamics. An interesting and so far
little-studied regime is the case where the round-trip time of a
pulse in the laser cavity coincides with characteristic times in
the active or passive medium. This can in principle be realized
in fiber lasers with a long cavity [52±54] and can lead to new
interesting lasing regimes.

2.2 Mathematical models
of the basic elements of a fiber laser
A passively mode-locked pulsed fiber laser can be simulated
either using averagedmodels describing changes in the optical
field after the round trip of radiation in the cavity and
evolution from one transition to another or by applying the
approach where each of the elements of the system is
described by an individual model, and discrete elements,
such as a saturable absorber, a coupler, or filters, are
considered separately from the evolution in the fiber. In
Section 2.1, we described an ab initio derivation of equations
describing amplification and a saturable absorber. For a
practical analysis of laser systems, when not all the funda-
mental parameters of the laser system can be known, simpler
heuristic models are often used with unknown parameters
determined from experiments. Below, we present the simplest
mathematical models used for the practical description of the
propagation of an optical pulse through the basic elements of
a fiber laser.

Active and passive fibers. The propagation of a pulse
through a laser fiber is described by generalized NSE (3)

The evolution of radiation in the active fiber is
described by generalized Schr�odinger equation (3), with the
amplification and spectral filtration by the input field
A�t; z � 0� � Ain�t� (which is determined by the preceding
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round-trip transition in the cavity, except for the first round-
trip transition, when the initial field distribution is used).

The simulation of pulse propagation in the active fiber of
a mode-locked laser should take the amplification saturation
and filtering into account. The amplification saturation and
filtering effects in the operator Ĝ are usually described in the
frequency region using the Lorentzian profile

Ĝ�o� � 1

1� E=EsatG

G0

1� ��oÿ o0�=OG�2
; �18�

where o0�2pc=l0 is the carrier frequency, OG��2pc=l20�LG

is the filtration frequency, c is the speed of light,LG is the gain
bandwidth, and l0 is the carrier wavelength of the laser. If the
spectral filtration is mainly determined by the finite width of
the gain band, thenOG � 1=T

�a�
2 . The small-signal gain at the

profile center is related to the microparameters presented in
Section 2.1 as G0 � �2pk0=��he0�� m2aN �a�0 T

�a�
2 . The amplifica-

tion saturation occurs with increasing the pulse energy
E � � TR

0 jAj2 dt, the saturation energy being EsatG �
PsatGTR. Here, PsatG is the amplification saturation power.
The first and second factors in (18) respectively correspond to
amplification saturation and filtration.

A saturable absorber. The standard method for generating
picosecond and femtosecond laser pulses is mode locking.
Passively mode-locked pulses are generated with the help of
intracavity nonlinear elements, the pulse propagated through
such elements becoming narrower. As a rule, such nonlinear
elements are saturable absorbers (SAs). Passive mode locking
with the use of a saturable absorber is the simplest mode-
locking method, allowing the generation of narrower pulses.

A saturable absorber can operate in both light reflection
and transmission regimes. In the reflection regime, for
example, in semiconductor mirror saturable absorbers, the
simplified transfer function describing the relation between
input and output powers under the action of a saturable
absorber has the form Trefl�t� � 1ÿ q�t;Pin�t��, where
Pin�t� � jAin�t�j2. At the same time, for a storable absorber
based on light transmission, for example, in carbon nano-
tubes, the transfer function has the form Ttrans�t� �
q�t;Pin�t��. The function q can be found in both cases from
the ordinary differential equation

dq

dt
� ÿ qÿ q0

T
�p�
1

ÿ q
��A�t���2

T
�p�
1 Psat

; �19�

where q0 is the modulation depth, Psat is the absorption
saturation power, and T

�p�
1 is the recovery time of the

saturable absorber. We note that in the thin-layer
approximation (small absorption losses), q is propor-
tional to the population difference N �p� of the operating
levels introduced above: q0��2pk0=��he0�� m2pjN �p�0 jT �p�2 l and
q��2pk0=��he0�� m2pjN �p�jT �p�2 l.

When the condition dq�t�=dt � 0 is satisfied in the case of
instant saturation, we obtain the simplified model

q�t� � q0

1� ��Ain�t�
��2=Psat

: �20�

We note that the formal replacement of the point-wise
action of elements by the effective distributed model may not
coincidewith the ab initio description presented in Section 2.1.

Coupler. The output field of a cavity, in propagating
through a coupler, is given by Pout � RoutPin, where Pin �
jAinj2 is the input field power of the coupler, Pout � jAoutj2 is

the total output power of the cavity, and Rout are output
power losses of the cavity. In this case,Pcavity � �1ÿ Rout�Pin,
where Pcavity � jAcavityj2 is the part of optical power remain-
ing in the cavity after the propagation of light through the
coupler.

2.3 Vector model of the field evolution taking
nonlinear optical rotation into account
Besides a material saturable absorber, nonlinear physical
effects can be used to achieve mode locking in a fiber laser.
For example, a popular method of passive mode locking is
based on nonlinear polarization rotation of radiation
propagating through a fiber when orthogonally polarized
components of a pulse propagate through optical fibers and
cause efficient absorption saturation [55, 56].

The substantial simplificationmade above in the formula-
tion of the Ginzburg±Landau equation assumes that the
incident beam polarization is preserved during its propaga-
tion in an optical fiber. Because this is not the case in fiber
lasers mode-locked based on nonlinear polarization rotation,
the propagation of pulses in such lasers is simulated using
the system of coupled Ginzburg±Landau equations (see,
e.g., [57]). We consider the interaction of two orthogonally
polarized components A� and Aÿ of the optical field.

After propagation through a polarizer, the elliptically
polarized components A� and Aÿ of the slowly varying
amplitude take the form

A� � A1 cos

�
wÿ p

4

�
exp �ic� ;

�21�
Aÿ � A1 cos

�
w� p

4

�
exp �ÿic� ;

where A1 is the input field, and w and c are the angles of
rotation of two polarization plates (quarter-wave and half-
wave, respectively), with 0 < w < p=4.

To describe the evolution of the polarization vector in this
case directly, it is necessary to use the system of coupled
Ginzburg±Landau equations for the electromagnetic field
amplitude A�z; t� [57]
qA�
qz
� ib2

2

q 2A�
qt 2

� GA� � ig
3

ÿjA�j2ÿjAÿj2�A� ÿ igjAj2A�;

qAÿ
qz
� ib2

2

q 2Aÿ
qt 2

� GAÿ ÿ ig
3

ÿjA�j2ÿjAÿj2�Aÿ ÿ igjAj2Aÿ :
�22�

Here, jAj2 � jA�j2 � jAÿj2 and G is the signal gain. The
components A� and Aÿ of the optical field (the right- and
left-hand circular polarizations of the electric field) propagat-
ing through a fiber can be represented in terms of linear
polarizations as

A1 � A� � Aÿ���
2
p ; A2 � A� ÿ Aÿ���

2
p : �23�

The field component A2 escapes from the cavity, while A1

returns to the cavity and is polarized during its propagation in
the cavity in accordance with system of equations (21). Here,
components A1 and A2 are two linearly polarized compo-
nents.

System of equations (22) describes the propagation of
light in the fiber part of the cavity. By changing the angles of
rotation of the plates, the polarization of light (in particular,
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the ellipticity and the angle of the polarization ellipse axis) can
be controlled at the fiber input. The effective parameters of
such a saturable element are described in [58, 59].

3. Basic analytic solutions
of the laser Haus±Ginzburg±Landau equation

At present, the complex Ginzburg±Landau equation is one of
the best-known nonlinear models describing nonlinear effects
in physics, such as nonlinear waves, second-order phase
transitions, superconductivity, superfluidity, the Bose±Ein-
stein condensate, liquid crystals, and numerous other phe-
nomena [60]. The equation is a first-order approximation in
the limit of a slowly varying amplitude of the electromagnetic
field envelope characterizing the dynamics of nonlinear
systems in the nonequilibrium state in the presence of losses
(amplification). In optics, the Haus±Ginzburg±Landau equa-
tion is used to describe the propagation of optical pulses, in
particular, to simulate mode-locked fiber lasers representing
complex physical systems with linear and nonlinear dissipa-
tive elements [9, 42, 59, 61±64].

3.1 Dissipative soliton solutions
We consider the cubic Haus±Ginzburg±Landau equation,
which is widely used for simulating passively mode-locked
lasers [42]:

qA
qz
� ÿ ib2

2

q 2A

qt 2
� igjAj2A� �Gÿ G�A

� G

O 2
G

q 2A

qt 2
� FSA

ÿjAj2�A ; �24�

where b2 and g are the dispersion and nonlinearity coefficients
of the optical fiber averaged along the laser cavity, OG [THz]
is the spectral filtration parameter (the width of a parabolic
spectral filter or the amplification band), and Gÿ G [dB mÿ1]
is the difference between the gain and losses in the cavity. We
consider two important cases: (I) constant amplification
G � G0 � const and (II) saturable amplification G �
G�z� � G0=�1� E�z�=EsatG�. In laser applications, the func-
tion FSA�jAj2� describes the distributed action of saturable
absorber (5) in an effective simplified form. We list several of
the most frequently used approximations.

(a) FSA�jAj2� � djAj2 �d > 0� �Wÿ1 mÿ1� is the self-ampli-
tude modulation coefficient describing the influence of a
saturable absorber on the signal in the first nonlinear order.
This equation is obtained from (8) by ignoring the third-order
dispersion and the description of absorption saturation by the
cubic term.

(b) FSA�jAj2� � djAj2�1ÿ zjAj2�. This approximation
gives a generalized Ginzburg±Landau equation with a fifth-
order nonlinear term (additionally to the third-order term)
describing the self-amplitude modulation saturation. We
consider it in detail in Section 3.3.

(c)FSA�jAj2� ÿ G � ÿG0=�1� jAj2=Psat� (wherePsat is the
saturation power in the saturable absorber). This represents
the influence of the saturable absorber in the general form
that follows from (5). In this case, the expansion of the term
with saturable losses in a Taylor series gives rise to the third-
and fifth-order terms, as in cases (a) and (b).

We consider the most typical case of saturable amplifica-
tion (II) and general expression (c) for a saturable absorber.
Then the change in the signal energy is described by the

equation

dE

dz
� 2G0E

1� E=EsatG
ÿ 2G0

�TR

0

jAj2 dt
1� jAj2=Psat

ÿ 2G

O 2
G

�TR

0

jAtj2 dt : �25�

Depending on the compensationmechanism of the energy
increase in Eqn (24), different classes of solutions of the
generalized Ginzburg±Landau equation exist. The energy
increase described by the first term in the right-hand side
of (25) can be compensated by (a) linear decay (without
absorption saturation, jAj2=Psat 5 1); (b) losses related to
the spectral filtration of the signal; (c) saturable losses
depending on the field jAj2; and a combination of these
basic options.

We consider the limit with nonsaturable losses,
FSA�jAj2��0, and the absence of the spectral filtration of
amplification, 1=O 2

G � 0. The evolution of the signal energy
can then be found from the equation

qE
qz
� 2G0E

1� E=EsatG
ÿ 2G0E : �26�

The signal energy in the asymptotic limit is

Easym � EsatG

�
G0 ÿ G0

G0

�
: �27�

An analytic solution of Eqn (24) in the anomalous
dispersion region has the form

A�z; t� �
�������������
gE 2

asym

ÿb2

s
1

cosh �T=T0� exp
�
ÿ ib2z
2T 2

0

�
; �28�

where T0 � ÿb2=�gEasym�.
We now consider generalized Haus±Ginzburg±Landau

equation (24) with FSA�jAj2� � djAj2 (d > 0� and spectral
filtration. Then Eqn (24) has a solution in the form of a
chirped dissipative soliton (with a time-dependent phase)

A�z; t� �
����
P
p

sech1�iC
�

t

tp

�
exp �ifz� ; �29�

where the parameters P, tp, C, and f are the respective signal
peak power, duration, chirp, and phase. Substituting solution
(29) in (24), we obtain the system of nonlinear algebraic
equations

ft 20O
2
G ÿ

�
D�1ÿ C 2� � 2C

� t 20
t 2p
� 0 ;

D�2ÿ C 2� � 3�g
tp
t0
ÿ 3C � 0 ;

�30��
G0

1� E=EsatG
ÿ G

�
O 2

G

G
t 20 �

�
2DC� �1ÿ C 2�� t 20

t 2p
� 0 ;

�2ÿ C 2� � 3DCÿ 3�d
tp
t0
� 0 ;

where D � b2O
2
G=�2G�, �g � gO 2

GEt0=�6G�, and �d �
dO 2

GEt0=�6G� are dimensionless parameters, t0 is the char-
acteristic pulse duration, and E � 2Ptp is the characteristic
pulse energy.
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Figures 2 and 3 show the main characteristics of analytic
solution (29), which exists in a broad range of dimensionless
physical parameters (the figures are presented only in the
limit E=EsatG 5 1 �G � G0�� [65]. The width of the signal
spectrum is related to the signal duration as B �
t0 arccosh �cosh �pC� � 2�=�p 2tp� [66±68]. In Fig. 2, the
dispersion and Kerr nonlinearity coefficients b2 and g
change, whereas the signal energy E, the filter bandwidth
OG, and the self-amplitude modulation coefficient d remain
constant. If the nonlinearity parameter is nonzero, �g 6� 0, a
solution with zero chirp exists in the anomalous dispersion
region on the straight line D�d� �g � 0 (black line). As a rule,
pulsed solutions of Eqn (24) with the smallest duration and
chirp exist in the anomalous dispersion region. Such solutions
are similar to fundamental solitons, because they exist due to
a balance between dispersion and nonlinearity, whereas the
role of dissipative terms is secondary. However, unlike the
NSE, the Ginzburg±Landau equation also has soliton
solutions in the zero- and positive-dispersion regions
(D5 0). Compared to fundamental solitons, pulsed solu-
tions in the normal dispersion region have a longer duration
and higher chirp. The spectral width B of the signal has a
maximum in the vicinity of zero dispersion for D > 0. The
signal spectrumwidth increases as the nonlinearity parameter
�g increases. The value of the gain Gÿ G determines whether
thebackgroundnoiseinalaserincreasesordecreases.Figure2d
shows that amplification is bounded in the anomalous
dispersion region, whereas in the vicinity of zero dispersion
(D � 0) for a large nonlinearity parameter, the amplification
begins to rapidly increase.

The influence of the amplification filtration on the form of
the solution of Eqn (24) is illustrated in Fig. 3, which shows
the main characteristics of the pulsed solution at the zero
dispersion point (D � 0) for a fixed parameter OGt0 and
energy E. The values of gOG and dOG change. Rectangular
regions I and II are the regions with strong and weak
amplification filtering. If filtration is strong (the narrow gain
bandwidth), the pulse duration and chirp parameter increase
with increasing �d. In the case of weak filtration, the pulses
become short and weakly chirped. In the entire region of
dimensionless parameters, the signal spectral width increases
with increasing the nonlinearity parameter �g, while the gain
decreases with increasing the self-amplitude modulation
coefficient �d. Figure 4 shows the characteristic temporal and
spectral profiles of solution (29) in the cases of normal and
anomalous dispersion. The spectra of strongly chirped pulses
in the normal dispersion region have a characteristic
rectangular shape with sharp edges. Such solutions were first
obtained experimentally in solid-state fiber lasers with normal
average dispersion [69].

In addition to the question of the existence of soliton
solutions like (29), an important problem is the analysis of
their stability. Figure 2d shows the values of the gain
parameter, which should be negative for a pulse to preserve
its stability with respect to the increasing spontaneous noise in
the cavity. Conditions providing the negative sign of the gain
parameter were found in [42]. But the analysis performed in
that paper does not allow completely characterizing the pulse
stability in the cavity. Using the perturbation theory for
solitons, the authors showed that solution (29) of Eqn (24) is
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Figure 2. (Color online.) Solution of system of equations (30): (a) the duration tp=t0; (b) the chirp parameter C; (c) the spectral width B, (d) the gain
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2
0 for the fixed parameter �d � 0:5.
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unstable in the anomalous dispersion region (b2 < 0) if
Gÿ G > 0 [42]. However, they neglected the amplification
filtration and self-amplitude modulation. To analyze the
stability more thoroughly, it is necessary to consider satur-
able amplification (also see Eqn (18)):

G � G�z� � G0

1� E�z�=EsatG
: �31�

In deriving the model of saturable amplification in
Eqn (31), it was assumed that the response of the medium is
slow compared to the round-trip time TR of a pulse in the
cavity. The time response of the medium is typically about a
microsecond, whereas TR is of the order of a nanosecond in
many optical systems, including fiber laser cavities. The
model with saturable amplification stabilizing the signal

energy and restricting its growth allows finding stable
solutions of Eqn (24) in the normal (b2 > 0) and anomalous
(b2 < 0) dispersion regions [70].

Ginzburg±Landau equations (24) with the cubic approx-
imation of the saturable absorber (FSA�jAj2��djAj2) describe
the main characteristics of soliton solutions like (29);
however, the existence region of stable solutions found from
this equations is bounded. Broader classes of stable soliton
solutions appear when the fifth-order term describing the
saturation of the self-amplitude modulation is taken into
account. The equation obtained in this way is called the
generalized Ginzburg±Landau equation. We note that
chirped soliton pulses like (29) are no longer exact solutions
of the new equation. Nevertheless, the main dependences
shown in Figs 2 and 3 remain valid for stable solutions of the
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(solid grey line). Dashed curves show strongly chirped solutions of the generalized Ginzburg±Landau equation.
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generalized Ginzburg±Landau equation. For example, pulses
in the anomalous dispersion region have a small chirp and are
short compared to long strongly chirped pulses in the normal
dispersion region. To date, numerous papers devoted to the
search for and study of the behavior of solutions of the
generalized Ginzburg±Landau equation have been pub-
lished. The subjects of the studies include stationary solu-
tions, pulsed solitons, and the interaction and destruction of
solitons [9, 71±74].

Recent progress in the study and development of fiber
lasers and oscillators with completely normal dispersion
resulted in the generation of strongly chirped dissipative
solitons with high energies [75, 76]. Some properties of
strongly chirped dissipative solitons cannot be described by
the cubic Ginzburg±Landau equation. For example, the
spectrum of such pulses can differ from the spectrum of
solution (29). Examples of such spectra are presented in
Fig. 4 (dashed curves). The spectra have a parabolic apex or
a dip in the middle and sharp edges. The solution of the
generalized Ginzburg±Landau equation with the fifth-order
nonlinear term

A�z; t� �
�������������������������������

P

cosh �t=tp� � B

s

� exp

�
ÿ iC

�
ln

�
cosh

t

tp
� B

��
� ifz

�

reproduces the complex shape of the spectrum, depending on
the value of the parameter ÿ1 < B <1 [77]. To obtain the
solution in this form, it is necessary to make some assump-
tions about the parameters of the equation. However, this
solution qualitatively describes different lasing regimes in
fiber lasers with completely normal dispersion, including
rectangular pulses, strongly chirped dissipative solitons, and
multipulse lasing regimes. It is also used to describe the
intracavity dynamics of the signal and the influence of
spectral filtration on signal generation in fiber lasers [78].
Recently, this solution was used to generalize the so-called
soliton area theorem. Unlike the standard soliton area
theorem, which states that the soliton energy is inversely
proportional to its duration, the pulse energy in the general-
ized theory for a certain set of parameters linearly increases
with the pulse duration [79].

The basic idea of another approach is the search for
approximate solutions of the generalized Ginzburg±Landau
equation qualitatively repeating the features of experimental

pulses [64, 80±82]. These solutions can be assigned to a certain
set of parameters and generalized to the case where dissipative
third- and fifth-order terms in the equation are replaced by a
Lorentzian, as in Eqn (14) [83].

3.2 Automodel solutions
It was found in [84] that high-power parabolic optical pulses
with a linear frequency chirp can stably propagate in a passive
fiber with positive dispersion. This observation aroused
interest in the study of the propagation of short pulses in
fiber amplifiers with positive (normal) dispersion, which are
described by Eqn (24) for b2 > 0, OG !1, and d � 0. We
note that independently of the initial pulse shape, the pulse
becomes parabolic during its propagation in the fiber and
acquires a quadratic phase ifGÿ G > 0 [85]. Figure 5a shows
the evolution of an initially Gaussian beam propagating in a
fiber. The inset shows the pulse after propagation, with a
characteristic parabolic temporal profile and a linear chirp
(the derivative of the phase). Indeed, irrespective of the initial
signal shape, the chirped parabolic pulse is a global attractor
for the signal in the asymptotic limit. We represent the
automodel parabolic solution in the form

A�z; t� �
������������������������������������
Pp�z�

�
1ÿ t 2

t 2p �z�
�s
exp

ÿ
iCp�z� t 2

�
: �32�

Substituting (32) in (24) (with OG !1 and d � 0) and
assuming that 1=t 2p 5C 2

p (the so-called semiclassical approx-
imation), in the asymptotic limit we obtain

dPp

dz
� 2b2PpCp � 2�Gÿ G�Pp ;

dtp
dz
� ÿ2b2tpCp ; �33�

dCp

dz
� 2b2C

2
p ÿ g

Pp

t 2p
:

Equations (33) have an analytic solution

Pp�z� � A 2
0 exp

4�Gÿ G� z
3

;

tp�z� � 3
������������
gb2=2

p
Gÿ G

A0 exp
2�Gÿ G�z

3
; �34�
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Figure 5. (Color online.) (a) Solution of Eqn (24) with a Gaussian pulse as the initial signal. The initial pulse energy is E � 100 pJ, the pulse duration is

TFWHM � 500 fs, the fiber length is L � 5 m, b2 � 0:025 ps2 mÿ1, g � 0:0051 Wÿ1 mÿ1,G � 0:95 mÿ1, G � d � 0,OG !1. The inset shows the power

and chirp of a pulse propagating in the fiber. (b) Phase portraits of solutions corresponding to the initial pulse duration varying from 150 fs to 1 ps.
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whereA0 �
�
2�Gÿ G�Ein=

������������
gb2=2

p �1=3
=2 andEin is the signal

energy at the fiber input. The spectral width of the signal can
be found from Eqn (34) and written in the form op �������������������
2g=�5b2�

p
A0 exp

�
2�GÿG� z=3�. If the gain is positive

(Gÿ G > 0), the signal peak power, duration, and spectral
width increase exponentially and depend only on the
amplifier parameters and the initial energy. The signal chirp
is constant during the pulse propagation in the fiber, being
proportional to the gain and inversely proportional to the
group velocity dispersion coefficient. The pulse characteris-
tics asymptotically approach solution (34) independently of
its initial shape. Figure 5b shows the phase plane determined
by the ratio of the signal RMS duration and spectral width to
the respective asymptotic values tp and op. The results are
obtained by solving Eqn (24) with the Gaussian pulse
A�0; t��fEin=�

���
p
p

tp�0��g1=2 exp �ÿt 2=�2t 2p �0��� (Ein�100 pJ)
as the initial field. The pulse duration (FWHM) was changed
from 150 fs to 1 ps; the amplifier length was 5m. Although the
evolution of pulses with different initial durations proceeds
along different trajectories, all the pulses tend to the
asymptotic solution in the form of a similariton (the point
with coordinates (1, 1) in the phase plane). Because the above
solutions, called similaritons, are global attractors for the
system, they can find applications in various optical systems.

3.3 Other analytic solutions
We now consider practically important solutions (Podivilov±
Kalashnikov solitons [64]) of the complex generalized
Ginzburg±Landau equation (cubic±quintic Ginzburg±
Landau equation, CQGLE) for an envelope that differs
from the usual Haus±Ginzburg±Landau equation (24) by a
higher-order nonlinear term:

qA
qz
� ib2

2

q 2A

qt 2
ÿ igjAj2A� �Gÿ G�A

� G

O 2
G

q 2A

qt 2
� djAj2ÿ1ÿ zjAj2�A : �35�

We set s � Gÿ G and Z � G=O 2
G for convenience.

For strongly chirped dissipative solitons, the first two
terms describing dispersion (b2) and self-phase modulation
(SPM) (g) are much greater than the remaining four terms
describing the difference between losses and amplification (s),
spectral filtration (Z), self-amplitude modulation d, and the
saturation of self-amplitude modulation (z). All the para-
meters are positive for the chosen notation.

The pulse shape A�t� averaged along the cavity can be
found by solving Eqn (35) under the stationarity condition
qA=qz � 0. An exact analytic solution of the stationary
CQGLE for the normal dispersion was first found in [86] in
the case of weakly chirped solitons. An analysis of the
stability and determination of the existence region for this
solution were presented in [71, 72, 87]. To characterize the
pulse chirp (phase modulation), the exact solution [86] can
be written in the form A�a�t�1�i f [72], where f is the
dimensionless chirp parameter. The high-chirp limit f!1
is achieved when the spectral filtration in the system is much
smaller than the total dispersion (Z5 b2) and the self-
amplitude modulation is much smaller than the self-phase
modulation (d5 g). In this limit, the chirp parameter is
expressed in terms of the coefficients describing cavity
parameters: f ' 3=�Z=b2 � d=g�4 1 (see, e.g., [72]). In this
case, the parameter f is equal to the half-width D of the
spectrum times the pulse FWHM tp ( f ' Dtp�. The exact

solution [86] for a high chirp becomes singular and has no
physical meaning. Because of this, the universal approach to
the analysis of highly chirped dissipative solitons based on the
stationary phase method was presented in [64].

According to the approach in [64], the peak pulse power
Pm can take two values:

P�m �
3

8z

 
2ÿ Zb2

dg
�

�������������������������������������������
2ÿ Zb2

dg

�2

ÿ 16
sz
d

s !
: �36�

The expression describing the pulse shape can be written
implicitly [64] for both positive (Pm � P�m ) and negative
(Pm � Pÿm ) branches:

arctanh

�
O�t�
D

�
� 1

R
arctan

�
O�t�
RD

�
� t

tp
: �37�

Here, D � ���������������������g=b2�Pm

p
is the half-width of the spectrum

of a strongly chirped dissipative soliton, tp �
3g 2=�b2zdD3�1�R 2�� is the pulse duration, O�t� is the instant
frequency, and

R �
�������������������������������
1� Zg=b2d

zPm
ÿ 5

3

s
: �38�

is the only parameter determining the pulse shape. The
spectrum is described by

I�o� ' 6pg
zd

H�D2 ÿ o 2�
o 2 � R 2D2

; �39�

where H�x� is the Heaviside function. We can see that the
shape of the spectrum depends only on the parameter R.

A remarkable feature of this solution is its scalability. The
pulse shape P�t�=P� � B�t=tp� and the shape of its spectrum
I�o�=I�0� � C�o=D� depend only on the parameter R. If all
six parameters of the initial equation are changed such that
the value ofR is preserved, the pulse shape and the shape of its
spectrum do not change. The pulse shape is preserved, while
its amplitude, duration, chirp, and spectral width are scaled.

In the limit zPm 5 1, the solution P�t) tends to
sechÿ2�t=tp�. Obviously, the self-amplitude modulation
(cubic term) is small in this case. We note that in the opposite
limit R! 0, the pulse shape approaches a rectangular one.
The chirp parameter for R!1 can be written in the form

f � Dtp � 3

�
d
g
� Z
b2
ÿ 2

3
zPm

d
g

�ÿ1
;

which is close to the exact solution [72]. We note that the
expression for the chirp parameter in the opposite limit can be
considerably different.

Because the pulse power can take only positive real values,
it follows from (36) that solutions are absent in the region
Zg=b2d < 2ÿ 4

����������
sz=d

p
. The domain of definition of the

analytic solution is shown in Fig. 6 in the plane
�Zg=b2d; sz=d�. The region where solutions are absent is
denoted by I. Another condition follows from restrictions
on the pulse spectrum: R 2 > 0. For the positive branch
(Pm � P�m ), solutions exist in region IV, while for the
negative branch (Pm � Pÿm ), they are in regions III and IV.
In region II, both solutions are absent because the condition
R 2 < 0 is satisfied there. In this case, the negative branch is
unstable in the entire region of existence (regions III and IV),
while the positive branch is stable in its own region of
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existence (region IV). In region I, stable solutions exist for a
weak chirp f4 1, whereas strongly chirped solutions are
absent in this region. In region III, stable solutions have not
been obtained for either a high or a low chirp. Thus, region IV
is the only region of existence and stability for strongly
chirped solutions of Eqn (35).

We now compare numerical and analytic solutions for
different points in region IV in Fig. 6a. Numerical simulation
was performed for point 1 (s � 0:04, Z � 1, g � 9), point 2
(s � 0:13, Z � 0:5, g � 10), point 3 (s � 0:006, Z � 0:75,
g � 10), and point 4 (s � 0:007, Z � 1:25, g � 12). The
parameters b2 � 10, d � 1, and z � 1 were not changed.

Calculations showed that the results of numerical simula-
tion for selected points coincide with the analytic solution for
the positive branch in the entire domainof definition (Fig. 6b).
This means that the spectral shape of the highly chirped
dissipative soliton solution in Eqn (35) generally depends only
on the parameter R and is independent of the other
parameters of the equation.

Figure 6c presents pulse shapes in the temporal region at
different points in the domain of definition. The solution
shape is shown for different values of R. For example, for
R � 2:45, the pulse shape is well approximated by the
function sechÿ2, which is close to the standard soliton
solution of the Ginzburg±Landau equation. As R decreases,
the pulse shape changes and approaches a parabolic one at
point 3 (near the left boundary of region IV in Fig. 6a). For
R! 0 (exactly on the left boundary of region IV), the pulse
shape is close to rectangular: P � P�m �1ÿ R2 tan2 �Rt=tp��
for t < �tp=R� p=2.

4. Poincar�e map in describing laser systems

The averaged models considered above are invalid when
changes in the optical pulse amplitude and (or) phase after a
round trip of light in the cavity become considerable. Modern
mode-locked fiber lasers generating ultrashort high-energy
pulses usually exhibit strongly nonlinear dynamics during a
round trip, corresponding to considerable changes in the
pulse shape. For example, during the propagation of a high-
energy pulse in an optical fiber, the pulse spectrum can be
considerably broadened after a round trip in the cavity,
violating the condition underlying the averaged models of
mode-locked fiber lasers. In this case, the modified Haus±
Ginzburg±Landau equation can be used only to simulate the

propagation of the optical field through active and passive
fibers. Other discrete elements, such as a saturable absorber, a
coupler, and filters, should be considered separately from the
pulse propagation in the fiber and should not be included in
the distributed model. In the case of stable lasing, the
generated pulse should be reproduced after each round trip
in the cavity. Mathematically, this corresponds to the so-
called Poincar�e map, which is more convenient for describing
the periodic laser dynamics than the averaged model is. The
total change bTRT in the optical field for a round trip in the
laser cavity is the result of successive transformations of the
field in each element of the laser system: bTRT � cT1

cT2
cT3
cT4:::.

Here, cTk is the complex transformation operator acting on
the optical field in different intracavity elements, such as
passive and active fibers, an outcoupler, a saturable absorber,
and filters. The total field transformation A�t� after a round
trip in the cavity is given by the operator bTRT:An�1 � bTRTAn.
In the simplest case, the asymptotic state corresponds to
a fixed point of this Poincar�e map: An�1 � bTRTAn �
exp �iL�An. The inclusion of discrete elements in the laser
simulation directly rather than in the form averaged over
many periods emphasizes the periodic nature of the radiation
dynamics in the cavity. The intracavity dynamics can be
optimized by changing the system parameters or the laser
configuration itself. Mathematically, the nonlinear dynamics
of light in the laser cavity makes the operatorscTk, transform-
ing the field in isolated point-like elements, noncommuting.
A significant practical consequence of this mathematical
fact is the importance (for the properties of generated
pulses) of the order in which point-like elements are arranged
in the laser cavity.

For example, we consider the typical setup of a dissipative
soliton fiber laser with normal dispersion everywhere and a
ring cavity consisting of an active fiber (AF), a passive fiber
(PA), a saturable absorber (SA), and an outcoupler (OC). We
compare the pulse energy at the system output (behind the
coupler) for different variants of the arrangement of elements
in a fiber laser of this type. We let each configuration be
denoted by a sequence of components according to their
arrangement in the cavity. For example, the configuration
AF±PF±SA±OCmeans that the active fiber is followed by the
passive fiber, then by the saturable absorber, and the output
coupler. For convenience, each configuration ends with the
outcoupler. Hence, for the set of elements listed above, six
different configurations are possible. In the order of decreas-
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Figure 6. (Color online.) (a) Region of the solution existence in the Zg=b2d; sz=d plane; the positive branch (Pm � P�m ) is defined in region IV, the negative

branch (Pm � Pÿm ) is defined in regions III and IV. Points at which numerical calculations were performed are indicated by the numbers 1±4.

(b) Comparison of numerical calculations (symbols) with the positive branch of the analytic solution (solid dark line) for pulse spectra. (c) The pulse shape

in the temporal space for the positive branch of the analytic solution (solid lines).
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ing the output energy, they are (1) PA±AF±SA±OC;
(2) AF±SA±PF±OC; (3) AF±PF±SA±OC; (4) SA±PF±AF±OC;
(5) PF±SA±AF±OC; (6) SA±AF±PF±OC. Thus, to achieve
the maximum output energy from the cavity, it is necessary to
place the saturable absorber behind the gain medium and the
outcoupler behind the saturable absorber [88].

The advantage of the configuration providing the max-
imum output energy becomes more substantial with increas-
ing the cavity length. For short cavities, the relation

E
�1�
out � E

�2�
out � E

�3�
out > E

�4�
out � E

�5�
out � E

�6�
out

is valid, where E
�i�
out is the output energy from the cavity with

the ith configuration of elements. Changes in the energy and
other parameters of generated pulses upon changing the order
of intracavity elements most clearly demonstrated the non-
linear character of the appearing structures.

There are two types of scales in lasers: the `fast' scale
corresponding to the pulse dynamics at the cavity scale and
the `slow' scale corresponding to pulse changes for many
round trips in the cavity. The slow evolution can be described
using different mathematical approaches leading to Haus±
Ginzburg±Landau equations. Such slow dynamics can be
visualized at a chosen point in the cavity via the `stroboscopic'
evolution or by considering the evolution in terms of the
Poincar�e map in periodic systems.

We consider several examples. Figure 7a shows a typical
phase portrait in the chirp±pulse-width plane for a SESAM
(semiconductor saturable absorber mirror) passively mode-
locked fiber laser described in detail in Section 8.2. The plot
was obtained by using the following parameters of the fiber
laser: the gain g0 � 5:5 dB, the second-order cumulative
dispersion b2 � ÿ0:046 ps2, the third-order dispersion b3 �
5� 10ÿ4 ps3, the modulation depth q0�0:3, the saturation
energy Esat � 0:5 pJ, and the SESAM recovery time
tsat � 10 ps. We can see that the initial noise perturbation
evolves to the single-pulse regime with the following asymp-
totic parameters: the pulse duration TFWHM � 0:56 ps, the
chirp parameter C � ÿ3:44 psÿ2, and the peak power
P0 � 120 W. The mathematical solution is an attractor,
and any initial distribution tends to this stable asymptotic
state.

Figure 7b shows the dependence of attractors on the
initial conditions for a dissipative soliton fiber laser with a
cavity length of 2002 m, whose scheme is presented in
Section 8.1. The pulse parameters (its RMS width and
power) are presented at the output of the laser cavity. One
of the lines corresponds to the evolution of the initial
Gaussian field distribution and the other to the evolution of
white noise to the attractors indicated by circles.

Because the laser is a dissipative system, it can be seen
that in both cases the evolution of the initial field distribu-
tion proceeds along a spiral to the attraction pointÐa stable
pulse corresponding to a periodic solution.

5. Simplified models describing the dynamics
of laser pulses

The pulse dynamics in a fiber can often be described by
evolutionary equations for the pulse duration, peak power,
energy, chirp parameter, and spectral width [41]. Under
some assumptions, the particle-like properties of pulses
allow obtaining a closed system of coupled ordinary
differential equations (ODEs) well approximating the key
features of the pulse dynamics. This important simplifica-
tion is a direct consequence of the fact that the pulse is a
wave packet that can be described well by a finite number of
degrees of freedom. Instead of analyzing partial differential
equation (24), the pulse dynamics can described by a finite
system of ODEs. For the NSE, such ODEs are obtained by
the variational method or the method of moments
(ideologically close to the Galerkin method). The varia-
tional method [89] is based on the possibility of rewriting
the NSE in terms of a variational problem in which the
Lagrangian should be minimized for the envelope function.
This was first used for the NSE by Anderson in 1983 [90]
and was then extensively applied for simulating various
NSE systems (see, e.g., [91±95]). The method of moments
(or the root-mean-square (RMS) method of moments), first
demonstrated in nonlinear optics in 1971 [96], allows
calculating the pulse duration and peak power in terms of
time-integrated quantities. The master partial differential
equation can be transformed into an ODE system describ-
ing the dynamics of integrated characteristics over z [97]

ÿ1.5

ÿ2.0

ÿ2.5

ÿ3.0

ÿ3.5

ÿ4.0

0.52 0.54 0.56 0.58 0.60 0.62

7

6

5

4
0 1 2 3

RMS width, nsWidth, ps

C
h
ir
p
,p

sÿ
2

R
M
S
p
o
w
er
,W Gauss

White noise

a b

Figure 7. (a) Phase portrait of a pulse in the chirp±pulse-width plane. (b) Attractors for different initial field distributions: the evolution of the initial

Gaussian distribution and white noise to the attractors indicated by circles.
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(RMS). This method is used to describe the propagation of
pulses in fibers [98, 99] and dispersion-controlled systems
[94, 100±103].

The most popular approach to the mathematical simula-
tion of the generation and propagation of optical pulses in
modern fiber laser systems is the successive solution of
equations corresponding to each element of the cavity (see,
e.g., [9, 28, 59, 61, 65, 104±109]). In general, it is necessary to
perform separate calculations for each particular set of the
system parameters and to monitor the pulse dynamics during
many round trips in the cavity until pulse stabilization. This
approach often provides a high calculation accuracy and
good agreement with experimental data. However, any
investigations involving multiparametric optimization of the
fiber laser design are time consuming and require high-power
computers. In the case of multiparametric optimization, the
most efficient are methods assuming a lower accuracy due to
the use of some analytic approximations and a perturbative
treatment of the action of optical devices in the laser, and also
the use of relatively fast numerical algorithms. The shape of
stable lasing regimes in fiber lasers (soliton regimes) with
dispersion control are often characterized by an automodel
central part and decaying tails [65, 94, 100, 101, 103, 110, 111],
the difference between the total pulse energy and the energy of
its central part being insignificant. In this connection, of most
interest is the study of the `fast' dynamics (within one round
trip in the cavity) of the central part of optical pulses. Such a
division of the dissipative soliton shape into an automodel
central part and decaying tails allows the use of simpler
mathematical models based on systems of nonlinear ordin-
ary differential equations for studying the dynamics of optical
pulses in laser cavities.

The propagation of optical pulses in an active optical fiber
can be described by the generalized NSE [9, 28, 59, 61, 65,
104±109] [cf. Eqn (24)]:

qA
qz
� ÿ ib2

2

q 2A

qt 2
� igjAj2A� �Gÿ G�A� G

O 2
G

q 2A

qt 2
; �40�

where, in the general case, G � G�z� and obeys Eqn (31).
We consider stable single-pulse lasing regimes. With this

condition satisfied, pulses have already produced the ampli-
fication saturation after previous round trips in the cavity and
a balance between amplification and losses is established. In
this case, a relation of unsaturated amplification to the pulse
energy can be defined in terms of the parametersG,PsatG, and
TR of a fiber laser.

We introduce the notation ~z � z=L, where L is the laser
cavity length. We then obtain the scaled equation

A~z � id�~z�Att � iejAj2A� �gÿ l0�A� ngAtt ; �41�

where d�~z� � ÿb2L=2, e � gL, n � G=O 2
G, l0 � GL, g � GL.

After scaling, we have d�~z� 1� � d�~z�.
Equation (41) can be transformed into a system of

equations for the RMS characteristics of the pulse [65, 108].
To describe the dynamics of the central part of a soliton with
the help of key characteristics of the pulse, we consider the
evolution of the integrated quantities [41, 52, 99, 112]

TRMS�~z� �
������������������������������������� TR

0 t 2
��A�~z; t���2 dt� TR

0

��A�~z; t���2 dt
vuut ; �42�

CRMS�~z� � i

4

� TR

0 t
�
A�~z; t�A�t �~z; t� ÿ A��~z; t�At�~z; t�

�
dt� TR

0

��A�~z; t���2 dt ;

�43�

PRMS�~z� �
� TR

0

��A�~z; t���4 dt� TR

0

��A�~z; t���2 dt ; �44�

ORMS�~z� �
���������������������������������� TR

0

��At�~z; t�
��2 dt� TR

0

��A�~z; t���2 dt
vuut ; �45�

describing the RMS pulse width TRMS, the phase modulation
parameter CRMS, the pulse power PRMS, and the spectral
width ORMS. Solving Eqn (41) for the RMS quantities
assuming the parabolic phase of an optical signal [113], we
obtain [65]

dTRMS

d~z
� 4d�~z� CRMS

TRMS
ÿ ng

1

T 2
RMS

�I1 ÿ 1ÿ T 2
RMSO

2
RMS� ;

dCRMS

d~z
� d�~z�O 2

RMS ÿ
e
4
PRMS � ng�I2 � 2CRMSO 2

RMS� ;

dPRMS

d~z
� ÿ4d�~z� CRMSPRMS

T 2
RMS

� 2�gÿ l0�PRMS�

� 2ng�I3 � O 2
RMSPRMS� ;

dORMS

d~z
� ÿ2eCRMSPRMS

T 2
RMS

� 2ng�ÿI4 � O 4
RMS� ;

where

I1 �
� TR

0

t 2
��At�~z; t�

��2
E

dt ;

I2 � ÿi
� TR

0

t

2E

�
At�~z; t�A�tt�~z; t� ÿ A�t �~z; t�Att�~z; t�

�
dt ;

I3 �
� TR

0

��A�~z; t���2
E

�
A�~z; t�A�tt�~z; t� � A��~z; t�Att�~z; t�

�
dt ;

I4 �
� TR

0

��Att�~z; t�
��2

E
dt ;

E �
� TR

0

��A�~z; t���2 dt :
Dissipative terms in Eqn (41) give rise tomoment integrals

I1; . . . ; I4 in the system describing the dynamics of RMS
characteristics, which makes it unclosed. However, the
system can be simplified by assuming that the optical pulse
has a special shape. This allows calculating all RMS integrals,
thereby closing the system of ODEs. In general, any
approximation of the optical pulse can be used, for example,
a hyperbolic secant of a Gaussian or parabolic profile. We
consider a chirped Gaussian pulse of the form

A�~z; t� �
���������
P�~z�

p
exp

�
ÿ t 2

2t 2p �~z�
ÿ
1ÿ iC�~z��� ij�~z�

�
:

In this case, the local and RMS characteristics of the signal
are related as TRMS � tp=

���
2
p

, CRMS � C=4, PRMS � P=
���
2
p

,
and O 2

RMS � �1� C 2�=�2tp2�.
The description of the dynamics of the central part of a

dissipative soliton in terms of its key characteristics (duration
tp, peak power P, and chirp C) can then be reduced to a
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boundary value problem for periodic solutions of the system
of nonlinear ODEs [65, 108]

dtp
d~z
� 2d�~z� C

tp
ÿ ng

1

tp
�C 2 ÿ 1� ; �46�

dC

d~z
� ÿ2d�~z� ÿ 2ngC

� 1� C 2

t 2p
ÿ e���

2
p P ; �47�

dP

d~z
� ÿ2d�~z� CP

t 2p
� 2�gÿ l0�Pÿ 2ng

P

t 2p
; �48�

where

g � g �tp;P� � g0

1� Ptp
���
p
p

=e0
;

with the periodic boundary conditions

tp�0� � tp�1� ; C�0� � C�1� ; P�0� � P�1� : �49�

Numerical simulations based on the system of ODEs are
compared in detail with complete NSE simulations in [114],
where the propagation of an optical pulse in a laser cavity was
simulated with the dispersion map consisting of a fiber
segment with the second-order dispersion and a fiber
segment with negative dispersion. The average dispersion of
the cavity (hereafter, all the quantities are scaled) is hDi �
dÿ � d�, where dÿ and d� are the dispersions of fiber
segments with negative and positive dispersions. The disper-
sion variation depth isD � dÿ ÿ d�. A chromatic dispersion
profile of the form

d�z� �
D� hDi ; 04 z < 0:25 ,

ÿD� hDi ; 0:254 z < 0:75 ,

D� hDi ; 0:754 z < 1 ,

8<:

was considered. Good agreement was achieved between
simulation results for anomalous dispersion regimes. Figure 8
presents a comparison of level lines for the pulse energyE, the
pulse width tp, and the peak power P obtained in the NSE
(Fig. 8a) and ODE (Fig. 8b) simulations in the �hDi;D� plane
for anomalous dispersion regimes.

We see that for anomalous dispersion regimes, the results
obtained by themethod presented here are in good agreement
with the results of NSE simulations. However, the time and
especially the spectral characteristics of pulses are inconsis-
tent with ODE simulations for normal dispersion regimes.
Nevertheless, even in these cases, a simplified system of
equations predicts the pulse energy sufficiently well.

6. Dissipative Maxwell±Bloch solitons

In the case of small variations in the characteristics of a pulse
and medium for one round trip of light in a cavity and
comparatively short relaxation times of the active (ampli-
fier) and passive (absorber) media, the formation dynamics of
dissipative solitons can be described by Eqns (8) and (11)
corresponding to the `incoherent' self-mode matching (the
pulse duration considerably exceeds the relaxation time of
dipole momenta or the medium polarization). In [45, 46], it
was additionally assumed that b3 � 0 and g � 0 and time
variables were normalized to tsc �

���������������ÿRe b2
p

(anomalous
dispersion). Then b2�ÿ�1ÿid2� t 2sc, where d2�tÿ2sc Im b2 > 0
characterizes the width of the spectral filtration contour.
Frequency detunings were assumed small compared to the
width of the homogeneous amplification and absorption
bands.

Analysis and numerical calculations confirm the existence
of solutions of Eqns (8) and (11) in the form of stable localized
structures. A necessary condition for the existence of
dissipative solitons is the stability of the nonlasing regime.
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Figure 8. (Color online.) Level lines of the pulse energy E, the pulse width tp, and the peak power P obtained (a) by complete simulations and (b) by using
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In this case, weak initial perturbations disperse with time
(resulting in efficient noise suppression in the soliton regime).
But if the saturation intensity for the absorber is smaller than
that for the amplifier, the saturated amplification exceeds the
saturated absorption with increasing intensity and a strong
excitation of lasing can occur. As a result, bistability takes
place (for the same parameters, lasing is absent or present
depending on the initial conditions). A laser soliton can be
qualitatively visualized as a moving lasing islet against a
nonlasing background.

In the case of fast nonlinearity, a discrete set of single
solitons (with different time profiles, both stationary and
pulsed) and bound solitons exists. The finite amplification
and absorption relaxation times induce an asymmetry of the
soliton profile and considerably affect the type of the
interaction with each other. Numerical calculations show
the existence of stationary solutions of Eqns (8) and (11) in a
broad range of characteristic relative relaxation times ta �
tp � 0:1ÿ10, where ta;p � T

�a; p�
1 =tsc. In the distributed loss

approximation, the pulse shape is stabilized, and the pulse
moves at a constant velocity different from the group velocity
of light. In this case, the phase profile has a characteristic
linear slope toward the soliton motion direction. For fixed
characteristics of the medium, unique stationary values of the
soliton velocity and frequency shift exist. If the relaxation
times are sufficiently small (ta � tp � 1ÿ3), the shape of a

stationary soliton in a fiber weakly differs from that of a laser
soliton with inertialess media (ta � tp � 0), the soliton
velocity being smaller than the group velocity (`slow'
soliton). Moreover, if the spectral filtration is absent (d2�0
and the medium is inertialess), the pulse is continuously
slowed down, such that the stationary soliton does not exist
(also see [115]). For a sufficiently small d2 � 0:02, the velocity
shift is so large that it leads to a redistribution of the
amplification and absorption balance sufficient for violating
the soliton existence condition. Under these conditions, the
soliton disperses and the nonlasing state sets in. For d2 �
0:2ÿ0:5, the soliton velocity shift is small and the soliton is
stable. Large filtration parameters break the balance between
soliton losses and amplification even in inertialess media.

Figure 9 shows the stationary soliton intensity distribu-
tions and soliton spectra for different values of the parameter
d2 in a medium with fast nonlinearity (ta � tp � 0ÿ1). We
can see that as the relaxation time increases, the peak intensity
decreases and the spectrum shifts to the blue side.

Figure 10 shows similar characteristics for `fast' solitons
in a fiber with a sufficiently inertial nonlinearity (relaxation
times ta � tp � 10). In this case, both the properties and the
formation kinetics of such states qualitatively change com-
pared to solitons in an inertialess medium. First of all, the
soliton velocity increases and the velocity shift with respect to
the group velocity is positive. The maximum intensity is two
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to three times greater than the intensity of the homogeneous
stationary state. The pulse duration in a medium with strong
relaxation is approximately the same as in inertialess media,
but the pulse intensity at the periphery decreases more slowly
and a relaxation `tail' exists. The velocity of such a pulse is still
stabilized at nonzero values of the parameter d2: the smaller
the parameter is, the larger the positive velocity shift.

The soliton for tp � 0 and ta � 1 is stable in the interval
d2 � 0:3ÿ0:6. It loses its stability for d2 > 0:7, dispersing with
the establishment of a nonlasing state. However, for d2 < 0:2,
the stability loss scenario is different: the soliton width
monotonically increases, while its intensity tends to the
intensity of stable uniform lasing.

7. Dissipative self-induced transparency solitons

Progress in laser physics stimulates the development of
techniques for generating shorter and shorter laser pulses,
down to subfemtosecond (attosecond) pulses. The efficient
generation of such pulses would allow time-resolved studies
of the electron motion in atoms, molecules, and solids, the
creation of compact electron and ion accelerators, and the
generation of extremely short X-ray pulses for biological,
medical, and technological applications. Modern approaches
are based on the summation of radiation of multiple optical
harmonics and the action of super-strong optical fields on
thin targets, the efficiency of such approaches being restricted
by the principal multi-stage type of physical processes
involved.

The generation of extremely short pulses with a duration
comparable to the inverse central radiation frequency directly
in a laser can provide potentially high efficiency. To date, this
method has been assumed to be fundamentally impossible,
because the pulse duration is limited by the inverse width of
the laser gain band [116]. This circumstance has led to the
search for laser media with the widest gain band. A
Ti:sapphire laser has the widest gain band among known
lasers. However, it is impossible to generate pulses shorter
than two optical cycles even in this laser [117±119]. But this
restriction can be eliminated in the extremal nonlinear optics
regime when the gain band broadening caused by the pulse
itself is so large that its width becomes comparable to the laser
transition frequency.

This can be explained in two similar ways. First, we
consider the example of a single-mode fiber with saturable
amplification and absorption in the regime close to self-

induced transparency [120, 121]. In the absence of dissipative
factors (amplification and absorption), self-induced transpar-
ency solitons form a family with a continuous spectrum of
widths (and of the corresponding peak intensities). The
introduction of linear amplification leads to successive
replacement of solitons in the family with more and more
narrow solitons during pulse propagation. Such a self-
sharpening of initially standard (femtosecond) pulses is
restricted by nonlinear amplification and absorption, result-
ing in the generation of ultrashort dissipative solitons with a
duration of the order of the inverse laser transition frequency,
i.e., a few femtoseconds or even subfemtoseconds. We note
that ultrashort pulses are similar to p pulses with respect to
the absorber and to 2p pulses with respect to the amplifier
(with the subsequent slower kinetics determined by relaxation
parameters). This results in an efficient energy extraction in
the amplifier and the suppression of losses in the absorber.
Second, the spectral band broadening effect caused by intense
laser radiation is also known for comparatively long pulses in
lasers with saturable absorbers, as is explained in [50], where
the coherent mode matching technique was proposed and
described theoretically. This regime was recently demon-
strated experimentally in [122] for a dye laser with a
molecular iodine absorption cell. This approach for ultra-
short laser pulses has not been experimentally studied so
far, and we present only some computer simulations of
these regimes below. Details of the analysis are presented
in [123±133].

We note that the dynamics of ultrashort pulses in long
enough cavities, in which the round-trip time of light exceeds
the relaxation times in the medium, and in fibers with
saturable amplification and absorption do not fundamen-
tally differ. In both cases, the radiation propagation is
described by Eqn (1), i.e., without using the slowly varying
envelope and unidirectional propagation approximations.
The matter equations for the amplifier and absorber corre-
spond to density matrix equations (4) and (5), again without
using the slowly varying amplitude approximation. We note
that in a number of cases, it is necessary to pass from the two-
level to the more complete three-level energy diagram for a
fiber system (Fig. 11). The frequency dispersion of the
reflection coefficient of mirrors can be ignored in the simplest
case.

The type of interaction of an ultrashort pulse with a
medium is shown in Fig. 11. For active centers (amplifier),
the pulse rapidly changes the population-difference sign,
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acting as a p pulse. This is followed by a long stage of
restoring the initial level populations, determined by the
relaxation time. For passive centers whose concentration
greatly exceeds that of active centers, the level populations
are practically restored after the pulse propagation. There-
fore, for them this is a 2p pulse. The formation dynamics of
ultrashort pulses are similar in the case of inhomogeneous
broadening.

To generate dissipative self-induced transparency solitons
in active silica crystals and fiber lasers, a number of
conditions must be satisfied exactly. It is important that the
resonance nonlinearity dominate, while a silica matrix behave
as weakly nonlinear at such intensity levels. This is achiev-
able, for example, if active centers are quantum dots in which
transition dipole moments greatly exceed those in atomic
systems. The factor restricting the duration of an ultrashort
pulse is the IR andUV absorption in thematrix. Accordingly,
the pulse spectrum (coherent supercontinuum) covers almost
the entire transparency region of the matrix, being restricted
to its absorption bands.

8. Examples of dissipative solitons in fiber lasers

8.1 Dissipative solitons in long fiber lasers
The cavity length is an important parameter of a fiber laser
system, determining optical pulse characteristics [134]. The
pulse energy in fiber lasers can be considerably increased by
increasing the cavity length [52, 53]. Mode locking has been
demonstrated in a laser 25 km in length [135], and the
maximum pulse energy equal to 4 mJ was achieved in ultra-
long mode-locked fiber lasers [136]. A great number of recent
theoretical and experimental studies have been devoted to
high-energy pulsed fiber lasers with cavities a few kilometers
in length without using conventional techniques such as
Q-switching or open cavities (see, e.g., [52±54, 137±139]).
Fiber lasers allow the use of many nonlinear mechanisms for
radiation generation and shaping [48, 65, 82, 103, 105, 108,
112, 140±142]. We note that nonlinear effects make the
numerical simulation of fiber lasers a quite challenging
problem. Numerical simulation of fiber lasers with ultra-
long cavities is complicated due to technological problems
such as time-consuming calculations and the necessity of
using considerable computational resources. Recent numer-
ical simulations were used to analyze the properties of long,
passively mode-locked fiber lasers based on nonlinear optical
rotation with the cavity lengths from 100 m [137, 138] to
8 km [53].

Figure 12a shows a schematic of a fiber laser considered in
numerical simulations. A ring cavity consists of an active
erbium fiber 2 m in length, a passive fiber with a variable
length, a saturable absorber, and a coupler. A pulse in cavities
with anomalous dispersion usually exhibits soliton instabil-
ities [108]. It is known that the influence of nonlinear effects
resulting in pulse breaking increases upon increasing the
length of the cavity with anomalous average dispersion.
Single-pulse regimes were obtained only for cavity lengths
not greater than 10 m using a standard SMF-28 single-mode
fiber. The cumulative dispersion of the cavity in this case was
ÿ0:0742 psÿ2. To avoid the appearance of soliton instabil-
ities, a long fiber laser was simulated using an OFS-980 fiber
with positive dispersion.

Numerical experiments were performed using a point-
wise approach with each element described by the corre-

sponding individual mathematical model. The details of
simulations are presented in [143]. The parameters of the
laser system elements are presented in Table 1. The laser
wavelength was l0 � 1550 nm. The round trip time of light in
this cavity is TR � n0L=c, where L � LAF � LPF is the total
cavity length and LPF is the passive fiber length; the refractive
index of the fiber core is n0 � 1:5.

The study demonstrated the importance of the initial field
distribution in simulations of pulse generation in long-cavity
fiber lasers. A smooth initial small-amplitude distribution
(for example, a Gaussian pulse) is commonly used for
simulating mode-locked fiber lasers. This simplification is
based on the assumption that the asymptotic state is
generated after many round trips in the cavity and is
independent of any features of the initial noise. As a rule,
the initial conditions do not play a considerable role in the
formation of the final asymptotic state in a nonlinear
dissipative laser system. However, as the cavity length is
increased, the resulting states can be different for a smooth
initial field distribution and the noise distribution, as we show
below. The initial distributions used in calculations were
white noise and a small-amplitude Gaussian pulse. The
number of nodes in time was 214 and the number of nodes
along the evolution variable was 4000 per round trip of light
in the cavity.

It was found that pulsed regimes established in the laser
depend on the initial conditions. For example, single-pulse
regimes obtained from a smooth initial distribution do not
necessarily coincide with regimes obtained from the noisy
initial distribution with the same average power.

For relatively short cavities (up to 32 m), the same stable
single-pulse regimes can be obtained from considerably
different self-starts. To stabilize the pulse energy for a cavity
32 m in length, more than 4000 round trips in the cavity are
required. To achieve a stable state in terms of the energy
evolution in shorter cavities, about 1000 round trips were
required. However, for cavity lengths 5 42 m, stable pulsed
regimes cannot be achieved even after 120,000 round trips in
the cavity. Calculations showed that the required number of
round trips in a cavity more than 20 m in length increases
exponentially.

The black line in Fig. 12b shows the resulting pulse shape
and its spectrum for a cavity 32 m in length. The inset in
Fig. 12b shows that the pulse spectrum has the shape typical
for highly chirped pulses with sharply decaying edges [112].

Table 1. Parameters of the fiber laser.

Element Parameter Value

Active
erbium-doped
éber [140]

Length LAF

Second-order dispersion b2
Third-order dispersion b3
Nonlinearity parameter g
Gain bandwidth LG

Gain G0

Saturation power PsatG

2 m
76.9 fs2 mmÿ1

168 fs3 mmÿ1

0.00932 Wÿ1 mÿ1

50 nm
5.4 dB mÿ1

20 mW

Passive
OFS-980 éber
[140]

Second-order dispersion b2
Third-order dispersion b3
Nonlinearity parameter g
Fiber losses a

4.5 fs2 mmÿ1

109 fs3 mmÿ1

0.0021 Wÿ1 mÿ1

0.2 dB kmÿ1

Saturable
absorber [108]

Modulation depth q0
Saturation power Psat

10%
3.69 W

Coupler Output losses Rout Varying around
90%
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The black line in Fig. 12c illustrates the typical pulse shape
after 2000 round trips of light in a cavity 2002m in length.We
failed to achieve a smooth pulse shape in simulations even
after 20,000 round trips of light in the cavity. The typical
resulting pulse shape is an envelope with a width of several
nanoseconds and with strong noisy oscillations in the
envelope. The noisy component can be compared with
pulsed collapsing regimes studied in [141, 142]. We assume
that the pulse is stable when the relative change e �
jEi ÿ Ei�1j=Ei in the pulse energy e does not exceed 10ÿ3.
The resulting pulse energy was 0.5 nJ and 16 nJ for the
respective cavity lengths of 32 and 2002 m.

The insets in Figs 12b, c show the averaged spectral pulse
shapes obtained from the initial white noise. In the case of a
cavity 2002 m in length, the spectrum was averaged over the
last 10 round trips in the cavity. We can see from the plot that
the different amplifications for cavities 32 and 2002 m in
length can be explained by different spectral characteristics.

For comparison, the red line in Fig. 12b shows aGaussian
pulse having the same RMS characteristics as the obtained
pulses and specified in the standard way: for a Gaussian pulse
described by the expression

����
P
p

exp �ÿt 2=t 2�, the corre-
sponding RMS characteristics are P � ���

2
p

PRMS and
t 2 � 4T 2

RMS. Here, the FRMS characteristics of the pulse
are defined in the standard way as

PRMS �
� TR

0 jAj4 dt
E

; T 2
RMS �

� TR

0 t 2jAj2 dt
E

; �50�
where PRMS and TRMS are the RMS pulse power and width,
and E � � TR

0 jAj2 dt.

Figure 13 shows the intracavity dynamics and the RMS
width and power for a pulse obtained from the initial white
noise for different cavity lengths. It can be seen that the RMS
pulse width changes differently in short and long cavities. The
RMS pulse width in the long cavity weakly decreases in the
gain medium. Nevertheless, the relative change in the RMS
pulse widths is negligible in both cases.

The pulse is amplified in the active fiber and the behavior
of the RMS width during the pulse propagation in the active
fiber depends on the total cavity length. The passive fiber
broadens the pulse and slightly reduces its power; the
saturable absorber reduces the RMS pulse width and slightly
reduces the RMS pulse power. The coupler also reduces the
pulse power. The difference between the dynamics of the
RMS pulse width for the two regimes is due to the definition
of the RMS pulse characteristics and can be explained by the
greater increase in the pulse energy in the long cavity that in
the cavity 32 m in length. We note that the pulse broadens in
the active fiber in both long and short fibers. The zero-chirp
point is absent in the laser cavity, which is typical for lasers
with all-normal dispersion [112]. The intracavity dynamics
substantially change in long fiber lasers.

The pulse energy loss in a saturable absorber is deter-
mined not only by the modulation depth but also by the pulse
energy to the saturation energy ratio. Thus, in fact, real losses
in the saturable absorber are lower than 10% (real losses were
4% for cavities 32 m and 2 km in length). For this reason, the
saturable absorber very weakly affects the pulse energy. For
the larger modulation depth, the resulting pulse has the lower
energy and shorter duration. The pulse energy decreases
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mainly due to its greater compression compared with the
decrease in its power. For the cavity 32 m in length, the pulse
energy decreases from 0.58 to 0.54 nJ upon increasing the
modulation depth from 10 to 13% (the saturation power did
not change). In this case, real losses were 5%. When the
modulation depth parameter exceeded 15%, lasing disap-
peared.

The influence of the cavity length on the pulse energy was
numerically analyzed using the parameter Rout (the output
cavity losses) to control the energy balance bymaintaining the
constant gain G0 LAF. As a whole, an increase in the passive
fiber length leads to an increase in the pulse energy and gain
saturation. This is compensated by the control of losses at the
cavity output and an increase in losses in the fiber [103]. In
other words, the total losses in the cavity �Rin � aLPF� [dB],
where Rin�dB� � 10 ln�1ÿ Rout�= ln 10 and LPF is the passive
fiber length, change with increasing the cavity length, but first
of all due to the gain saturation and control of output losses,
whereas additional losses in the passive fiber play a minor
role. Calculations show that the dependences of the cavity
output energy on the fiber length are different for short and
long cavities. The output energy depends linearly on the fiber
length for short cavities. But its increase is saturated at large
lengths due to a change in the ratio between losses and
amplification. Calculations show that this dependence can
be approximated by the curve

E � aL
G0LAF ÿ �Rin � aLPF�

Rin � aLPF
; �51�

where a is a constant.
For cavity lengths above 2002 m, no stable single-mode

regimes (as defined above) were found.

8.2 Dissipative solitons
in a SESAM mode-locked femtosecond fiber laser
In this section, we consider the optimization of a SESAM
mode-locked fiber laser.

Figure 14a shows a diagram of a fiber laser [144] used in
numerical simulations of the successive propagation of a
pulse in different elements of the laser [104]. The cavity
consists of a coupler, a 1.5 m long passive fiber, a 0.5 m long
active fiber, a pair of diffraction gratings providing anom-
alous dispersionwith a very weak nonlinearity, and a SESAM
(semiconductor saturable absorber mirror). The cumulative
dispersion of passive and active fibers was 0.08 ps2 per round
trip in the cavity.

The details of numerical simulations are presented in
[105]. The nonlinearity and dispersion coefficients of passive
and active fibers were g � 5 Wÿ1 kmÿ1, b2 � 20 ps2 kmÿ1,
and b3 � 0:05 ps3 kmÿ1. The unsaturated SESAM losses
were 4%.

The region of parameters in which stable single-pulse and
multipulse regimes were observed was determined from
numerical calculations. Stable regime regions and the
difference between single-pulse and multipulse regimes were
determined by monitoring the relative changes in the key
characteristics of the signal during the last 200 round trips of
light in the cavity until the establishment of a stable state. In
general, lasing regimes were considered stable if relative
changes in the pulse energy DEp in the coupler did not exceed
10ÿ3 and relative changes in the pulse width and its peak
power satisfied the conditions DTFWHM < 10ÿ2 and
DPp < 10ÿ2. Thus, the accepted criterion allowed changes in
pulse parameters within a percent.

Figures 14b, c show stable multipulse lasing regions in the
planes (saturable-absorber recover time, saturation energy)
and (gain, cumulative dispersion) for a SESAM with the
modulation depth q0 � 0:1. The cumulative dispersion of the
cavity was changed in experiments by changing the dispersion
of a pair of diffraction gratings. Lines in Fig. 14b bound
regions with different numbers of pulses in the cavity. The
region bounded by the solid line corresponds to single-pulse
lasing regimes, while the region bounded by the dashed line,
to the two- and three-pulse regimes and regimes with the
number of pulses in the cavity greater than two. We note that
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multipulse regimes are quite sensitive to the initial noise, and
therefore two or more pulses can be generated in the same
region depending on the initial noise structure. We can see
from Fig. 14 that single-pulse lasing occurs in a quite broad
range of parameters.

We note that the high saturation energy and the short
recovery time lead to single-pulse lasing.

Figure 14c shows that single-pulse regimes exist for
anomalous dispersion for the total gain in the range 5±
7.5 dB. The temporal shape and optical spectrum of such a
stable pulse are presented in Fig. 15a for different initial noise
realizations. The pulse spectrum has sidebands caused by
periodic changes in soliton parameters during a round trip of
light in the cavity [145]. We note that the results are shown
for 17 different initial noise realizations. It can be seen that
the time and spectral shapes of a stable pulse are indepen-
dent of the details of the initial noise distribution. Figure 15b
shows the intracavity dynamics of the stable single-pulse
regime in a fiber laser. We can see that the stable pulses are
dispersion-controlled solitons (see, e.g., [95, 145±148]) with
the temporal and spectral shape periodically reproduced
after each round trip in the cavity, and pulse parameters
are fixed by characteristics of the system. Key characteristics
such as the pulse duration, energy, chirp, and spectral width
practically coincide at the end of each round trip in the
cavity.

We note that Fig. 15b demonstrates considerable changes
in the pulse parameters in the cavity. This should be taken
into account for properly locating the coupler in the cavity.
We can see fromFig. 15b that the pulse duration is minimal at
the zero-chirp point immediately after the propagation of
light through a dispersion compensator. The location of the
coupler in front of or close to this point allows the generation
of the shortest output pulse.

8.3 Dissipative solitons in a nonlinear polarization-rotation
mode-locked laser
The evolution of a signal in amode-locked fiber laser based on
nonlinear polarization rotation was analyzed for a dissipative
soliton ring laser, shown schematically in Fig. 16 [149].

The parameters of this laser are presented in Table 2. The
laser consists of a 15 cm long active single-mode fiber doped
with Yb3� at a high concentration, an 80 cm long passive
fiber, and an isolator. Optical elements in the bulk of the laser
include a quarter-wave plate (QWP), a half-wave plate
(HWP), a polarizer and a 4% plane for controlling intracav-
ity laser parameters, and a second QWP for obtaining a weak
elliptic polarization at the input to the fiber part of the cavity,
which is necessary for the nonlinear evolution of polarization.
The laser wavelength was 1030 nm.

A mathematical model of the laser is presented in
Section 2.3. The details of numerical simulations are given
in [153].

The system of coupled Ginzburg±Landau equations
describes the propagation of light in the fiber part of the
cavity. The polarizer in the bulk optical part of the cavity

Table 2. Parameters of a fiber laser.

Element Parameter Value

Active éber Length LAF

Second-order dispersion b2
Nonlinearity parameter g
Gain bandwidth LG

Gain g0
Saturation power PsatG

15 cm
25 ps2 kmÿ1

5 Wÿ1 kmÿ1

20 nm
150ë170 dB
17 mW

Passive éber Length
Second-order dispersion b2
Nonlinearity parameter g

Variable
ÿ0.07323 ps2 mÿ1
5 Wÿ1 kmÿ1

Optical coupler
Passive éber Active éber

Diffraction gratings
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transforms the elliptic polarization to linear. One of the
polarized components passing through the polarizer escapes
from the cavity via the coupler and does not participate in the
subsequent pulse propagation, whereas the orthogonally
polarized component modified in the QWP enters the fiber
part of the cavity. By varying the angles of rotation of the
QWP and HWP, we can control the polarization of light at
the fiber input, in particular, its ellipticity and the angle of the
polarization ellipse axis.

The numerical simulation was performed for different
cavity lengths and different angles of rotation of the QWP
and HWP. The output pulse power was optimized for each
wavelength by rotating the HWP (this corresponds to a
variation of the angle c), whereas the polarization ellipticity
at the fiber output was fixed with the help of the QWP. The
second QWP shown in Fig. 16a played only an auxiliary role
in the experiments and is not presented in the numerical
model.

Simulations were performed for three different angles of
rotation of the QWP: w � 0:01p, 0:03p, and 0:05p, corre-
sponding to 5, 9, and 16�. The dependences of the maximum
output pulse energy on the cavity length for three different
input ellipticities determined by these angles are presented in
Fig. 16b. Themaximum pulse energy for each combination of
the cavity length and theQWP rotation angle was achieved by
varying the gain g0. As a result, the maximum value of g0 was
chosen at which stable single-pulse lasing was achieved. If the
gain taken for a certain set of parameters was too high, the
generation of a dissipative soliton became unstable and mode
locking became stochastic.

Calculations showed that the maximum output pulse
energy linearly increases with the cavity length, but this
dependence changes at some critical length (Fig. 16b). The
critical length depends on the light ellipticity at the input to
the fiber part. The higher the ellipticity (i.e., the angle w of
plate rotation) is, the lower the maximum pulse energy and
the critical length above which the pulse energy dependence
on the cavity length begins to deviate from the linear
dependence. Hence, to increase the critical length and
maximum pulse energy, it is necessary to couple the light
with the lowest possible ellipticity to the fiber part. However,
in reality, the ellipticity is restricted by the influence of
random birefringence in the fiber, resulting in fluctuations
during the nonlinear evolution of polarization. The interplay
of these effects establishes the maximum critical length.

The dependence of the total angle of rotation of the
polarization ellipse per round trip of light on the cavity
length is presented in Fig. 16c. We note that the maximum
pulse energy is restricted by the accessible angle of rotation of
the polarization ellipse per round trip in the cavity. Figure 16c
shows the total angle of nonlinear rotation of the polarization
ellipse caused by the nonlinear evolution of polarization as a
function of the cavity length. For the critical cavity length,
when the maximum pulse energy no longer increases with the
fiber length, the rotation angle tends to p=2, resulting in an
ambiguity in the self-amplitude modulation. Thus, to obtain
stable mode-locking due to the nonlinear evolution of
polarization, the relation between the angles of rotation of
polarization plates, the gain, and the fiber length should
provide an angle of rotation of the polarization ellipse axis
smaller than p=2. For larger angles, the stability of strongly
chirped lasing regimes is lost, resulting in the disappearance of
stable single-pulse lasing and a transition to the multipulse
and stochastic regimes.

Thus, the limit of the maximum pulse energy can be
overcome by maintaining the angle of rotation of the
polarization ellipse smaller than p=2. To maintain the angle
of rotation smaller than p=2, it is necessary to increase the
total cavity length by increasing the length of a polarization-
preserving fiber. At the same time, the length of a standard
single-mode fiber should be fixed (or even shortened) for
maintaining the angle of rotation of the polarization ellipse,
formed by the nonlinear evolution of polarization, within
p=2. As a result, the nonlinear phase shift (and the
corresponding dispersion phase shift) during pulse propaga-
tion in the polarization-preserving fiber leads to the forma-
tion of a strongly chirped soliton, whereas optical rotation in
a standard single-mode fiber provides stable mode locking.

8.4 Raman dissipative solitons
The generation of dissipative solitons (DSs) is one of the most
efficient techniques for obtaining energy-scaled femtosecond
pulses in mode-locked femtosecond lasers [48, 150]. For
example, the authors of [151] demonstrated a new femtose-
cond fiber laser emitting high-energy pulses (up to 25 nJ) by
means of a decrease in the pulse repetition rate. They also
discovered that the pulse energy was restricted at a level of a
few tens of nanojoules due to the appearance of a stimulated
Raman scattering (SRS) noise pulse. The SRS pulse forms
with a DS-stable complex in which the DS serves as a pump
source for the SRS pulse, whereas the SRS pulse provides
spectral and time filtration for the DS [152]. The numerical
modeling of a fiber laser in [152] showed that a stochastic SRS
pulse is generated from the amplifier noise at each round trip
in the cavity.

The possibility of generating an SRS pulse not from the
amplifier noise but from a small-amplitude seed pulse was
studied in [153]. The authors proposed introducing a new
intracavity element, a delay line for the SRS pulse providing
weak feedback for it in each round trip in the cavity. Because
of the dispersion in the fiber, the DS and SRS acquire
different group velocities vs and vr. The SRS pulse propa-
gates in the fiber faster than the DS, and therefore it is
amplified during a finite time equal to the DS duration.
After propagation through the interaction region, the DS
continues to propagate without energy losses, while the
Stokes pulse begins to decay. As a result, the SRS pulse is
shiftedwith respect to the pumppulse by approximately 50 ns.
The delay line compensates the time mismatch between
pulses.

Numerical simulation of the laser showed that under
certain conditions, weak feedback for a noise SRS pulse in
the cavity results in the generation of a Raman dissipative
soliton (RDS) [153]. TheRDS has parameters similar to those
of theDS. The pulses propagate together in the fiber and form
a complex of bound solitons with mutual coherence and high
stability, which allows them to be combined coherently,
increasing the energy and decreasing the duration of the
resulting output pulse. The possibility of generating high-
order RDSÐmulticolor complexes of bound solitonsÐwas
also demonstrated numerically.

Model conditions for the appearance of RDSs were later
experimentally realized in [153, 154]. Raman dissipative
solitons generated in experiments were compressed to 230 fs,
which is at the compression level of the main pulse, and
experiments on coherently combining both pulses were
performed. Figure 17 shows the calculated and experimental
emission spectra at the cavity output. In the absence of the
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feedback or for the feedback coefficient R < ÿ50 dB, a noise
SRS pulse is generated (dashed lines in Fig. 17). As the
feedback coefficient increases, the SRS pulse becomes
coherent (solid lines in Fig. 17). Coherent pulses have spectra
with sharp edges that are typical of strongly chirped
dissipative solitons and have a linear frequency modulation.
It is important that the RDS is a new type of soliton and does
not belong to the type of classical Raman solitons that are
formed due to the Stokes frequency shift in a fiber with
anomalous (negative) dispersion [41], for example, in com-
munication lines [155].

It is important for practical applications that under
certain conditions, an RS+RDS complex can be compressed
into a single pulse. The dispersion of the DS and RDS was
compensated, and then the pulses were combined coherently.
After that, the signal amplitude increases by a factor of four
compared to theDS andRDS amplitudes. The resulting pulse
duration is 300 fs. The shape of the autocorrelation function
indicates the presence of amplitude modulation with a peak
width of 40 fs and the distance between peaks 75 fs, which
suggests a high coherence degree for the DS and RDS.

Thus, it was shown that the fundamental restriction
caused by the SRS effect can be used to generate a soliton
complex with unique properties and promising practical
applications. This approach can be developed further, to be
used for generating higher-order RDSs, thereby opening the
way for creating a source of high-energy (tens of nJ)
ultrashort (a few tens of femtoseconds) optical pulses. The
potential fields of application of such bound soliton com-
plexes are optical comb spectroscopy, communications lines,
and multiphoton fluorescence microscopy.

8.5 Adiabatic soliton laser
The temporal and spectral shapes of an optical pulse typically
change during its propagation in an optical fiber due to Kerr
nonlinearity and group velocity dispersion. Temporal soli-
tons generated in an anomalous dispersion fiber (b2 < 0) due
to the balance between dispersion and nonlinearity do not
change their shape during propagation. An important feature
of solitons is their stability against small perturbations of
shape and variations in fiber parameters. Thus, as fiber
parameters slowly change, the soliton shape is adiabatically
adjusted to the varying properties of the medium.

The classical theory of temporal optical solitons is
successfully applied in mode-locked fiber lasers for generat-
ing transform-limited pulses whose parameters can be
predicted theoretically [5, 11, 65]. However, the signal energy

in conventional soliton lasers is limited due to the generation
of scattered radiation (dispersive waves) and transition to
multipulse lasing regimes [156]. After periodic amplification
in a short part of the active fiber (at each round trip in the
cavity), a soliton recovers its shape and loses part of its energy
in the form of dispersive waves, which can accumulate to a
significant level, resulting in the breaking of stable single-
pulse lasing.

In [157], a new concept of a laser was proposed based on
the adiabatic amplification of a signal in a fiber cavity, an
adiabatic soliton laser. The adiabatic change in the para-
meters of a soliton propagating in the cavity allows relaxing
the restriction on the maximum possible signal energy
inherent in conventional soliton lasers.

A schematic of the laser is shown in Fig. 18a. A ring cavity
is formed by a standard single-mode fiber (SMF), a 1.5m long
part of the ytterbium-doped active fiber, and an optical
coupler with a 50% reflection coefficient, an optical filter
with a 2 nm FWHM and the reflection maximum at 1550 nm,
and a saturable absorber based on single-wall carbon
nanotubes (CNTs). The adiabatic amplification of a soliton
in a standard SMF is performed via two-stage SRS amplifica-
tion. Such a setup of a two-stage SRS amplifier was first
proposed in [158] for fiber-optic communication lines. The
amplifier setup includes two symmetric pump sources emit-
ting at 1366 nm. A pair of Bragg gratings with the maximum
reflection at the wavelength of 1550 nm of the first Stokes
peak form a long laser cavity. The peak power and signal
energy at 1550 nm in this amplifier remain almost constant
along the communication line; in other words, the signal
propagates without losses.

Unlike the two-stage SRS amplification in communica-
tion lines, where the signal power at the fiber input is equal to
that at the fiber output (amplification exactly compensates
losses in the fiber, Gÿ G � 0), the signal in the laser cavity is
uniformly amplified, and its energy increases after propaga-
tion in the fiber (Gÿ G > 0). If the SRS gain is small enough,
�Gÿ G�LD 5 1, the soliton is adiabatically compressed
during its propagation, which considerably reduces the
influence of dispersive waves.

The influence of distributed Raman amplification on the
signal evolution in the cavity was studied in numerical
simulations by making comparisons to laser setups with
lumped and distributed amplification. The propagation of a
signal in a standard single-mode fiber and an erbium-doped
fiber is described by the NSE with the amplification
coinciding with (24) if the spectral filtration and self-

10

0

ÿ10

ÿ20

ÿ30

ÿ40
1000 1020 1040 1060 1080 1100 1120

Wavelength, nm

In
te
n
si
ty
,d

B
m

m
ÿ1

a

R � ÿ80 dB
R � ÿ40 dB

10

0

ÿ10

ÿ20

ÿ30

ÿ40

In
te
n
si
ty
,d

B
m

m
ÿ1

Wavelength, nm

1000 1020 1040 1060 1080 1100 1120

b

R � ÿ80 dB
R � ÿ40 dB

Figure 17. (a) Experimental and (b) calculated spectra of dissipative solitons (DS and RDS) for different feedback coefficients.

664 S K Turitsyn et al. Physics ±Uspekhi 59 (7)



amplitude modulation and losses are ignored:

qA
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The parameters of an SMF in which a 1550 nm signal
propagates are G � 0:1 dB kmÿ1, b2 � ÿ22:8 ps2 kmÿ1, and
g � 1:1 Wÿ1 kmÿ1.

In the absence of losses in the fiber (Gÿ G � 0), Eqn (52)
has an analytic solution in the form of a fundamental
soliton [40]:
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where Psol � jb2j=�gt 2p � is the soliton peak power and
Tsol � 1:763tp is the soliton FWHM duration.

An NSE solution in the form of a bright soliton depends
on the dimensionless parameter N 2 � LD=LNL, the soliton
order, which is a combination of two pulse parameters (peak
power and duration) and two fiber parameters (dispersion
and nonlinearity). If N � 1, then the soliton is called the
fundamental temporal soliton.

The theoretical hypothesis was verified by simulating the
signal propagation in the cavity with the help of NSE (52).
The evolution of the spectral and temporal signal shape in
the cavity in the regime of stable lasing is shown in Fig. 18b.
A soliton with a peak power of 60 W and duration of 1 ps
is adiabatically compressed in a 4 km long standard SMF.

Its peak power exponentially increases, Psol�z� �
Psol�0� exp �4�GÿG� z�, and reaches 1.9 kW, while the pulse
duration decreases as Tsol�z� � Tsol�0� exp �ÿ2�Gÿ G� z� to
190 fs at z � 4 km. The pulse energy after propagation in the
4 km fiber is almost six times greater than its input energy. In
this case, the soliton order remains equal to unity, which
reduces the influence of dispersion waves on the signal.

The soliton perturbation theory describing variations in
pulse parameters during adiabatic compression is valid when
the condition �Gÿ G� z5 1 is satisfied. Stable lasing in the
proposed laser setup was observed up to �Gÿ G� z � 2. For
�Gÿ G� z > 2, multipulse regimes appear, which limits the
maximum output energy of the laser. Figure 19 shows the
dependences of the soliton duration, peak power, and energy
at the cavity output on the SRS gain. The soliton energy
exponentially increases upon increasing the SRS gain to the
level inaccessible for a long-cavity laser with point amplifica-
tion. Therefore, the signal energy in the fiber laser proposed
here exceeds the signal energy achieved in conventional
soliton lasers.

9. Conclusions and an outlook

Stable dissipative optical solitons (autosolitons) are attrac-
tors in the corresponding dynamic systems (all trajectories
from some vicinity are attracted to their maps in compact
regions of the phase space), which permits their formation
from a wide class of initial distributions of the optical field,
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including completely random noise distributions. This prop-
erty makes them attractive for various applications. Dissipa-
tive optical solitons have discrete spectra of the main
parameters such as the pulse energy and width. This property
of dissipative solitons results in the suppression of the drift of
soliton parameters under the action of fluctuations, which
provides their stability against the influence of optical and
other noises. Dissipative solitons in lasers allow a high energy
to be localized in short pulses without separation of a soliton
into several pulses and without the appearance of additional
radiation. The nonlinear physics of the generation of
dissipative optical solitons in lasers is of interest not only for
applications but also for fundamental studies. Mathematical
models describing dissipative optical solitons in lasers can be
used in many physical and even biological problems. The
theory of dissipative solitons in fiber lasers provides wide
possibilities for generating and controlling such pulses, but,
on the other hand, requires knowledge of the soliton theory
and nonlinear physics. The development of effective soliton
lasers requires combined efforts of theorists and engineers.

The necessary condition for the stability of dissipative
solitons in lasers is the stability of the nonlasing regime. This
means the bistability (multistability) of the system, because
along with this regime, one of the continuous or pulsed lasing
regimes can also be excited. The hard type of excitation of
such solitons ensures their high stability due to efficient noise
suppression. In fiber lasers, aside from the `conservative'
nonresonance nonlinearity of the refractive index, the
nonresonance nonlinearity of amplification and absorption
and their inertia are very important. Although dissipative
laser solitons also exist in the limit of the inertialess resonance
nonlinearity, the presence of nonlinearity relaxation substan-
tially changes their properties, giving rise to new types of
stable localized pulses. It seems that the physics of ultrashort
dissipative solitons based on self-induced transparencyÐ
`attosolitons' in fiber lasers with saturable absorption in the
coherent self-mode-locking regimeÐ is far from being com-
pletely investigated. Of course, the examples of dissipative
solitons considered here cannot fully encompass this huge
and rapidly developing field. We hope that our review gives a
picture of some promising studies and recent results in the
field of applications of dissipative optical solitons in fiber
lasers and will attract attention to this interesting field of
science and technology.
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