
Abstract. The recently developed method of quasiclassical
Green's functions of the Dirac equation in the variously config-
ured external fields has provided breakthrough insight into
fundamental quantum electrodynamics processes whereby
high-energy particles interact with atoms. This paper reviews
latest calculated results, exact in the atomic field parameters,
on the cross sections for electron±positron high-energy photo-
production, the single bremsstrahlung cross section for relati-
vistic electrons and muons in an atomic field, double
bremsstrahlung cross sections, etc. In many cases, the calcula-
tions are performed in the quasiclassical approximation with
the inclusion of the first-order quasiclassical correction.

Keywords: quantum electrodynamics, strong field, photoproduc-
tion, bremsstrahlung

In memory to Vladimir Nikolaevich Baier

1. Introduction

Only a few years separate the publication of the famous
Dirac equation [1] and the first reports [2, 3] on the
investigation, in the framework of this equation, of
fundamental quantum electrodynamics processes in an
atomic field. In these studies, consideration was in a
leading order of perturbation theory in the fine-structure
constant a and the parameter Z � Za (Z is the atomic
number). The accuracy of results obtained in the lowest
order in Z (referred to below as Born results) is not very
high even at relatively small Z values; therefore, it is often
necessary for applications that the dependence on Z be
taken into account exactly. The difference between a result
exact in Z and a Born result is called the Coulomb
correction. Unfortunately, the solution of the Dirac equa-
tion for a relativistic particle in the Coulomb field, necessary
to calculate cross sections of various processes, can be
written out only as the sum over angular momenta [4],
unlike the solution of the SchroÈ dinger equation in the
Coulomb field, for which a simple closed-form expression
exists.

For ultrarelativistic particles, the main contribution to
cross sections usually comes from small angles y between the
momenta of initial and final particles. In such a case, the
characteristic angular momentum lc can be estimated as
lc � pr, where p is the characteristic momentum, r � 1=dp is
the characteristic impact parameter, and dp � py is the
characteristic momentum transfer ��h � c � 1�. In other
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words, lc � 1=y4 1. This makes the use of these expressions
for numerical calculations, even at relatively small energies,
extremely difficult [6], even though there are formal expres-
sions for cross sections of pair photoproduction and
bremsstrahlung in the Coulomb field that hold for any
energies and values of parameter Z < 1 [5]. The difficulties
become insurmountable at high particle energies. Fortu-
nately, the quasiclassical approximation can be applied at
small scattering angles, which allows taking into account the
contribution of large angular momenta to process ampli-
tudes.

An important step in the application of the quasiclassical
approximation to research on photoproduction and brems-
strahlung in an atomic field exactly in Z was made in Refs [7±
9], where a simple expression for Coulomb corrections to the
cross sections of these processes was derived. However, such
expressions are sufficiently accurate only at very high energies
(e0 100MeV). The authors ofRefs [7±9] usedwave functions
in the Furry±Sommerfeld±Maue approximation [10, 11]. It
will be shown below that these are wave functions of electrons
in the Coulomb field, calculated in the leading quasiclassical
approximation.

The next step in the development of the quasiclassical
approach to the investigation of quantum electrodynamics
processes in the external fields was the operator quasiclassical
technique proposed by V N Baier and V M Katkov [12]. It
allowed not only markedly simplifying the derivation of the
previous results but also obtaining many important new
results [13] in the leading quasiclassical approximation.
However, this approach does not allow calculating the
quasiclassical corrections to the results obtained in the
leading quasiclassical approximation (corrections in 1=lc �
y5 1). This difficulty was overcome in the method of
quasiclassical Green's functions of the Dirac equation in an
electromagnetic field. The importance of this method is
connected with the possibility of calculating not only the
leading contribution to cross sections but also the first-order
quasiclassical correction to it. Moreover, analytical results
can be obtained in the framework of this method even in the
absence of the exact analytical solution to the Dirac equation
for a given electromagnetic field. Quasiclassical Green's
functions were obtained for the Coulomb field in Refs [14,
15], for an arbitrary spherically symmetrical field in Refs [16,
17], for an arbitrarily localized field [18], and for the super-
position of a strong laser field and the atomic field inRef. [19].
References [18, 20] report on the first-order calculated
corrections to all matrix structures of quasiclassical Green's
function for an arbitrary spherically symmetrical localized
field. Quasiclassical Green's functions were employed to
derive simple formulas for the differential cross section of
DelbruÈ ck scattering at high energies (elastic photon scattering
on an atom due to production of a virtual electron±positron
pair) and to correctly calculate for the first time the total cross
section of this process [21] most accurately measured in
Ref. [22]. Moreover, the implementation of quasiclassical
Green's functions made it possible to calculate (also for the
first time) the cross section of high-energy photon splitting in
the atomic field [23]. This effect was first examined experi-
mentally in paper [24]. Consideration of corrections to
quasiclassical Green's functions and the corresponding wave
functions enhanced considerably the accuracy of calculations
of cross sections of such fundamental quantum electrody-
namics processes as pair photoproduction and bremsstrah-
lung in an atomic field and allowed for the first time

quantitatively predicting charge asymmetry in these pro-
cesses at high energies (the change in cross sections upon
positron substitution for an electron). The processes of
photoproduction and bremsstrahlung are of primary impor-
tance for the description of electromagnetic showers in
detectors and constitute a noticeable background in the
search for new physics in precision experiments. Therefore,
cross sections of these processes need to be determined to a
high degree of accuracy. The present review was designed to
consider current trends in the theory of photoproduction and
bremsstrahlung in high-energy processes.

2. Quasiclassical Green's functions
and wave functions of the Dirac equation

Similar to the case of an equation of free motion, the particle
propagator in the external field coincides with the Green's
function of the corresponding wave equation. Because the
momentum is not conserved in the coordinate-dependent
external field, the distinguished role of momentum represen-
tation disappears and all calculations are, as a rule, made in
the coordinate representation. The Green's function of the
Dirac equation in potential V�r� can be given as

G�r2; r1je� � �P̂ �m�D�r2; r1je� ; �1�
D�r2; r1je� �

�
r2

���� 1

P̂ 2 ÿm 2 � i0

����r1� ;
where m is the electron mass, P̂ � gnPn, with
Pn � �eÿ V�r�; iHH�, g n is the Dirac matrix, and D�r2; r1je� is
the Green's function of the Dirac equation squared. Since the
function D�r2; r1je� contains an even number of gamma
matrices, it can be written out in the form

D�r2; r1je� � d0�r2; r1je� � ad1�r2; r1je�
� Rd2�r2; r1je� � g 5d3�r2; r1je� ; �2�

where a � g 0c, R � g 0g 5c, and di�r2; r1je� are certain func-
tions. For the spherically symmetric potential, coefficient
d3�r2; r1je� equals zero, because it must be a pseudoscalar by
virtue of parity conservation, but a pseudoscalar cannot be
constructed from two vectors, r1 and r2. Once function
D�r2; r1je� is known, it is easy to find positive frequency and
negative frequency solutions, u�p �r� and v�p �r�, of the Dirac
equation using relations [25]:

exp �ipr1�
4pr1

u�p �r2� � ÿ lim
r1!1

D�r2; r1jep�up ; p � ÿpn1 ;

exp �ipr2�
4pr2

�uÿp �r1� � ÿ lim
r2!1

�upD�r2; r1jep� ; p � pn2 ;
�3�

exp �ipr1�
4pr1

v�p �r2� � ÿ lim
r1!1

D�r2; r1j ÿ ep�vp ; p � pn1 ;

exp �ipr2�
4pr2

�vÿp �r1� � ÿ lim
r2!1

�vpD�r2; r1j ÿ ep� ; p � ÿpn2 ;

where n1 � r1=r1, n2 � r2=r2, ep �
�����������������
p 2 �m 2

p
, and up and vp

are the positive frequency and negative frequency Dirac
spinors. The asymptotics of solutions u�p �r� and v�p �r� at
large distances contain a plain wave and a diverging spherical
wave, while the asymptotics of solutions uÿp �r� and vÿp �r� at
large distances contain a plain wave and a converging
spherical wave. It follows from formulas (2) and (3) that
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wave functions take the form

�uÿp �r� � �up
�
f0�r; p� ÿ a f1�r; p� ÿ R f2�r; p�

�
;

u�p �r� �
�
f0�r;ÿp� ÿ a f1�r;ÿp� � R f2�r;ÿp�

�
up ; �4�

v�p �r� �
�
g0�r; p� � a g1�r; p� � Rg2�r; p�

�
vp ;

�vÿp �r� � �vp
�
g0�r;ÿp� � a g1�r;ÿp� ÿ Rg2�r;ÿp�

�
:

Coefficients gi differ from fi by the substitution V�r� !
ÿV�r�.

Coefficients d0, d1, f0, and f1 for the arbitrarily localized
potential V�r� were calculated in Ref. [18] in the leading
quasiclassical approximation, together with the first-order
quasiclassical corrections to coefficients d0 and f0. The first-
order quasiclassical corrections to coefficients d1 and f1 were
calculated inRef. [20], together with the leading quasiclassical
contribution to d2 and f2. Notice that the relative value of
coefficients f0, f1; 2, d0, and d1; 2 is different:

f0 � lc f1 � l 2c f2 ; d0 � lc d1 � l 2c d2 : �5�

Here, lc � 1=y4 1 is the characteristic angular momentum in
the process. Since the coefficients are multiplied by different
matrices, due to cancellations in bremsstrahlung and photo-
production matrix elements, in order to calculate the first-
order quasiclassical correction to the cross section, it is
necessary to take account of the first-order quasiclassical
correction to coefficients f0, f1, d0, and d1, while coefficients f2
and d2 can be taken into consideration in the leading
quasiclassical approximation.

Given that the first-order quasiclassical correction is
taken into account, coefficients d0 and d1 have the form [18,
20]

d0�r2; r1je� � i exp �ikr�
4p2r

�
�
dQ

�
1� ir 3

2k

� 1

0

dx

� x

0

dy �xÿ y�HH?V�Rx�HH?V�Ry�
�
T ;

d1�r2; r1je� � ÿ i

2e
�HH1 � HH2�d0�r2; r1j e�

ÿ i exp �ikr�
16p2e 2

�
dQ

� 1

0

dxHHV 2�Rx� T ;
�6�

T � exp

�
iQ 2 ÿ ir

� 1

0

dxV�Rx�
�
; r � r2 ÿ r1 ;

Rx � r1 � xr�Q

�����������
2r1r2
kr

r
;

where k �
�����������������
e 2 ÿm 2
p

, Q is the two-dimensional vector
normal to vector r, and HH? is the gradient component
perpendicular to r. Coefficient d2 was also obtained in
Ref. [20] in the leading approximation:

d2�r2; r1je� � ÿ r exp �ikr�
16p2e 2

�
�
dQ

� 1

0

dx

� x

0

dy
�
HHV�Rx� � HHV�Ry�

� T : �7�

Formulas (6) and (7) for the Coulomb field correspond to the
respective formulas from Ref. [26]. Omitting the contribution
to vector Rx entering formula (6) from the term proportional
to vector Q makes the integral over Q in Eqns (6) and (7)
trivial and yields the Green's function calculated in the

eikonal approximation [27]. Integration over x in this
function corresponds to integration over the straight line
along vector r � r2 ÿ r1. Accounting for the contribution
from the term proportional to vector Q in Rx corresponds to
that of quantum fluctuations in the plane perpendicular to
vector r.

Formulas for coefficients fi ensue from Eqns (2)±(4), (6),
and (7):

f0�r; p� � ÿ i

p
exp �ÿipr�

�
�
dQ

�
1� i

2ep

�1
0

dx

� x

0

dy �xÿ y�HH?V�rx�HH?V�ry�
�
T 1 ;

f1�r; p� � 1

2ep
�iHHÿ p� f0�r; p� ÿ i

4pe 2p
exp �ÿipr�

�
�
dQ

�1
0

dxHHV 2�rx�T 1 ;
�8�

f2�r; p�� ÿ exp �ÿipr�
4pe 2p

�
dQ

�1
0

dx

� x

0

dy
�
HHV�rx��HHV�ry�

�T 1;
T 1 � exp

�
iQ 2 ÿ i

�1
0

dxV�rx�
�
; rx � r� xnp �Q

������
2r

ep

s
;

where Qnp � 0, HH? is the gradient component normal to
vector np � p=p.

The formulas presented in this section are sufficient for
calculating photoproduction and bremsstrahlung cross sec-
tions in the quasiclassical approximation taking account of
the first-order quasiclassical correction.

3. Photoproduction of an e�eÿ pair

Production of an e�eÿ pair in an atomic field is one of the
most important quantum electrodynamics (QED) processes
for various applications [28, 29]. A large number of
theoretical and experimental studies have dealt with this
problem. The process cross section in the Born approxima-
tion is known for an arbitrary photon energy o [2, 3]. The
formal expression for the cross section exact in the parameter
Z and energy o was derived in Ref. [5]. However, numerical
results obtained with the use of this expression were reported
only for o < 12:5 MeV [6] due to the difficulty of numerical
calculations rapidly increasing with o. Using the wave
functions in the Furry±Sommerfeld±Maue approximation
[10, 11], which are actually functions calculated in the leading
quasiclassical approximation, made it possible to obtain in
Refs [7, 8] simple expressions for Coulomb corrections in the
leading approximation with respect to m=o5 1. However,
these results are accurate enough only for very high energies:
o0 100 MeV.

The description of Coulomb corrections to the total
photoproduction cross section at intermediate photon ener-
gies (5±100 MeV) has for a long time been based on the
expression proposed in Ref. [30]. The expression is actually a
formula for interpolation between the results obtained for
o < 5 MeV and the high-energy asymptotics. Using the
quasiclassical Green's function, the authors of paper [31]
have found the first-order correction in m=o to the electron
spectrum and to the total cross section of the e�eÿ photo-
production process in a strong atomic field. A correction to
the spectrum was obtained in the region where the two
produced particles are relativistic. It proved to be antisym-
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metric with respect to ep $ eq permutation, where ep and eq
are electron and positron energies, respectively. For this
reason, the correction to the total cross section is determined
by the energy region close to the edge of the spectrum, where
ep � m or eq � m. In Ref. [31], a correction to the total cross
section was found with the use of the dispersion relation for
the amplitude of DelbruÈ ck forward scattering. Consideration
of this correction has led to the agreement between predicted
and experimental data for an intermediate photon energy.
Correction to the spectrum foro4m in the case of ep � m or
eq � mwas calculated inRef. [32]. It turned out that Coulomb
corrections at the edge of the spectrum are substantially
different from those in the regions of ep 4m and eq 4m.
Integration of corrections to the spectrum found in Ref. [32]
confirmed the result for corrections to the total cross section
obtained in Ref. [31] with the use of the dispersion relation.

For many applications, it is important to know with a
high degree of accuracy the differential photoproduction
cross section for photon energies o9 100 MeV, for which
the precision of results obtained in the leading quasiclassical
approximation is insufficient. In Ref. [26], the differential
cross section of photoproduction of electron±positron pairs
was found exactly in Z taking account of the first-order
quasiclassical correction. The results of Ref. [26] in the region
of o9 100 MeV are much more accurate than those
calculated in the leading quasiclassical approximation.

For e�eÿ-pair photoproduction, consideration of nuclear
field screening by atomic electrons is important only for the
Born contribution; its effect for Coulomb corrections is
insignificant. At the same time, consideration of the differ-
ence between atomic and Coulomb fields at small distances
(finite nucleus size effect) for e�eÿ-pair photoproduction is of
no consequence at all. For the photoproduction of a m�mÿ

pair, not only field screening but also the finite nucleus size
must be taken into account. The calculation of the differential
cross section of m�mÿ-pair photoproduction taking account
of the first-order quasiclassical correction has recently been
reported in Ref. [25].

3.1 Differential cross section of e�eÿ-pair photoproduction
The differential cross section of e�eÿ-pair photoproduction
by a photon in an atomic field has the form

ds�p; q; Z� � a

�2p�4o dp dq d�oÿ ep ÿ eq�jMj2 ; �9�
M �

�
dr �uÿp �r� c e v�q �r� exp �ikr� :

Here, e and k are the polarization vector and the photon
momentum, respectively, and p and q are electron and
positron momenta.

We further assume that summation over final particle
polarizations and averaging over photon polarization are
carried out in the differential cross section ds�p; q; Z�. This
cross section can be represented as the sum of symmetric and
asymmetric parts with respect to the permutation of p and q
momenta:

ds�p; q; Z� � dss�p; q; Z� � dsa�p; q; Z� ;

dss�p; q; Z� � ds�p; q; Z� � ds�q; p; Z�
2

; �10�

dsa�p; q; Z� � ds�p; q; Z� ÿ ds�q; p; Z�
2

:

Since the substitution of the electron by a positron corre-
sponds to the change in the sign of Z, then one has
ds�p; q; Z� � ds�q; p;ÿZ�; therefore, dss�p; q; Z� is the even
function of Z, while dsa�p; q; Z� is its odd function. The
differential photoproduction cross section was found in the
leading quasiclassical approximation in Refs [7, 8]. This cross
section is the even function of Z and makes a contribution
only to dss�p; q; Z�. Hence, the following relations hold true:

dss �
2am 2

��G�1ÿ iZ���4 dep ddp ddq
p2o3D 4

�
n��1ÿ u��e 2p � e 2q � � 2epeq�xp ÿ xq�2

�
Z2F 2

� �u�e 2p � e 2q � � 2epeq�1ÿ xp ÿ xq�2
��1ÿ u�2F 0 2

o
;

F � F �ÿiZ; iZ; 1; u� ; F 0 � qF
qu

; u � 1ÿ D 2
?

m 2
xpxq ; �11�

xp �
1

1� d 2
p

; xq �
1

1� d 2
q

;

dp � p?
m
; dq � q?

m
; D � p� qÿ k ;

where F �a; b; c; x� is the hypergeometric function, G�x� is
Euler's gamma function, p?, q?, and D? are the components
of vectors p, q, and D normal to vector k.

The quasiclassical correction to the photoproduction
cross section found exactly in Z in Ref. [26] is the odd
function of Z and makes a contribution only to dsa�p; q; Z�,
i.e., to the charge asymmetry in the photoproduction process:

dsa � ÿ
am 2Z2

��G�1ÿ iZ���2 dep ddp ddq
2p3=2o3D3

� Im

��1
0

dl���
l
p

�
1� xpl
1� xql

�iZ �����
xp

p
G�1ÿ iZ�G�1=2� iZ�
eq

���������������
1� xpl

p M

� �p$ q; Z! ÿZ�
�
;

M� ��xp ÿ xq� iZF � �1ÿ xp ÿ xq� �1ÿ u�F 0�
� �4epeq�xp f1 � xq f2 � f3� � �e 2p � e 2q �� f1 � f2 � 2 f3�

�
� �e 2p � e 2q ��1ÿ u��� f1 ÿ f2� iZF ÿ u� f1 � f2�F 0

�
;

f1 � �1=2ÿ iZ�G ÿ �1ÿ z�G 0
1� xpl

; f2 � iZG ÿ �1ÿ z�G 0
1� xql

;

f3 � �1ÿ z�G 0
1� l

; G � F

�
1

2
ÿ iZ; iZ; 1; z

�
; G 0 � qG

qz
;

z � 1ÿ D2xpxq�1� l�
m 2�1� xpl��1� xql�

: �12�

As it must be, the correction dsa is invariant with respect to
the p$ q ; Z! ÿZ substitutions. Because i enters the
expression for dsa only in the iZ combination, the quantity
dsa is obviously antisymmetric with respect to the Z! ÿZ
and p$ q substitutions.

To take account of the field screening, it suffices to
multiply dss (11) by jF �D2�j2, where F �D2� is the atomic
form factor, because Coulomb corrections are of significance
only in the region of D0m, where F �D2� � 1. This means
that the atomic form factor influences only the Born cross
section at small D � rÿ1scr 5m, where rscr is the screening
radius: rscr � Zÿ1=3=�ma�. Expansion of dsa�p; q; Z� into a
series of Z starts from the terms proportional to Z3; therefore,
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the value of dsa�p; q; Z� totally depends on the Coulomb
corrections and is insensitive to screening. For this reason,
the formula for dsa�p; q; Z� derived in theCoulomb field holds
true for the atomic field, too.

Charge asymmetry A in the differential photoproduction
cross section is given by the ratio

A � dsa�p; q; Z�
dss�p; q; Z� : �13�

Outside a very narrow region, D?9 jDkj � jkD j=o � m 2=o,
it is possible to make the substitution D2 ! D 2

? �
m 2�dp � dq�2. Therefore [as follows from Eqns (11) and
(12)], asymmetry A at fixed values of dp, dq, and x � ep=o is
inversely proportional to o. Figure 1 plots the dependence of
A on dp for tungsten �Z � 0:54� at several dq and j values,
where j is the angle between vectors dp and dq. It can be seen
that the charge asymmetry can be large enough
(A � 20ÿ30% at o=m � 50). It increases when dp and/or dq
become greater than unity.

At j � p, there is a jump in asymmetry A at the point
dp � dq, where jD?j � 0. At this point, A changes its sign.
Notice that the screening needs to be taken into account inA
only in a very narrow region of jD?j9 rÿ1scr .

The importance of contributions from higher-order terms
in Z to asymmetry is illustrated in Fig. 2, presenting the
dependence ofA on Z � Za at dp � 2, dq � 4 and a few values

of x � ep=o and j. The dashed curve was obtained in the
leading approximation in Z (linear in Z). Evidently, the Z
dependence of A is rather strong even at intermediate Z
values.

Let us consider the photoproduction cross section inte-
grated over positron emission angles (over dq). Direct
integration of formula (12) encounters difficulty. However,
we can take advantage of the fact that a recount from the
corresponding bremsstrahlung cross section is valid for such
an integrated cross section. The use of formula (56) from
Section 4 leads to the following relations

dss
dp
� 4aZ2x 2

p

pm4o3

�
�e 2p� e 2q �L� epeq

�
1� 4xp�1ÿ xp�

�
Lÿ 3

2

���
;

dsa
dp
� paZ2 Re g�Z�

m 3o3epeq
xp
�
eq�e 2p � e 2q � 2epoxp�F1

ÿ xp�e 2po� e 3q � 4epeqoxp�F2

�
;

L � ln

�
2epeq
mo

�
ÿ 1

2
ÿ f �Z� ; �14�

F1 � F

�
1

2
;
1

2
; 1; ÿd 2

p

�
� 2

p
K�ÿd 2

p � ;

F2 � F

�
ÿ 1

2
;
1

2
; 1; ÿd 2

p

�
� 2

p
E�ÿd 2

p � ;

0

0

2 4 6 8 10

20

10

ÿ10

ÿ20

dq � 0.25

j � p

0

0

2 4 6 8 10

20

10

ÿ10

ÿ20

dq � 1

j � p

dp
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Figure 1. Dependence of A (in units of m=o) on dp for a few values of dq, j, and x � ep=o: x � 0:25 (solid curve), x � 0:5 (dashed curve), and x � 0:75
(dotted curve); Z � 0:54 (tungsten).
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where K and E are the elliptic functions. Functions f and g in
Eqn (14) are expressed through the Euler gamma function
G�t� and its logarithmic derivative c�t� � d lnG�t�=dt:

f �Z� � Re
�
c�1� iZ� ÿ c�1�� ; �15�

g�Z� � Z
G�1ÿ iZ�G�1=2� iZ�
G�1� iZ�G�1=2ÿ iZ� :

Expression (14) holds true for the case of a Coulomb field.
The influence of field screening on the Born contribution is
well known; it reduces to a change of the logarithm argument
and the constant in L (see Ref. [12]). The influence of
screening on Coulomb corrections can be neglected.

Charge asymmetryA1 is defined by the following formula

A1 � dsa=dp
dss=dp

: �16�

Figure 3 depicts the dependence of A1 on dp at Z � 0:54
(tungsten), o=m � 50, and for several x values. The o
dependence of A1, unlike the A�o� dependence, is not
reduced to them=o factor due to the logarithmic dependence
of dss�p; Z� on o. Evidently, the charge asymmetry A1 is
noticeable, even if it is much weaker than asymmetry A.

3.2 Differential cross section
of l�lÿ-pair photoproduction
Photoproduction of a m�mÿ pair off heavy atoms is an equally
important QED process. Calculation of the photoproduction
cross section formuons requires, unlike that for the e�eÿ pair,
taking into account the finiteness of nuclear size R (the
difference between the nuclear field and the Coulomb field
for distances r < R). The Born cross section is proportional to
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the square of the nuclear form factor Fn�D2� and sensitive to
its shape, because the muon Compton wavelength for heavy
nuclei lm � 1=mm � 1:87 fm (mm is the muon mass) is shorter
than the nucleus radius (R � 7:3 fm for gold, and R � 7:2 fm
for lead). Coulomb corrections to the total cross section of
muon pair photoproduction were discussed in Refs [33±35].
Unlike the main contribution to the total Born cross section
determined by impact parameters r in the R5 r5o2=m
region, the main contribution to Coulomb corrections to the
total cross section is determined by impact parameters within
the r � lm 9R range. As a result, Coulomb corrections to the
total cross section are strongly suppressed by the nuclear form
factor. It had been supposed for a long time that this assertion
was true for all quantities related to Coulomb corrections.
However, a recent study of charge asymmetry in the
differential cross section of m�mÿ-pair photoproduction (see
Ref. [25]) for o4mm refuted it.

For momentum transfer D?0 1=R, taking account of the
form factor results in strong suppression of the cross section;
here, D � p� qÿ k, p is the mÿ momentum, and q is the m�

momentum. Therefore, charge asymmetry is quite apparent
in the D?9 1=R region at p? � q? � m4D?, so that
jp? � q?j5 jp? ÿ q?j. It was shown in Ref. [26] that in this
region only the contribution proportional to Z3 (even at
Z � 1) remains in the expansion of Coulomb corrections in
terms of Z. The contribution to the dsa�p; q; Z� cross section
proportional to Z3 in the jp? � q?j5 jp? ÿ q?j region taking
account of the nucleus form factor was calculated in Ref. [25].
This contribution determines charge asymmetry A / Z. In
this region, both quantities, A and dss�p; q; Z� / Z2, were
shown to be large enough to be observed in experiment. The
dsa cross section for p?4m and q?4m was studied in
Ref. [36] for the photoproduction of a pair of scalar particles.

For photoproduction of a m�mÿ pair, the leading in Z
contribution to the cross section dss has the form [4]

dss � 2am 2 dep ddp ddq
�2p�4o3

V 2
F �D2�

�
�
D2

m 2
xpxq�e 2p � e 2q � � 2epeq�xp ÿ xq�2

�
; �17�

where VF�D2� � ÿ4pZFn�D2�=D2, Fn�D2� is the nucleus form
factor significantly different from unity for D0 1=R [see
formula (11) for other notations]. The following result was
obtained in Ref. [36] for the antisymmetric part of the cross
section:

dsa� am 2 dep ddp ddq
�2p�4o3

�
�xp ÿ xq�

�
4�epxp � eqxq� �

o�e 2p � e 2q �
epeq

�

� �ep ÿ eq�
e 2p � e 2q
epeq

D2

m 2
xpxq

�
VF�D2�J�D� ; �18�

where

J�D� �
�

ds

�2p�3
�
VF�Q��VF�Qÿ� � �D2ÿ 4s 2k �VF�Q��V 0F�Qÿ�

�
;

�19�

Q� �
�
s� D

2

�2

; sk � s
D

D
; V 0F�Q� �

qVF�Q�
qQ

: �20�

For the Coulomb field, one finds J�D� � 2p2Z2=D. In the
formula for charge asymmetry, A � dsa=dss, the entire
dependence on the nuclear charge is contained in the
J�D�=VF�D2� ratio. The nucleus form factor is fairly well

approximated by the function

Fn�D2� � L 2

D2 � L 2
; �21�

where L � 60 MeV for heavy nuclei. In this case, function
F�D� � ÿ2J�D�=�pZDVF�D2�� takes the simple form

F�D� �
�
1� D2

L2

��
1� 2

p
arctan

�
D
2L

�
ÿ 4

p
arctan

�
D
L

��
ÿ 12DL
p�D2 � 4L 2� : �22�

For D5L, there is the asymptotics F�D� � 1ÿ 6D=�pL�,
and function F�D� rapidly decreases with increasing D.
Figure 4 shows the dependence of F�D� on D for lead
�Z � 82�.

For D5 jp? ÿ q?j, formula (18) is simplified to

dsa � am 2 dep ddp ddq
�2p�4o2

�xp ÿ xq�

�
�
2�xp � xq� �

e 2p � e 2q
epeq

�
VF�D2�J�D� : �23�

Hence, for charge asymmetry A one has the expression

A � pZmok�xp � xq � B�
4epeq�B� k 2xpxq�

F�D� ;
�24�

B � e 2p � e 2q
2epeq

; k � m�xq ÿ xp�
Dxpxq

:

To find out the characteristic value of asymmetry A, we
consider the region interesting from the experimental
standpoint: jfj5 jep ÿ eqj=o5 1 and jyp ÿ yqj=jyp � yqj5
jep ÿ eqj=o, where f is the angle between vectors p? and
ÿq?. In this region, one finds

A � pZy�1� 2x�
�1� 4x 2d 2� F

ÿ
yjep ÿ eqj

�
sgn �ep ÿ eq� ;

�25�
y � 1

2
�yp � yq�; d � oy

2m
; x � 1

1� d 2
;

and the entire dependence on ep ÿ eq is contained in the
function F . Since Eqn (24) holds for all Z9 1, the factor in
front of F in Eqn (25) may be well above 10%.
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Figure 4.Dependence of functionF�D� onD for lead �Z � 82�. Solid curve
correspond to the real charge distribution. Dashed curve was calculated by

formula (22) with L � 60 MeV.
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3.3 Electron spectrum
in the process of e�eÿ-pair photoproduction
To obtain the photoproduction spectrum in the ep; q 4m
region, it suffices to integrate the expressions for dss and
dsa from Eqn (14) over electron emission angles. The result is
as follows:

dss
dx
� 4s0

�
1ÿ 4

3
x�1ÿ x�

�
L ;

�26�
dsa
dx
� s0p3�1ÿ 2x�m

2x�1ÿ x�o
�
1ÿ 3

2
x�1ÿ x�

�
Re g�Z� ;

where L and g�Z� are given in formulas (14) and (15),
respectively, x � ep=o is the fraction of electron energy,
and s0 � aZ2=m 2. The sum dss=dx� dsa=dx defines the
spectrum of the photoproduction process calculated in the
quasiclassical approximation taking into consideration the
first-order quasiclassical correction. To obtain the expres-
sion for Coulomb corrections to the spectrum, dsC=dx, it
suffices to substitute the function ÿf �Z� for L in dss=dx and
leave dsa=dx unaltered. Formula (26), similar to formula
(14), holds true for the Coulomb field, but the field screening
effect is essential only in the Born contribution. The
influence of screening on Coulomb corrections reduces to a
contribution small in parameter 1=�mrscr� [8]. The quantita-
tive consideration of the screening effect on Coulomb
corrections is reported in Ref. [26]. It is worthwhile to note
that Coulomb corrections to the spectrum were found in
Ref. [31] before the calculation of differential cross section
and that integrated over a single particle. The dsa=dx
contribution increases the probability of electron produc-
tion for x < 1=2, and decreases it for x > 1=2. Evidently, the
opposite situation takes place for positrons. This property of
the spectrum manifests itself at any o and is most
pronounced at low photon energies, o > 2m [5]. For
intermediate o, spectrum (26) is substantially different
from that calculated in the leading quasiclassical approxima-
tion. This inference is illustrated in Fig. 5 showing
sÿ10 dsC=dx with (solid curve) and without (dashed curve)
correction for lead �Z � 82� at o � 50 MeV.

3.4 Coulomb corrections
to the total photoproduction cross section
The Coulomb correction to the total cross section of
photoproduction in the Coulomb field was calculated in the

leading quasiclassical approximation in paper [8]:

s �0�C � ÿ 28

9
s0 f �Z� : �27�

It was shown [26] that a change of the Coulomb corrections to
the total cross section, resulting from an allowance for
screening, is fairly well approximated by the formula

s scr
C � ÿ5:4� 10ÿ4 Zs �0�C : �28�

Due to charge antisymmetry of ds �1�C =dx for ep; q 4m, the
contribution s �1�C to the total cross section may come only
from the energy region ep � m or eq � oÿ ep � m. The
quasiclassical approximation is inapplicable in these regions,
and a different approach is needed to calculate the spectrum
(see Section 3.5).

Nonetheless, the correction to total cross section might be
evaluated with the use of the quasiclassical approximation
alone. For this purpose, the optical theorem was applied in
paper [31], which links the imaginary part of the DelbruÈ ck
forward scattering amplitude MD (i.e., photon scattering in
an atomic field through the production and subsequent
annihilation of a virtual electron±positron pair [24]) with the
sum of photoproduction cross sections for a continuous
spectrum electron and a bound-state electron (scoh and sbf,
respectively):

1

o
ImMD � scoh � sbf : �29�

In accordance with the Pauli exclusion principle, production
of an e�eÿ pair by a photon on a neutral atom is not
associated with the production of an electron in the bound
state. Nevertheless, term sbf should be taken into considera-
tion in the right-hand side of Eqn (29). The total photo-
production cross section sbf in the Coulomb field was found
in paper [37] for o4m. In this limit, sbf is inversely
proportional to o and must be taken into account when
relation (29) is used in calculating corrections to scoh. The
main contribution to sbf for o4m comes from electrons in
the low-lying bound states for which screening can be
neglected. Due to this, the cross section sbf obtained in
Ref. [37] can be used in formula (29) in the following form
[37]

sbf � 4ps0Z3 h�Z� mo ; �30�

function h�Z� is plotted in Fig. 6.
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The leading quasiclassical contribution to Coulomb
corrections to the DelbruÈ ck forward scattering amplitude
ensues from formulas (27) and (29):

M
�0�
DC � ÿi

28

9
os0 f �Z� : �31�

The real part of the first-order correction M
�1�
DC in m=o can

just as well be calculated in the framework of the quasiclassi-
cal approximation [31]:

ReM
�1�
DC �

aZ2p3 Im g�Z�
m

ln
o
m
: �32�

The large value of logarithm, ln �o=m�, appears due to
integration over a virtual electron energy e in the region
d < e < oÿ d, where o4 d4m. Just this makes possible
the use of the quasiclassical approximation for calculating
ReM

�1�
DC. The imaginary part of M

�1�
DC does not contain

ln �o=m� and is determined by integration domains e � m
and oÿ e � m, in which the quasiclassical approximation
proves to be inapplicable. Nevertheless, the ImM

�1�
DC quantity

associated with s �1�C (29) can be obtained from the dispersion
relation forMD [38]:

ReMD�o� � 2

p
o2 P

�1
0

ImMD�o 0� do 0
o 0�o 0 2 ÿ o2� ; �33�

where P denotes integration in a principal value sense. It
follows from this equation that high-energy asymptotics of
ReM

�1�
DC (32) is unambiguously related to high-energy

asymptotics of ImM
�1�
DC:

ImM
�1�
DC � ÿ

aZ2p4 Im g�Z�
2m

: �34�

As a result, the following expression for correction s �1�C ensues
from the optical theorem (29):

s �1�C � s0

�
ÿ p4

2
Im g�Z� ÿ 4pZ3 h�Z�

�
m

o
: �35�

The quantity �o=m�s �1�C =s �0�C is plotted in Fig. 7 by the
solid curve. It can be seen that this ratio is high for any Z.
Therefore, s �1�C makes an appreciable contribution to the
Coulomb corrections sC to the total photoproduction
cross section at intermediate photon energies. The dashed
curve in Fig. 7 corresponds to the same ratio if sbf in
Eqn (35) is disregarded. Evidently, the relative contribu-
tion of the term in formula (35) proportional to h�Z� is
numerically small.

It follows from the arguments offered in paper [8] that
Coulomb corrections sC to the total photoproduction cross
section in the Coulomb field can be presented in the form of
the expansion

sC � s �0�C � s �1�C � s �2�C � . . . : �36�

The term s �n�C has the form �m=o�nL�n��ln �o=m��, where
L�n��x� is a certain polynomial. The o-independent term s �0�C

corresponds to the result obtained in paper [8]. It follows from
expression (35) for s �1�C that coefficient L�1� is unrelated to o,
in conflict with the assumption that L�1��x� is a second-degree
polynomial (see Ref. [30]). The most accurate experimental

data for the photoproduction cross section have been
obtained for intermediate photon energies [39±41]. In this
region, correction s �1�C is large (see Fig. 7) and the next-to-
leading-order correction s �2�C in expansion (36) can be
substantial as well. Parametrization in the form

s �2�C � s0

�
b ln

o
2m
� c

��
m

o

�2

; �37�

where b and c are certain functions of Z, was used for this
correction in Ref. [31]. Experimental data for scoh are fairly
well described by the formula

scoh � sB � s �0�C � s scr
C � s �1�C � s �2�C ; �38�

where sB is the Born cross section [4], s �0�C , s scr
C , and s �1�C are

given by formulas (27), (28), and (35), s �2�C is defined in
formula (37) with b � 3:78 �o=m� sÿ10 s �1�C , and c � 0.

Figure 8 shows the S � �scohÿsB�=s �0�C ratio presenting a
Coulomb correction in units of s �0�C (27).

The results obtained in Ref. [31] are shown by the solid
curve, and theoretical predictions [30] by the dashed curve.
Experimental data for S are borrowed from Ref. [39] for
bismuth, and from Refs [40, 41] for lead. Evidently, the
results of study [31] are in excellent agreement with
experiment. The difference between the results reported in
Refs [30] and [31] is insignificant at relatively low energies
and becomes appreciable as the energies increase. This
difference tends toward constant s scr

C =s �0�C as o!1, i.e., it
arises from disregarding the effect of screening on Coulomb
corrections in Ref. [30].

3.5 Photoproduction of an e�eÿ pair at ep � m or eq � m
The photoproduction cross section at the edge of the
spectrum (ep � m or eq � m) was studied in Refs [32, 42].
Paper [42] examined the distribution over angles y between
positron �q� and photon �k� momenta at electron energies ep
much lower than positron energy eq; under these conditions,
the electron was not necessarily ultrarelativistic. Moreover, it
was assumed that the condition

����������
ep=o

p
4 y4 ep=o was

fulfilled, which implied a large transverse positron momen-
tum D � eqy4 ep but a small y angle. In this region, the Born
cross section integrated over electron emission angles has the
form [4]

dsB
dq
� 2aZ2

poD4
ln

�
1� bp
1ÿ bp

�
; bp �

p

ep
: �39�
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Figure 7.Ratio �o=m�s �1�C =s �0�C as a function ofZ (solid curve). The dashed

curve corresponds to the same ratio calculated without regard for electron

production in the bound state.
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The cross section dsB=dq vanishes as bp ! 0, but the cross
section exact in Z is not zero in this limit:

ds
dq
� 4a

oD4
exp �ÿpZ�

X1
l�1

l 3�2Z�2g�1
��G�gÿ iZ���2
G 2�2g� 1�

� ÿjG1j2 � 2Z2jG2j2 ÿ 2Z Im �G�1G2�
�
; �40�

G1� F �gÿ iZ; 2g� 1; 2iZ� ; G2� F �g� 1ÿ iZ; 2g� 2; 2iZ�
2g� 1

;

where g �
���������������
l 2 ÿ Z2

p
. For Z5 1, formula (40) has the

asymptotics

ds
dq
� 8aZ3

oD4
: �41�

The ratio of cross section ds=dq (40) and asymptotics (41)
depending on Z is plotted in Fig. 9. It can be seen that higher-
order terms in Z substantially change the result obtained in the
approximation lowest in Z. Note that cross section ds=dp
disappears in the bq ! 0 limit, because the wave function for
slow positrons is exponentially suppressed at distances on the
order of lC � 1=m.

As bp ! 1, the difference ds=dqÿ dsB=dq (Coulomb
corrections) tends toward zero, as is seen in Fig. 10 wherein
this difference is presented in units of S1 � aZ2=�oD4� as a
function of bp. An analogous assertion is true of the difference
ds=dpÿ dsB=dp as bq � q=eq ! 1. This fact can be explained

as follows. The main contribution to Coulomb corrections is
determined by impact parameters r on the order of lC, but in
the kinematics being discussed one has r5 lC as bp; q ! 1.

In Fig. 11, cross section ds=dq in units of S1 is plotted as a
function of bp throughout the entire interval of its allowed
values and for severalZ values. It illustrates the importance of
Coulomb corrections for all bp with the exception of region
near point bp � 1.

The authors of Ref. [32] studied the spectrum of electrons
in energy regions ep � m and eq � m. The Z-dependence of
o ds=dep (in units of ~s � aZ3=m 2) at a zero electron velocity is
shown in Fig. 12 by the solid curve. As Z! 0, we have the
asymptotics o ds=dep � 4p~s. Reference [43] proposes a
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bp ! 0.
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formula for o ds=dep at zero electron velocity:

o
ds
dep
� 4p

aZ3

m 2

2pZ
exp �2pZ� ÿ 1

�
1ÿ 4p

15
Z
�
: �42�

The result of tabulation of this formula is presented in Fig. 12
by the dotted curve. It is evidenced that formula (42) is
applicable only at small Z values. Notice that cross section
o dsB=dep in the Born approximation tends to zero in the
bp ! 0 limit, because the cross section o dsB=dep �
2aZ2bp=m

2 for bp 5 1. In Ref. [6], the cross section o ds=de
was found with the use of exact formulas [5] at o � 40 MeV
and ep � 1:008m (corresponding to bp � 0:1265). This result
is drawn in Fig. 12 by the dotted curve starting from Z � 11.
There is excellent agreement between the results of Refs [6]
and [32]. They differ at Z � 1, because the Born term
contribution becomes important at small Z and bp � 0:1265.

The Born cross section dsB=de for o4m and p5o is
well known [4]:

dsB
dep
� s0

o
2ep
p 3

�
2ep p ln

�
ep � p

m

�
ÿ p 2 ÿm 2 ln2

�
ep � p

m

��
:

�43�

Specifically, dsB=dep � 2s0 p=m for p5m, and for p4m one
has

dsB
dep
� 4s0

o

�
ln

�
2ep
m

�
ÿ 1

2

�
: �44�

The Coulomb correction to ds=dep was deduced in the
leading quasiclassical approximation for o4 p4m in
Ref. [8]:

ds �0�C

dep
� ÿ 4s0

o
f �Z� ; �45�

where function f �Z� was defined in Eqn (15). Correction
(45) is independent of ep; it remains the same for an electron
and a positron, thus being an even function of Z. The first-
order quasiclassical correction to relation (45) was found in
paper [31]:

ds �1�C

dep
� s0

o
p3m
2ep

Re g�Z� ; �46�

where function g�Z� was given in Eqn (15). Formulas (44)±
(46) correspond to the asymptotics of formulas (26) at small
x � ep=o.

Correction (46) has the opposite sign for an electron and
a positron, since g�Z� (the odd function of Z) increases the
cross section for slow electrons, and decreases it for slow
positrons. Results from Ref. [32] for Coulomb corrections
osÿ10 dsC=dep; q � osÿ10 �ds=dep; q ÿ dsB=dep; q� to the spec-
tra of slow electrons and slowpositrons are depicted in Figs 13
and 14 by solid curves for several Z values. They are
compared with asymptotic expressions osÿ10 ds �0�C =dep; q
(dashed curve) and osÿ10 �ds �0�C =dep; q � ds �1�C =dep; q� (dotted
curve). Clearly, the result of paper [32] for eachZ value tends,
at high energies, toward a constant value of ÿ4 f �Z�. On the
other hand, consideration of the correction ds �1�C =dep; q
considerably improves the agreement between exact and
asymptotic results for slow electrons and positrons.

Correction s �1�C can be derived based on the results of
Ref. [32] from the formula

s �1�C �
�1
m

dep

�
dsC
dep
� dsC

dep
�Z! ÿZ� � 8s0 f �Z�

o

�
: �47�

Numerical integration of formula (4) is consistent with
Eqn (35).

4. Single bremsstrahlung
of relativistic particles in an atomic field

The bremsstrahlung cross section in the Born approximation
is known for any particle energy and arbitrary atomic form
factor [2, 3] (see also monograph [4]). The bremsstrahlung
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cross section was deduced in the leading quasiclassical
approximation in Refs [7±9, 44, 45]. The first-order quasi-
classical correction to the bremsstrahlung spectrum was
calculated in Refs [31, 46]. As was mentioned in the fore-

going, the influence of a field screening on Coulomb
corrections to the photoproduction cross section is insignif-
icant. The influence of screening on bremsstrahlung in the
atomic field, unlike its effect on photoproduction, is highly
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nontrivial. It was shown in papers [9, 46] that Coulomb
corrections to the bremsstrahlung differential cross section
are very sensitive to screening. However, Coulomb correc-
tions to the cross section integrated over momenta of the final
charged particle are independent of screening in the leading
approximation in parameter 1=mrscr 5 1, where rscr �
Zÿ1=3�ma�ÿ1 is the screening radius. A quantitative evalua-
tion of the screening effect on Coulomb corrections to the
bremsstrahlung spectrum was undertaken in Ref. [46]. The
bremsstrahlung differential cross section calculated in the
leading quasiclassical approximation proved identical for
electrons and positrons (for m� and mÿ). This means that the
first-order quasiclassical correction needs to be taken into
consideration in order to predict the charge asymmetry (the
difference between bremsstrahlung differential cross sections
of a particle and antiparticle in the atomic field), as was done
in Ref. [20]. The result thus obtained is exact in the parameter
Z. For muons, the finite nucleus size effect was additionally
taken into account.

4.1 Bremsstrahlung differential cross section
Let us consider the bremsstrahlung differential cross section
for a relativistic charged particle with momentum p and
helicity mp � �1 in the atomic potential V�r�, which is
summarized over the photon helicity and helicity of the final
charged particle with momentum q.

Given that the first-order quasiclassical correction is
taken into consideration, this cross section has the form [20]

ds�p; q; k; Z� � 2ae 2q
om 2�2p�4 dOk dOq do �S0 � S1 � S2� ;

S0 � jA0j2
�
D2

m 2
�e 2p � e 2q �xpxq ÿ 2epeq�xp ÿ xq�2

�
;

�48�
S1 � ReA0A

�
1

�
D2

m 2
�e 2p � e 2q ��ep � eq�xpxq

� ��e 2p � e 2q ��ep ÿ eq� ÿ 4epeq�epxp ÿ eqxq�
��xp ÿ xq�

�
;

S2 � ÿ
2mp
m 2

ImA0A
�
1 o

2�ep � eq�xpxq �p? � q?� m ;

where dOk and dOq are the solid angles corresponding to
photon momentum k and momentum q, respectively, while
o � ep ÿ eq is photon energy. It is assumed that ep 4m and
eq 4m. The following notations were introduced into
Eqn (48):

A0 � ÿ i

D2
?

�
dr exp

ÿÿiD rÿ iw�r��D?HH?V�r� ;
A1 � ÿ 1

2epeq

�
dr exp

ÿÿiD rÿ iw�r��

�
�1
0

dx xHH?V�rÿ xm�HH?V�r� ;

w�r� �
�1
ÿ1

V�z; q� dz ; xp �
m 2

m 2 � p 2
?
; xq �

m 2

m 2 � q 2
?

;

�49�
the z-axis is directed along the unit vector m � k=o;
D � q� kÿ p stands for momentum transfer, and D?, q,
p?, and q? are components of vectors D , r, p, and q
perpendicular to vector m.

Cross section ds�p; q; k; Z� can be represented as the sum

ds�p; q; k; Z� � dss�p; q; k; Z� � dsa�p; q; k; Z� ;

dss�p; q; k; Z� � ds�p; q; k; Z� � ds�p; q; k;ÿZ�
2

; �50�

dsa�p; q; k; Z� � ds�p; q; k; Z� ÿ ds�p; q; k;ÿZ�
2

:

Evidently, the bremsstrahlung differential cross section of
an antiparticle can be derived from ds�p; q; k; Z� by the
substitution Z! ÿZ, so that it will equal dss�p; q; k; Z�ÿ
dsa�p; q; k; Z�. In the leading quasiclassical approximation,
the entire Z dependence of the cross section is associated with
factor jA0j2 in term S0 from (48). Because A0 ! ÿA�0 at
Z! ÿZ, cross sections calculated in the leading quasiclassi-
cal approximation are identical for particles and antiparticles.
Item S1 is the odd function of Z determining the antisym-
metric part of cross section dsa�p; q; k; Z�. Item S2 is the even
function of Z that contributes to the symmetric part of cross
section dss�p; q; k; Z� and disappears after averaging over
helicity mp of the initial particle. To recall, term S2 is
responsible for cross section asymmetry with respect to
substitution ji ! ÿji, where ji are azimuthal emission
angles of final particles in a system with the z-axis directed
along vector p. Such asymmetry is absent in the cross section
calculated in the leading quasiclassical approximation. It
should be noted that terms S1 and S2 differ from zero only if
the next-to-leading-order (quasiclassical) contribution is
taken into consideration. Importantly, the antisymmetric
part of cross section, dsa�p; q; k; Z�, is independent of screen-
ing in the kinematics region making the main contribution to
the antisymmetric part of the cross section.

Coefficients A0 and A1 depend on p, q, and k momenta
only through the dependence on momentum transfer D . It is
therefore easy to write down the formula for the cross section
ds=do dD?:

dss
do dD?

� aeq
2p3oep

jA0j2F�z� ;

dsa
do dD?

� aeq�ep � eq�
2p3oep

ReA0A
�
1F ; �51�

F � ln
ÿ
z�

�������������
1� z 2

p �
z
�������������
1� z 2

p �
z 2

e 2p � e 2q
epeq

� 1

�
ÿ 1 ; z � D?

2m
:

4.2 Coulomb corrections
to electron bremsstrahlung cross section
The main contribution to Coulomb corrections to the
symmetrical part of the bremsstrahlung differential cross
section comes from the D � max �rÿ1scr ;Dmin� region [9, 46],
where Dmin � pÿ qÿ o � m 2o=�2eqep�. Indeed, screening
can be neglected in the D4 max �rÿ1scr ;Dmin� region, V�r�
substituted by the Coulomb potential VC�r� � ÿZ=r, and
component Dk disregarded in view of its smallness compared
with D?. Then, a simple calculation leads to the following
formulas for the coefficients in contributions S0, S1, and S2 in
Eqn (48):

jA0j2 �
�
4pZ
D2

�2

;
ReA0A

�
1

ImA0A
�
1

� �
� pD

4epeq
jA0j2 Re g�Z�

Im g�Z�
� �

;

�52�
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where g�Z�was defined in Eqn (15). Thus, jA0j2 coincides with
its Born jA0Bj2 value. The Z dependences of terms S1 in dsa
andS2 in dss are determined by functions Re g�Z� and Im g�Z�
shown in Fig. 15. For Z5 1, one has Re g�Z� � Z and
Im g�Z� � ÿ�4 ln 2�Z2. It follows from Fig. 15 that Re g�Z�
and Im g�Z� are significantly different from their asymptotic
values even at very small Z.

Foro5 ep, the ratio of asymmetric-to-symmetric parts of
the cross section is given by

S1

S0
� pDRe g�Z�

2ep
; �53�

it increases with D=ep and can exceed 10%. The S2=S0 ratio is
small for o5 ep, when it is suppressed by factor �o=ep�2.

If jp?j4m and jq?j4m, then

S1

S0
� pRe g�Z�

2D
Dhqp ;

S2

S0
� mp

po�ep � eq� Im g�Z�
2�e 2p � e 2q �D

�D � hqp�m ;
�54�

where hqp � p?=pÿ q?=q, meaning that azimuthal asymme-
try enhances with o and may acquire importance.

Let us discuss the cross section ds=do dD? in the case of
D4max �rÿ1scr ;Dmin� [see Eqn (51)]:

dss
do dD?

� 8aZ2eq
poepD4

?
F ;

�55�
dsa

do dD?
� pRe g�Z��ep � eq�D

4epeq

dss
do dD?

;

where function F is defined in Eqn (51). Figure 16 illustrates
the dependence of A � sÿ10a dsa=do dD? on z � D?=�2m�

for several values of t � eq=ep, with s0a � aZ2 Re g�Z�=
�2m 2oepD?�. It is readily seen that the main contribution to
the antisymmetric part of the cross section is determined by
the D � m region.

It is somewhat more difficult to obtain the cross section
integrated over final electron angles. Substituting expressions
(52) for jA0j2, ReA0A

�
1, and ImA0A

�
1 into Eqn (48) and

integrating over q yield

dss
dk
� 4aZ2x 2

p

pm 4o3

�
�e 2p� e 2q �Lÿ epeq

�
1� 4xp�1ÿ xp�

�
Lÿ 3

2

���
;

dsa
dk
� paZ2 Re g�Z�

m 3o3epeq
xp

� �eq�e 2p � e 2q � 2epoxp�F1 � xp�e 2poÿ e 3q ÿ 4epeqoxp�F2

�
;

L � ln

�
2epeq
mo

�
ÿ 1

2
ÿ f �Z� ; �56�

F1 � F

�
1

2
;
1

2
; 1; ÿ p 2

?
m 2

�
� 2

p
K

�
ÿ p 2

?
m 2

�
;

F2 � F

�
ÿ 1

2
;
1

2
; 1; ÿ p 2

?
m 2

�
� 2

p
E

�
ÿ p 2

?
m 2

�
;

where K�x� and E�x� are the elliptic functions.
The antisymmetric part of the spectrum is found by

integrating cross section (51) over D? [31, 46):

dsa
do
� ap3Z2 Re g�Z�

4moe 2p

�
2
e 2p � e 2q
epeq

ÿ 1

�
�ep � eq� : �57�

To determine the Coulomb correction to the symmetric
part of the bremsstrahlung spectrum, it is necessary to
consider the D � max �rÿ1scr ;Dmin� region. It was revealed in
Ref. [46] that quantity jA0�D�j2 in this region greatly depends
on screening. However, Coulomb corrections to the sym-
metric part of the spectrum are a universal function of Z and
independent of screening because [46]�

D2
?
���A0�D�

��2 ÿ ��A0B�D�
��2� dD? � ÿ32p3Z2 f �Z� : �58�

As a result [9], one arrives at

dsC
do
� ÿ 4aZ2 f �Z�

m 2o

�
e 2q
e 2p
ÿ 2eq
3ep
� 1

�
: �59�

Thus, ds=do in the Coulomb field takes the form

ds
do
� 4aZ2

m 2o

�
e 2q
e 2p
ÿ 2eq
3ep
� 1

�
L ; �60�

where function L was defined in Eqn (56). The result of
accounting for screening in the Born contribution to the
spectrum is well known [12] and not discussed in this review.

4.3 Coulomb corrections
to muon bremsstrahlung cross section
Studies of Coulomb corrections to the bremsstrahlung
differential cross section for relativistic muons in an atomic
field must take into consideration the effect of the finite
nuclear size R (the difference between V�r� and Coulomb
potentials at distances r9R). This issue was addressed in
paper [20], taking into consideration the first-order quasi-
classical correction. Let us write out Fourier transform
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Figure 16.Dependence of A�sÿ10a dsa=do dD? on z�D?=�2m� [Eqn (55)],

with s0a � aZ2 Re g�Z�=�2m 2oepD?� at t � eq=ep: t � 0:25 (solid curve),

t � 0:5 (dashed curve), and t � 0:75 (dotted curve).
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VF�D2� of the V�r� potential in the form

VF�D2� � ÿ 4pZF �D2�
D2

; �61�

where F �D2� is the form factor significantly different from
unity for D0 1=R and D9 1=rscr. Let us first consider the
Coulomb corrections to the symmetrical part of the cross
section calculated in the leading quasiclassical approxima-
tion. In this case, the cross section dss depends on field
parameters only through factor A0 (49). In the Born
approximation, one finds

A0B � ÿ i

D2
?

�
dr exp �ÿiD r�D?HH?V�r� � VF�D2� : �62�

Coulomb corrections jA0j2 ÿ jA0Bj2 disappear for
rÿ1scr 5D5Rÿ1 and have two peaks at D � rÿ1scr and
D � Rÿ1. Contributions from these peaks to integral�
D2
?�jA0j2 ÿ jA0Bj2� dD? are opposite in sign and equal

�32p3Z2 f �Z�, respectively. Both are universal functions of Z
independent of the shape of the potential in the r � rscr and
r � R regions, whereas the peak shape is highly sensitive there
to the type of potential [9, 46]. Because the condition
m5Rÿ1 is satisfied for electrons, the contribution to
Coulomb corrections to dss=do comes only from the
r � rscr region [9]. For muons, however, the contributions of
both peaks have to be summarized on the assumption that the
condition mm 4Rÿ1 is fulfilled. As a result, the total
Coulomb correction disappears in the cross section inte-
grated over D?. It should be emphasized once again that
Coulomb corrections to the differential cross section at
D � Rÿ1 and D � rÿ1scr are rather large. To illustrate this fact,
we shall consider the form factor F �D2� as given by formula
(21) that holds for D4 rÿ1scr transfers for which A0 is defined
by the formula

A0 � ÿ 4pZ
D2

�1
0

dr J1�r�
�
1ÿ Lr

D
K1

�
Lr
D

��
� exp

�
ÿ 2iZ

�
ln

r
2
� K0

�
Lr
D

���
;

A0B � ÿ 4pZ
D2 � L2

:
�63�

Here, Jn�x� is the Bessel function, and Kn�x� is the modified
Bessel function of the second kind. Figure 17 demonstrates
the dependence of the relative value of Coulomb corrections,
jA0j2=jA0Bj2 ÿ 1, on D=L at several Z values. The very narrow
peak atD � rÿ1scr is not shown in the figure. A detailed study on
the dependence of this peak on the shape of the atomic

potential at D � rÿ1scr is reported in Ref. [46]. It follows from
Fig. 17 that Coulomb corrections to jA0j2 are very large in the
D=L � 1 region.

Let us next consider the quantityA1 [see formula (49)]. Its
lowest-order approximation in Z, A1B, is expressed through
the same integral J�D� (19) that was included in the correction
to m�mÿ-pair photoproduction cross section:

A1B�D� � ÿ J�D�
2epeq

: �64�

Factor A1 exact in Z can be represented for D4 rÿ1scr as

A1�D� �
�1
0

�1
0

dx drA1B

�
Dx
rL

�
J0�r�J0�x�

� exp

�
ÿ2iZ

�
ln

r
2
� K0

�
rL
D

���
: �65�

For the nuclear form factor (21),A1B�D� is expressed through
the function F defined in Eqn (22):

A1B�D� � ÿ p2Z2L2F
epeqD�L2 � D2� : �66�

Figure 18 demonstrates the dependences of G1 and G2 on the
b � D=L ratio:

G1 � ReA0A
�
1

jA0j2SR

; SR � pRe g�Z�D
4epeq

;
�67�

G2 � ImA0A
�
1

jA0j2SI

; SI � p Im g�Z�D
4epeq
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In the Coulomb field, G1 � G2 � 1 [see Eqn (52)]. Therefore,
the difference of G1; 2 from unity is due to the finite nucleus
size effect. Evidently, G1 and G2 rapidly decrease with
increasing b for b9 1.

5. Double bremsstrahlung of a relativistic
charged particle in an atomic field

The double bremsstrahlung of an electron in an atomic field
had until recently been investigated either at low electron
energies [47, 48] or at any electron energies in the Born
approximation [49]. A recent study [50] in the leading
quasiclassical approximation yielded the double bremsstrah-
lung differential cross section, exact in Z, for a relativistic
electron in an atomic field. It turned out that Coulomb
corrections to the double bremsstrahlung differential cross
section are very sensitive to a field screening effect.

Moreover, these Coulomb corrections are present in the
same factorA0 (49) as in the case of the single bremsstrahlung
differential cross section calculated in the leading quasiclassi-
cal approximation [46]. As a result, the cross section ds of
double bremsstrahlung can be represented as the sum of the
Born contribution dsB and Coulomb corrections dsC:

dsmpmql1l2 � dsB
mpmql1l2

� dsC
mpmql1l2

;

dsB
mpmql1l2

dsC
mpmql1l2

( )
� a 2

�2p�6o1o2

dk1 dk2 dD?

�
��A0B�D �

��2���A0�D �
��2 ÿ ��A0B�D �

��2�
( )��T mpmql1l2

��2 ; �68�

T mpmql1l2 � D?
�
Tmpmql1l2�k1; k2;D?� � Tmpmql2l1�k2; k1;D?�

�
;

where k1; 2, o1; 2 are momenta and energies of final photons,
D � q� k1 � k2 ÿ p, p and q are initial and final momenta of
a charged particle, D? is the component D perpendicular to
vector p, mp, mq, l1, l2 are helicities of the initial and final
electrons and emitted photons, and Tmpmql1l2�k1; k2;D?� is the
Z-independent quantity whose explicit form was presented in
paper [50]. Similar to the case of single bremsstrahlung, only
the region of small D? � max �rÿ1scr ; jDkj�5m contributes to
dsC. As mentioned above, despite the high sensitivity of
jA0�D �j2 ÿ jA0B�D �j2 to screening, Coulomb corrections to
the cross section integrated over D? are insensitive to the

shape of the atomic potential at r � rscr [46]:

dsC
mpmql1l2

� ÿ a 2Z2 f �Z�
4p3o1o2

dk1 dk2

� ��T �0�mpmql1l2
�k1; k2� � T

�0�
mpmql2l1

�k2; k1�
��2 ; �69�

where T
�0�
mpmql1l2

�k1; k2� � Tmpmql1l2�k1; k2; 0�. The main con-
tribution to the Born cross section integrated over dD? is
determined by the region of small D?, i.e., m4D?4mb,
with

b � max

�
1

mrscr
;
jDkj
m

�
;

�70�
Dk � ÿ 1

2

�
q 2
?
q
� k 2

1?
o1
� k 2

2?
o2
�m 2�o1 � o2�

pq

�
;

where q?, k1?, and k2? are components of vectors q, k1, and
k2 normal to vector p. As ln �1=b�4 1, we have within
logarithmic accuracy the following relation

dsB
mpmql1l2

� a 2Z2

4p3o1o2
dk1 dk2 ln

1

b

� ��T �0�mpmql1l2
�k1; k2� � T

�0�
mpmql2l1

�k2; k1�
��2 : �71�

To demonstrate the angular dependence of Coulomb
corrections, let us introduce a dimensionless quantity S
defined as

S � m 6

2

X
mpmql1l2

��T �0�mpmql1l2
�k1; k2� � T

�0�
mpmql2l1

�k2; k1�
��2 : �72�

Figure 19a illustrates the dependence of S on d2 �
pk2?=�mo2� at fixed values of d1 � pk1?=�mo1�, o1=ep,
o2=ep, and the azimuthal angle j between vectors k1? and
k2?. Figure 19b plots the dependence of S onj at fixed values
of d1, d2, o1=ep, and o2=ep. Notice that S is invariant with
respect to the substitution j! ÿj. It follows from Fig. 19
that S exhibits a smooth angular dependence.

Figure 20 presents the d1-dependence of S at fixed values
of o1=ep and o2=ep, where

S1 � p 2

16p2m 2

�
SdOk2 ; �73�
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Figure 19. (a) Dependence of S (72) on d2 � pk2?=�mo2� at o1=ep � 0:2, o2=ep � 0:4, j � 0, d1 � pk1?=�mo1� � 0:2 (dashed curve), d1 � 1 (dotted

curve), and d1 � 2 (solid curve). (b) The dependence of S (72) on azimuthal angle j between vectors k1? and k2? at o1=ep � 0:2, o2=ep � 0:4, d1 � 0:2,
d2 � 0:5 (dashed curve), d2 � 1 (dotted curved), and d2 � 2 (solid curve).

634 P A Krachkov, R N Lee, A I Milstein Physics ±Uspekhi 59 (7)



suggesting that the main contribution to the cross section is
determined by the d1 � 1 region.

Let us consider now the Coulomb corrections to the
cross section integrated over dOk1 and dOk2 (Coulomb
corrections to the spectrum) averaged over polarization
of the initial electron and summarized over final particle
polarizations:

dsC � ÿ 8a 2Z2f �Z� do1 do2

pm 2o1o2
G

�
o1

ep
;
o2

ep

�
; �74�

where function f �Z�was defined in Eqn (15), and the function
G�o1=ep; o2=ep� for arbitrary frequencies is found by numer-
ical integration of the cross section (69) over photon emission
angles. The result for o2 5o1; eq corresponds to the soft
photon approximation [4]:

F�x�� G�x; 0� �
�1
0

dy

�1� y�2
�
1� �1ÿ x�2 ÿ 4y�1ÿ x�

�1� y�2
�
F�x; y� ;

F�x; y� � t�������������
t 2 ÿ 1
p ln

ÿ
t�

�������������
t 2 ÿ 1
p �ÿ 1 ; t � 1� x 2�1� y�

2�1ÿ x� :
�75�

Function F�x� is shown in Fig. 21. It possesses the following
asymptotics:

F �x� � 4

3
x 2 ln

1

x
for x5 1 ;

�76�
F �x� � ln

1

1ÿ x
for 1ÿ x5 1 :

Figure 22 demonstrates the dependence of the function
G�Ox;O�1ÿ x�� on x at fixed O values, where O �
�o1 � o2�=ep, and x � o1=�o1 � o2�.

In the Born approximation, the spectrum has, within a
logarithmic accuracy, the shape

dsB � 8a 2Z2 do1 do2

pm 2o1o2
G

�
o1

ep
;
o2

ep

�
ln

1

b0
; �77�

where function G is the same as in Eqn (74), and

b0 � max

�
1

mrscr
;
m�o1 � o2�

epeq

�
5 1 : �78�

To conclude, study [50] on the double bremsstrahlung
differential cross section, exact in Z, for a relativistic particle
in an atomic field showed that in the leading quasiclassical
approximation the potential enters the process cross section
only through the factor jA0�D �j2. This factor coincides with
the analogous factor in the single bremsstrahlung cross
section calculated in the leading quasiclassical approxima-
tion. It should be emphasized that such factorization is
violated by taking account of the first-order quasiclassical
correction [20]. Study [50] made it possible to formulate a
simple method for calculating exactly in Z the multiple
bremsstrahlung cross section in the leading quasiclassical
approximation. To this end, it is necessary to find the cross
section in the Born approximation for an arbitrary potential
V�r� and then substitute the factor A0�D � from Eqn (49) for
the Fourier transform VF�D2� of the potential.

6. Photoproduction of an e�eÿ pair
accompanied by photon emission

Photoproduction of an e�eÿ pair in an atomic field accom-
panied by photon emission �gZ! e�eÿg 0Z� makes an
important contribution to radiation corrections to an
e�eÿ-pair photoproduction and serves as a background for
DelbruÈ ck scattering [21]. The gZ! e�eÿg 0Z process also
needs to be taken into account in the investigation of
electromagnetic showers in matter. Despite the obvious
importance of this process, there are only a few publications
in which it has been considered in the Born approximation
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Figure 21.Dependence of F�x� on x � o1=ep [Eqn (75)].
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Figure 22. Dependence of G�Ox;O�1ÿ x�� on x (74) at O � 0:3 (dashed
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[51, 52], while the results, exact in parameter Z, are altogether
absent due to the computational difficulties. In recent work
[53], the differential cross section of the gZ! e�eÿg 0Z
process was calculated, exactly in Z, in the leading quasiclas-
sical approximation.

It turned out that Coulomb corrections change the result
considerably in comparison with the Born approximation
except in a narrow region of very small momentum transfers.

The cross section of the process has the form

dsl1l2mpmq � a 2jMl1l2mpmq j2
dp? dq? dk2? dep deq

�2p�6o1o2

; �79�

where k1, k2, p, and q are the momenta of the initial photon,
final photon, electron, and positron, respectively; l1, l2, mp,
and mq are the helicities of the initial photon, final photon,
electron, and positron, and X? denotes the component of
vector X normal to the k1 vector directed along the z-axis.
AmplitudeMmay be represented as the sumM �MB �MC,
whereMB is the term linear in Z (Born amplitude), andMC is
the contribution from higher-order terms in Z (Coulomb
corrections). Representation of the Born amplitude found in
Ref. [53] has the form

MB
l1l2mpmq

� 64pZ
o1o2D2

�F l1l2mpmq�D?� ÿ F l1l2mpmq�ÿD?�
�
; �80�

where D � p� q� k2 ÿ k1 is the momentum transfer, and
F l1l2mpmq�T� are certain elementary functions, the explicit
form of which was reported in paper [53]. The Coulomb
corrections are also expressed through these functions:

MC
l1l2mpmq

� ÿ 128iZ2

o1o2D2

�
dT

�T� D?�2�Tÿ D?�2
�jT� D?j
jTÿ D?j

�2iZ

�
n
�D 2
? � TD?�

�F l1l2mpmq�T� ÿ F l1l2mpmq�D?�
�

� �D 2
? ÿ TD?�

�F l1l2mpmq�T� ÿ F l1l2mpmq�ÿD?�
�o
; �81�

where T is the two-dimensional vector normal to k1. The
screening effect is important only for the small momentum
transfer D9 rÿ1scr 5m, where rscr is the screening radius. For
such D, Coulomb corrections can be neglected. Therefore, the
screening effect can be taken into account via multiplying
MB

l1l2mpmq
by an atomic form factor Fa�D2�, which is equal to

unity for D4 rÿ1scr .
Figure 23 depicts the dependence of S (differential cross

section in units of g averaged over initial photon polarization
and summarized over final particle polarizations):

S � 1

2

X
l1l2mpmq

gÿ1 dsl1l2mpmq
dp? dq? dk2? dep deq

; g � a 2Z2D2
?

�2p�6m 6o1o2D4
;

�82�
on k2x at fixed values of p?, q?, ep, eq, k2y � 0, and several
values of the atomic charge numberZ. In the vicinity of point
D? � 0 �k2x � ÿ3:9m�, the Born cross section dominates over
Coulomb corrections, as it must. In general, however,
Coulomb corrections considerably change the Born result.
To recall, the value of S in the Coulomb field is independent
of o1 at fixed ep=o1, eq=o1, p?=m, q?=m, and k2?=m values.
For an atomic field, S depends on o1 only due to the atomic
form factor. But this form factor is essential only in the
vicinity of point D? � 0, where Coulomb corrections are of
no consequence.

Then there appears an interesting problem of A asymme-
try of the differential cross section for circular polarization of
the initial photon:

A � ds� ÿ dsÿ
ds� � dsÿ

;
�83�

ds� �
X
l2mpmq

ds�l2mpmq :

In the Born approximation, asymmetry is absent for any p, q,
or k2. This fact ensues from the relation

MB
l1l2mpmq

� ÿmpmq
ÿ
MB

l1l2mpmq

��
: �84�

However, this relation is invalid for Coulomb corrections due
to the presence of complex factor �jT� D?j=jTÿ D?j�2iZ in
the integrand of the expression in Eqn (81). Figure 24 plots
the dependence of asymmetry on the j angle between vectors
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Figure 23.Dependence ofS (differential cross section in units of g averaged
over initial photon polarization and summarized over final particle

polarizations (82) on k2x=m for ep � 0:4o1, eq � 0:25o1, px � 4:7m,

qx � ÿ0:8m, and py � qy � k2y � 0: the Born result (dotted curve),

Z � 47 (silver, dash-dotted curve), Z � 82 (lead, dashed curve), and

Z � 92 (uranium, solid curve). S calculated for the Coulomb field is

unrelated to o1. Account of screening where o1-dependence through the

form factor is preserved changes S only in a small vicinity of point D? � 0

(k2x � ÿ3:9m in the figure), where Coulomb corrections are of no

consequence.

0.06
A

0.04

0.02

0

ÿ0.02
ÿ0.04
ÿ0.06

0 1 2 3 4 5 6
j

Figure 24. Asymmetry A [Eqn (83)] as a function of angle j between

vectors k2? and p? for ep � 0:4o1, eq � 0:25o1, p? kÿq?, p? � 4:7m,

q? � 0:8m, and k2? � m: the Born resultÐdotted curve, Z � 47

(silver)Ðdash-dotted curve, Z � 82 (lead)Ðdashed curve, and Z � 92

(uranium)Ð solid curve.

636 P A Krachkov, R N Lee, A I Milstein Physics ±Uspekhi 59 (7)



k2? and p?. As it must, the asymmetry disappears for k1, k2, p,
and q lying in one plane �j � 0; p�. Clearly, asymmetry can be
as large as a few dozen percent even at moderate Z values.

Therefore, taking advantage of the quasiclassical approx-
imation made it possible to derive formulas for an exact in Z
differential cross section of the gZ! e�eÿg 0Z process, which
are not much more complicated than the Born result. It
turned out that the Coulomb corrections significantly
modify the process cross section and hence must be
accounted for in the analysis of available experimental data.

7. Quasiclassical approximation
and small-angle scattering at high energies

As was mentioned in a preceding paragraph, the main
contribution to the cross sections of various quantum
electrodynamics processes in the atomic field at high energies
is determined by the small angles between the momenta of
initial and final particles, i.e., by large orbital momenta. The
application of quasiclassical approach allows us to system-
atically take account of the contributions from large orbital
momenta, as shown in Sections 2±6. Results obtained in the
framework of this approach are exact in the parameter
Z � Za. Moreover, consideration of the approximation
next-in-order to the leading quasiclassical approximation
substantially increases the precision of the results over those
obtained in the leading quasiclassical approximation. In this
regard, a fundamental difference should be emphasized
between the quasiclassical approximation and the eikonal
approximation frequently used in describing high-energy
processes (see, for instance, book [27]). This difference has
been noted already in a study [9], demonstrating that
Coulomb corrections to the cross section of e�eÿ-pair
photoproduction can be obtained in the framework of the
quasiclassical but not eikonal approximation. The question
arises to what extent it is possible to increase the accuracy of
cross section calculations in the framework of the quasiclassi-
cal approach. This issue was studied in a recent paper [54] by
the example of calculating the small-angle scattering cross
section for polarized high-energy particles in the atomic field.
The cross section of this process can be represented in the
form [27]

ds
dO
� 1

2

ds0
dO

�
1� S n�f1� f2� � T i jz i1z

j
2

�
; n � p� q

jp� qj ; �85�

where ds0=dO is the differential cross section for nonpolar-
ized particles, p and q are the initial and final electron
momenta, f1 is the polarization vector of the initial electron,
f2 is the registered polarization vector of the final electron, S
is the so-called Sherman function, and Ti j is a certain tensor.
Cross section ds0=dO in the leading and the next-to-leading-
order scattering angle approximation, y5 1, was known long
ago for an arbitrary localized potential V�r� [55]. The cross
section can be calculatedwith such accuracy in the framework
of the quasiclassical approach. The Sherman function S
calculated in the leading quasiclassical approximation is
proportional to y 2. If S is calculated with the help of a series
expansion in Z parameter, the contribution leading in Z (linear
in Z) is due to the interference between the scattering
amplitudes calculated in the first and second Born approx-
imations [56±60]. Unlike the leading quasiclassical contribu-
tion proportional to y 2, the contribution leading in Z is
proportional to y 3 at small y. There is no conflict between
these results, because the expansion of the quasiclassical

contribution with respect to Z starts with Z2. Thus, the
dominant contribution to the Sherman function is given,
depending on the Z=y ratio, either by the leading quasiclassi-
cal contribution or by the interference between the first and
second Born amplitudes. It could be supposed that theO�y 3�
contribution in the S function corresponds to the next-to-
leading-order (quasiclassical correction), i.e., to the contribu-
tion from large orbital momenta. However, the case of the
Coulomb field considered in Ref. [54] showed that it is
absolutely necessary to take account of angular momenta
l � 1 for these terms. It was therefore concluded that it is not
possible to go beyond the accuracy of the next-to-leading-
order quasiclassical approximation without taking into
account the nonquasiclassical contributions corresponding
to l � 1 angular momenta.

7.1 Scattering of polarized electrons
in the quasiclassical approximation
For the problem of scattering in the arbitrary localized
potential V�r�, the asymptotics of the wave function cp�r� at
large distances r has the form

cp�r� � exp �ipr�up � exp �ipr�
r

�G0 ÿ aG1 ÿ RG2�up : �86�

Coefficients G0, G1, and G2 are easy to find from the
expressions of functions f0, f1, and f2 [see formula (4)]:

G0 � a0 � da0 ; G1 � ÿD?
2e
�a0 � da0 � da1� ;

�87�
G2 � i

q� p

2e 2
da1 ;

where

a0 � ÿ ie
2p

�
dq exp �ÿiD?q�

�
exp �ÿiw�q� ÿ 1

�
;

da0 � ÿ 1

4p

�
dq exp

ÿÿiD?qÿ iw�q�� r q
qr

�1
ÿ1

dxV 2�rx� ;

da1� i

4pD2
?

�
dq exp

ÿÿiD?qÿ iw�q��D? qr q
qr

�1
ÿ1

dxV 2�rx� ;

w�q� �
�1
ÿ1

dxV�rx� ; rx �
�����������������
x 2 � r 2

p
: �88�

Here, D � qÿ p, q � pr=r, and q is the two-dimensional
vector normal to vector np � p=p along which the z-axis is
directed. For small scattering angles y5 1, one has
da0 � da1 � ya0. As a result, we arrive at the following
expressions for ds0=dO, T i j and S in Eqn (85):

ds0
dO
� ja0j2

�
1� 2Re

da0
a0

�
; �89�

T i j � d i j � ye i j kx k ;

S � ÿmy
e

Im
da1
a0

: �90�

Equation (89) takes into consideration only the leading and
the next-to-leading-order in y terms in ds0=dO and T i j, while
Eqn (90) takes account of the leading contribution to the
Sherman function S. The form of Ti j is a simple consequence
of helicity conservation in scattering of ultrarelativistic
particles.

The condition jDzj � py 2=25D? � py is always fulfilled
at small scattering angles. By virtue of this condition, a0�D� in
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Eqn (88) is expressed through coefficient A0�D� (49):
a0�D� � ÿ e

2p
A0�D� : �91�

Due to this relation, the bremsstrahlung cross section in
transverse momentum transfers greater than a minimal
transfer can be represented in the leading quasiclassical
approximation in the form of the product of the scattering
cross section and the emission probability [12]. This factor-
ization is violated at small momentum transfers, as well as in
the next-to-leading-order quasiclassical approximation (see
Section 4).

The expansion for ds0=dO coincides with that obtained in
the eikonal approximation [55]. However, one important
remark is in order here [18]. The following formula is usually
used in the derivation of the expression for a0 in the
framework of the eikonal approximation:

a0 � ÿ e
2p

�
dr exp �ÿiqr�V�r�c�p �r� �92�

with c�p �r� being the eikonal function

c eik
p �r� � exp

�
iprÿ i

�1
0

dxV�rÿ xnp�
�

�93�

deduced from the quasiclassical wave function by ignoring
quantum fluctuations (see Section 2). Then, the integral over
z, ignoring Dz by virtue of its smallness compared with D?,
yields a0 in Eqn (88). This derivation in the case of the
Coulomb field raises questions, since Dz is multiplied by
z � r=y, i.e., zDz � rD?. If Dz is not ignored but the wave
function is retained in the eikonal approximation, integration
in formula (92) results in the expression for ja0j2 differing
from the correct expression by the presence of an additional
factor 2pZ=�exp �2pZ� ÿ 1�. If the wave function is taken in the
quasiclassical approximation but Dz is ignored, integration in
formula (92) leads to the expression for ja0j2 differing from
the correct one by an additional factor 2pZ=�1ÿ exp �ÿ2pZ��.
Only retention ofDz together with the use of the quasiclassical
wave function allows the correct result for a0 in formula (88)
to be obtained from Eqn (92) (see Ref. [18]).

It should be noted that a0 ! ÿa �0 , da0 ! da �0 , and
da1 ! da �1 in the case of the V! ÿV substitution. Due to
this, the quasiclassical result for the Sherman function S
[Eqn (90)] is invariant with respect to the V! ÿV substitu-
tion. In contrast, the 2Re �da0=a0� contribution to ds0=dO in
(89) leads to charge asymmetry in scattering, i.e., to the
difference between electron and positron scattering cross
sections (see, for instance, [27]). For the Coulomb field
V�r� � ÿZ=r, it follows from Eqn (88) that

a0 � 2Z

ey2ÿ2iZ
G�1ÿ iZ�
G�1� iZ� ; �94�

da0
a0
� 1

4
pyg ��Z� ; da1

a0
� ÿ pyg ��Z�

4�1� 2iZ� ;

where function g�Z� was defined in Eqn (15). The quasiclassi-
cal cross section and function S for the Coulomb field have
the form

ds0
dO
� 4Z2

e 2y 4

�
1� py

2
Re g�Z�

�
; �95�

S � ÿ pmy 2

4e
Im

g�Z�
1ÿ 2iZ

: �96�

In other words, the quasiclassical Sherman function is
proportional to y 2, while Mott's famous result [56] for the
leading contributions to S in Z is proportional to y 3 ln y. For
this reason, Mott's result is inapplicable for y9Z.

Let us discuss now the finite nucleus size effect on the
ds0=dO cross section and the Sherman function Smaking use
of the model potential

V�r� � ÿ Z�����������������
r 2 � R 2
p ; �97�

whereR is the characteristic nucleus size. Since all integrals in
Eqn (88) are taken for this potential, one obtains

ds0
dO
� 4Z2

e 2y 4

���� bK1ÿiZ�b�
G�1� iZ�

����2�1� A� ; �98�

A � pZy
2

Re
G�1� iZ�ÿ2K1=2ÿiZ�b� ÿ bK3=2ÿiZ�b�

�
G�3=2� iZ� �����2bp K1ÿiZ�b�

; �99�

S � pZmy 2

4e
Im

G�1� iZ�K1=2ÿiZ�b�
G�3=2� iZ� �����2bp K1ÿiZ�b�

; b � yeR ; �100�

where Kn�x� is the modified Bessel function of the second
kind. Quantity A in Eqn (99) stands for charge asymmetry

A � ds0�Z� ÿ ds0�ÿZ�
ds0�Z� � ds0�ÿZ� : �101�

In the b! 0 limit, the deduced formulas (98) and (100)
coincide with (95) and (96). Figures 25 and 26 plot
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Figure 25. Asymmetry A (99) in units of Zy as a function of b � yeR for

Z � 0:1 (solid curve), Z � 0:4 (dashed curve), and Z � 0:7 (dash-dotted

curve).
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asymmetry A and function S depending on b for several Z
values. Both functions show a strong dependence on b and Z.
Interestingly, they change the sign at b � 1. This property can
be expected to manifest itself for usual parametrizations of
the nuclear electrical potential.

7.2 Small-angle expansion
of the exact Coulomb scattering amplitude
The amplitude of electron scattering in the Coulomb field is
known exactly in Z for any electron energies and scattering
angles (see, for example, monographs [4, 27]):

Mfi � i

2p
f yf

�
G�y� ÿ iZm

p
F �y�

ÿ i

�
G�y� tan y

2
� iZm

p
F �y� cot y

2

�
nr

�
fi ;

where fi and ff are the spinors corresponding to the initial
and final electrons, respectively, and functions F�y� and G�y�
have the form

F �y� � ÿ
X1
l�1

G�gl ÿ in�
G�gl � in� 1� exp

�
ip�lÿ gl�

�
l �Pl ÿ Plÿ1� ;

�102�
G�y� � ÿ cot

y
2

dF

dy
: �103�

Here, Pl � Pl cos y� � are the Legendre polynomials, and
gl �

��������������
l 2 ÿ Z2

p
. If the amplitude is known exactly, it is

possible to study the nontrivial interplay between contribu-
tions from large orbital momenta l (the quasiclassical
contribution) and contribution from l � 1 to the cross
section and the Sherman function for electron scattering in
the Coulomb field. For small scattering angles y, the main
contribution to the scattering amplitude is determined by
angular momenta l4 1 not only in the ultrarelativistic case,
but also at arbitrary b � p=e. Therefore, parameters Z � Za
and n � Za=b are regarded as independent in this section. We
shall consider the small-angle expansion regardless of fulfill-
ment of the condition Z5 1 assumed in Ref. [60].

The differential cross section for nonpolarized particles
ds0=dO and the Sherman function S�y� expressed through
F�y� and G�y� take the form

ds0
dO
� 1

4p 2

� ��G�y���2
cos2 �y=2� �

Z2m 2
��F �y���2

p 2 sin2 �y=2�

�
; �104�

S�y� � Zmp sin yReFG ���G�y���2p 2 sin2 �y=2� � Z2m 2
��F �y���2 cos2 �y=2� :

Reference [54] reports on the following representation for
function F�y� as y5 1:

F � FQC � dF ; �105�

FQC � G�1ÿ in�
G�1� in� s

2in
�
1� ipZ2

�1� 2in�n g ��n�s

� iZ2

2�1� in�n
�
1� 2inÿ p2Z2

4

�
s 2
�
;

dF � G�1ÿ in�
G�1� in� C�Z; n�s

2 :

Here, the notations were used:

C�Z; n� � ÿiZ2
�
1

2n
� i� p

2�1ÿ 2in� ÿ
p2Z2

8n

�
� G�1� in�
G�1ÿ in�

X1
l�1

2l 2
�
G�gl ÿ in� exp �ip�lÿ gl�

�
G�gl � in� 1�

ÿ G�lÿ in�
G�l� in� 1� Tl

�
;

�106�
Tl � 1� ip

2l
Z2 � Z2

2l 2

�
1� 2inÿ p2Z2

4

�
;

where s � sin �y=2�. The term FQC is determined by the
contribution from large l (the quasiclassical contribution),
and the sum over l in the term dF converges at l � 1 (the
nonquasiclassical contribution). Function C�Z; n� shows
strong dependence on Z and n. This inference is confirmed in
Fig. 27, in which both real and imaginary parts of the function
C�Z; n� at n � Z �b � 1� are depicted as a function of Z.

Substituting formula (105) into (104) gives

ds0
dO
� n 2

4p 2s 4

�
1� pb 2 Re g�n�sÿ 2nÿ1 Im

ÿ
s 2inC ��Z; n��s 2� ;

�107�

S�y� � ms 2

en

�
ÿpZb Im

�
g�n�

1ÿ 2in

�
�
�

Z2

1� n 2

�
1ÿ 3p2Z2

4�1� 4n 2�
�
� p2Zb 3 Im

�
g�n�

1ÿ 2in

�
Re g�n�

ÿ 2Re
��1� in�s 2inC ��Z; n���s� : �108�

The second correction to the cross section originates from
interference between quasiclassical and nonquasiclassical
contributions to the amplitude. This means that this correc-
tion cannot be obtained in the framework of the quasiclassical
approach. It was shown in Ref. [18] that the amplitude of
elastic small-angle scattering of electrons at high energies
obtained in the framework of the quasiclassical approach
taking account of the first-order quasiclassical correction
coincides with the amplitude obtained in the eikonal
approach taking into consideration the first-order correc-
tion. The eikonal approach allows us to perform regular
expansion of the wave function [61, 62]. Hence, the question

2
C

1

0

0

ÿ1

ÿ2

ÿ3

ÿ4
0.2 0.4 0.6 0.8 1.0

Z

Figure 27. Real (solid curve) and imaginary (dashed curve) parts of

function C�Z; n� [Eqn (106)] at n � Z as a function of Z.
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may be raised: is it possible to obtain the O�s 2� contribution
to Eqn (107) in the framework of the eikonal approach? The
answer: certainly not. Indeed, the eikonal scattering ampli-
tude for D? 6� 0 takes the form

Mfi � ÿ ip

2p

�
dq exp

ÿÿiD?qÿ iw0�q�
�

� f yf

�
1ÿ iw1 ÿ iw2 ÿ

w 2
1

2
� . . .

�
fi : �109�

In the Coulomb field, w0 � 2n ln pr. It follows from dimen-
sional considerations that eikonal corrections have the form
wn>0�r� � Pn�ln pr�=�pr�n, where Pn�x� are certain polyno-
mials with matrix coefficients. Substituting variables
q! �2=D?�q leads to

Mfi � ÿs 2in 2ip

pD2
?

�
dq exp �ÿ2idq�rÿ2inf yf

�
1ÿ i

s

r
P1

�
ln

r
s

�

ÿ s 2

r 2

�
iP2

�
ln

r
s

�
� 1

2
P 2

1

�
ln

r
s

��
� . . .

�
fi ; �110�

where d � D?=D? is the unit vector. Taking the integral over
q yields amplitudeMfi in the eikonal approximation:

Mfi � G�1ÿ in�
G�1� in� s

2in n
2ps 2

� f yf
�
1� sQ1�ln s� � s 2Q2�ln s� � . . .

�
fi ; �111�

where Q1 and Q2 are certain polynomials with coefficients
that are functions of n and Z. The common phase factor s 2in

disappears in jMfij2, which means that Eqn (111) cannot
reproduce the oscillating factor Im �s 2inC ��Z; n�� in Eqn (107).
This is not surprising, bearing in mind that the condition for
the applicability of the eikonal approximation is violated at
small distances.

Let us discuss the nontrivial relation between amplitudes
obtained by small-angle expansion and by a series expansion
in small n. Retaining only the leading terms in n in the
expansion of coefficients with respect to s yields

ds0
dO
� n 2

4p 2s 4
�1� spZbÿ s 2b 2� ; �112�

S�y� � 2Zms 2

e

�
pZ�2 ln 2ÿ 1� � bs ln s

�
: �113�

Cross section (112) is consistent with the small-angle expan-
sion of results obtained in Refs [57, 58], and function S
[Eqn (113)] with the small angle-expansion of the expression
for the Sherman function from Ref. [59]. The term propor-
tional to s ln s in formula (113) is in agreement with the known
Mott result [56].

Evidently, the relative values of the first-order and
second-order corrections in s to the differential cross section
are proportional to the ratio of two small parameters, n=y,
that can be either larger or smaller than unity. An analogous
situation takes place for the Sherman function, i.e., the ratio
between the leading quasiclassical contribution and the
correction is proportional to n=�y ln y�.

Result (105) was obtained in the small-angle scattering
approximation, y5 1. However, it turned out that expression
(105) for function F is surprisingly well consistent with the
exact function (102) for all y. Therefore, the use of Eqns (103)

and (105) in (104) allows obtaining very good approximations
for the cross section and the Sherman function over the entire
range of angles and nuclear charges. This inference is
illustrated in Fig. 28 showing the scattering cross section for
an ultrarelativistic particle on the lead nucleus �Z � 82� as a
function of s � sin �y=2�. This correspondence disappears at
large scattering angles if contributions on the order of s 2

(dotted curve) in Eqn (105) are ignored.

8. Conclusion

This review summarizes current research on fundamental
quantum electrodynamics processes whereby high-energy
particles interact with atoms. It is of importance for various
applications that the cross sections of these processes be
known exactly. It is shown that the employment of the
quasiclassical approach permits in all cases obtaining results
exact in parameter Z � Za, the form of which is not much
more complicated than that of the respective results obtained
in the Born approximation. Calculations in the next-to-
leading-order quasiclassical approximation permit us not
only to deduce formulas fairly exact at intermediate energies
but also to quantitatively predict for the first time such
phenomena as charge asymmetry in the photoproduction
and bremsstrahlung processes proceeding in an atomic field
at high energies of impact particles.

The study was supported by the Russian Science Founda-
tion (grant 14-50-00080).
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