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Abstract. Magnetic field generation and evolution models that
are capable of describing a large body of observational material
are currently available for different celestial bodies. Despite
recent decades of great success in numerical magnetic hydro-
dynamics and in detailed research into some specific problems,
asymptotic methods still have to be used to clarify the magnetic
field generation mechanism in dynamo theory. In this review,
current asymptotic methods are presented together with the
results of their application to the simulation of solar, stellar,
and galactic magnetic activities.
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1. Introduction

The presence of Earth’s magnetic field was first suggested in
1600 in the book De magnete [1] by the English doctor and
natural philosopher W Gilbert. In this book, he described an
experiment with a ball made of magnetic ore and a small iron
arrow, related the behavior of the magnetic arrow of a
compass with the presence of Earth’s magnetic field, and
assumed that Earth constitutes a big magnet.
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The magnetic field of the Sun was discovered by Hayle in
1908 [2], and magnetic fields of other stars were discovered
fifty years later by Babcock [3].

The discussion of a magnetic field in our Galaxy
started in the middle of the 20th century. The magnetic
field in the galactic interstellar medium was studied by
Alfvén, Fermi, Ginzburg, Syrovatsky, and other promi-
nent scientists [4—14]. The presence of magnetic fields in
nearby galaxies was first assumed in 1958 from observa-
tions of stellar light polarization in the Andromeda galaxy
(M31) [15]. In 1970, optical observations of the Large and
Small Magellanic Clouds [16, 17] suggested the presence of
magnetic fields in these galaxies. The first measurements of
the magnetic field in the M31 galaxy were reported in [18].
Further results of studies of magnetic fields in galaxies can
be found in [19-21].

Space research revealed the presence of magnetic fields in
different planets (see, e.g., [22] and the references therein).

In 1919, Larmor [23] first attempted to explain the
magnetic fields of Earth and the Sun by suggesting the
dynamo concept, according to which the magnetic field of a
celestial body is sustained by the hydrodynamic motion of an
electrically conducting medium.

However, an issue in the dynamo theory arose in 1934,
when Cowling proved the so-called anti-dynamo theorem
prohibiting the maintenance of an axially symmetric mag-
netic field by fluid flows [24]. Most celestial bodies under
study were assumed to be axially symmetric. This allowed
assuming that their field should also be axially symmetric,
and then by the anti-dynamo theorem magnetic field
generation by a dynamo should be impossible. Later, it was
shown that not all axially symmetric equations describing
magnetic field generation have axially symmetric solutions. In
the dynamo models that have been developed since the 1950s,
axially symmetric equations allow nonaxially symmetric



514 H P Popova

Physics— Uspekhi 59 (6)

Rotational
axis

Figure 1. Schematics of the differential rotation Q and the a-effect.

solutions. The first mathematical models of dynamos were
formulated in [25, 26].

In 1955, Parker constructed a dynamo model in which the
magnetic field of the Sun was treated as running waves [27].
The magnetic field was represented as the sum of several
components: a stronger toroidal (or azimuthal) field elon-
gated along parallels and mainly concentrated toward the
solar equator, and a poloidal field elongated along meridians
and located in the polar regions. The toroidal magnetic field
arises from the poloidal one due to differential rotation inside
the convective zone of the Sun. The inverse process of
conversion of the toroidal field into poloidal occurs via the
so-called a-effect, which occurs due to the mirror symmetry
breaking of convection in a rotating body. According to [27],
the a-effect arises because the Coriolis force acting on rising
and expanding (descending and compressing) eddies leads to
the dominance of right eddies in the northern hemisphere (left
eddies in the southern hemisphere). The electromotive force,
which appears due to Faraday electromagnetic induction,
after averaging over velocity pulsations, acquires a compo-
nent parallel to the mean magnetic field. This force closes the
self-excitation chain in a dynamo.

Figure 1 schematically shows the differential rotation Q
and the a-effect. Figure la illustrates how differential rotation
stretches magnetic field lines along latitudes, Fig. 1b shows
how the swirling of magnetic field lines occurs, and Fig. Ic
illustrates the emergence of the poloidal field.

Parker suggested (in a heuristic form) averaging the
magnetic hydrodynamic (MHD) equations over the mean
magnetic field components. In addition, he combined this
approach with the effect of an asymmetric rise of magnetic
loops, i.e., with asymmetric low-scale motions in the con-
vective zone of the Sun [27, 28].

In 1961, Babcock proposed a dynamo model that was not
based on solutions of MHD equations. It only represented a
quite broad generalization of solar observations with the use
of theoretical approaches known by the beginning of the
1960s [3, 29].

The next important step in formulating dynamo theories
of solar cycles was made by Leighton [30]. Unlike Babcock,
who had constructed a purely qualitative model, he formu-
lated a semi-quantitative model of the solar activity cycle.
Leighton’s model is based on the magnetic field amplification
by differential rotation. His model is quite similar to
Babcock’s. According to Babcock’s [3, 29] and Leighton’s
[30] models, the a-effect is assumed to be nonlocal in space
and operates near the solar surface. The mechanism of the
a-effect in this model is different from the a-effect suggested
by Parker. The theory of the a-effect was later developed by
Steenbeck, Krause, and Rédler [31].

In 1993, Parker proposed a dynamo model [32] in which
the two generation mechanisms for the magnetic field

components are spatially separated: the a-effect operates in
a turbulent convective layer, and the differential rotation acts
closer to the bottom of the convective zone. According to [32],
the toroidal field is generated by differential rotation near the
convective zone base, the tachocline. Due to magnetic
buoyancy, it becomes unstable and rises into the convective
zone acting as a filter, which allows the strongest field to rise
towards the solar surface to appear as active regions. Weaker
fields are captured by convection and are transformed by the
a-effect into a poloidal field, which, due to turbulent
pumping, plunges into the tachocline region, and the
magnetic activity cycle repeats.

The dynamo theory turns out to be applicable to
explaining the generation and evolution of the magnetic
field not only on the Sun but also on other celestial bodies
(stars, planets, and galaxies).

Magnetic fields in the dynamo theory are averaged over a
particular space—time scale. This scale is chosen such that all
random oscillations of the mechanical velocity of the medium
and the electric and magnetic fields are averaged, but at the
same time the structure of the spatial distribution of these
quantities inside the celestial bodies remain manifest. The
propagation of the magnetic field in space is due to turbulent
magnetic diffusion. Solutions of such equations can have an
oscillating behavior in both space and time. Solar activity
cycles provide an example.

In [2, 4-14, 33-82], equations for a magnetic field in a
turbulent medium were studied in specific cases. For example,
Roberts and Yoshimura formulated first models for large-
scale magnetic field generation in planetary and stellar
dynamos, Zel’dovich investigated low-scale magnetic fields,
and Braginsky constructed models for the generation of
Earth’s magnetic field.

Research on dynamos became one of those fields of
physics that were shaped already in the computer era.
Therefore, it clearly demonstrated completely new relations
between physics and mathematics. Now it is not necessary to
prove that the use of numerical methods extremely broadened
the tools of physics. It is much more useful to look at the back
side of the problem: attempts to do research based only on
computer methods ignoring traditional methods of theoret-
ical physics quite rapidly lead to dead end simply because it is
impossible to explore a parameter space even of modest
dimensions without understanding the role of individual
parameters and their combinations.

This general physical (and also general mathematical)
case is especially clear in dynamo studies. Indeed, in the
absence of a close physical similarity between dynamo
problems and quantum mechanical problems, there is a
simple formal analogy between these fields, which enables
treating dynamo problems in terms of quantum mechanical
problems of specific systems. Because quantum mechanics
emerged and developed just before the computer era in
physics, it has a number of well-developed analytic methods
that help to understand results in quantum chemistry and in
other fields based on quantum mechanics. Therefore, it is
natural to apply diverse analytic tools of quantum mechanics
to dynamo problems. Here, we immediately discover that a
comparatively slight change of equations (dynamo equations
in the simplest case are of the fourth order, while the
Schrodinger equation is of the second order) opens a new
world of very different phenomena.

In this review, we present asymptotic methods to study
dynamo models developed in recent decades. The methods



June 2016

Current results on the asymptotics of dynamo models 515

and solutions of dynamo problems found by them can be
interesting for both the physical and the astrophysical
communities.

2. Semiclassical method
to study the stellar dynamo

2.1 Semiclassical method to study

the 1D linear ¢©2 dynamo model

To model the magnetic activity of stars, the Q2 dynamo
mechanism is typically used, which assumes that the a-effect
contribution to toroidal magnetic field generation is negligi-
ble. We note that the a@Q-dynamo generation regime in the
first approximation can be applied to stars, spiral galaxies,
and planets.

The magnetic field generation by these dynamo models is
verified by the existence of nonvanishing solutions of dynamo
equations. To reproduce the solar activity cycle, it is
important to show that these models allow reproducing the
11-year cycle of magnetic activity, during which a large-scale
magnetic field wave moves from the pole to the equator in
each hemisphere. That is, in this case, the problem is to find a
nondecaying, oscillating solution of dynamo equations
corresponding to a wave moving in the direction found from
observations.

Thus, analytic estimates of the simplest dynamo models,
which are primarily tailored to find a self-sustaining genera-
tion of magnetic field waves analytically and to study their
behavior, enable the assessment of the applicability of such
models to the description of the magnetic activity of celestial
bodies and are used as the basis for more advanced numerical
modeling.

Dynamo equations are formally analogous to the
Schrodinger equation in quantum mechanics. To solve the
Schrodinger equation, various mathematical methods have
been developed [83], which can be applied to dynamo
equations. Research has shown that the quantum mechan-
ical methods acquire new properties in dynamo theory.

Numerous papers are devoted to the formulation and
study of solutions of dynamo equations using an asymptotic
method similar to the Wentzel-Kramers—Brillouin (WKB)
approximation in quantum mechanics [84]. The use of this
method relies on the fact that the solution of mean-field
electrodynamic equations can be sought in the form of
asymptotic expansions in dimensionless numbers characteriz-
ing the intensity of magnetic field generation. In [85], the
model of a kinematic dynamo with a high magnetic Reynolds
number R, was considered in terms of an artificial flow with
exponential partial stretching imitating a stationary random
conducting liquid flow. It turned out that in this case, the
amplitude of magnetic fields that are periodically dependent
only on one coordinate increases exponentially and without
bound in time. Each Fourier harmonic of the deviation from
this growing field first rapidly increases with increasing the
velocity, which is independent of R, in the time interval
t, =~ toln Ry, and then very rapidly decays. In [86], the
approximation of maximum effective generation was used,
which is a variant of the semiclassical asymptotic expansion
(see, e.g., [84]). It was assumed in [86] that the magnetic field
generation source distribution attains a maximum at some
point xo and that the generated magnetic field is contained
within a region near x, whose size is determined by the
dimensionless dynamo number, and the magnetic field away

from x is transported there by diffusion from the maximum
generation region. In [87], it was demonstrated that the
asymptotic solution in this case correctly reflects the proper-
ties of an exact solution of the dynamo equations in
nonoscillating or slowly oscillating regimes. However, when
the leading eigenfunction of the dynamo problem is a rapidly
oscillating solution corresponding to a dynamo wave
(magnetic field wave), the maximum effective generation
approximation does not reflect the exact features of the
solution [88].

A modification of the maximum effective generation
approximation is discussed in [82, 89, 90] using the simplest
linear one-dimensional «Q-dynamo model, which gives the
correct asymptotic solution in the case of a running dynamo
wave. Although these papers were published in 1995 and
1999, the asymptotic analysis was applied to the simplest one-
layer Parker dynamo model of 1955, and not the two-layer
model of 1993. The authors hoped that, on one hand, such a
model would allow taking the main physical principles of the
magnetic field evolution into account, and on the other hand,
it is quite simple for the construction of a new asymptotic
method, which may yield a reasonable result without using
more sophisticated mathematical calculations.

The equations of Parker’s 1955 «Q-dynamo model [27]
can be formally derived from the complete mean-field
electrodynamic equations [31] under the assumption that the
dynamo wave propagates in a thin spherical shell (for
example, in the inverse layer). In deriving these equations,
the magnetic field is averaged over the radius inside some
spherical shell where the dynamo operates, and the terms
describing curvature effects near the pole are omitted [91]. In
this case, the dynamo equations are
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Here, B is the toroidal magnetic field, 4 is proportional to the
toroidal component of the vector potential, which determi-
nates the poloidal magnetic field, 0 is the latitude measured
from the equator, and ¢ is the time measured in units of the
diffusion time R?/p. Distances are measured in units of the
convective zone radius R (to be specific, we use the inner
radius); f is the turbulent diffusion coefficient. The terms aB
and D cos 004 /00 describe the respective contributions from
the o-effect and differential rotation to the magnetic field
generation. The factor cos 0 accounts for the shortening of the
parallel length near the pole. Equations (1) and (2) are written
in dimensionless units, with the amplitudes of the a-effect, the
angular velocity gradient, and the turbulent diffusion coeffi-
cient combined in one dimensionless dynamo number D. This
model is an aQ-approximation. In diffusion terms, curvature
effects are omitted and it is assumed for simplicity that the
radial gradient of the angular velocity does not change with 0.
By the symmetry a(—0) = —a(0), Eqns (1) and (2) can be
applied only for one (northern) hemisphere, with the
antisymmetry (dipole symmetry) or symmetry (quadrupole
symmetry) conditions imposed on the equator. Because the
solar magnetic field has the dipole symmetry, only the dipole
symmetry is considered in papers devoted to magnetic field
generation.

Figure 2a, b shows the schematics of the solar magnetic
field structure with dipole and quadrupole symmetry. The
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Figure 2. Structure of the solar magnetic field with (a) dipole and
(b) quadrupole symmetry. The poloidal and toroidal fields are respec-
tively shown by the dashed and solid lines.

poloidal and toroidal field components are shown by the
dashed and solid lines.

As shown in [82], the solution of Eqns (1) and (2) can be
sought in the form of the expansion in a power series in the
dynamo number D:

(;}) —exp (1D +90) (fo + 1D P+, ()

where

y=|DI”°r +|D|"*r + ..., (4)

A= (4) A= (1) 5

Here, S, u, v, u;, and v; are smooth functions and |D| > 1; S'is
analogous to the action in quantum mechanics, and its
derivative k = S’ corresponds to the momentum, or wave
vector, which is complex in this case. The complex y
determines an eigenvalue, and its real and imaginary parts
respectively give the rate of %rowth and the duration of the
activity <7cle. The factors |D| /3 in the imaginary growth rate
and |D|1 3 in the action are chosen such that the differential
rotation, the a-effect, the eigenvalue, and the dissipation are
of the same order to enter the leading term of the expansion.
Expression (3) is an analog of the wave function in quantum
mechanics. We note that in this model, the a-effect corre-
sponds to the potential in quantum mechanics and y
corresponds to energy levels.

Substituting the chosen form of the sought solution in
Parker’s equations and equating coefficients at the terms with
the same powers of |D| yields a homogeneous system of
equations, linear in the leading order, for the functions S, py,
v, and the constant I'. The solvability condition of this system
gives the dispersion relation for the dynamo wave frequency
and its wave vector, i.e., the Hamilton—Jacobi equation

[+ k%) —iak =0, (6)

where & = acos 0.

The main problem in constructing the asymptotic solution
of dynamo equations is in studying Eqn (6). Equation (6) is a
fourth-order equation in k(a) and has four different complex
solutions at a given 4.

Figure 3 shows the roots k of Eqn (6) on the complex plane
as functions of the parameter 6. The turning points (at which
the end of one branch of the solution coincides with the end of
another branch) are shown by circles. The corresponding
values of 0 are shown in parentheses. Each branch is

-0.8 —-0.6 —0.4 0.6 Rek
4
—04 |-
-0.6 ©=0)
—08 |-
2
—-1.0 -

Figure 3. Four branches of the momentum k on the complex plane for a
given value of Iy [82].

numbered. It is shown in [82] that two branches (3 and 4 in
Fig. 3) of Eqn (6), which match smoothly, correspond to a
wave propagating from the pole toward the equator.

The behavior of dynamo waves in the framework of the
simplest generalizations of the «Q2-dynamo model was studied
in detail in [90] (near the poles) and [92] (near the equator). It
was shown in [90] that incident and reflected waves appear
near the poles, and an exact solution of the «Q-dynamo
equations near the poles was obtained. The amplitude of the
reflected wave was also found to be smaller than that of the
incident wave. The existence of a wave incident on the pole
was also confirmed by observations [93].

According to [90], to construct the solution near the
poles, it is necessary to match branches 3 and 7 (see Fig. 3),
i.e., the point I'} at which the branches are matched must be
found. To do this, a higher-order asymptotic expansion than
that given in [94-96] should be constructed. In [90], an
expression for I’} was obtained, which is an analog of the
Bohr—Sommerfeld quantization condition in quantum
mechanics.

It was shown in [82] that the maximum of the obtained
solution is not at the turning point 6, where generation
sources are maximal, but at the point 0; whose location for
any function & is determined by the condition & =
a(01) /4, =~ 0.8052, where 4, is the maximum value of the
function &. The point 6, is calculated from the following
conditions: Im k& = 0 and Im S(0) is minimum. In the simplest
case o = sin 0, 0, is equal to 0.468, i.e., approximately 26.8°.

The physical interpretation of this result is that the
maximum of the solution is shifted from the maximum
generation point along the dynamo wave propagation. The
wave amplitude increases most rapidly at the point 6y, but
continues growing with further propagation, and dissipation
effects start dominating over generation effects beyond the
point 0;. We note that observations show that solar spots,
which are tracers of the dynamo wave of the toroidal field,
arise at low latitudes from 0 to 30°. Figure 4 presents the
observed latitude—time distribution of solar spots (the so-
called butterfly diagram).
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Figure 4. Butterfly diagram of solar spots (http://solarscience. msfc.nasa.
gov/images/bfly.gif).

In [82], the dynamo wave was shown to propagate in the
main part of the studied domain from the pole to the equator,
in accordance with observations. For any function o(0),
Re S(0) changes sign at the point 0, > 6y determined by the
relation &, = 4(0,)/&, ~ 0.3445, and for 0 > 0, the dynamo
wave propagates in the opposite direction. For oo = sin 0, the
parameter 0, = 1.39 ~ 80°, in agreement with observations
[93]. Such a dynamo wave has a much lower amplitude than
the dynamo wave propagating toward the equator and decays
when approaching the pole. The ratio R of the magnetic field
amplitudes at the maximum amplitude point 6; and at the
point of the propagation direction reversal 0, is

R=exp <|D|‘/3 rz Tm k(6) de) . (7)

0y

For the solar dynamo number |D| ~ 10°—10% we obtain
R =~ 7.1—-68. This is close to the observed ratio, which is 20—
50 [97]. The excitation threshold, i.e., the dynamo number
|D|., at which the magnetic field generation begins, is
|D|.. = 40.4 for «(0) = sin 0. This is much smaller than |D|,
obtained from numerical calculations; therefore, the excita-
tion threshold should be derived from the applicability
conditions of Eqns (1) and (2).

In [92], the dynamo wave behavior near the solar equator
was studied in the Parker approximation. To study the
behavior of dynamo waves near the equator, the second of
the four branches k(0) obtained from Eqn (6) is used. The
asymptotic analysis revealed that a dynamo wave arising at
the middle latitudes of the northern hemisphere does not
vanish by reaching the equator but enters the southern
hemisphere, where it propagates in the polar direction and
rapidly decays. The dynamo wave in the southern hemisphere
behaves in a similar way. The angular distance up to which
these waves penetrate into the opposite hemispheres can be as
high as ten degrees. It can be assumed that this phenomenon
was especially clearly observed at the final phase of the
Maunder minimum [98, 99]. On the butterfly diagrams of
that period, the solar activity cycle appeared as one dynamo
wave propagating in the southern hemisphere, and the
dynamo wave in the northern hemisphere was suppressed.
The butterfly diagrams show how the activity wave slightly
extends to the northern hemisphere from the southern. If this
phenomenon is due to the effect obtained, the polarity of
spots in the northern and southern hemispheres should be the
same. However, observations at that time did not report the
spot polarity. According to modern observations of the
22-year cycles, it is virtually impossible to find a weak wave
penetrating from the southern hemisphere due to the presence
of the strong main wave of the northern hemisphere.
However, there are activity tracers propagating from the
equator to the poles (for example, far ultraviolet lines; see,
e.g., [100]), and active regions violating the Hale polarity rule

are also known [101]. Possibly, these phenomena can be
related to the effect of dynamo wave penetration from one
hemisphere to another. It was shown in [92] that the dipole
magnetic configuration grows more rapidly than the quadru-
pole one, and the complex growth rates of these configura-
tions are close to each other. The authors of [92] assume that
this may indicate the possibility of the long-term existence of a
nondipole configuration, if it was somehow formed. The
authors of [92] relate this effect to the long-term existence of
a mixed-parity configuration at the end of the Maunder
minimum, although its appearance remains obscure.

2.2 Semiclassical method to study
the 1D nonlinear ¢22-dynamo model
To explore more realistic models of magnetic field generation,
it is worth passing from linear to nonlinear models. In [102—
104], aQ2-dynamo equations with a nonlinear o-effect are
studied under the assumption that the thickness of the
convective shell is small compared to its radius.

The simplest nonlinear dynamo problem, whose periodic
solutions were investigated in [102—104], has the form

04 0’4
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Here, Bis the toroidal magnetic field, 4 is the vector potential,
0 is the latitude measured from the pole, ¢ is time,
D = R,R,Gsinf, where 0 is the latitude at which the
dynamo wave is located, and R, and R, are amplitudes of
the a-effect and differential rotation. The normalization is the
same as in Eqns (1) and (2). The function G = G(0) is defined
as a measure of the angular rotation radial gradient. We have
a small dimensionless parameter 1 = //R, where h is the
convective zone thickness and R is its inner radius; u is the
radial wave number, with 1! being the characteristic size of
the magnetic field distribution (as well as its potential) in the
radial direction. As the characteristic size decreases, the
contribution of the radial diffusion of the magnetic field
increases and its generation by the dynamo mechanism is
hampered. For moderate dynamo numbers typical for the
solar dynamo, u~' is of the order of the convective zone
thickness. Thus, this model accounts for the diffusion
transport of the magnetic field across the convective zone.

In the problem considered, the toroidal magnetic field
component B is much larger than the poloidal one, and
therefore the a-effect can be considered to be dependent on
the toroidal magnetic field component only. Two forms of the
nonlinearity were considered in [102—104]:

2
a(B) = O(()(l —%), (10)
a(B)ziHZOz/Bg. (11)

Here, By determines the magnetic field amplitude at which
nonlinear effects becomes essential. In dimensionless form,
we set g = o, = 1.

Periodic solutions of Eqns (8) and (9) can be found in the
kinematic approximation, with o assumed to be independent
of B. In this case, the solution has the form of a harmonic
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dynamo wave,

A=|D|"Pa(&)By, B=5b()By, (12)
where a = a. exp (i) and b = b, exp (i¢) are dimensionless
functions, By is the magnetic field unit that in the kinematic

approximation can be chosen in an arbitrary form, and

E=(w—1y)t+k0O, (13)
where w, y, and k are real constants.

Substituting (12) and (13) in (8) and (9) yields

y=IDPPr, w=DPPQ, k=|DP"K. (14)

The first three terms in each of Eqns (8) and (9) are now of the
same order. The last term in these equations has the same
order if

D)~ 1. (15)

If D'3) > 1, the last term in Eqns (8) and (9) can be
discarded and Eqns (8) and (9) are transformed into Eqns (1)
and (2). When D3} < 1, generation of dynamo waves in
Eqns (8) and (9) is impossible because the dynamo number
becomes smaller than the critical value. Therefore, it is
sufficient to consider the case in (15). We assume that
D = 473, because u can always be renormalized appropri-
ately. By substituting (15) and D = 2~ in (8) and (9), we
obtain that the growth rate I' is decreased compared with
Parker’s dynamo case in Section 2.1 by p?. Solving the
eigenvector and eigenvalue problem, we obtain

K| 2 2 2 U« 1
=\ ——-—K" - K|=2Q — = .
r=y5 w, IK| e TEE)

In this approximation, the dynamo wave has the same
asymptotic properties as the one in dynamo model (1) and (2),
except that the curve I'(K) is shifted by u?> toward negative
values of I". The maximum growth rate for problem (8), (9) is
Toax = (3/8)(1/2)" — 122,

This result implies that only waves with certain wave-
lengths can form in the convective shell. For each y, there are
lower and upper wavelengths. In the case of algebraic
suppression of helicity, asymptotic properties of dynamo
waves in a stationary nonlinear regime were considered in
[103] with relations (12) and (14) assumed to hold and with
D = /3. The magnetic field unit By is then not arbitrary but
is determined by the equipartition condition. The solution is
assumed to be periodic, with the period in the range
0 < & < 2m. Nonlinear equations in this case take the form

(16)

Oa o%a
b da o%b
Q&:—K&—&-Kz@—,uza. (18)

As shown in [103], the solution of the problem can be
sought in the form a(&) = a; siné + aycos &, b(E) = by siné.
In [103], magnetic field generation was found to occur almost
identically for both nonlinearities (10) and (11). The dynamo
wave amplitude is finite, with a maximum at some value of K
that increases with u. The maximum value decreases with u.
At p exceeding some maximal value p,,,, =~ 0.55, no genera-
tion occurs. In the approximation considered, only dynamo

waves with a zero mean can be generated. We note that in
model (1), (2), waves with both zero and nonzero mean values
can exist. This result implies the possibility of mixed-parity
wave generation, which violates the equatorial asymmetry in
the solar cycle. In model (1), (2), waves with an arbitrarily
small wave number K can exist, and nonlinear model (8), (9)
has a lower bound on the wavelength, and waves with the
wave number below some critical value cannot exist. This is a
manifestation of the finite thickness of the convective shell.
In [102], system of equations (8), (9) with algebraic
suppression of helicity is studied for the dynamo number
D(0) depending on the latitude 6. It is also shown in [102] that
the dynamo wave is bounded within a latitude interval
01 < 0 < 0,. It is destroyed with finite amplitude at the high
latitude 0,, where D reaches some threshold value Dt that
fixes the dynamo wave frequency at a constant u. At lower
latitudes 0 < 0,, the magnetic field amplitude depends on
D(0), which, unlike x, can change on a time scale much longer
than the cycle period. The wave amplitude decreases with
decreasing latitude and vanishes at a low latitude 0, where D
becomes smaller than the threshold value Dp < Dt and can
generate only linear waves. The model has two important
features. First, the dynamo wave amplitude depends on the
dynamo number, while the frequency is virtually independent
of it. Thus, differences in the amplitude of the 11-year solar
activity cycles can be related to fluctuations of the a-effect or
differential rotation, on which the dynamo number depends.
Second, the dynamo wave is fully nonlinear, because
Dt — Dp = O(Dp). It has been shown that the dynamo wave
is stable unless it has a small amplitude at low latitudes close
to 0;. Numerical calculations confirmed the analytic results.

2.3 Semiclassical method to study

the 2D linear a£2-dynamo model

In [105], the two-dimensional problem of the linear aQ-
dynamo is studied using a method similar to the WKB
approximation. In this case, the system of equations for the
generation of an axially symmetric magnetic field in a
differentially rotating spherical layer has the form

04 1 0/ 1 d(Acosd) 1 0%(rA)
E‘“BJrﬁﬁ@(cos@ 0 >+ﬁ? oz (19
OB, 1 0 ( 1 0(Bcosh) Ll o*(rB)
or " r290\cos® 00 roor2
D 0Q0(rdAcosl) D 0Q 0(rdcosb) (20)
r 00 or r O o0 ’

where we use the same notation as in (1) and (2). The field, the
angular velocity Q, and the a-effect depend on the radius r and
the latitude 6 in a spherical coordinate system centered on the
Sun (a star). The value 0 = 0 corresponds to the equator. As
in problem (1), (2), it is assumed that the contribution of the o-
effect to the toroidal magnetic field generation can be
ignored.

The solution of Eqns (19) and (20) can be sought in the
wave form. In this case, it can be written in a form similar
to (3):

A(r,0) B A(r,0)
(ém e>> B <|D|2/3B<r7 e>)

(‘v‘((;g;) exp (IDPPri+i|DI'"3S(r,0)) . (21)
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Substituting the chosen solution in Eqns (19) and (20), we
obtain an algebraic system of equations for u and v. The
solvability condition for this system yields the dispersion
relation for the dynamo wave frequency and wave vector,
i.e., the Hamilton—Jacobi equation:

2

1
I+ ()" +—5(80)°| =irecos0(GSy+FS,).  (22)
p

Here, G = (1/r)0Q/0r, F = —(1/r)02/00, I is the eigenva-
lue of the leading mode, and S, and Sy are partial derivatives
of S.

The solution of Eqn (22) should correspond to a smooth
solution of Eqns (19) and (20) decaying at infinity, i.e., far
away from the generation region. To study the problem, the
stationary point for (22) must be found [106]. A method for
finding solutions satisfying these conditions was proposed
in [107, 108].

To seek the stationary point, it is necessary to replace I’
with a new function y(r, 0, S,, Sp). A constant I exists only for
a bounded set of arguments (r, 0) and functions S. The
function y is defined on the set (r, 0, S,, Sp), which can be
treated as its arguments. For the set of arguments (rg, 6y, S)o,
Soo), the following equations hold:

0y 0y 0y

a0 % as

oy
Sy

0. (23)

A solution of Eqns (23) determines the sought eigenvalues
and eigenfunctions of Eqn (22) as follows:

I = (ro, 00, Sr0, Seo) , (24)
Si(ro, 00) = S0, 0(Sy0,60) = Seo -

It was shown in [105] that the asymptotic solutions based
on this approximation provide a sufficiently correct explana-
tion of the existing solar observations. They also agree with
results of numerical analysis. The main feature of the solution
obtained in the two-dimensional model is its correspondence
to the Yoshimura law, according to which the dynamo wave
propagates along a line of constant angular velocity.

In [105], for large dynamo numbers, a solution was
constructed based on a realistic description of the internal
rotation derived from helioseismological data. The analysis
revealed two centers of dynamo wave generation: at low and
high latitudes. Waves generated at low and high latitudes
respectively propagate toward the equator and toward the
pole. This result is in agreement with conclusions in [109].
Maxima of both waves are shifted in the propagation
direction. The relative value of the high-latitude generation
sources is about three times as high as that of low-latitude
ones. The location of the maximum of the generation source
of the wave propagating toward the equator lies behind the
convection zone at the point (r=0.66, 0= 12°). The
maximum of the wave propagating toward the pole is at the
point (r = 0.68, 0 = 68°). As shown in [105], the obtained
asymptotic solution is qualitatively, and to a great extent
quantitatively, the same for different admissible a-effect
profiles.

In [110-112], similar dynamo models were studied using
asymptotic WKB methods by assuming that the maxima of
the solutions correspond to those of the generation sources
(using the maximum effective generation method). The
authors used only the first two conditions in (23). In [110],
the main properties of generated magnetic field waves were

studied in the case of arbitrary angular rotation velocities.
Dynamo waves were found to propagate along constant
rotation surfaces and their amplitude maxima turned out to
be shifted in the propagation direction from the intensity
maxima of generation sources. As in [105], two dynamic
waves propagating from the middle latitudes toward the
poles were obtained. With an increasing magnetic field in
one of the waves, the amplitude of the magnetic field in the
other wave decreases. Those latitudes where the maximum
and the point of wave divergence toward the poles and the
equator are located depend on the relation between the radial
and latitudinal gradients of the rotation angular velocity.

2.4 Semiclassical method to study the linear a2 dynamo
with meridian flows in one- and two-layer media

Many observations show that large-scale motions are
present in the solar convective zone. In [113], the meridio-
nal circulation velocity was estimated and the latitudinal
profile of the flow and its time variability during the solar
cycle were obtained. Based on Doppler measurements [114],
matter on the convective zone surface was found to flow
toward the poles. Helioseismological data [115] revealed a
flow toward the poles up to depths of about 12,000 km and
a quite slow convergent flow toward latitudes where solar
spots are most frequently formed. The analysis of the
motion of solar spots in [116-123] showed that matter
flows away from latitudes with the maximum solar spot
activity. Meridional flows were also studied using shifts of
solar spots [118-123]. Tuominen showed that spots at
latitudes below 16° move toward the equator, and spots at
higher latitudes move toward the poles, with a velocity
increasing with the latitude. In [124, 125], it was shown how
the latitudinal inhomogeneity of tracers affects the determi-
nation of the resulting meridional flow.

The key role of meridional flows in large-scale solar spot
dynamics was established in [126]. According to [70, 72, 127],
the motion of the spot formation region toward the equator,
which is observed on the Sun, is explained by the transport of
the toroidal magnetic field by meridional flows deep inside the
Sun. The motion of the poloidal field toward the poles,
according to [128—130], can be due to the meridional flow on
the solar surface. It was assumed in [131, 132] that the
meridional circulation is one of the factors responsible for
the formation of differential rotation in the Sun and stars.

Studies of Parker’s dynamo model for a one-layer medium
[94-96] showed that the meridional flows of matter directed
oppositely to the dynamo wave propagation can significantly
increase the activity cycle duration.

Parker’s equations for a one-layer medium with the
meridional circulation taken into account have the form

04 04 0’4

a st )
0B d(VB) 04 B

8 peosh s+ 22 26
o a0 €930 " 302 26)

The notation here is the same as in Eqns (1) and (2); V' is the
meridional circulation that can depend on the latitude.
Solutions of system (25), (26) can be sought in a form similar
to (3):

<g> - <|D|124/3B> - (Pvl) exp (|DIye+i|D|'7S) . (27)
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We assume that the meridional circulation enters the
leading term of the asymptotic expansion. Then

V= |D|"*u(0). (28)
Substituting the chosen form of the sought solution in
Parker’s equations, we obtain an algebraic system of equa-
tions for pu and v. The solvability condition for this system
yields the dispersion relation for the dynamo wave frequency
and its wave vector, i.c., the Hamilton—Jacobi equation

[ +ikv+ k% —iok =0, (29)
where & = o cos 0.

To solve Eqns (25) and (26) and to study the behavior
of the dynamo wave for different forms of the meridional
circulation, Eqn (29) was investigated in [96] using a
method similar to that used in [82], which is described in
Section 2.1.

The cases where v =const, v =vsin(20), and v=
0/ sin (20) were considered in [96]. It was shown that there is
a range of meridional circulation within the observed range
(about several meters per second) at which the solar cycle
duration obtained in model (25), (26) nearly matches
observations. Above some value of the meridional circula-
tion, the dynamo waves transform into steadily growing
magnetic field configurations. The meridional circulation
does not reverse the dynamo wave propagation direction.
The dynamo wave configuration is strongly affected by the
latitudinal dependence of the matter velocity, which opens up
the fundamental possibility of reconstructing the meridional
circulation profile from solar activity measurements.

The results obtained for problem (25), (26) in [94-96] were
confirmed in [133] using Airy functions. The asymptotic
solution for the regime in which the magnetic field steadily
grows was studied in [133] in greater detail.

An analysis of a one-layer medium describes one-sided
matter flow and does not allow a description of its reversal.
For a more adequate treatment, a two-layer medium with
oppositely directed meridional motions and different diffu-
sion coefficients was considered in [134]. The two-layer model
enables taking some effects of the 2D model into account
without complicating the asymptotic behavior arising in the
2D problem.

In the case of a two-layer medium, it is possible to
introduce the meridional circulation into Parker’s equations
[32], in analogy with the one-layer problem. Then

0B d(VB) 04 o4

0b O(vh) Oa Oa Oa
a 69 —DCO'S@@'%‘AZ?7 E-’-’U@—Aa, (31)

where B, 4, and V(0) stand for the magnetic field, magnetic
potential, and meridional circulation on the first layer where
the o-effect operates, b, a, and v(6) are the same quantities in
the second layer, where the differential rotation dominates, D
is the dynamo number, and f is the ratio of the turbulent
diffusion coefficients in the first and second layers. The
boundary conditions have the form

0b 0B O0a 04

b:B7 612147 a:ﬂ§7 EZE (32)

Equations (30) and (31) do not take the curvature effect
into account and hence do not allow deciding which of the
layers is external or internal. However, taking observational
data into account [114, 115, 118], it is possible to assume that
matter in the external layer moves from the equator to the
poles, i.e., against the dynamo wave propagation; in the polar
regions, it transits to the internal layer and moves there from
the poles toward the equator and transits to the external layer
in the equatorial region. Therefore, if the positive meridional
circulation is concentrated in one of the layers, it can be
considered to be the external one. Similarly, if the meridional
circulation has a negative sign in the layer, it can be
considered to be the internal one. We stress that the
circulation in each layer has the opposite sign.

Model (30), (31) assumes that the magnetic field has the
dipole symmetry and the dynamo wave propagates from the
poles to the equator in both layers. The thickness and density
in the layers can be different. A solution of the system of
equations (30), (31) can be represented in the form

B = pexp (iD'3S0 + yD**t —iDPmyr), (33)
A= (v+vir)exp(iD'?S0+yD**t —iDPmyr), (34)
a={exp(iD'3S0 +yD*Pt +iDPmyr), (35)
b= (y+r)exp(iD'3S0 +yD*t —iDVPmyr),  (36)

where y, v, v, {, 1, 11, M1, and m; are arbitrary constants and
S = [kdo.

The Hamilton—Jacobi equation with meridional circula-
tion has the form

(ﬁ _rAVE o —y—iwk—k2>

B
NN Y LS Sy
B
43k

T/ ik -k /G R B—R (37)

Equation (37) was studied in [134], with the conclusion
that the intensive meridional circulation in the layers can slow
the dynamo wave propagation.

Figure 5 illustrates the ratio of the meridional circula-
tion amplitudes V(0) and v(0) in the layers and the ratio of
the turbulent diffusion coefficients f at which the model
gives the 22-year solar cycle. The quantity V(0) corresponds
to the meridional circulation of the layer dominated by the
a-effect, and v(0) corresponds to the layer dominated by the
differential rotation effect. The values of the meridional
circulation are given for the dynamo numbers ranging from
—10% to —10*. The levels are marked with values of f8. For
the cycle duration to be 22 years, as follows from this figure,
either the meridional circulation has to be enhanced in both
layers or f§ has to be increased. The stronger the meridional
motion of matter in the upper layer relative to the inner one,
the lower f§ can be. If the meridional motion of matter in the
internal layer is higher than in the external one, to ensure
the 22-year cycle 8 should be higher relative to the previous
case.

When the meridional circulation is directed oppositely to
the dynamo wave propagation in the layer dominated by
differential rotation, and conversely in the layer with the
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Figure 5. Diagram for f3, V(0), and v(6) at which the model reproduces the
22-year cycle [134].

a-effect, the dependence of f§ as a function of V(6) and v(0) is
identical. In other words, the dependence of the cycle
duration on f is invariant under transposing V(6) and v(0).

As in the case without meridional circulation, when f
increases at fixed V() and v(0), the cycle duration decreases.
The magnetic field amplitude then decays. With increasing f3,
the amplitude decays more slowly than the slowing down of
the dynamo wave propagation.

2.5 Other dynamo models

We note that in addition to the generation of axially
symmetric modes of magnetic fields in the oQ-dynamo
model, the possibility of generating nonaxially symmetric
modes can be considered. Besides the main «Q-dynamo
approximation, there are o2- and o>Q-dynamo models. In
the o2-model, the effect of differential rotation on magnetic
field generation is ignored, and in the «?Q-model, the
generation of a poloidal field from a toroidal one is due to
both differential rotation and the a-effect. However, these
models are rather purely academic and are not interesting for
the development of asymptotic methods [135-140].

The problem of predominantly nonaxially symmetric
magnetic field generation in spiral galaxies, the Sun, and
planets like Uranus and Neptune was considered in [135] in
the aQ2-dynamo approximation using the maximum effective
generation approximation. The hydromagnetic dynamo in
these celestial bodies was assumed to be possible in relatively
thin conducting convective layers. For predominantly non-
axially symmetric modes to be excited, compared to axially
symmetric ones in such layers, the angular velocity gradient in
a celestial body should be relatively small and have a
significant component normal to the layer.

The WKB method has been applied to the asymptotic
study of the «?Q-dynamo and «?-dynamo models (see, €.g.,
[136-140]).

An asymptotic solution of the system of equations
describing the process of the one-dimensional «>Q dynamo
in a thin turbulent differentially rotating convective stellar
shell was constructed in [136]. Modulation of the dynamo
waves related to the local a-effect depending on the latitude
and to the radial gradient of the zonal differential matter flow
was considered in [137].

3. Low-mode approach in the stellar dynamo.
Nonlinear dynamo with dipole

and quadrupole magnetic field symmetries
for one- and two-layer media

We consider another possible method for obtaining simplified
models aimed at clarifying the physics of stellar magnetic field
generation. It is assumed that an exited magnetic field can be
described by a relatively small number of parameters, which
enables substituting dynamo equations with a specially
chosen dynamical system of a not very high order. Such a
method is referred to as the low-mode approach and was first
suggested in [141].

A method for constructing the low-mode description of
dynamo equations was developed in [142-146]. In [145], a
regular method for constructing a low-mode approximation
of dynamo equations is proposed. The low-mode model
equations are obtained in the simplest approximation of the
algebraic suppression of helicity. As shown in [145], a
nonlinear dynamo model obtained in such a way is rich
enough and can hopefully describe various aspects of
magnetic field generation in spherical shells of celestial
bodies (stars and planets).

The simplest system of equations of Parker’s dynamo
model in the one-dimensional case has the form

04 o’4

E = Rzo(B + W 5 (38)
0B .04 O'B

5 = Rw sin 6 @ + —a()z s (39)

where 4 and B are functions of the latitude 0 measured from
the pole and time ¢.

According to [144], the low-mode approximation can
be formulated as follows. It is assumed that after the
initial growth, the magnetic field in a star is stabilized, its
growth stops, and a regime similar to auto oscillations
arises. The system here is thought to be rearranged such
that the dynamo becomes marginally stable. In this case, it
is possible to assume that the solution can be represented
as a superposition of a small number of appropriately
chosen freely decaying modes. We note that the classic
Parker explanation given above represents the dynamo
operation in terms of the evolution of two freely decaying
modes due to two generation sources, differential rotation
and helicity.

It is first necessary to consider the free decay case, where
the intensity of generation sources is R,, R, = 0. Here, the
eigenfunctions have the form {sin (k0), 0}, k = 1,3,... (the
dipole symmetry for vector potential A4 is taken into account)
or {0, sin (k0)}, k =2,4,... (the dipole symmetry for the
vector potential B is taken into account). The idea of the
method is to seek a solution of main equations (38), (39) in the
form of a series in the eigenfunctions of the free decay
problem; a finite number of terms should be taken. The
scalar product of elements x and y is defined as
(x,y) = [xyd6. Multiplying the first equation by 4 and the
second by B and taking the orthogonality of 4 and B into
account, it is possible to pass to the eigenvalue problem for
the matrix W

WC = iC. (40)
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Figure 6. Theoretical butterfly diagrams of the toroidal magnetic field for (a) a fully convective zone and (b) a star with a thin convective shell [146]. The
fields with a positive (negative) sign are shown by the solid (dotted) lines. The time is in arbitrary units.

The elements of W are W;; = AY ati = j and

vi=J(3),45),

where A? are the eigenvalues of the decay problem, and the
operator L has the form

A
B

A
B

2 .
R, cos0(-) 6_(2)
i—= o0
() o()
W Ru) sin 0 W

(the dot shows the place where the mode on which the
operator acts should be placed). The solution of problem
(40) gives eigenfunctions and eigenvalues (growth rates) A;.
Based on the criterion that the oscillating mode be excited
first, it was shown in [144, 145] that four modes (two poloidal
and two toroidal) play key roles in the magnetic field
generation. By changing the numbers R, and R, it was
found that the leading model generation (with Rel =~ 0)
occurs for R, = 0.5 and R, = 575 and has Im A ~ 7.6i, and
the expansion coefficients for the toroidal and poloidal field
are CI =0.72, CF¥ =0.38+0.58i and C} =0.05+ 0.34i,
CY =0.1+0.56i.

The critical dynamo number at which the field generation
occurs in a fully convective star (|D| ~ 4500) is much higher
than for Parker’s classic dynamo (|D| =~ 290). We note that
the actual dynamo numbers obtained from numerical simula-
tions of fully convective stars are 3000-5000. It was shown
in [144] that properties of solutions of the dynamical system in
stars with thin convective shells and in fully convective stars
are significantly different. This is due to different decay
spectra in different cases. It was shown that unlike the decay
spectrum for Parker’s classic dynamo, which includes singlets
only, the decay spectrum in a fully convective star includes
alternate singlets and doublets. It was argued in [144] that the
reason standing waves are excited by a dynamo in a fully
convective star is that the longitudinal dependence of both
modes participating in the generation is proportional to
sin (20), i.e., both modes are fixed at the same latitudes. For
Parker’s classic dynamo, two modes participate in the field
generation with different latitudinal dependences sin (20) and
sin (40); therefore, the wave can propagate from a maximum
of one wave to a maximum of another wave. Figure 6 shows
theoretical butterfly diagrams of the toroidal magnetic field

for a fully convective star (Fig. 6a) and a star with a thin
convective shell (Fig. 6b) [146]. The fields with positive and
negative signs are shown by the respective solid and dashed
lines. Figure 6 suggests that the wave in the fully convective
star is standing, while the one in the star with a thin convective
shell is running.

In [144, 146], it was shown that during one activity cycle,
spots in stars with thin convective shells and in fully
convective stars are distributed differently in latitudes. In
addition, for fully convective stars, the model predicts a
significant weakening of the spot formation rate at certain
phases of the cycle.

The dynamical system studied in [145] was obtained after
the substitution in the dynamo equations of the fields with the
following latitudinal dependence:

A0, 1) = a1 (t) sin 0 + ay(7) sin 30 ,

B(0,1) = by (1) sin (20) + b(¢) sin (40) .

The dynamical system has the form

O B0 o), (41)
%:%(bl +by) — 9,

2 R s ), )
% = %(Cll —3ay) —4by, (43)
% _3 R;"” — 16 (44)
The boundary conditions are used in the form

A(0) = B(0) = A(m) = B(n) = 0, which corresponds to the
dipole symmetry. In this system, self-excitation is described
by linear terms, and stabilization due to the nonlinear
suppression of helicity is described by nonlinear terms. The
governing parameters are the values R, and R,, reduced to the
dimensionless form using the turbulent diffusion coefficient
and geometrical parameters of the problem that characterize
the amplitude of the a-effect and differential rotation.

Itis taken into account in Eqns (41)—(44) that the poloidal
field is generated by differential rotation and the o-effect is
negligible.
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In this model, the simplest scheme for the magnetic field
growth stabilization is used, the so-called helicity suppres-
sion. In this scheme, it is assumed that o= oo (0)/(1+ ¢>B?)~
ao(0)(1— E2B2), where oy(0) is the helicity in a nonmagnet-
ized medium and By = ¢~ is the magnetic field at which the
a-effect is significantly suppressed. To be specific, we assume
that o (0) = cos 6.

In [145], solving system of equations (41)—(44) numeri-
cally for different R, and R,, showed that different generation
regimes can be reproduced that resemble the magnetic field
behavior in some celestial bodies, including stationary
oscillations similar to the solar cycle, dynamo outbursts of
the magnetic field observed in laboratory experiments,
chaotic perturbations similar to activity in some stars, and
vascillations (oscillations around a nonzero value) that are
observed in some celestial bodies. The vascillations and
chaotic oscillation regime disappear if the variable a; is
eliminated from the dynamical system.

Analysis of system of equations (41)—(44) showed that the
waves describing the toroidal magnetic field propagation are
running waves. This is due to the toroidal modes b; and b,
being phase shifted relative to each other, such that the
toroidal field propagates along the latitude as a whole. At
the same time, the wave characterizing propagation of the
poloidal field is virtually standing and barely propagates
along the latitude. This is because one of the modes in the
poloidal spectrum dominates (a; > a;).

Observations suggest that the magnetic field of the Sun in
most cycles has a prominently dipole symmetry. However, the
toroidal field of the Sun in cycles 0 and 1 most likely had the
quadrupole and not the dipole symmetry. Butterfly diagrams
of the spots for cycles 0 and 1 are presented in [147]. The
possibility of a quadrupole structure in cycle 1 is discussed
in [148]. Figure 7 shows the butterfly diagram for solar spots
for cycles 0-4 [147]. Although the solar magnetic field
symmetry is mainly dipole, it is quite possible that the
magnetic field of other stars can have not only dipole but
also quadrupole symmetry. It is argued in [149] that neither
the dynamo theory nor observations support the hypothesis
that stellar magnetic fields should have only the dipole
symmetry with respect to the stellar equator. In addition, in
[149], the simplest migration dynamo models were studied
numerically, and magnetic field generation regimes with
nondipole symmetry and transitions from one symmetry to
another were found.

A dynamical model based on the «Q dynamo for the
quadrupole symmetry of the magnetic field was constructed
in [150].

Cycle 1 Cycle 3 Cycle 4

1 bl
e
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Figure 7. Butterfly diagram of solar spots for cycles 04 [147].
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Figure 8. Latitude—time distribution of the toroidal field for D = —120.
The solid and dashed lines show the respective positive and negative
magnetic fields. Time is in arbitrary dimensionless units. The dashed-
dotted lines mark zero-level lines [150].

In the case of the quadrupole symmetry of the magnetic
field, the oscillation regime arises not only when one poloidal
and two toroidal modes are taken into account, as in the case
of dipole symmetry, but also when two poloidal and one
toroidal modes are taken into account.

According to [150], in the oscillation regime, an increase in
the dynamo number leads to magnetic field growth near the
equator and near the poles. In the theoretical butterfly
diagrams for the toroidal field, the near-equatorial region
appears in the form of spot clusters at the equator for solar
activity cycles 0 and 1 (see [147]). Figure 8 shows the time—
latitude distribution of the toroidal field in the oscillation
regime. The isocurves of the positive and negative field are
respectively shown by solid and dashed lines. The time is
measured in arbitrary dimensionless units. The dashed-
dotted lines indicate the zero field lines. We note that the
range of dynamo numbers in which the magnetic field
oscillation with dipole symmetry is possible lies inside the
range for the oscillation regime with the quadrupole symme-
try of the field.

Using the dynamical system obtained in the low-mode
approximation, a quasi-two-year solar activity cycle was
modeled [151-154]. Based on the analysis of observations,
it was shown in [155-164] that quasi-cyclic bursts of
magnetic activity occur every 0.5-2.0 years on top of the
22-year solar cycle. Using a wavelet analysis of large-scale
magnetic field data in 1960-2000, the two-year oscillations
were shown to be quite chaotic; however, waves propagating
toward the poles can also be distinguished in this cycle. To
explain the double cycle of solar activity, the authors of [165]
proposed using Parker’s model for a two-layer medium [32].
The formation of low-frequency oscillations in the convec-
tive zone is due to the large-scale radial shear 0Q/0r of the
angular velocity Q, and the high-frequency component of the
cycle can appear due to the latitudinal shear 0Q2/00 or radial
shear of the angular velocity w in the near-surface region of
the convective zone. However, the mixed cycle can also
appear for other reasons. Within the low-mode approxima-
tion, it was demonstrated in [151, 152] that if three or more
modes of toroidal and poloidal fields are taken into account
in the latitudinal distribution, a regime similar to the
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Figure 9. Regimes for generating the leading mode of the toroidal field that appeared in the models described: (a) oscillation regime, (b) vascillation
regime, (¢) dynamo bursts, (d) simultaneous presence of the 22-year and quasi-two-year cycles. The field amplitude is plotted as a function of time (both in

arbitrary units).

coexistence of the 22-year and quasi-two-year cycles appears.
Such a regime can be reproduced for realistic solar para-
meters (dynamo numbers, thickness of the solar convective
zone, meridional flows).

To model the double cycle of solar activity using the low-
mode approximation, a two-layer dynamo model was
constructed in [153, 154] under the assumption that the
motion of a dynamo wave in the upper layer of the convective
zone breaks down due to meridional flows directed opposite
to the toroidal magnetic field propagation, and dynamo wave
propagation in deeper layers coincides with the meridional
flow direction, and the period of the wave is shorter than in
the upper layer. Parameter ranges (dynamo numbers and
meridional circulation) were found in the cases where the
double cycle (simultaneous presence of the 22-year and quasi-
two-year cycles) and the triple cycles (simultaneous presence
of the secular, 22-year, and quasi-two-year cycles) appear. In
[153], the triple cycle was shown to be possibly due to the
appearance of a regime with two harmonics in each layer and
beats.

Figure 9 shows different regimes for generating the
leading mode of the toroidal field that appeared in the
described models. Figure 9a presents the oscillation regime,
Fig. 9b shows the vascillation regime, Fig. 9c shows dynamo
bursts, and Fig. 9d shows a cycle with the simultaneous
presence of the secular, 22-year, and quasi-two-year cycles.

The field amplitude is along the ordinate and the time is along
the abscissa, both in arbitrary dimensionless units.

4. Asymptotic methods
to study the galactic dynamo model

4.1 Semiclassical approximation for the dynamo

in a thin disk (axially symmetric solutions)

Some galaxies (for example, the Andromeda galaxy M31)
have a ring-like magnetic field distribution at about 10 kpc
from the galactic center. Other galaxies, for example M33 and
M351, show a distinctly bisymmetric spiral-like field structure
(Fig. 10). The field configuration in some galaxies is more
complicated; for example, it can be close to an axially
symmetric form in the central parts and bisymmetric in the
outer parts of the galaxy.

Figure 11 shows magnetic fields in the galaxy M51. The
magnetic field was inferred from measurements at 6 cm by the
100m Effelsberg telescope and by the VLA (USA). The
contour lines show the observed radio emission, to which
the magnetic field strength is proportional; the dashes
indicate the magnetic field direction. The optical image was
obtained by the Hubble Space Telescope.

Dynamo models for the mean field of spiral galaxies were
first suggested in [166-168]. These models are local and the
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Figure 10. (a) Axially symmetric and (b) bisymmetric structures of galactic
magnetic fields.

Figure 11. Magnetic fields in the spiral galaxy M51. The contour lines
show the total radio emission, to which the magnetic field strength is
proportional. The optical image is obtained by the Hubble Space
Telescope.

derivatives are constant across the disk. Later, the galactic
dynamo theory was extended to the two- and three-dimen-
sional cases and applied to different types of galaxies [19, 20,
169]. Such models allow an asymptotic analysis. In [61, 62,
170, 171], exact asymptotic solutions of the «Q-dynamo
models in thin disks were found.

Usually, galactic dynamo models are formulated in a thin
differentially rotating turbulent disk surrounded by a
vacuum. The dynamo equations are written in cylindrical
coordinates (r, ¢, z) centered at the disk center, with the z axis
parallel to the galactic angular velocity. The models are
formulated in dimensionless units: » and z are measured in
units of the disk radius ry and disk half-thickness /. A typical
ro 18 8.5 kpc, and Ay is about 0.5 kpc. The time is measured in
units of the turbulent magnetic diffusion time across the disk,
h /. The typical diffusion time is about 7.5 x 10® years.

The axially symmetric magnetic field has three compo-
nents, which are expressed in terms of the azimuthal
component of the large-scale magnetic field B, and the
vector potential 4,

4, , 13
B= ( oz’ > Bor 7 r ar(rA‘”)) ’

Magnetic field generation equations in the dimensionless

(45)

units are
0B, oAy By 50
i Ryg o2 + 2 6 ( )7 (46)
04, 0’4, 10
T~ Robot 5yt 5(;5( 9) @

where R, and R,, are turbulent magnetic Reynolds numbers
characterizing amplitudes of the mean helicity and differen-
tial rotation. It is assumed in Eqns (46) and (47) that the
differential rotation does not depend on z; in addition, the
contribution of the mean helicity o to the magnetic field
generation is ignored in (46). There, g = rdQ/dr is the
measure of the differential rotation. In the solar vicinity of
the Galaxy, the mean helicity, differential rotation, and
turbulent dlfqulOIl coefflclent are oy~ 10° cm s !,
10~ 571, and B ~ 10%° cm? s~!. In Eqns (46) and (47),
D = RQ(RU, is the dimensionless dynamo number and
2=h¢/rd ~ 1073 is a small parameter due to the large
difference between the vertical and horizontal sizes of the
disk. Due to this difference, the magnetic field relatively
rapidly diffuses in the z-direction normal to the disk plane in
he/B = 5 x 10% years and slowly diffuses along the radius in
ré/B =5 x 10! years. We note that the age of galaxies does
not exceed 10'° years.
The kinematic axially symmetric asymptotic solution in
this case has the form

(ﬁz) = exp (I'1) [Q(slﬁr)(f;g’g) +] o (48)

where I' = dIn B/d1 is the growth rate of different modes of
the field, (B, A) are normalized functions, and Q is the
amplitude of the solution, which can be found for a given
radius.

The local solution (for a fixed point r) occurs in the lowest
order of the expansion in ¢. This solution corresponds to a
system of equations that can be derived from (46), (47) by
setting ¢ = 0. Such a system contains only derivatives with
respect to z with coefficients parametrically dependent on r:

_ 04 o'B

7(r)B = —Ryg(r) o +@ ) (49)
- - 0*4

p(r) A = Rya(r,z)B+ — . (50)

Here, y(r) is the local growth rate.

Boundary conditions frequently used on the disk surface
z = £h(r) correspond to the vacuum outside the circle. For
axially symmetric fields in the lowest order in ¢, we have

. 04

B=0, =-=0 (51)

at z = +h(r). Because a is an odd function of z, the generated
waves have either quadrupole or dipole symmetry. The
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symmetry character is determined by the conditions [19]

. OB
A= = 2
0, —=0 (52)
at z = 0 (the quadrupole symmetry) and
. A
B=0 o4 _ 0 (53)

) & -

at z = 0 (the dipole symmetry).

To explore the behavior of modes of the magnetic field
waves in a thin disk, we consider Eqns (49) and (50) in the
form of an expansion in freely decaying modes, i.e., without
field generation sources at R, and R,, = 0:

- OB,

VnBn = 022 (54)
- %4,

VnAn = 2.2 (55)

Here, y, is the decay rate of the nth mode; we note thaty, < 0.
We consider the quadrupole boundary conditions; then an
orthonormal basis of functions is given by

= 1\ z

(F)= (" (:(+3)3)). (56)
2n 0

= 0

B2n+1 > 1

~ = . z , (57)
(A2n+l V2sin (n(n-ﬁ-E) E)

12

V2n=V2n+1=—ﬂ2(n+§> . on=0,1,.... (58)

The eigenvalues are doubly degenerate. The solution of
Eqns (49) and (50) in this case can be represented in the form

B S B,
(/1) ~eXp(vt);cn(jn),

where ¢, are constants. After substituting the obtained series
in (49) and (50), multiplying by (B, Ay), and integrating over
z from 0 to i, we obtain an algebraic system of homogeneous
equations for ¢,, whose solvability condition gives an
algebraic equation for y. To analyze the behavior of waves,
it suffices to consider a minimal set of modes generating the
magnetic field. In this problem, the minimal number of modes
is two; therefore, we obtain a system of two equations for ¢
and ¢; and a quadratic equation for y. The positive solution of
this equation for y is

(59)

1 h h
y = _Z e + 1\/RaRwJ aboay dZJ boay dz . (60)
0

0

In the case o = sin (nz/h), we have y = —w?/4 +i./D/m.
To assess the accuracy of Eqn (60), we obtain y =0 for
D =D, = —n’/16 ~ —19. The precise value was obtained
in [19] and is D, = —8. This solution suggests that the
dominant mode does not oscillate (Imy = 0).

For the dipole symmetry, we similarly find y = —n?n?,
n=1,2,.... Therefore, the lowest dipole mode decays four
times as fast as the lowest quadrupole mode. The reason is
that the azimuthal field with dipole symmetry vanishes not
only at |z| = /i but also at z = 0 and hence has a smaller scale

than the quadrupole solution. This immediately implies that
the quadrupole modes should dominate in galactic disks. We
note that the dominant symmetry in galaxies differs from the
dominant symmetry in stars and planets, in which the field
with the dipole symmetry prevails. This result is supported by
observations.

In galactic dynamo problems, vacuum boundary condi-
tions are frequently used because of their relative simplicity.
In addition, they are local in the lowest order in the expansion
in &. However, this advantage is lost when a higher-order
expansion in ¢ is required to obtain the radial field distribu-
tion. In that case, the magnetic field lines can go out of the
disk at one radius, pass through the ambient vacuum, and
return to the disk at another radius. For radius-dependent
dynamo equations, the vacuum conditions should be for-
mulated for the first-order expansion in e.

If a galactic disk is immersed in the vacuum, electric fields
outside the disk are absent and hence the magnetic field
potential is B = —V®. By virtue of the axial symmetry, the
axial field outside the disk vanishes. Because the magnetic
field must be continuous at the disk boundary, the boundary
condition on the disk surface z = +h(r) is

B, s 0.

(61)

Vacuum boundary conditions for the poloidal field in
local Cartesian coordinates were obtained in [60]. In
cylindrical coordinates, they take the form [170]

04, ¢

Ze-tr(d,) =0 (©2)

at z = +h(r), where

L(A " W(r,r' 0 (L2 A, | dr’
(o) = | ) 5 (o0 ) 0
o0
Wr,r') = rr’J Ji(kr)Jy (kr') dk
0
and Jy(x) are the Bessel functions. In [171], another
equivalent form of the integral operator L(A4,) was obtained
that included the Green’s function for the Neumann problem
for the Laplace equation.

The integral part of the boundary condition can be
rearranged to a nonlocal term in the equation for Q. This
equation becomes an integro-differential equation of the
form [170]

[T —y(n)]q(r) = ep(r)L(q(r)) . (63)

where
q(r) = Q(r)A(h,r),

 A(h,r)A.(h,r) [ B(r,2)
TS A Y—<~ )

Here, the asterisk denotes an eigenvector for the adjoint
problem and (Y, Y,) = foh YY,.d:z.

The solution of Eqn (63) with boundary conditions
¢(0) =0 and ¢ — 0 as r — 0 is another boundary value
problem for which the growth rate I' is an eigenvalue and
the eigenfunction ¢(r) determines the radial profile of the
eigenfunction Q. In [171], the contribution of the integral
term to Eqn (63) was described as an extension of radial
diffusion.
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4.2 Adiabatic approximation

for the galactic dynamo model

Equation (63) was simplified in [172] and [19] by neglecting
the term with ¢ in boundary condition (62). This makes the
boundary condition local and results in an equation for Q(r),

[ny(r)]Q:ﬁg(%%r >, (64)

which is similar to (63), but has the integral term replaced with
the diffusion operator. Here, y(r) is an analog of the potential
in quantum mechanics. This approach is similar to the
adiabatic approximation in quantum theory, which is valid
for AI' < Ay(r), where AI' is the spacing between the
corresponding eigenvalues. For the galactic disk, this condi-
tion is satisfied: AI’ < 0.4, Ay ~ 1.

The adiabatic approximation ignores any local coupling
between different parts of the disk through the halo, but
includes the local diffusion coupling inside the disk. This
simplification significantly facilitates the asymptotic analysis
of dynamo problem solutions in the thin disk approximation
for galaxies and accretion disks, with nonlocal effects
neglected. Equation (63) can be solved analytically or
numerically [19], but some features of the solution are lost
when neglecting nonlocal effects. The most serious inaccuracy
is that the asymptotic scaling of the solution depends on ¢, and
here the radial scale becomes ¢ ~1/2h instead of the true value
¢~1/3hy. However, this difference is hardly essential for the
actual values ¢ ~ 107! —1072. We note that the asymptotic
behavior in the thin disk approximation is sufficiently
accurate for & < 107! [171, 172].

In [173], the adiabatic approximation is applied to
calculate the turbulent MHD dynamo of magnetic fields in
thin disks. The adiabatic method is used to study conditions
under which magnetic fields generated in the disk penetrate
the entire disk or are localized in bounded domains. The
problem is considered for two particular cases of Keplerian
disks. In the first case, magnetic field diffusion is assumed to
dominate because of turbulent mixing, and consequently the
dynamo number is assumed to be independent of the distance
to the disk center. In the second case, the dynamo number can
vary with the distance from the disk center. The magnetic field
localization turns out to be a general property of dynamos in
disks, except for a special case of a steady-state dynamo with a
constant dynamo number. The consequences of this feature
for dynamic behavior of a dynamo in magnetized accretion
disks are discussed in [173]. Results of these calculations are
tested in models of the proto-solar cloud and accretion disks
around compact objects.

Nonlocal effects also manifest themselves as the appear-
ance of power-law asymptotic solutions of Eqn (63): far from
the active dynamo region, ¢ ~ r~*, whereas solutions of
Eqn (64) have an exponential asymptotic behavior typical
for the diffusion equation. This affects the propagation
velocity of magnetic fronts during the kinematic growth of a
magnetic field: with nonlocal effects taken into account, the
fronts propagate exponentially, while the local radial diffu-
sion leads only to linear propagation.

Ignoring nonlocal effects does not significantly affect the
observed quantities. We note that parameters of spiral
galaxies and their magnetic fields are known with limited
accuracy. In addition, halos of spiral galaxies can be treated
as a vacuum only very approximately. The final conductivity
of the halo weakens the nonlocal effects.

The theory described above can be extended to the case of
nonaxisymmetric solutions. In [19, 174, 175], asymptotic
solutions are constructed using the WKB method for a
galactic dynamo with |D| > 1. Such asymptotic solutions of
one-dimensional dynamo equations (49) and (50) are dis-
cussed in [33].

4.3 Semiclassical approximation for a nonlinear dynamo
Nonlinear asymptotic solutions of Eqns (49) and (50) with
|D| > 1 are constructed in [176] by assuming that the
nonlinearity significantly affects the magnetic field distribu-
tion across the disk, and that the steady-state dynamo sets in
locally in the lowest approximation. The radial coupling is
significant already at the kinematic stage, where it gives rise to
a global eigenfunction according to (63) or (64). Nonlinear
effects most likely affect the global eigenfunciton and there-
fore should alter the radial equation. In [177], a nonlinear
analog of Eqn (64) was derived with algebraic suppression of
the helicity o:

o

"T1+ BB

(65)

where By is the saturation level, most frequently identified
with the state in which the magnetic and turbulent kinetic
energy densities are of the same order. As a result, the
magnetic field can increase when B < B;,. When B
approaches By, the field growth slows down, because the o-
effect amplitude decreases. A nonlinear asymptotic model of
a thin disk can be constructed by replacing y(r) in (63) and
(64) with y(r)(1 — Q?/BZ). In this case, Eqn (64) with
nonlinearity (65) takes the form

200) 0%() 0 (12,
20 (1-G 0w+ £ (15

M)

if the local solution is normalized such that Q is the field
strength averaged across the disk at a given radius. In [177],
this equation was derived by averaging dynamo equations in
the disk. Equation (66) and its nonaxially symmetric variant
are widely used to model the galactic dynamo (see, e.g., [20]).

The precise physical mechanism of dynamo saturation
remains unknown. In [178], the saturation mechanism is
related to suppression of the Lagrangian chaos in gas flows
by a magnetic field. This mechanism seems to be reasonable
for convective systems (where flows become random for
internal reasons, for example, due to instabilities) and can
hardly effectively apply to galaxies, where the flow is random
due to the randomness of the external force (supernova
explosions).

In [179, 180], numerical solutions of galactic dynamo
equations were obtained that extend the thin-disk approx-
imation and are based on the ‘embedded disk’ approach.
Instead of using complicated boundary conditions on the disk
surface, the disk is considered to be embedded into a halo
large enough to make the boundary conditions at the remote
halo boundaries insignificant. Because the turbulent mag-
netic diffusion in galactic halos is larger than in galactic disks
[177, 181], the ‘embedded disk’ models match the asymptotic
solutions in the thin-disk approximation obtained with
vacuum boundary conditions and confirm the asymptotic
results. The ‘embedded disk’ approach has also been used to
study galactic halos in which the dynamo mechanism
operates intensively [182—185]. Later dynamo models in the
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disk were constructed that take magnetic buoyancy effects
[186], accretion flows [187], and external magnetic fields [188,
189] into account.

In nonlinear dynamo models for thin disks, the local
solution does not depend on nonlinear effects, which mainly
alter the radial field structure. Consequently, the inclination
angle of magnetic field lines (p = arctan (B,/B,)) is expected
to be only weakly changed by nonlinear effects. This is an
important feature of the solution, which can be compared to
observations [172]. However, the influence of nonlinear
effects on the inclination of magnetic field lines has never
been explored in detail.

4.4 No-z approximation to study

the galactic dynamo model

The no-z approximation was proposed for thin galactic disks
and developed in [190-192]. The main property of this
approximation is the change in the magnetic field derivatives
along the direction normal to the disk plane by the magnetic
field value divided by the disk half-thickness / or /2. The no-z
approximation widely applies to explain galactic magnetic
fields. Dynamo equations (46) and (47) in a galactic disk in
cylindrical coordinates (r, ¢,z) with the origin in the disk
center in this approximation have the form

0B, @ m . 2/10

Tk by ((gem). @)
0B, 2 .0 /(10

o1 = —RO(B(/, — Z B, + 4 5 <7 a(lB,)) . (68)

The radial field B, is obtained from the azimuthal field B,,
by the a-effect, and the azimuthal field is obtained from the
radial field by the differential rotation. These fields are
subjected to the turbulent diffusion 5 and general rotation
Q, 2 = h/R. The third magnetic field component is recovered
from the solenoidality condition. The time is measured in
units of 22 /5 and the distance in units of the galactic radius ro;
the angular velocity is normalized to the characteristic value
Q, and the characteristic numbers R, = aoh/y, R, = Qoh?/n
are introduced such that D = R, R,,.

Equations (67) and (68) are usually solved by the WKB
method or numerically. Such an approach, at first glance,
seems to be rather crude; however, it is quite effective, because
the magnetic field structure across a thin disk is sufficiently
simple, at least for the lowest mode. Increasing the accuracy
of the approximation is discussed in [192]. In [190], this model
was applied to the effect of spiral arms of galactic magnetic
fields.

As shown in [192], the asymptotic study of linear dynamo
equations (67), (68) and (46), (47) for the Brandt differential
rotation for the M31 galaxy (in the region where the thin disk
approximation is applicable) gives close results. The eigen-
functions in the linear approximation for these cases are the
same. The magnetic field growth rates for the two approx-
imations are different, but the correction coefficient remains
the same (within a 1% accuracy) unless the dynamo number is
too large. The introduction of the factor n? /4 and change in o
in the no-z approximation from 1 to 2/m improve the results.
In addition, the discrepancy can be compensated by changing
R,, because this value has not been precisely determined yet.

Nonlinear equations of the galactic dynamo with the
algebraic suppression of helicity are more realistic. The
deviation between the solutions of Eqns (67), (68) and (46),
(47) in the nonlinear case is larger than in the linear case for

not large dynamo numbers and is rather significant for high
dynamo numbers.

In [193], it was assumed that the dynamo mechanism
works more effectively in the material arms of galaxies, and a
retardation mechanism acts on the generated magnetic field.
It was found that this results in magnetic field generation
between the arms. To obtain asymptotically correct solutions,
the WKB method was used with the retardation effect taken
into account. Using local equations of the no-z approxima-
tion, explicit expressions for the magnetic field growth rate
and its radial and azimuthal distributions were obtained.

Local and global asymptotic nonaxially symmetric solu-
tions of Eqns (67) and (68) were constructed in [193], which
we do not present here due to their complexity. In [193], the
mean-field dynamo theory was extended in two directions.
First, semi-analytic solutions for axially symmetric and
dominating nonaxially symmetric components (m = 0 and
m = +2 for a two-arm o-spiral) were obtained. Second,
effects of the final relaxation time 7 of the mean electro-
motive force related to the final correlation time of a random
flow were investigated.

The asymptotic results obtained in [193] were confirmed
numerically in [194].

5. Conclusion

The papers reviewed here show that the use of asymptotic
expansions yields realistic results consistent with observa-
tions. The use of asymptotic methods allows obtaining the
analytic dependences of different characteristics of magnetic
field waves as functions of different control parameters of the
models. This clarifies to which extent one physical factor or
another is able to affect the magnetic activity of a celestial
body. Such estimates can be used to test complex numerical
modeling.

Thus, asymptotic methods are an effective tool to study
the problems of generation and evolution of magnetic fields.
In addition, the results of asymptotic studies are useful in
testing numerical algorithms.

The author thanks D D Sokoloff for the useful discus-
sions. The work was supported by the Russian Science
Foundation grant 16-17-10097.
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