
Abstract. Divergence of the Magnus expansion leads to para-
doxes in the spin dynamics of solid-state NMR and in quantum
informatics. This review presents results on quasi-equilibrium
magnetization in a system of dipole±dipole (DD) coupled spins
at times T2 5 t5T1q in multiple-pulse spin locking (T2 is the
transverse spin relaxation time and T1q is the rotating-frame
spin±lattice relaxation time). It is shown how contradictions
between the results obtained with the Magnus expansion and
experimental data can be removed. Systems of two and three
DD coupled spins in multi-pulse spin locking are considered,
and the entanglement evolution is investigated using both the
Magnus expansion and the exact solution. The critical tempera-
ture for an entangled state is also found.

Keywords: Floquet theorem, Floquet Hamiltonian, Magnus expan-
sion, Magnus paradox, multi-pulse spin locking, average
Hamiltonian theory, concurrence, quantum entanglement

1. Introduction

Many physical problems can be described in terms of
systems of linear differential equations with periodic time-
dependent coefficients [1] (in quantum mechanics, with a
Hamiltonian periodically varying in time). In 1883,

A M Gaston Floquet proved a remarkable theorem that
asserts the existence of a periodic unitary transformation
that maps a system of normal differential equations with
periodic coefficients into a system of differential equations
with constant coefficients [2]. A well-known example of such
a procedure is the passage to a rotating reference frame
(RRF) in the study of a system with dipole±dipole interac-
tions (DDIs) in a constant magnetic field and in a circularly
polarized (harmonic) magnetic field [3]. The Floquet
theorem allows writing the solution of the Liouville evolu-
tion equation (in frequency units)

i
dr
dt
� �H�t�; r�t�� �1�

for the density matrix r�t� in the form

r�t� � P�t� exp �ÿiHFt�r0 exp �iHFt�P��t� : �2�

In (1), H�t� is a periodic Hamiltonian of the system
[H�t� tc� � H�t�, where tc is the period], HF is a time-
independent Hamiltonian (Floquet Hamiltonian), P�t� is a
unitary periodic operator, P�t� tc� � P�t�, and r0 is the
initial density matrix.

Unfortunately, except for the above-mentioned example
with an RRF, the Floquet Hamiltonian for multi-spin
systems cannot be computed exactly, and approximate
methods should therefore be used [4±8]. We discuss the
method described in [4], known as the average Hamiltonian
theory, in detail.

Let the HamiltonianH�t� of a system consist of two parts,

H�t� � Hp�t� � Hin ; �3�

where Hin describes internal interactions (for example,
DDIs), and Hp�t� �Hp�t� tc� � Hp�t�� describes the effect
exerted on the system by external fields (for example, by a
periodic sequence of high-frequency (HF) pulses). The
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evolution of the density matrix can be conveniently repre-
sented with the aid of the evolution operator

r�t� � U�t�r0U��t� ; �4�

where the operator U�t� satisfies the equation

i
dU�t�
dt
� H�t�U�t� ; U�0� � 1 : �5�

To eliminate external actions from Hamiltonian (3), we pass
to the interaction representation in terms of Hp�t�. Then the
evolution operator U�t� can be written as

U�t� � Up�t�L�t� ; �6�

where

Up�t� � Texp

�
ÿi
� t

0

Hp�t 0� dt 0
�
: �7�

The operator L�t� in (6) is defined as

L�t� � Texp

�
ÿi
� t

0

eH�t 0� dt 0� ; �8�

where Texp is the time-ordered exponential and

eH�t� � U�p �t�HinUp�t� : �9�

We now assume that the Hamiltonian Hp�t� is not only
periodic but also satisfies the condition of cyclicity, i.e.,

Up�Ntc� � Texp

�
ÿi
� Ntc

0

Hp�t� dt
�
� 1 ; �10�

where N is a natural number. From formulas (6) and (9), we
then obtain

r�Ntc� � L�Ntc�r0L��Ntc� ; �11�

L�Ntc� �
�
L�tc�

�N
: �12�

Thus, in order to describe the state of the system at time
instants that are multiples of the period tc, it suffices to find
the evolution of the system only over one period [4]. This
conclusion is very important and useful for the investigation
of multi-spin dynamics in periodic magnetic fields.

However, the problem is complicated by the presence of
time-ordered exponentials (T operators) in Eqns (8) and (12),
which lead to labor-consuming calculations. In 1954,Magnus
suggested a transformation of the T operator into a simple
exponential operator [9]. Magnus showed that

L�tc� � Texp

�
ÿi
� tc

0

eH�t 0� dt 0�
� exp

h
ÿiÿ �H�0� � �H�1� � �H�2� � . . .

�
tc

i
; �13�

where the average Hamiltonian �H�0� has the form

�H�0� � 1

tc

� tc

0

eH�t 0� dt 0 ; �14�

and the corrections �H�1� and �H�2� to the averageHamiltonian
are defined by the formulas

�H�1� � 1

2tc

� tc

0

dt2

� t2

0

dt1
� eH�t2�; eH�t1�� ; �15�

�H�2� � 1

6tc

� tc

0

dt3

� t3

0

dt2

� t2

0

dt1

n� eH�t3�; � eH�t2�; eH�t1���
� � eH�t1�; � eH�t2�; eH�t3���o ; �16�

etc.
Let the order of the Hamiltonian eH�t� be equal to oloc.

The corrections to the average Hamiltonian are by the order
of magnitude proportional to powers of the small parameter
e � oloctc 5 1. In particular, in many cases in studying the
multi-spin dynamics, we can restrict ourselves to using the
average Hamiltonian. For example, the average Hamilto-
nian completely describes a system if the values of the
Hamiltonian at different time instants commute. It is
important that all the terms of series (13) are proportional
to the number of spins, and this series can be used to
investigate the dynamics and thermodynamics of spin
systems. Expansion (13) can be used for determining the
evolution of a system at the time instants that are multiple of
the period of an external magnetic field. This is sufficient for
describing experiments using a stroboscopic observation of
magnetization.

Magnus expansion (13) allows substantially simplify-
ing the analysis of the behavior of spin systems in periodic
external fields. However, the series in Eqn (13) is divergent
[10] even in the case of a single-spin system in a constant
magnetic field and in a circularly polarized (harmonic)
magnetic field perpendicular to it [10]. Experimental
studies [11, 12] of spin dynamics in the case of multi-
pulse spin locking [13, 14] revealed some inconsistencies
between the average Hamiltonian theory [4] and experi-
mental data at times T2 < t4T1r (where T2 is the time of
transverse spin relaxation and T1r is the time of spin±
lattice relaxation in the RRF [3]). These inconsistencies
were called the Magnus paradox in [15]. In [10], it was
shown that the Magnus paradox is closely related to the
convergence of expansion (13). The problem of the
convergence of the Magnus series was investigated earlier
in many studies [10, 16±18] and continues to be investi-
gated at present [19].

In this article, we examine the Magnus paradox in multi-
spin and few-spin problems and show how the contradictions
between the average Hamiltonian theory [4] and the experi-
mental data can be removed [11, 12] in multi-pulse spin
locking. We also investigate the evolution of entanglement
in a system consisting of two and three dipole-coupled spins in
the case of multi-pulse spin locking. Entanglement in the two-
spin systemwas investigated on the basis of the obtained exact
solution of the two-spin problem and also in terms of the
averageHamiltonian theory. In the Conclusion, we briefly list
of our basic results.

2. Thermodynamic quasi-equilibrium states
of systems of spins coupled by dipole±dipole
interaction in multi-pulse spin locking

We examine a system of spins s � 1=2 coupled by a DDI in a
strong external magnetic field directed along the z axis of a
laboratory coordinate system. The secular part of the DDI
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with respect to the field H0 can be expressed as

Hdz �
X
i< j

di j
ÿ
3IizIjz ÿ Ii Ij

�
; �17�

where Iia �a � x; y; z� is the projection of the angular
momentum of spin i onto the axis a, Ii Ij � IixIjx�
IiyIjy � IizIjz, and di j is the DDI constant of spins i and j.

In the case of multi-pulse spin locking, the HF pulse P 90�
ÿy

at the initial instant rotates the spins about the y axis of the
RRF through 90�. Then the sequence of resonance equidi-
stant pulsesPj

x rotates the spins through an anglej about the
x axis of the RRF. The arrangement of the multi-pulse
sequence used in the experiment can be represented as [20, 21]

P 90�
ÿy ÿtÿ�Pj

x ÿ2tÿ�N ; �18�

where t and 2t are the time intervals between subsequent
pulses. It was experimentally shown in [13, 14, 22, 23] that at
j � p=2, sequence (18) creates a long chain of echo signals,
which decaywith time asT2e � T2=�oloct�4. This time exceeds
the time of decay of the free-induction signal (FIS) by several
orders of magnitude.

The Hamiltonian of the system in the case of multi-pulse
spin locking takes the form

H � o0Iz ÿ f �t�ÿIx cos �o0t� � Iy sin �o0t�
��Hdz ; �19�

where o0 � gH0 is the Larmor frequency (g is the gyromag-
netic ratio), Ia �

P
i Iia is the total projection of the angular

spin moment onto the axis a �a � x; y; z�, and
f �t� � j

X1
k�0

d�t� 2ktÿ t� ; �20�

is a pulsed function, where d�t� is the Dirac delta function.
The Liouville equation for the density matrix r�t� of the
system can be written in the RRF as

i
dr
dt
� �ÿf �t�Ix �Hdz; r�t�

�
: �21�

It is easy to see that

Hdz � ÿ 1

2
Hdx �H�2� � H�ÿ2� ; �22�

where Hdx is obtained from Hdz (17) by replacing the index z
with the index x, and

H�2� � 3

4

X
i< j

di jI
�
i I �j ; H�ÿ2� � 3

4

X
i< j

di jI
ÿ
i I ÿj : �23�

We note that the quantization axis in the left-hand side of
(22) is the z axis, whereas in the right-hand side, it is the x axis.
Using the transformation

r�t� � L�t��rL��t� ; �24�

where

L�t� � exp

�
i

�� t

0

f �t 0� dt 0 ÿ oet

�
Ix

�
; �25�

we obtain the following equation for the density matrix �r�t�:

i
d�r�t�
dt
�
�
oeIx ÿ 1

2
Hdx � F�t�H�2� � F ��t�H�ÿ2�; �r�t�

�
:

�26�

In Eqn (26), oe � j=�2t� is the effective field and F�t� is a
periodic function with the mean �1=j� sinj. The average
Hamiltonian �H can be represented (up to terms of the order of
eoloc, where e � 2toloc, oloc � T ÿ12 ) in the form

�H � oeIx ÿ 1

2
Hdx � sinj

j

ÿH�2� � H�ÿ2�� : �27�

In addition to average Hamiltonian (27), the total Hamilto-
nian contains small rapidly oscillating terms, which can be
disregarded at times t4T2. By the instant t � T2, the spin
system reaches a quasi-equilibrium state described by the
densitymatrix req, which in the high-temperature approxima-
tion [24, 25] can be represented as

req � Zÿ1�1ÿ b �H� ; Z � Tr �1� ; �28�

where b is the inverse temperature. Taking into account that
the initial densitymatrix r0 in themulti-pulse spin locking [see
(18)] has the form

r0 � Zÿ1�1ÿ b0o0Ix� ; Z � Tr �1� ; �29�

where b0 is the initial inverse temperature, we use the energy
conservation law

Tr fr0 �Hg � Tr freq �Hg �30�
to derive the relation

b
b0
� oeo0

�
o2

e �
�
1

4
� 3

4

sin2 j
j2

�
o2

loc

�ÿ1
; �31�

where o2
loc � Tr �H 2

dx�=Tr �I 2
x �, and it follows from (22) that

Tr
ÿH�2�H�ÿ2��
Tr �I 2

x �
� 3

8
o2

loc : �32�

Letting M0 and Meq denote the initial and quasi-equilibrium
magnetizations, we use Eqns (28), (30), and (31) to obtain the
following result:

Meq

M0
� Tr �reqIx�

Tr �r0Ix�
� o2

e

�
o2

e �
�
1

4
� 3

4

sin2 j
j 2

�
o2

loc

�ÿ1
: �33�

The theoretical result in (33) agrees well with the experimental
data in [11] at the times t � T2.

Corrections (13) to time-independent Hamiltonian (27)
are proportional to powers of the small parameter
e � 2toloc 5 1 and are small by themselves. Therefore, it can
be assumed that Hamiltonian (27) approximately determines
the Floquet Hamiltonian [see (2)]. By extending the Redfield
hypothesis on the spin temperature in an RRF [26], it can be
assumed that thermodynamic equilibrium determined by the
Floquet Hamiltonian HF eventually sets in. The equilibrium
density matrix in the high-temperature approximation [24,
25] has the form

req � Zÿ1�1ÿ beqHF� ; Z � Tr �1� ; �34�

where beq is the inverse spin temperature in equilibrium. If
average Hamiltonian (27) gives an approximate expression
for the Floquet Hamiltonian HF, we can conclude that the
equilibrium magnetization Meq defined as

Meq � Tr freqIng �35�

June 2016 Magnus expansion paradoxes in the study of equilibrium magnetization and entanglement in multi-pulse spin locking 579



is nonzero. (In (35), n is the quantization axis for the
Hamiltonian HF.) However, the experimental data in [12]
show that at times T2 5 t5T1r, the quasi-equilibrium
polarization decreases to zero. A theoretical analysis based
on Provotorov's equations [27] leads to the same result. The
evolution of the magnetization in accordance with Eqns (34)
and (35) and the corresponding experimental data [12] are
presented schematically in Fig. 1. The theoretical results
based on the description of the spin dynamics in a periodic
magnetic field and on thermodynamic considerations are
inconsistent with the experimental data. This result was first
obtained in our study [21]; it was called the Magnus paradox
by Abragam and Goldman [15]. This name of the paradox is
connected with the approximate method of the definition of
the Floquet Hamiltonian via expansion (13).

We now discuss the reasons for the appearance of the
Magnus paradox. First of all, we note that the above
evolution of the spin system in a periodic magnetic field can
be described in terms of different time-independent Hamilto-
nians. Indeed, we assume that a time-independent Hamilto-
nian �H has been found using Eqn (13). Then the evolution of
the system over a single period is determined by

L�tc� � exp �ÿi �Htc� : �36�

For an arbitrary direction m �jmj � 1� in the spin space for
spins 1=2, we have exp �ÿ4piNmŜ� � 1, whereN is an integer.
From Eqns (6)±(9), we find

exp �ÿ4piNmŜ� exp �ÿi �Htc� � exp

�
ÿi
�
4pN
tc
�mŜ � � eeH�tc� ;

�37�

where the Hamiltonian
eeH satisfies the equation

Texp

�
ÿi
� tc

0

exp

�
4ipN
tc

mŜt

�eeH exp

�
ÿ 4ipN

tc
mŜt

�
dt

�
� exp �ÿi �Htc� : �38�

Another reason for the appearance of the Magnus
paradox is related to the divergence of the Magnus
expansion [10]. It can be assumed that the Magnus series
that was used to obtain average Hamiltonian (27) diverges at
times T2 5 t5T1r. To simplify the subsequent analysis, we
also assume that j � 2p=n, where n is an even number, and
jjÿ 2p=nj9e. Under these conditions, the heating of the
system at t4T2 is mainly determined by the n-spin resonance
process, where the simultaneous flip of n dipole-coupled spins

leads to the absorption of energy, which is determined by
some harmonic of the periodic external field. The excess (lack)
of energy in the case of such a flip of n spins is compensated by
a transfer of part of the energy into the dipole reservoir [25].
The probability of this process is expressed as [20]

W � e noloc exp

�
ÿ�2pÿ nj�2

6e 2

�
: �39�

It follows from Eqn (39) that the above n-spin resonance
process can be neglected at times t9T2, and Hamiltonian
(27) at these times gives a suitable approximation to the
Floquet Hamiltonian.

But the n-spin resonance process cannot be ignored at
t �Wÿ1 4T2. On the other hand, such a resonance process
cannot be taken into account by adding the higher-order
terms in (13) to (27) because of the divergence of the Magnus
expansion.

To obtain an approximate time-independentHamiltonian
describing the dynamics of the system at times t �Wÿ1, we
pass to a coordinate system rotating with the frequency
p=�nt� about the x axis of the RRF used above and perform
the averaging according to the preceding scheme. Then the
average HamiltonianH00 takes the form

H00 �
�
j
2t
ÿ p
nt

�
Ix ÿ 1

2
Hdx : �40�

By the time t �Wÿ1, the spin system reaches a quasi-
equilibrium state,

r 0qe �
1

Z
�1ÿ a 0qeH00� ; Z � Tr �1� ; �41�

where a 0qe is the corresponding inverse spin temperature. It
can be easily verified that quasi-equilibrium state (41) leads to
a smaller quasi-equilibrium magnetization than quasi-equili-
brium state (28). Therefore, the slow decay of the magnetiza-
tion at times T1r 5 t5T2, which is easily explained in terms
of Provotorov's equations [27], can also be described using a
Floquet Hamiltonian. In this approach, the decay of the
magnetization is explained by a rearrangement of the quasi-
equilibrium states. Notably, quasi-equilibrium state (28) in
the system at times t � T2 in the case under consideration is
rearranged at t �Wÿ1 into quasi-equilibrium state (41).

3. Entanglement in a system
of two (three) spins connected by dipole±dipole
interaction in multi-pulse spin locking

We come across another example of the Magnus paradox
when studying the problem of entanglement [28] in a system
consisting of two (three) spins coupled by DDIs in the case of
multi-pulse spin locking [13, 14]. Instead of pulse sequence
(18), we here consider the sequence

P 90�
ÿy ÿ tÿ �P 90�

x ÿ atÿ P 90�
x ÿ 2t�N ; �42�

where a is a free parameter. In the standard basis 00j i, 01j i,
10j i, 11j i that is used for solving problems of quantum
informatics in two-spin systems [28], the matrix representa-
tion of Hamiltonian (17) has the form

Hdz � d12
2

1 0 0 0
0 ÿ1 ÿ1 0
0 ÿ1 ÿ1 0
0 0 0 1

0B@
1CA : �43�

3

2

1

Mx

t

Figure 1. Time dependence of the magnetization Mx (schematic):

(1) variation of Mx in the time interval preceding the establishment of

equilibrium (34); (2) equilibrium magnetization (35); and (3) variation of

the magnetization according to experimental data [12].
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After a preparatory pulse applied at the instant t � 0, the
density matrix r0 of the system at an arbitrary temperature
acquires the form

r0 �
1

Z
exp �bIx� ; b � �ho0

kBT
; Z � 4 cosh2

b
2
: �44�

Under the action of pulse sequence (42) on the system, just as
in [13, 14], anisotropic DDIs are described by the Hamilto-
niansHdz andHdy, with

Hdy � d12�3I1yI2y ÿ I1I2� : �45�

As a result, the operator of the evolution of the system over a
single period of the pulse sequence U��a� 2�t� acquires the
form

U
ÿ�a� 2�t� � exp �ÿitHdz� exp �ÿaitHdy� exp �ÿitHdz� ;

�46�

and the density matrix of the system r��a� 2�t� after the
evolution can be represented as

r
ÿ�a� 2�t� � U

ÿ�a� 2�t�r0U�ÿ�a� 2�t� : �47�

In a similar way, the density matrix r��a� 2�Mt� after M
periods of pulse sequence (42) can be expressed as

r
ÿ�a� 2�Mt

� � U
ÿ�a� 2�Mt

�
r0U

�ÿ�a� 2�Mt
�
: �48�

After simple calculations, we obtain

exp �ÿitHdz� �

eÿit=2 0 0 0

0
1� e it

2

e it ÿ 1

2
0

0
e it ÿ 1

2

1� e it

2
0

0 0 0 eÿit=2

0BBBBBBB@

1CCCCCCCA ;

exp �ÿiatHdy�

� 1

2

eÿiat=2� e iat 0 0 e iatÿ eÿiat=2

0 1� eÿiat=2 eÿiat=2ÿ 1 0

0 eÿiat=2ÿ 1 1� eÿiat=2 0

e iatÿ eÿiat=2 0 0 eÿiat=2� e iat

0BBBBB@

1CCCCCA:
�49�

In matrices (49), t � td12 is the dimensionless time. Using
(49), we obtain a matrix representation of the evolution
operator U��a� 2�t� in the form

U
ÿ�a� 2�t� � 1

2

�

eÿi
a�2
2 t�e i�aÿ1�t 0 0 ÿeÿi a�22 t�e i�aÿ1�t

0 1�eÿi aÿ42 t eÿi
aÿ4
2 tÿ1 0

0 eÿi
aÿ4
2 tÿ1 1�eÿi aÿ42 t 0

ÿeÿi a�22 t�e i�aÿ1�t 0 0 eÿi
a�2
2 t�e i�aÿ1�t

0BBBBB@

1CCCCCA:
�50�

Matrix (50) is central-symmetric (CS) �ui j � u5ÿi; 5ÿj,
i; j � 1; 2; 3; 4� [29] and, using the orthogonal transformation

G � 1���
2
p

1 0 0 1
0 1 1 0
0 1 ÿ1 0
1 0 0 ÿ1

0B@
1CA �51�

it can be decomposed into two blocks with 2� 2 dimensions.
As a result, we obtain the following analytic expression for the
matrix representation of r��a� 2�Mt� after M periods of
pulse sequence (42):

r
ÿ�a�2�Mt

�� U
ÿ�a�2�Mt

�
r0U

�ÿ�a�2�Mt
�� 1

8 cosh2 �b=2�

�

2 cosh2 b
2 sinh b e i

3aÿ6
2 Mt sinh b e i

3aÿ6
2 Mt 2 sinh2 b

2

sinh b eÿi
3aÿ6
2 Mt 2 cosh2 b

2 2 sinh2 b
2 sinh b eÿi

3aÿ6
2 Mt

sinh b eÿi
3aÿ6
2 Mt 2 sinh2 b

2 2 cosh2 b
2 sinh b eÿi

3aÿ6
2 Mt

2 sinh2 b
2 sinh b e i

3aÿ6
2 Mt sinh b e i

3aÿ6
2 Mt 2 cosh2 b

2

0BBBBBBBB@

1CCCCCCCCA
:

�52�

The density matrix (52) is also CS. Entanglement in the
system exists if the `concurrence' (as defined by Wootters
[30]) is positive. To calculate the concurrence, the matrix
~r��a� 2�Mt� � sy 
 sy

ÿ �
r� sy 
 sy
ÿ �

must be found, where
sy is the Pauli matrix. The concurrence is determined in [30]
via the square roots of the eigenvalues of the product of
matrices r��a� 2�Mt�~r��a� 2�Mt�. Taking into account
that the product of CS matrices again gives a CS matrix, the
following formulas can be obtained [29] for the square roots
of its eigenvalues:

l1� 1

2

(
1

2

������������������������������������������������������������������������������������������������
1� tanh2

b
2

�2

ÿ 4 tanh2
b
2
cos2

�
3aÿ 6

2
Mt

�s

� tanh
b
2

����sin�3aÿ 6

2
Mt

�����
)
; �53�

l2� 1

2

(
1

2

������������������������������������������������������������������������������������������������
1� tanh2

b
2

�2

ÿ 4 tanh2
b
2
cos2

�
3aÿ 6

2
Mt

�s

ÿ tanh
b
2

����sin�3aÿ 6

2
Mt

�����
)
; �54�

l3 � l4 � 1ÿ tanh2 �b=2�
4

: �55�
Using formulas (53)±(55), we express the concurrence [30]

C � max
�
0; 2lmax ÿ l1 ÿ l2 ÿ l3 ÿ l4

	
; �56�

where lmax � max fl1; l2; l3; l4g, as

C � max

�
0; tanh

b
2

����sin�3aÿ 6

2
Mt

�����ÿ 1ÿ tanh2 �b=2�
2

�
:

�57�

The entanglement in the problem under consideration arises
at the critical temperature

Tcr � �ho0

kB
��ln � ���2p ÿ 1��� ; �58�
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and emerges at time instants

t � p� 2pn
3jaÿ 2j ; �59�

where n is a nonnegative number. We note that the
entanglement in the system is absent at the initial instant
t � 0.

In the foregoing, the analysis of the entanglement has
been carried out by exact methods, without any approxima-
tions. However, this problem can also be solved using the
method described in Section 2, based on an approximate
calculation of the Floquet Hamiltonian (average Hamilto-
nian). The average Hamiltonian for this system at
2p=�a� 2�t4oloc has the form

�H � 2

2� a
Hdz � a

2� a
Hdy : �60�

For N � 2, the Hamiltonians Hdz and Hdy commute; there-
fore, all corrections (15) and (16) to Hamiltonian (60) vanish.
Hence, the calculations that use average Hamiltonian (60)
(the Floquet Hamiltonian) give the same results as those
based on the above exact solution.

At N > 2, however, the Hamiltonians Hdz and Hdy, no
longer commute in general and correction terms (15) and (16)
to average Hamiltonian (60) do not vanish. Unfortunately, at
N > 2, the entanglement cannot be studied by analytic
methods. Our numerical investigation of the entanglement
of the two-spin and single-spin subsystems in a three-spin
system �N � 3� shows that the results obtained without the
use of average Hamiltonian (60) differ from the results
obtained with its use. In particular, in the latter case,
entangled states in the evolution of the system arise at times
that differ from those obtained without the use of average
Hamiltonian (6). These results can be considered to be a
manifestation of the same Magnus paradox that was
discussed in Section 2.

4. Conclusion

The Magnus expansion [9] for the Floquet Hamiltonian
allows efficiently investigating problems of spin dynamics in
periodic magnetic fields. Among many important results
obtained with the use of the Magnus expansion [9], we
especially note the creation of methods of high-resolution
nuclear magnetic resonance (NMR) in solids [31, 32], the
results of time-reversal experiments [33], and the development
of the multi-quantum NMR method [34, 35]. Recent studies
[36, 37] indicate the relation of the concepts considered in this
paper to the physics of topological materials.

At the same time, the divergence of theMagnus expansion
[10] and the ambiguity of the Floquet Hamiltonian lead to
paradoxes, which should be taken into account in the
theoretical analysis of the dynamics of spin systems in
periodic magnetic fields. In this paper, we have revealed the
physical factors responsible for these paradoxes. They are
related to multi-spin resonance processes of the absorption of
the energy of external magnetic fields. These processes lead to
rearrangements of quasi-equilibrium states in the course of
the system evolution.
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