
Abstract. This paper uses the Galilean relativity principle and
the dependence of the rate of a clock on its velocity to derive the
Lorentz transformations (LTs). Analyzing different ways of
deriving the LTs provides different perspectives on them and
their implications, as well as making them more accessible to a
wide range of readers with an interest in relativistic physics.
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1. Introduction

In the search for fundamental laws, we conduct experiments,
analyze the data obtained, and figure out which equations
most precisely fit our observations. If new experimental data
are not described by known equations, we devise other, more
acceptable, ones. For example, such laws as the Galilean
principle of relativity (1632), the Galilean transformations
(1638), and Newton's three laws of motion (1687) discovered
when analyzing experimental findings of their own and
predecessors laid the basis for a coherent and consistent
theory called Galileo±Newton classical mechanics.

The principles of classical mechanics seemed to be eternal.
However, advances in the study of electromagnetic phenom-
ena in the 19th century led to the discovery of the Maxwell
equations (1861). These equations turned out to be non-
invariant with respect to the Galilean transformations,
changing their form when passing from one reference frame
to another. It followed that, if theMaxwell equations are true,
then the range of applicability of the Galilean transforma-
tions should be restricted. The foundations of science began
to shake. J C Maxwell, when developing his equations,
supposed that they are valid only in the preferred absolute
frame of reference linked with a hypothetical aetherÐ the
postulated medium for the propagation of electromagnetic

waves. A contradiction between the preferred frame of
reference and the Galilean principle of relativity forced both
experimental and theoretical physicists to search for the
aether and new transformations of space and time. A few
alternatives were suggested to identify new transformations.

(1) Both the Galilean principle of relativity and transfor-
mations are correct. The Maxwell equations are wrong.

(2) The Maxwell equations are valid in the aether
reference frame; the speed of light is independent of the light
source velocity and the direction of radiation propagation.
The Maxwell equations change their form in the reference
frames moving relative to the aether. Both the Galilean
principle of relativity and the transformations are violated.

(3) The principle (postulate) of relativity formulated by
H PoincareÂ (1904) holds true: ``The principle of relativity,
according to which the laws of physical phenomena must be
the same for a stationary observer as for one carried along in a
uniformmotion of translation, so that we have nomeans, and
can have none, of determining whether or not we are being
carried along in such a motion'' [1] (PoincareÂ statement is
given here according to its translation in the collected articles
[2]).1 It was assumed that an all pervasive aether exists causing
length contraction and time dilation of objects and clocks
moving through it.

The problem of both the absolute frame of reference
linked with aether and new transformations was to be
resolved experimentally. The most significant and convin-
cing negative results were obtained byMichelson andMorley
in their famous experiments on revealing the motion of Earth
relative to aether [4, 5]. The experiments were conducted from
1881 until 1929. The aether was elusive, while the Galilean
principle of relativity was strengthening its position.

In order to find new transformations, various hypotheses
requiring experimental check were put forwarded. In parti-
cular, there was the hypothesis of object's length contraction,
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1 The PoincareÂ principle of relativity is essentially the same as the Galilean

principle of relativity: ``... a man below decks on a ship cannot tell whether

the ship is docked or is moving smoothly through the water'' [3]. The

PoincareÂ principle of relativity considers involving not only mechanical

phenomena but also those of an electromagnetic and gravitational nature.

In his turn, Galileo did not rule them out either. The electromagnetic field

equations were known in the integral form. The speed of light was

measured with a sufficiently high accuracy. Both formulations assumed

that all inertial reference frames are equivalent. Therefore, from now on

we use the same term for themÐthe Galilean principle of relativity.



which greatly influenced the search for the Lorentz transfor-
mations [G Fitzgerald (1889), H Lorentz (1982)]. Also, the
hypothesis of time dilation of clocks was gaining acceptance
[W Voight (1887), J Larmor (1898)]. Both hypotheses were
motivated by the corollaries for the solutions of electrody-
namic problems described by the Maxwell equations along
with nonrelativistic electron dynamics (a `contraction' of
electromagnetic fields induced by charged particles uni-
formly moving along the longitudinal direction [Heaviside
(1888)], a `wrong' dependence of the energy of fields on
velocities of uniformly moving particles, a dependence of the
orbital period of the electron on the molecular velocity). The
Galilean transformations were to be replaced with new and
more complicated transformations characterized by the
change in space and time coordinate scales:

x � fx�x 0; y 0; z 0; t 0; v� ; y � fy�x 0; y 0; z 0; t 0; v� ;
z � fz�x 0; y 0; z 0; t 0; v� ; t � ft�x 0; y 0; z 0; t 0; v� ; �1�
x 0 � fx�x; y; z; t;ÿv� ; y 0 � fy�x; y; z; t;ÿv� ;
z 0 � fz�x; y; z; t;ÿv� ; t 0 � ft�x; y; z; t;ÿv� ;

where v is the velocity of the reference frame K 0 moving
relative to the other reference frame K, so that their
appropriate coordinate axes are parallel to each other.

Taking into account the sign of the relative velocity of
frames, we can show that the last four equations in Eqn (1)
follow from the first four equations, along with the Galilean
principle of relativity.

It turned out that the above system of equations can be
solved for fa, but not necessarily uniquely. As far back as
1887, Voight became the first to find such coordinate
transformations which involved time t 0jv6�0 6� t and left
invariant the wave equation for a free electromagnetic field
[6]. However, the Voight transformations turned out to be
inconsistent with the thought experiment: scales along
transverse axes were not invariant (which contradicts the
Galilean principle of relativity), while the time scale depended
on the Lorentz factor squared.

The transformations consistent with experimental data
were found by J Larmor in 1897 [7];2 and H Lorentz in 1899
and 1904 [8,9]. H Poincar�e suggested referring to them as the
Lorentz transformations. Their derivation was based on the
assumption that theMaxwell equations (the wave equation in
electrodynamics) are invariant under the Lorentz transforma-
tions.3 However, Lorentz only partly understood the essence
of his transformations. It was H PoincareÂ who realized their
deep significance [10]. Prior to that, PoincareÂ has already
noted the essential problem of moving clock synchronizing in

the relativity theory. He also stressed how important it is to
keep the Galilean principle of relativity for the inertial frames
of reference, in particular, he proposed a few more detailed
formulations of the principle. The Lorentz transformations
were interpreted by PoincareÂ as rotations in four-dimensional
spacetime. In particular, he noted that they possess the group
properties, as a consequence of the Galilean principle of
relativity. Later on, the Lorentz transformations were
derived by A Einstein in 1905 by combining the Galilean
principle of relativity and the principle of the constant speed
of light (assuming also as PoincareÂ that the Galilean principle
of relativity is valid for all electrodynamic phenomena).
Einstein's derivation was given in a concise form and there-
fore attracted the attention of many researchers. Moreover,
Einstein invented and popularized for a wide circle of readers
the clock paradox (the twin paradox).

In 1910, Wladimir Sergeevich Ignatowsky (1875±1942), a
Russian and Soviet physicist andmathematician, deduced the
Lorentz transformations without the utilization of electro-
dynamics. He only used the Galilean principle of relativity,
the linear dependence between space and time coordinates of
moving and rest frames, and the group theory (the axiomatic
approach to developing the theory and the use of three inertial
frames of reference) [12, 13]. A year later Philipe Frank and
HermanRothe published inAnnalen der Physik the paper [14]
where they further developed the results of Ignatowsky. In
this study, they noted the occurrence of a more general linear-
fractional transformation between two inertial frames, so that
both the Galilean and the Lorentz transformations are just
particular cases.

To derive the Lorentz transformations, the authors of
Refs [12±14] started only from the Galilean principle of
relativity, which carried no quantitative data. The resulting
Lorentz transformations involved an arbitrary constant n, so
that the quantity ~C � 1=

���
n
p

had the dimensionality of
velocity, entering the equations as v= ~C. The ~C could be
defined from the Maxwell equations experimentally verified
by Hertz in 1988, provided they are invariant under the
Lorentz transformations when the constants in the Maxwell
equations and the Lorentz transformations are equal to each
other ( ~C � c, c is the speed of light). Otherwise, one could fix
the constant experimentally by measuring the dependences
of the particle or molecular excited state lifetimes on
velocities.4

To find the unknown constant, Ignatowsky considered
the electrodynamic equations for a uniformly moving point
charge. Nor did he use the Galilean principle of relativity. He
showed that ``for a fixed observer the corresponding
equipotential surface of the charge field is the Heaviside
ellipsoid with the ratio of longitudinal and transverse axes
equal to 1=g � �1ÿ �v=c�2�1=2, while for the charge-comoving
observer the surface is a sphere'' [12]. Then, based on the
length contraction of moving objects, he found that
nÿ2 � ~C � c.

2 J Larmor was not only one of the first to find the spacetime coordinate

transformations, but also one of the few who already in 1900 consciously

perceived the Lorentz transformations. For example, he calculated in

book [11] the orbital period of an electron in the second order in the

molecular velocity and noted that in this case the orbit goes from circle to

ellipse. According to H Lorentz, these results were considered real and not

just a trick.
3 A bias current was conjectured by Maxwell in those days when all

currents were considered to be closed. Later on, when nonclosed currents

were also taken into consideration, the introduction of the bias current

was shown to be necessary, being the consequence of the charge conserva-

tion law. Experiments on the generation of electromagnetic waves

[H R Hertz (1887)] confirmed the need for the bias current. Therefore,

the Maxwell equations turned out to be relativistically invariant even

before special relativity was invented. Moreover, the Maxwell equations

aided the development of the special theory of relativity.

4 W S Ignatowsky writes: ``... a numerical value and sign of n can be found

experimentally. ... as we did not focus on a particular physical phenom-

enon, we can determine n from any phenomenon, thereby obtaining the

same value, because n is the universal constant.'' This constant was derived

from the most general principle. Ignatowsky also noted that within his

derivation ``the optics lose their unique position with respect to the

principle of relativity. It follows that the principle of relativity is more

general, as it depends on the universal constant alone and not on a

particular physical phenomenon'' [12].
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Hence, the Lorentz transformations were completely
described. They formed the basis of the new, logically
closed, special theory of relativity, which was developed by
many outstanding mathematicians and experimental and
theoretical physicists.

In the present note, we describe a physical approach to
deriving the Lorentz transformations in a concise and simple
way, making them more accessible for general readers. The
approach is based on the Galilean principle of relativity and
uses the fact that the rate of a clock depends on its velocity.
We also analyze other ways of deriving the Lorentz
transformations and discuss their implications.

2. Derivation of the Lorentz transformations
based on time dilation of a moving clock

Let us introduce two inertial frames of reference: the lab fixed
frame K, and the frame K 0 moving along the x-axis with
velocity v (see Fig. 1). The x-, y-, z-axes of the frameK and the
corresponding axes of the frame K 0 are co-directional, their
coordinate origins coinciding at the instants of time
t � t 0 � 0. The clocks in both coordinate systems are
identical and synchronized.

Suppose that the Galilean principle of relativity holds
true. From this it follows that the space is homogeneous and
isotropic, while the reference frames are linearly related.
Moreover, from the Galilean principle of relativity it is
inferred that the Lorentz transformations posses the group
properties. This is because the form of the Lorentz transfor-
mations is not changed when passing from one frame to
another directly or through yet another frame.5

For the observers in each frame of reference, the scales in
transverse directions y, z and y 0, z 0 in the framesK andK 0 can
be compared by simultaneously placing one scale on the
other. Then, according to the Galilean principle of relativity,
their lengths do not depend on velocity v, i.e., the scales are
relativistically invariant. From this it follows that

y 0 � y ; z 0 � z : �2�

We rely upon the experimental fact that a clock at rest
with respect to the moving frameK 0 is g times slower than the
identical clock in the fixed frame K. Here, the time dilatation
factor g � g�v=~c� is the unknown even function of velocity v
of the moving clock, and ~c is the unknown constant with the
dimensionality of velocity. Also, one has g�0� � 1,
gjv=~c5 1 � 1� k�v=~c�2 � . . . ; k > 0. Then, using the clocks
located along the x-axis, the observers inKwill find that in the
time period t a clock moving past them and located in the
origin of K 0 will show time6

t 0 � t

g
: �3�

Thus, the clock in the coordinate origin of the moving
frame K 0 during the time period t according to the clock of K
frame covers the distance l � x � vt and shows time t 0 � t=g.
Then, the observers in the moving frame K 0 will find that,
according to their clock, during time t 0 the resting clock in the
origin of K frame moving along the negative direction of

x 0-axis reaches the point x 0 � ÿvt 0, and, therefore, covers the
distance l 0 � jx 0j � vt 0, which by formula (3) is equal to
l 0 � l=g. From this it follows that for the observers in K 0 the
length scale along the longitudinal axis in K frame looks
g times shorter than that ofK 0. Of course, we suppose that the
length scales, as well as the clocks in both framesK andK 0, are
completely identical.

On the other hand, from the Galilean principle of
relativity it follows that objects in the frame K 0 observed
from the frame K also look contracted to the same number of
times as time dilatation factor g. Then, combining the effect of
time dilation in moving clocks and the Galilean principle of
relativity, we find that moving objects look contracted to
g times in the longitudinal direction.7

The lengths of segments x � Ox and ~x 0 � O 0x 0 measured
in the fixed frame K at the instant of time t are related as
~x 0 � xÿ vt (see Fig. 1). The length of the segment x 0

measured in its own frame of reference K 0 is g times longer
than its length measured in the frame K moving past it, i.e.,
x 0 � g~x 0. It follows that coordinates are related as

x 0 � g�xÿ vt� : �4�

Using formula (4) and the Galilean principle of relativity
applied to measurements in the moving frame K 0, we derive
the analogous relation among coordinates x, x 0, t 0:

x � g�x 0 � vt 0� : �5�

In expression (5), an account was taken of the fact that the
velocity of K relative to K 0 has the same value but opposite
sign.

The system of four equations (2), (4), and (5) relates three
coordinates and time of events occurring in both fixed and
moving frames. Therefore, we have found relativistic trans-
formations of space and time coordinates from the fixed
frame K to the moving frame K 0 in a concise and simple way.
The unknown time dilatation factor g � g�v=~c� can be found
experimentally.

Equations (4), (5) depend on time implicitly. An explicit
dependence of time in K 0 on the longitudinal coordinate and
time inK can be found by substituting coordinate x 0 given by

z

y y 0

x

x

vt

v

O 0
x 0

~x 0

z 0

O

Figure 1.Rest frame of referenceK�x; y; z� and amoving frame of reference

K 0�x 0; y 0; z 0�.

5 Notice that the Lorentz transformations form a group only in the case of

parallel velocities.
6 Time dilation occurs for both a uniformly moving clock and an

accelerating clock, e.g., in a circular accelerator.

7 The inverse proposition is also valid: time dilation of moving clocks is a

consequence of both the length contraction of moving objects and the

Galilean principle of relativity. In this case, the resting observer in the

frame K finds an object of length d contracted to g times is passing by him

during time Dt � d=gv � Dt 0=g, where Dt 0 � d=v is the time, according to

the clock of the moving frameK 0, it takes for a length scale adopted to the

frame K 0 to pass by a K-frame observer.

May 2016 Another route to the Lorentz transformations 477



expression (4) into formula (5):

t 0 � g

�
tÿ xv

C 2

�
; �6�

where C 2 � v 2g 2=�g 2 ÿ 1�. Similarly, substituting coordi-
nate x given by equation (5) into formula (4), we will find
the explicit dependence of time in frameK on the longitudinal
coordinate and time in frame K 0:

t � g

�
t 0 � x 0v

C 2

�
: �7�

The relation C 2 � C 2�v; g� can be transformed into the
following:

g � 1�����������������������
1ÿ �v=C�2

q : �8�

The set of equations (2), (4)±(7) is the analogue of direct
and inverse Lorentz transformations. The set can be treated in
the same way as the ordinary Lorentz transformations. In
formulas (2), (4)±(7), the dependence of function g on velocity
can be found from experimental data presented in tables and
figures. This dependence can be approximated by appropriate
analytical functions, e.g., g � g�b�, where g�b�� �1ÿ b 2�ÿ1=2,
b � v=c.8 Two of four equations (4)±(7) are independent.
Equations for x; t and x 0; t 0 are direct and inverse analogues
of the Lorentz transformations.

In what follows, we show that C�v; g� in expression (8) is
constant. To this end, we take advantage of the synchroniza-
tion of clocks by translating them along the x 0-axis from one
point in the reference frame K 0 to the other one, with the time
dilatation factor being gd � g� dg � g�v� � qgDv=qv, where
Dv � vdÿ v5 v, and vd being the velocity of the clocks
moving apart in the reference frame K (see, monograph [16,
p. 24]).9 In this case, the rate of a clock moving with factor gd
will be different from that of a clock moving with factor g.
Thus, according to formula (3), a moving clock is delayed by
Dt 0 � ÿDtDg=g 2 � ÿDtDv�qg=qv�=g 2 � ÿ�~x 0=g 2��qg=qv�,
where ~x 0 � DtDv � x 0=g, with respect to a clock in the
coordinate origin of K 0. Therefore, time readings in the
moving frame K 0 will be given by the clock (3) positioned in
the origin and time dilation Dt 0: t 0 � t=gÿ �~x 0=g 3��qg=qv�.
From this it follows that the time readings on the clock in the
reference frame K are given by

t � g

�
t 0 � x 0

g 3

qg
qv

�
: �9�

Observing the clock synchronization in the fixed frame from
the moving frame of reference, we find that the similar
dependence appears according to the Galilean principle of
relativity:

t 0 � g

�
tÿ x

g 3

qg
qv

�
: �10�

Equations (9) and (10) may be employed with the same
success as equations (6) and (7). In spite of their different
analytical forms, they are identical. As the second terms in
formulas (6) and (10) are equal to each other, we produce
the equation �g 2 ÿ 1�=�vg 2� � �1=g 3��qg=qv� [or dg=dv �
g�g 2 ÿ 1�=v], which is solved as

g�v� � 1�����������������������
1ÿ �v= ~C�2

q ; �11�

where ~C is a constant of integration. It follows that the
quantity C�v; g� introduced in Eqn (8) does not depend on
velocity: C�v; g� � ~C � const.

From equations (9)±(11), we find direct and inverse
equations for the time transformations from one frame of
reference to another:

t 0 � g

�
tÿ vx

~C 2

�
; �12�

t � g

�
t 0 � vx

0

~C 2

�
: �13�

Combining expressions (5) and (7), we find how the
longitudinal particle's velocity v 0x is transformed when
passing from the moving frame K 0 to the rest frame K:

vx � dx

dt
� v 0x � v

1� v 0xv=C 2
: �14�

If we pass from the reference frame K 0 to the reference frame
K 00 which moves relative to K 0 at the velocity v 00, and apply
the Galilean principle of relativity to require that the
dependence of vx on v

00
x keeps the form (14), then it is easy to

see that we arrive at the same relation: C�v� � ~C � const.
There are also other ways to show that this quantity remains
constant.

Having identified the constant ~C, we obtained the general-
ized Lorentz transformations, which are just Ignatowsky
transformations developed without the involvement of
electrodynamics. According to relationship (14), the physical
meaning of the constant ~C is the limiting velocity of signal
transmission in the special theory of relativity.

3. Conclusion

In this paper, based on the Galilean principle of relativity, we
have shown how space and time coordinates transform when
going over from one inertial frame of reference to another [see
formulas (2), (4)±(7)]. To this end, we have assumed that the
rate of a clock is identified with some unknown time
dilatation factor g�v�, which depends on the velocity of
clock motion. This is analogous to the Lorentz transforma-
tions in which the factor g�v� substitutes for the relativistic
factor g�v�. The factor g�v� is to be determined either from
experimental data organized in tables or from analytical
expressions approximating the numerical data.

Then, using the clock synchronization, we have explicitly
deduced the same rule of time reading transformations from
the moving frame K 0 to the rest frame but in a different
representation. Leaning upon the condition that these clock
time readings are the same with those found earlier, we have
defined the time dilatation factor g�v�. As expected, the form
of g�v� coincides with that of the relativistic factor g�v�. In this
case, the analogue of the Lorentz transformations goes into

8 It should be noted that, according to nonelectrodynamic experimental

data on the muon lifetime (see, e.g., paper [15]), the factor g�v=~c� with a

great accuracy �� 10ÿ3� coincides with the body relativistic factor g�v�,
while the quantityC�v; g� is approximately constant and equal to the speed

of light c.
9 Translating clocks can also be done with velocity vd essentially different

from v provided time dilation is taken into account.
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the Lorentz transformations found by Ignatowsky with an
unknown fundamental constant having the dimensionality of
velocity. The constant can be obtained in experiments not
related to measuring the speed of light or other electrody-
namic measurements phenomena. From this it follows that
the Galilean principle (postulate) of relativity is fundamental
in the sense that any electrodynamic, gravitational, or other
existing or future laws must be invariant under the general-
ized Lorentz transformationsÐ the Ignatowsky transforma-
tions.

We believe that describing classical physics in this manner
is more general, natural, and clear for those who just started
to study the special theory of relativity. For a wide circle of
general readers, the axiomatic derivation of the Lorentz
transformations may seem a bit unnatural, while a somewhat
lengthy derivation based on the Lorentz invariance of the
Maxwell equations may obscure the nature of the Lorentz
transformations. In our opinion, various issues and para-
doxes of special relativity are easier to discuss at this stage,
while some of them naturally disappear.10

It is interesting to note that particular complicated
expressions for the Lorentz transformations and the corre-
sponding relativistic factor entering them follow from the
Galilean principle of relativity, which is independent of any
experimentally measured quantities. In fact, those expres-
sions follow just from Galileo's terrestrial observations and
experiments with an observer looking through a window of
the uniformly moving boat. On the other hand, some
additional experimental data (for a single point) are required
only to fix the unknown fundamental constant of the Lorentz
transformations. It is surprising how much information the
Galilean principle of relativity contains and what an
important role it plays in Nature. Some of the issues
considered in the present paper can be found in papers [17±
19] (and references cited therein), where they are interpreted
along the same or similar lines.
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