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Abstract. This review presents the current state of research on
the generation and application of subfemtosecond (or attose-
cond, where 1 as = 10~8 5) ultraviolet and X-ray pulses. Emis-
sion of attosecond pulses is closely related to the generation of
high-order harmonics in a laser field: the interaction of intense
femtosecond laser pulses with matter causes the generation of
high-order harmonics whose highest orders range from dozens
to thousands and which produce attosecond pulses when they
are phase-locked in a sufficiently broad spectral region. Two
ways of attosecond pulse generation, the interaction of an
intense laser radiation with a gaseous medium and with the
edge of a solid state plasma, are discussed. The theory of the
microscopic high-frequency response of a gaseous medium to an
intense low-frequency laser field is presented together with
numerical results based on the solution of the time-dependent
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Schrodinger equation for an atom in the external field. The
review describes the methodology for calculating the macro-
scopic response and for analyzing the phase-matching in high-
order harmonic generation. For the generation of coherent
XUYV radiation at the edge of a dense plasma, different genera-
tion scenarios are discussed, a simple model is proposed, and a
comparison of model predictions with numerical results ob-
tained from particle-in-cell (PIC) simulations is given.

Keywords: attosecond pulses, high-order harmonic generation,
interaction of intense laser fields with matter, phase matching,
time-dependent Schrédinger equation, dense laser plasma, particle-
in-cell (PIC) simulations

1. Introduction

Since the advent of lasers, the development of nonlinear
optics has been closely related to the progress in laser pulse
shortening. State-of-the-art laser systems have been demon-
strated furnishing an opportunity to produce femtosecond
pulses whose duration is comparable to the light cycle (one
oscillation period for a Ti:sapphire laser is about 2.7 fs).
Hence, it is impossible to further reduce the duration of light
pulses with the carrier wavelength located in the visible region
of the electromagnetic spectrum. In contrast, ultraviolet or
shorter-wavelength subfemtosecond pulses are within reach.
This review presents the current status of research in the field
of generation and application of subfemtosecond (or attose-
cond, where 1 as= 10"'8 s) pulses in the UV and X-ray
spectral ranges.

The prevalent approach to the production of attosecond
pulses is closely related to the generation of high-order
harmonics of a laser field: the interaction of intense
femtosecond laser pulses with matter causes the generation
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of high-order harmonics (high-order harmonic generation,
HHG), whose highest orders, depending on the specific
conditions, can range from dozens to thousands. As was
experimentally demonstrated in the early 2000s, under certain
conditions the harmonics can be phase-locked so that they are
added up constructively to form a train of attosecond pulses
in the UV or X-ray region. As the shortest of the electro-
magnetic pulses produced to date, these pulses provide a
unique tool for the direct measurement of attosecond
dynamics of processes important for various branches of
physics, chemistry, biology, applied sciences, etc., which
determines the relevance of this subject.

The layout of the paper is as follows. Two ways of
attosecond pulse generation, the interaction of an intense
laser field with a gaseous medium and with the edge of a solid
state plasma, are discussed in this review.

In the first of these areas, significant advances have been
achieved in both the experimental implementation and the
theoretical description of the phenomenon. In Section 2,
along with a review of recent experimental data related to
HHG in gases, we present theoretical approaches to the
description of coherent ultraviolet light generation via HHG
in a gaseous medium exposed to an intense low-frequency
elliptically polarized laser field of arbitrary ellipticity. A
calculation of both the microscopic and macroscopic
responses is discussed. The quantum-mechanical theoretical
approaches presented here, which are based on a semiclassi-
cal description of the electron motion, are applicable, strictly
speaking, only to the tunneling regime (i.e., to those cases
where the Keldysh parameter y [1] is much less than unity).
However, a comparison with the numerical results and
experimental data shows that the theory is also valid at
y 1.

In Section 3, we analyze the prospects for the production
of attosecond pulses in the interaction of intense laser
radiation with a dense plasma. The calculated results exhibit
that, when a laser pulse of relativistic intensity is reflected off
the edge of a solid target or passes through a thin foil, atto- or
subattosecond pulses are generated, whose generation effi-
ciency can be very high under certain conditions. Prospects
for the experimental implementation of this technique for
attosecond pulse generation are also considered.

2. Attosecond pulse generation in gases.
Mechanism of the phenomenon
and its theoretical description

2.1 Conditions for attosecond pulse production.
Semiclassical theory of the high-order harmonic
generation process

As mentioned in the Introduction, attosecond pulse produc-
tion requires the use of coherent light in the ultraviolet (UV)
or X-ray regions of the spectrum. Recently, significant
progress has been achieved in the development of free-
electron lasers (FELs) operating in these spectral regions [2—
5] However, FELs are usually characterized by a huge size
and costliness, as well as by a low degree of temporal
coherence of the generated pulses [6]. Although the last
problem is solved to a large extent by seeding FELs with
external coherent light (in particular, the use of seed light
produced by HHG in gases driven by femtosecond lasers has
been demonstrated [7, 8]), FELs cannot yet be regarded as
practical tools for extensive experimental research in attose-

10*

103

102

Intensity, arb. units

10!

10°

Figure 1. Typical spectra of harmonic generation by intense linearly
polarized laser light in a gas. Shown are the intensities 7, of harmonics
generated in He, Ne, Ar, Kr, and Xe driven by a dye laser (1 = 0.616 um)
with intensities of 1.4, 1.9, 1.9, 1.5, and 2.0 x 10'* W cm~2 for He, Ne, Ar,
Kr, and Xe, respectively. (Taken from Ref. [14].)

cond physics. The most significant advancements in attose-
cond pulse generation are due to the other way of producing
coherent high-frequency light, namely, with HHG in gaseous
media. This effect was first observed experimentally in the late
1980s and early 1990s [9-16]. The early experimental work in
this field was reviewed in Refs [17, 18]. Progress in experi-
mental techniques made it possible to produce coherent light
of ever higher frequencies by this method. In particular, HHG
sources were extended by the late 1990s into the ‘water
window’ region [19, 20], important for biochemical and
other research (the range of wavelengths between 2.3 and
4.4 nm, or photon energies between 284 and 543 eV, where the
carbon-containing biological substrates efficiently absorb
radiation, whereas water is relatively transparent); further-
more, in 2005, high-order harmonic emission at a wavelength
of 1 nm (corresponding to a photon energy of about 1.3 keV)
was demonstrated [21].

It should be noted that, as far back as the 1960s, HHG in
plasmas was studied theoretically [22] (see also Ref. [23]).
Presumably, HHG from bulk plasma was observed for the
first time in study [24]. However, this mechanism has not been
studied experimentally in detail, since it usually has a
relatively low efficiency. More actively studied is HHG from
solid-density plasma surfaces (see reviews [25, 26]). This
method is promising in terms of high-intensity attosecond
pulse generation. In experiments implementing this
approach, the generation of X-rays was demonstrated with
photon energies exceeding those of the incident light by a
factor of a few thousand [27]. Recent experiments have
revealed that high-order harmonics emitted from a plasma
surface are phase-locked [28, 29]; furthermore, direct experi-
mental evidence was reported recently that these harmonics
constitute a train of pulses, each of duration much shorter
than the oscillation period of the incident light [30].

In the spectrum of high-order harmonics generated in a
gas, a fast decrease in intensity versus harmonic order in the
low-frequency region is followed by a broad plateau-like
distribution that extends to the high-frequency region and
then ends in an abrupt cutoff (Fig. 1). As a result of numerical
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Figure 2. Explanation of the three-step mechanism for the generation of
high-order harmonics of intense laser light in a gas.

calculations [31], the empirical law for the cutoff position was
found, which agrees well with numerous experimental data:

Ny ~ 220 (1)

Wo
where I, is the ionization potential of the atom, and
U= E}/(40}) is the average energy of electron oscillations
in an AC electric field of amplitude E, and frequency w
(hereinafter, atomic units, e =m, =/ =1, are used for
convenience).

The low-frequency region of the harmonic spectrum,
showing a rapid decrease in intensity with the harmonic
order, is mostly due to the nonlinearity of the intraatomic
response, similar to what takes place in harmonic generation
at low driving intensities. The boundary of this region is
determined by the maximum frequency attributable to the
electron motion inside an atom, i.e., by the ionization
potential. A decisive role in understanding the mechanism of
the generation of higher-order harmonics, as well as in
explaining a number of other nonlinear processes associated
with atomic ionization in an intense laser field, has been
played by a so-called semiclassical model introduced in
Refs [32, 33] (some similar considerations appeared earlier
in Refs [34-36]). According to the semiclassical model, HHG
proceeds basically as a three-step process in which the
elementary acts (Fig. 2) are: (i) ejection of electron from an
atom via tunneling ionization; (ii) its acceleration by the
optical field which pushes the electron first away from the
parent ion and then back toward it as the field changes sign,
and (iii) the recollision of the electron with the parent ion,
which may result in high-energy photon emission.

The maximum energy of the photon emitted during this
process is determined by the maximum kinetic energy Enax
that the electron can gain before the recollision event. As a
result of recollision with the ion, the electron can recombine
into the atomic ground state to emit a photon with the energy
equal to Wmax = Ip + Emax-

Let us assume that the field E(¢) = Ej sin (wy?) is linearly
polarized along the x-axis. Since the radius of electron
oscillations in a strong field far exceeds the atomic size (for a
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Figure 3. (a) Phase of the laser field at the instant of electron release vs. the
time of electron excursion prior to its returning to the parent ion. Inset:
electron trajectories launched at various phases of the field; depending on
this phase, the electron either never returns to the parent ion or revisits it at
least once. (b) Kinetic energy gained by returning electron vs. its excursion
time.

driving field with a wavelength of 800 nm and intensity on the
order of 10" W cm~2, the oscillation radius xos = Eo/w%
reaches a few dozen Bohr radii), the effect of the Coulomb
field of the ion on the electron motion can be ignored.

In what follows, we will assume that, as a result of
ionization, an electron initially bound in the atom undergoes
a transition into the continuum at some instant ¢, starting its
free motion from the origin with a zero initial velocity. By
solving Newton’s equation, we find that the ejected electron
trajectories launched at the phases ¢ = wyt; of the laser field
in the intervals 0 < ¢ < /2, n < ¢ < 31n/2, etc., never come
back to the parent ion, whereas the electrons born in the
intervals n/2 < ¢ <, 3n/2 < ¢ < 2m, etc., may revisit the
parent ion once or several times (see inset to Fig. 3a).

One can find from the solution of Newton’s equation [17,
37] that the electron’s return time ¢, is related to its excursion
time

T=t—4 (2)
according to the condition
ot — sin (wg1)

tan g =
?= cos (wot) — 1

(3)

while the kinetic energy gained by the returning electron is
expressed as

C2 (CL)()‘L')CU()‘L’

Epgy = 2U . ,
kin ot — sin (wg1) — Clwor)

(4)

where C(wyt) = sin (wgt) — 2[1 — cos (wo1)]/(wo7).
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Notice that the instants ¢ of atomic ionization for the
case of a nonmonochromatic (two-color) laser field can be
found using a convenient graphical method developed by
Paulus et al. [38].

As follows from an analysis of formulas (3) and (4), the
electron’s return kinetic energy Eyj, passes a maximum value
of Enax =~ 3.17U (see Fig. 3b) corresponding to ¢ = 1.88
(108°), wot = 4.09 (234°), and wt, = 5.97 (342°). Hence, we
obtain a formula for the harmonic order corresponding to the
high-frequency cutoff of the spectrum plateau:

I, +3.17U0

Nmax = T 3 (5)

which agrees well with empirical formula (1).

Electron trajectories corresponding to atomic ionization
at the laser phase in the interval of 108° < ¢ < 180° and,
hence, the excursion time within 0 < t < 0.65 7, where T is
the oscillation period of the driving field, are called ‘short’,
whereas all other trajectories are called ‘long’. As can be seen
in Fig. 3, each value of the return kinetic energy within
24U < Exin < 3.17U corresponds to only two trajectories
(one short and one long), whereas for lower energies there is
a greater number of return trajectories. This means that up to
harmonic orders corresponding to approx. 3/4 the width of
the plateau, the electron trajectories with 7 > T, i.e., with
multiple returns to the parent ion, contribute to the harmonic
signal. Notice, however, that, as the quantum-mechanical
treatment indicates (see below), the contribution of these
trajectories decreases significantly with increasing 7, because
of the spreading of the electron wave packet.

In a periodically oscillating field, the three-step process
described above occurs over and over with a certain
probability every half-cycle of the driving field (see the lower
part of Fig. 2). This leads to the fact that the emitted spectrum
consists of a set of harmonics separated by 2mwy. Due to the
isotropy of a gaseous medium, only odd harmonics are
emitted.

Thus, HHG in gases turns out to be useful for producing
attosecond pulses, since the emission spectrum in this case
contains a wide area (plateau) of harmonics having similar
intensities. If these spectral components are perfectly phase-
locked, the duration of a pulse made up of them is determined
by the inverse spectral width of this area. Specifically, a signal
obtained by superposing ¢ phased odd-order harmonics is a
periodic sequence of pulses, each of duration 7/(2¢q), with the
repetition period 7/2 [34, 39]. The question of high-order
harmonic synchronization is addressed in Section 2.2.

2.2 Quantum-mechanical description of the high-order
harmonic generation process. Numerical calculations

The polarization of a medium volume element, defined as the
dipole moment per unit volume, is P(z) = Np(¢), where N is
the concentration of atoms or molecules, and p is the
quantum-mechanical average of the dipole moment defined
as

m() = (e, 0=y (r,0)), (6)

where ) (r, 7) is the electron wave function. For simplicity, we
will hereinafter be limited to the case of a one-electron atom.
The single-active-electron approximation [31, 40] is often also
used for multielectron atoms; in this case, it is assumed that
the interaction of an atom with the external field is governed
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Figure 4. Harmonic spectrum calculated numerically for a hydrogen atom
driven by a trapezoidal linearly polarized laser pulse with a wavelength of
1600 nm, peak intensity of 2 x 10'* W cm~2, and duration of 18 optical
cycles. Inset: phase difference ¢, — ¢,_; between the neighboring odd

harmonics vs. the harmonic order N = 2¢g + 1.

solely by the electron on the highest occupied energy level,
which is most weakly bound to the nucleus, whereas the other
electrons are considered to be frozen inside the atom and
constitute, together with the nucleus, a particle whose
interaction with the active electron is described by the
effective potential V(r).

To describe the interaction of an atom with the laser field,
we will apply the electric dipole approximation. The electron
wave function can then be found by solving the time-
dependent Schrodinger equation

iait |lﬁ(r, t)> = <—%V2+ V(l‘)+l‘E(t))|lp(r’ [)> (7)

In general, equation (7) can only be solved numerically (see,
e.g., Refs [32, 40-46] for numerical methods). The example
illustrated in Fig. 4 represents the numerical results for the
high-order harmonic spectrum obtained using the split-
operator fast Fourier transform method (see Refs [47, 48]
for details of the calculations; the numerical method was
proposed by Fleck et al. [49]). The spectrum possesses a
pronounced plateau-like distribution with a high-frequency
cutoff whose position agrees well with that given by the
classical analysis [see formula (5), which gives Nyax ~ 213
when applied to the same case as in Fig. 4].

The inset to Fig. 4 gives the numerical results for the phase
difference between two adjacent odd harmonics as a function
of the harmonic order. The harmonic phase distribution
seems to be random, which, at first glance, points to the
impossibility of obtaining short pulses by superposing several
neighboring harmonics. This, however, is not actually the
case. As an example, the time profile of the total signal in the
frequency window between the 171st and 191st harmonics is
plotted in Fig. Sa. It is seen that the time-dependent harmonic
signal exhibits two dominant peaks (labelled 7 and 2 in Fig. 5)
per half cycle. As we move the spectral window further
towards higher frequencies, every pair of peaks converges
and finally merges into a single peak for the harmonics in the
plateau cutoff region.

The time—frequency evolution of the harmonic signal
described above is clearly illustrated by the wavelet scalo-



May 2016

Attosecond electromagnetic pulses: generation, measurement, and application 429

Intensity, arb. units

250
w/wy
200

150

100

50

2.5 3.0 4T 3.5
Figure 5. (a) Time profile of the harmonic signal in the frequency window
of the 171th to 191th harmonics. The parameters of the laser pulse are the
same as in Fig. 4. (b) Detail of the scalogram of the wavelet transform of
the harmonic signal whose spectrum is shown in Fig. 4. The solid line
depicts the result obtained from the analysis of the electron’s classical
motion (see text). (Taken from Ref. [50].)

gram displayed in Fig. 5b (see Ref. [51] for details of the
wavelet transform). The solid line in Fig. 5b shows the time
dependence of (Exin(t) + Ip)/mo, Where Ei, is given by the
classical formula (4) with ¢ = ¢;. Good agreement between the
quantum-mechanical and classical treatments of the high-
order harmonic generation process is seen: the time—
frequency structure of the generated harmonic signal con-
tains alternating areas with positive and negative chirp (the
areas labelled, respectively, / and 2in Fig. 5b), consistent with
the analogous rise and fall features of the electron’s return
kinetic energy as a function of time. Trajectories contributing
to the areas / and 2 in Fig. 5b are called, respectively, ‘short’
and ‘long’, as mentioned above. Notice that the time-—
frequency structure of the harmonic signal at low o is
complicated due to the contribution from even longer
trajectories (lasting longer than the laser oscillation period)
supporting electron multiple returns to the parent ion.
However, with increasing electron excursion time in the
continuum, the contribution of such trajectories compared
to the contribution of shorter paths is reduced due to the
quantum-mechanical spreading of the electron wave packet
(see Section 2.3).

The complex behavior of the harmonic phases in the low-
frequency part of the plateau in Fig. 4 results from inter-
ference between the contributions of different electron
trajectories. As the harmonic frequency increases, the proper-
ties of these contributions become more similar and, even-
tually, for harmonics near the high-frequency cutoff, these
contributions are merged into one, which is manifested in the
regular behavior of the harmonic phases.

2.3 Quantum-mechanical description of the high-order
harmonic generation process. Analytical theories
Under certain assumptions, the construction of analytical or
semianalytical theories is feasible (see, e.g., Refs [52-60]),
allowing the theoretical study of the HHG process without
resorting to the numerical solution of the Schrodinger
equation. We begin with a brief description of a widely used
theory developed by Lewenstein et al. [52].

The wave function in formula (6) can be represented as the
sum of terms corresponding to the bound and free electron:
Y =y, + Y. We then have

r= (p| = rlhp) + (ol —xle) + (Wl —xlYhy) + Wil —rliy) -
(8)

The first term on the right-hand side of formula (8)
corresponds to the contribution to the dipole moment caused
by bound-bound transitions; the second and third terms
define the contributions of free-bound transitions, and,
finally, the last term corresponds to free—free transitions.
The first term, which describes the intraatomic transitions, is
responsible for the sharply falling low-frequency part of the
harmonic spectrum and does not play a significant role in
respect to the generation of attosecond pulses (APs). In a
typical case of weak ionization, the contribution of the last
term in formula (8) to the dipole moment is relatively small
and, as a rule, is not taken into account (the opposite case is
considered in Refs [53, 58, 61]). Accordingly, the HHG
theories are usually focused on free—bound electron transi-
tions. The theory developed by Lewenstein et al. [52] also
ignores the contribution of the intermediate bound states,
which is justified for HHG at commonly used driving field
intensities (7 ~ 10" -10"> W cm~2), at which tunneling
ionization occurs [1]. The wave function is represented as a
superposition of the atomic ground state |0) and the integral
over the set of continuum states |v) (v is the electron velocity in
the continuum):

[ (r, 1)) = exp (ilp1) (a(t)|0) + Jb(v7 Hv) d3v) . 9)

The influence of the Coulomb field of the nucleus on the
electron motion in the continuum is disregarded, just as in the
semiclassical theory discussed above. Since the case of weak
ionization is considered, the change in amplitude of the
ground state wave function is assumed to be negligible:
a(t) ~ 1. Substituting Eqn (9) into Eqns (6) and (7) and
making some transformations, we obtain the following
expression for the dipole moment

n(f) = iL:dz’Jd3p [E(z’)d(p f% A(z’))]

x exp (—iS(p,,1)) d* <p —% A(l)) +c.c. (10)
Here, p = v+ (1/¢)A(t) is the canonical momentum, A(z) is
the vector potential of the laser field, d(v) = (v|r|0) is the
transition dipole moment between the bound state and the
continuum state of the electron, and S(p,7,¢’) is the
semiclassical action which defines the phase accumulated by
the electron wave function during propagation between the
instants ¢" and #:

(p— (1/0)A(")?

t
S(p,m’):J dt”[ 5 + 1] . (11)
,/
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The main contribution to the integral over p in formula (10)
comes from the stationary points of the semiclassical action:
VuS(p,t,t') =0 [52]. The presence of stationary points
greatly simplifies the calculation of this integral, allowing,
with the help of the stationary phase method, it to be reduced
to a single integral over the time variable (for brevity, the final
expression is omitted here; see Ref. [52] for details). On the
other hand, from formula (11) it can easily be seen that
VuS(p, t,¢’) is the difference between the electron coordinates
at the instants ¢’ and 71 VpS(p,t,t’) = e (x(r) — x(t')).
Therefore, it can be concluded that the greatest contribution
to the harmonic emission comes from the electrons that
tunnel away from the atom and later come back to the same
position when moving in an oscillating electric field. Further
application of the stationary phase method (when integrating
over the time variable T = ¢ — ') reveals that the stationary
point of the semiclassical action with respect to t corresponds
to the zero value of the electron’s initial velocity.

Thus, the quantum theory [52] confirms the basic
assumptions of the semiclassical model presented above
(allowing, moreover, a systematic consideration of the role
of a number of purely quantum-mechanical phenomena, such
as tunneling, electron wave-packet diffusion, and quantum
interference). We emphasize, in particular, that the quantum-
mechanical approach allows us to consider the synchroniza-
tion of the generated harmonics.

To find the spectrum of the dipole moment p(7), one can
again apply the stationary phase method. It turns out that the
stationary points of the rapidly oscillating phase factor of the
integrand in the expression for the Fourier transform of the
dipole moment at the frequency of the Nth-order harmonic
correspond to those instants #y of time at which the kinetic
energy of a classical electron returning to the ion is equal to
Eyin = Nwg — I,. In agreement with the numerical results
presented in Fig. 5, theory [52] predicts that for sufficiently
high harmonics the dipole moment is for the most part
determined by only two trajectories (corresponding to t;
and 7). The contribution of the sth trajectory (s =1,2) to
the component of the dipole moment at frequency Nwy in this
case is characterized by the phase difference @y, =
S(tn.s) — Nagty, s between the dipole moment and the pump
wave (where S(zy ;) is the value of the semiclassical action
corresponding to the electron trajectory with the return time
[N‘s)-

Action (11) and, hence, the harmonic phase depend on the
laser radiation intensity /. Because of the spatial variations of
I in the laser beam, the phase of the dipole moment is
generally different for different atoms in the interaction
volume, so the function @(7) is an important characteristic
affecting the coherence of the harmonic field accumulated at
the output of the medium. Similarly, changes in the
instantaneous laser radiation intensity with time may
degrade, due to the dependence ®(7), the temporal coher-
ence of the harmonic field. Detailed quantum-mechanical
calculations [62-64] allow us to conclude that for both
electron trajectories making the main contribution to the
harmonic signal, the dependence @(I) is approximately
linear:

D5(1) ~ —asl (12)
but the proportionality coefficient for the long path is many
times greater in magnitude than that for the short path:
|| > |og]. This fact is very important in the context of the

selection of the contributions from appropriate trajectories to
the harmonic signal (see Section 2.4).

Just as in Ref. [52], the versions of the quantum-
mechanical theory developed in Refs [17, 55, 65-67] can be
linked to the semiclassical model of HHG by applying the
stationary phase method to the integrals describing the
response of an atom to an external field: the solutions for
the stationary phase (quantum trajectories or quantum
orbits) correspond approximately to the electron trajec-
tories in the classical model. The atomic response at each
harmonic frequency is composed of several terms corre-
sponding to different quantum trajectories that lead from
the initial to the final state. The role of these trajectories in
HHG, above threshold ionization, and electron rescattering
by the parent ion was first discussed in the early theoretical
studies by Lewenstein et al. [52, 68] and Becker et al. [65],
and has been studied in detail in Refs [69—74] (see also review
[37]). Strictly speaking, the use of quantum trajectories
ensures a good approximation only in the tunneling limit.
The applicability of this approximation to the cases of
intense laser pulses with realistic parameters (which do not
always strictly satisfy the condition 7y < 1) has been
addressed by Bauer et al. [75, 76] by comparing the
theoretical predictions with the results of direct numerical
solution to the Schrédinger equation.

Using the quantum orbit approach, Ivanov et al. [77] and
Platonenko [56, 57] developed alternative versions of the
HHG theory, in which the amplitude of the microscopic
response is represented as the product of the factors
responsible for atomic ionization, free-electron wave-packet
propagation under the influence of the laser field, and
emission of a high-frequency photon. This representation
has allowed the approximate account for the effect of
Coulomb attraction to the ion core on the electron wave-
packet motion. In study [78], theory [56] has been generalized
to the case of an elliptically polarized field.

Below, we will describe in more detail theory [78], which is
based on the semiclassical treatment of electron motion along
the major axis of the polarization ellipse of the laser field after
ionization. The electron motion in a plane perpendicular to
this axis is described fully quantum-mechanically. The theory
makes use of the ionization rate calculated via the numerical
integration of the Schrédinger equation for a one-electron
model of the atom in the laser field. In addition, the theory
takes into account the attraction of a free-electron wave
packet to the parent ion immediately after ionization
(through the introduction of the adjustable parameter o
optimized by comparison with the numerical results), as well
as the attraction of the returning electron wave packet to the
parent ion.

This theory allows us to calculate separately the contribu-
tions of different quantum trajectories to HHG. The
dependence of the characteristics of these contributions on
the parameters of the driving field turns out to be much
simpler than that for a full harmonic signal.

Below, the final expressions are given, which define the
single-atom response obtained through the use of this theory.

The electron microscopic response to the laser field action
is determined by the second derivative of the dipole moment
(6). In accordance with Ehrenfest’s theorem, it is equal to the
quantum-mechanical mean value of the force acting on the
electron:

Ji(t) =t (1),



May 2016

Attosecond electromagnetic pulses: generation, measurement, and application 431

where

fran(1) = —<w<r, 0|E@ + & (13)

).

What will be calculated below is just the quantum-
mechanical average of the force, rather than of the dipole
moment. It is evident that in the dipole approximation the
first term on the right-hand side of expression (13), namely

DE@) W (x,1)) = E@) W (r, ) (r, 1)) = E(1)

does not contain high-frequency oscillations responsible for
the generation of UV radiation. Therefore, we consider below
only the second term

r

f) = -(u.

73

l/l>. (14)

The following expression for this quantity was obtained in
Ref. [78]:

f:Z{f\‘vavo}a (15)
where
_ 0t;
fx(8) =1/ 2npw(t) aa(ti)a(t)
2 .
2i
x MC|\/p2+ (’,« - X)
{ P\ A
-G iy
X exp (715 iyt + 3 ) +c.c., (16)
£ty =£(2) p;—y/" +eec. (17)
Here, the following notation is used:

n=1t- i A i ) (18)
_ +p
S = J M d[’7 (]9)

. 2
_ 1 1
Px,y(t) = - Ax,y(t) 7 Ax,y(ti) ) (20)

t
y= | e (21)

f

In formulas (16) and (17), w(¢) and a(¢) are the ionization rate
and the amplitude of the atomic ground state at time ¢,
respectively. The latter is written out as

a(t) = {exp (— J;O w(t") dﬂﬂ 1/2.

The instantaneous ionization rate is found as the ioniza-
tion rate (in a static field) for the field value taken at some
earlier time:

(22)

w(t) = w(‘E(z‘i - 5)‘) . (23)

The delay time ¢ is introduced to take into account
approximately the attraction of the free electron to the ionic

core after ionization. The value of § was chosen in Refs [56,
78] so as to achieve the best agreement between the theoretical
and numerical results for the generation of UV radiation. The
best agreement was achieved with 6 = 1 atomic unit of time
(~~ 24.2 as); this value is used in all the following calculations.
In Ref. [56], the ionization rate w(E) in a static field was
calculated using the expression given in Landau’s course [79];
in Ref. [78], the tabulated values of the ionization rate were
utilized, which were obtained via numerical integration of the
Schrédinger equation [45]. Notice that the experimental
determination of the ‘delay’ time of tunnel ionization has
recently attracted great attention (see, e.g., Refs [80, 81] and
references cited therein).

In expressions (16)—(18), Ap, is the uncertainty in the
electron’s transverse momentum after ionization. The
approximate determination of this quantity was made by
Perelomov, Popov, and Terent’ev in paper [82] (see also
papers [83, 84] and review [85]):

2 _ }E(l,)|
Api = \/m . (24)
Finally, in expressions (16), (17) one has
M) =2 (oo S e). 23)

where 1//f (r) is the Coulomb wave function for a free state
with momentum p before scattering by a Coulomb center (see
monograph [79]):

V() = exp (%) r(l - [;) exp (ip2”)

XF(%alaip(pl_Z/))7

where z' = pr/p, and p’ = Vr2 — z'2 are the coordinates of
the point r in a cylindrical coordinate system whose axis is
directed along the vector p, F'is the confluent hypergeometric
function, and T is the gamma function.

The ground state (1s) of a hydrogen atom was taken in
Ref. [78] as the initial state o (r); then, the values of M (p)
were found numerically, tabulated, and used for further
calculations.

Thus, to calculate the microscopic response at the instant
of time ¢, one should:

(i) find all the ionization instants #" leading to the return
at the instant of time #; here, the superscript m labels different
ionization instants and corresponding trajectories that lead to
a return at the instant of time ¢ (note that the electron energy
at a given return time is generally different for different
paths). For a monochromatic driving field, the ionization
and return instants of time are related to each other according
to formulas (2) and (3); for a nonmonochromatic field, one
should find them numerically;

(ii) calculate, for the trajectory labelled by m, the values of
S™ [using formula (19)], p", p," [using formula (20)], y
[using formula (21)], and 0¢/0t;

(iii) calculate f7'(¢) and f"(¢f) from formulas (16) and
(17);

(iv) add up the contributions of different trajectories [see
formula (15)].

Let us discuss some of the properties of a single-atom
response described by formulas (16) and (17).

(26)
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Figure 6. Time profile of the intensity of harmonics in the spectral range from 50 eV (approximately 32 7iw) to 75 eV (approximately 48 /i) calculated
theoretically (dotted line) and via the numerical solution of the Schrédinger equation for a model argon atom (solid line). Laser field [shown by the
dashed-dotted line in figures (a) and (d)] with 2 = 0.8 pm is linearly polarized; peak intensities are marked in the figures; high-frequency cutoff of the
plateau is near the harmonics of the order of 53 (=~ 82 eV) (a), 47 (= 73 eV) (b), 41 (= 63 eV) (c), and 35 (= 54 eV) (d). The harmonic intensities in
figures (a)—(d) are normalized to the intensity of the first peak in figure (c). (Taken from Ref. [78].)

The factor a(t;)a(t) in formulas (16) and (17) indicates
that the generation occurs only if the ground state is
populated at the ionization instant ¢ and also at the return
time ¢. In Ref. [45], the validity of this conclusion was
confirmed by numerical calculations. Notice that the HHG
theories [52, 65] do not explicitly contain such a requirement.
The reason for this is that these studies assumed adiabatic
changes to the ground-state population; hence, the popula-
tion at the ionization and return instants of time is the same.
Obviously, this approximation is not valid if atomic ioniza-
tion lasts for only several optical cycles.

In Figs 6 and 7, theoretical predictions are compared with
the results of numerical integration of the Schrodinger
equation (for a model potential of argon [86]). In every half-
cycle of the laser field, two attosecond pulses are generated if
the selected spectral interval belongs to the plateau region (as
noted in the discussion of Fig. 5). These two pulses are
generated by short and long electron trajectories [87, 88]. If
the selected spectral interval falls entirely within the plateau
region, these APs are fully separated (see Fig. 6a); they begin
to overlap and interfere if a part of the spectral interval lies in
the high-frequency cutoff region (see Figs 6b,c and 7b,c).
Finally, these contributions cannot be separated if the entire
spectral interval falls within the cutoff region (see Fig. 6d).

The duration and timing of APs are in agreement with the
numerical calculations. Furthermore, it can be seen in Fig. 6
that the theory discussed here correctly reproduces the ratio
between the contributions from different electron trajectories.
This is an important difference from Lewenstein’s theory [52],
which tends to underestimate the role of the short path (as
was first noticed by Gaarde and Schafer [89]). This under-
estimation is apparently due to the neglect of the effect of a
Coulomb attraction on the motion of a free electron. It should
be recalled that the instantaneous value of the laser field at the
instants of time ¢ corresponding to a short path is relatively
small. If one assumes that it is precisely this field value that
determines the ionization rate, then it turns out that the
percentage of electrons moving along short paths is also
small. In fact, these electrons move a bit more slowly
immediately after tunneling due to the Coulomb attraction,
i.e., the short paths are ‘populated’ with electrons that tunnel
a little earlier than would follow from the classical calculation
ignoring the Coulomb attraction by the parent ion. In the
present theory, this effect is described by introducing the time
delay ¢ in formula (23). The correct ratio of the contributions
from different trajectories provided by this theory is very
important when a comparison is made with the experimental
data. It is worth mentioning that a similar way to take into
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Figure 7. Same as in Fig. 6, but the theoretical curves represent separately
the contributions from two quantum trajectories corresponding to the
electron’s excursion times shorter than an optical cycle: the dashed and
dashed—dotted lines show the short- and long-path contributions, respec-
tively. (Taken from Ref. [78].)

account the Coulomb attraction in the process of electron
detachment [90] allowed achieving good agreement with
experiment [91] when the semiclassical model was con-
structed to describe the production of directional photocur-
rents giving rise to THz wave generation in the optical
breakdown of gases.

Thus, we can conclude that there is good quantitative
agreement between theory and numerical calculations for

HHG in a laser field with a wavelength of about 800 nm (Ti:
sapphire laser) and intensity on the order of 104 W cm™2
(y & 1). This agreement demonstrates the applicability of the
assumptions made in this theory at those values of the laser
field parameters, which are quite typical for HHG.

The above theory [78] was successfully applied to describe
HHG from atoms in an elliptically polarized laser field,
showing very good agreement with the numerical results [48,
50]. In particular, this theory allowed explaining the origin of
ellipticity of harmonic polarization [50] and describing the
influence of the ellipticity of the laser field on the efficiency of
HHG and the state of polarization of high harmonics for
atoms with different types of valence orbitals [48].

At the end of this section, we will briefly describe the
current areas of further development of the aforementioned
and other theoretical approaches.

In recent years, increasing attention in the context of high-
order harmonic generation has been paid to molecules as
more complex systems than atoms, which provide additional
means to control the HHG process [92-99], inaccessible when
utilizing atomic gases as a working medium. In the molecular
case, the magnitude of the high-order harmonic signal [92, 95]
and its spectral [93, 94, 100, 101], temporal [98], and
polarization [99] properties can highly depend on the relative
positions of the nuclei in a molecule and the orientation of the
molecular axes with respect to the laser electric field (these
dependences often occur due to multicenter interference
effects [93, 94]; there may also be a significant contribution
to HHG from the ionization of multiple molecular orbitals
[102]). The HHG spectra and the temporal dynamics of the
AP generation in molecules may also exhibit effects asso-
ciated with the motion of nuclei during laser pulse propaga-
tion [96, 97, 103—105]. It has been demonstrated that many of
the effects mentioned above may be employed to probe the
structure and ultrafast internal dynamics of molecules with
subfemtosecond temporal and angstrom spatial resolutions
(see reviews [106, 107]). Due to the complexity of the molecule
as an object of the theoretical study of HHG and other strong-
field processes, it is very important to develop analytical
methods for the approximate description of these phenom-
ena. In recent years, such methods have been developed
extensively. For example, the first attempts were made in
Refs [104, 108-110] to generalize Lewenstein’s theory and
other analytical theories in order to provide a description of
high-order harmonic generation in molecular gases. How-
ever, a detailed discussion of these issues is beyond the scope
of this review.

The above results were usually obtained in the one-
electron approximation. State-of-the-art computer capabil-
ities also allow the numerical solution of two-electron
problems [111-116]; however, direct numerical calculations
cannot be implemented in the case of a larger number of
electrons. One of the approaches to the analytical description
of multielectron effects is based on the fact that these effects
manifest themselves in the HHG spectra basically only
through the energy dependence of the cross section of
electron—ion recombination (i.e., of the process being the
final stage of the three-step mechanism of HHG) [60, 117-
120]. The recombination cross section can be calculated
separately for a specific atom (notably, on the basis of the
principle of detailed balance, it can be found from the
experimentally determined photoionization cross section;
the restrictions on this approach were discussed in Refs [121-
124]). Among the consequences of this approach related to
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multielectron effects was the prediction of giant dipole
resonance near 100 eV in the HHG spectrum of xenon; this
prediction was confirmed experimentally in Ref. [125]. The
multielectron effects can be particularly significant when the
harmonic frequency is close to resonance with one of the
natural frequencies of the nonlinear medium, as was pointed
outin Ref. [126]. Various mechanisms of resonance-enhanced
HHG have been theoretically studied in Refs [127-129]. A
significant (up to two orders of magnitude) increase in the
efficiency of the generation of the harmonic at a frequency
close to the transition frequency between the ground and
autoionization states of generating ions was observed experi-
mentally in studies of HHG in a plasma plume (see review
[130] and references cited therein). Theoretical models of this
process were proposed in Refs [119, 131-133]. Paper [132], in
particular, reported on the so-called ‘four-step’ model of
resonance-enhanced HHG; the phase locking of harmonics
near resonance was studied, resulting in the conclusion that
resonant harmonics are produced as a train of APs. Further
development and validation of this model can be found in
Refs [134, 135].

2.4 Macroscopic response.

Phase matching in high-order harmonic generation

In the problem of harmonic generation, as in a number of
other problems of nonlinear optics [136, 137], it is not only
microscopic (relating to the nonlinear response of an
individual atom or molecule) factors that are of great value;
macroscopic factors also play an important role. One of the
main issues of this kind concerns with phase matching. In
particular, due to the difference in phase matching of different
harmonics, the experimentally observed spectrum can differ
very significantly from the spectrum of a single-atom
response. For efficient frequency conversion in a nonlinear
medium, it is important that the generated frequency
components propagate through medium with the same
phase velocity as the driving wave, since in this case the
coherent summation of the signals from the elementary
emitters leads to the accumulation of the resulting signal as
the interacting waves propagate in the macroscopic volume of
the medium.

Thus, the formulation of the problem of phase matching
in HHG is similar to that for other nonlinear optical
processes. In the absence of phase matching, the signal can
only enhance as it propagates through a nonlinear medium,
unless the phase shift between the driving and generated
waves exceeds m radians. The coherence length L, in the
given region of medium is inversely proportional to the phase
mismatch between the wave vectors of the interacting waves,
which in the case of the generation of a high harmonic of
order g is written as Len = n/Ak,, where Ak, is the wave-
vector mismatch. One of the main reasons for the phase
mismatch in the nonlinear-optical frequency conversion of
laser light is the dispersion of the nonlinear medium utilized
for this transformation. It is well known [136] that phase
matching for low-order harmonic generation or other non-
linear optical processes of low order can be implemented
using birefringent media. In the problem of interest to us, i.e.,
high-order harmonic generation in gases, this approach is not
feasible due to the isotropy of the gas medium. Moreover,
there are a number of additional factors causing the phase
mismatch in HHG.

First, as mentioned in the previous section, the dipole
moment at the harmonic frequency undergoes a phase shift ¢

(usually called quantum or atomic phase) with respect to the
driving field [88, 138—141]; this shift depends on the laser
radiation intensity. For each quantum-mechanical trajectory
contributing to the generation of the given harmonic, this
dependence is approximately linear [see formula (12)]. The
change in intensity of the driving field along the propagation
axis thus leads to an addition to the wave-vector mismatch:
09/0z = —us01/0z. Due to the significant difference among
the values of o on different trajectories, the phase mismatch
can be small for the contribution from only one of these
trajectories (if the value of 8//0z is not small and, hence, the
term discussed here is significant). It should be noted that the
intensity of the driving field also depends on time 7 and on the
distance r from the beam axis; hence, the dependence of @ on
the intensity leads to the spectral shift of the harmonic,
0®/0t = —00I/0t, and to an additional divergence:
0®/0r = —o,,01/0r. This allows the selection of the contribu-
tion from the particular electron trajectory in the experi-
mental HHG spectrum [142, 143].

Second, the HHG mechanism implies ionization of the
particles in the medium. As a result of ionization, the plasma,
in addition to the neutral component, emerges in the medium,
making its own contribution to the wave dispersion in the
medium. Moreover, since the dispersion properties of a
neutral gas and plasma differ greatly, the change in their
relative concentrations during the laser pulse action causes
the instability of the refractive index of the medium. The
dispersions of a neutral gas and plasma have different signs;
for the case of HHG driven by near-IR sources, they cancel
each other out at a very low degree of ionization (a few
percent), which in practice limits the laser intensity usable for
HHG.

Third, the analysis of phase matching for HHG should
take into account the phase shift (Gouy phase, or geometric
phase) acquired by the laser beam as it passes through the
focus. The dependence of this phase on the coordinate along
the propagation axis gives rise to the so-called ‘geometric’
term dk( in the wave vector of the driving field. For a
Gaussian beam, one obtains

o
na2@)

dko(z) = (27)
where «. is the beam radius at the field level of e~'.

Fourth, the harmonic beam divergence may be large
enough (see below), which makes it necessary to take into
consideration the off-axis phase matching.

Taking into account all these factors, we can write down
the phase mismatch (a more rigorous analysis will be given
below) for the harmonic component propagating at an angle
0 to the beam axis in the form

Aky(z, 1) = q(ko + dko) — kycos 0+ as %
where ko = ngwo/c and k, = nyqwo/c are the lengths of the
wave vectors of a plane wave at the frequency of the driving
field and the harmonic frequency, respectively; ng and n, are
the refractive indices at these frequencies.

Notice that the phase matching condition Ak, =0
represents the condition of conservation of the axial momen-
tum component in the transformation of ¢ laser photons into
the harmonic photon.

From equation (28) it follows how sensitive the HHG
process is to the generation conditions: marked phase
mismatch occurs even in cases of a rather small difference

1, (28)
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ny — ny in the refractive indices or small geometric term 6k,
because they are multiplied by a large harmonic order g¢.

In HHG using a focused beam, conditions may arise
under which the atomic and geometric phases cancel each
other out in a certain area on the propagation path. Such
conditions can be met at some places behind the focus, where
the intensity of the laser beam decreases with distance [141].
Nevertheless, the tapping of tightly focused laser beams has
the substantial disadvantage lying in the fact that the
interaction length along which high harmonics are generated
is restricted to a very narrow region around the focus where
the laser radiation intensity is sufficient for HHG.

To carry out a rigorous quantitative analysis of phase
matching, we proceed from the wave equation

4 T
(V2 4+ k2)E, = ——420)a

cz

where fq is the density of the laser-induced nonlinear current
at the harmonic frequency.

The expression for the current density fq, which contains
the phase factors (present in the driving field) raised to the gth
power, can be written as the product:

Jo(z.p) = jg((z,p), N(z,p)) exp [ig(koz — @(z) + ¢(z,p))] ,
(29)

where

p?

= ko ——;
¢(z,p) = ko RG)
N(z, p) is the gas density; R(z) and I(z, p) are the radius of the
wave front and the intensity of the driving beam, respectively;
¢(z) is the phase shift, which depends on the beam structure,
and the amplitude j, is, in general, complex and dependent
only on the radiation intensity 7 and the properties of the
medium. The amplitude j, of the current is related to the
amplitude of the atomic response (quantum-mechanical
average of the force acting on the electron) as

ifyN(z, p)

J}IZT' (31)
q

(30)

In some approximations (see papers [17, 78]), the radia-
tion power emitted at the harmonic frequency can be written
down as

Py = Jpq(ﬂ)f)d@, (32)
where

z 92 2

py(0) == J exp {iz (qko— kgt kg 7) - iq(p(z)} g4(0,2)dz| .

(33)

Here, z; and z; are the coordinates of the target ends, and

¢4(0,2)=2n jfé; (I(z.p)) N(z. p) exp (i (z, p)) Jo i gpO)p dp
(34)

where Jy is the zero-order Bessel function. The function
g4(0,z) can be interpreted as the angular spectrum of the
emission at the gth harmonic frequency, generated by a thin
layer in the beam cross section at a point with coordinate z.

Expressions (33) and (34) are applicable in the quasistatic
case, i.e., when the parameters of the laser and harmonic fields
vary slowly or, in other words, when the processes causing
emission proceed quasiperiodically over many cycles of the
laser field. If this is not the case, then, obviously, a continuous
spectrum rather than a set of harmonics is emitted. In that
event, similar calculations lead, instead of to expressions (33)

and (34), to
z 2 2
Po(0) :c% J- exp {iz % {ﬁo — ﬁ<1 — %)] }gw(G,z) dz| ,
(35)
80(0.2) = 21 | fuN(zup) Julkp)p dp. (36)

Here, 7y and 71 are real parts of the refractive index at the
frequency of the laser radiation and at the frequency w,
respectively, and k =r7w/c is the wave vector at the
frequency w. It should be noted that in formulas (35) and
(36) we made use of the amplitude f;, of the microscopic
response dependent on the laser field Ey(z, p, ¢) [which is why
the phase of the laser field does not enter explicitly into
Eqns (35) and (36), in contrast to Eqns (33) and (34); the
phase of the laser field determines the phase of the micro-
scopic response amplitude f;,]. Expressions (35) and (36) may
be utilized when the microscopic response is not periodic with
the period equal to the laser cycle. The microscopic response
amplitudes in this case are calculated numerically:

feo@) = 52 [ feo) ex (o) . (7)

The atomic dipole moment as a function of time can be
calculated according to the formulas (10) or (16) and (17).

As a rule, the efficiency of UV emission via HHG is
limited mostly by the phase-matching conditions. In some
cases, however, the absorption of the radiation in the
nonlinear medium also plays an important role. In these
conditions, the imaginary part of the refractive index n,ps at
the frequency of the generated radiation should be also taken
into account. Then, instead of expression (36), we have

] JfénN (z,p)o(kpO)pdp .
(38)

OMyps (22 — 2)

g0(0,z) = 2mexp [—

Now we will discuss the question under what parameters
the off-axis phase matching can play a significant role in
HHG. Obviously, the off-axis phase matching is necessary to
take into account if [see formula (33)] the 6-angle-dependent
phase shift accumulated across a target of thickness Z =
zp — z) is greater than n/2:

02
Ekq7>g.

Maximum value of the angle 6 corresponds to the harmonic
divergence. Roughly taking the latter equal to the laser beam

divergence, one finds [144] that
b

zZ>—, 39

. (39)

where b is the confocal parameter of the laser beam.
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It can be seen from condition (39) that the higher the
harmonic order, the smaller the thickness of the target for
which the off-axis phase matching can still be ignored.
Typically, condition (39) is fulfilled in experiments on HHG;
hence, an analysis of the off-axis phase matching is valuable
for their interpretation.

We carried out a detailed theoretical analysis of the phase
matching in HHG in Refs [88, 142, 145-147]. It was shown
that the range of angles for which the harmonics are generated
efficiently narrows with increasing generating layer thickness;
hence, the harmonic power increases more slowly than
quadratically with layer thickness. In other words, only
those angular components of the harmonic are generated
synchronously, which fall within a limited interval narrowing
with increasing thickness of the layer.

Studies of HHG were carried out in Refs [142, 148—150]
for the case of a driving field propagating in a gas-filled
hollow waveguide (capillary). In this case, the geometrical
term (27) entering the dispersion relation is replaced by the so-
called waveguide term which has the same sign:

UZ)V()

6}(0(2) = —W y
where a is the radius of the waveguide, and u is the coefficient
determined by the regime of the driving field in the
waveguide. This regime is of great interest in the context of
HHG because, in this case, the laser beam is capable of
propagating over a relatively large distance without diver-
gence. Moreover, taking advantage of a capillary allows the
solution to the technical problem of creating a target contain-
ing gas under fairly high pressures (ranging from a few to
some tens of atmospheres). In this case, there can be a
considerable number of harmonic emitters even at a low
degree of ionization, when, as mentioned above, the disper-
sion of plasma and geometric dispersion can still be cancelled
out by the dispersion of neutral atoms. By implementing
experimentally this scheme, the harmonics have been pro-
duced with the highest orders (up to about the 5000th
harmonic [151]) to date.

At radiation intensities sufficient for HHG, the driving
laser pulse can propagate in the self-channeling regime.
Similar to the capillary case, an increase in the interaction
length leads to a relatively high efficiency of harmonic
generation [145, 152].

When the phase matching of the interacting waves is out
of reach, the quasiphase matching technique can be applied
for solving the problem, at least partially. This approach,
which is widely used in the optical frequency range, implies a
periodic (with a period determined by the coherence length)
spatial modulation of the nonlinear properties of the medium.
This modulation is carried out so that the generation occurs
efficiently only in those areas of the medium whose contribu-
tions to the signal interfere constructively. Different ways of
extending this approach to the problem of high-order
harmonic generation have been demonstrated, among which
are the use of waveguides with a periodically modulated
diameter [153, 154], noncollinear HHG (analyzed by our
team in papers [155, 156] and recently implemented experi-
mentally [157, 158]), modulation of laser light via excitation
of higher regimes of the waveguide [159], the employment of
multijet gas targets [160, 161], and others. A more detailed
discussion of the macroscopic aspects of the high-order
harmonic generation process can be found in reviews [162,
163].

(40)

The synchrony in the production of UV emission via
HHG can, in general, vary during the laser pulse transmission
because of ionization of the medium [149, 164—166]. The time
interval within which the harmonic generation occurs
synchronously and, hence, efficiently, can be quite short.
This, on the one hand, restricts the possibility of enhancing
the efficiency of HHG thanks to canceling out the plasma
dispersion by the dispersion of neutral atoms. On the other
hand, if the above-mentioned time interval is comparable to
half of the optical cycle, the efficient generation of a single AP
occurs.

When analyzing the synchrony of the harmonic genera-
tion with the aid of formula (28), we assumed the refractive
index of the medium to vary only slightly during the laser
radiation period, whereas the harmonic phase shift @ was
assumed to depend only on the intensity of the driving pulse
(and did not depend on the duration and shape of the pulse).
These assumptions may become invalid in the case of
harmonic generation driven by a few optical cycle laser
pulse. The tools for the analysis of phase matching in this
case were developed in Ref. [167]. A significant change in the
refractive index during the optical cycle causes a change to the
intracycle time dependence of the field, which, in turn,
strongly influences the phases of the harmonics. In this case,
the so-called self-phase-matching regime investigated theore-
tically by Tempea et al. [168] can be realized.

2.5 High-order harmonic generation

and attosecond pulse production

in a few-micrometers long wavelength laser field

Until recently, almost all experiments on HHG were carried
out making use of the Ti:sapphire laser. In recent years,
however, there has been growing activity in the development
and applications of sources delivering intense femtosecond
pulses with a central wavelength of one to a few micrometers
[169-174]. In Sections 2.5.1-2.5.6, we briefly discuss the
prospects for AP production using these sources and the
first results obtained in this direction.

2.5.1 Width of the plateau. The maximum energy of a photon
produced via HHG is determined by the ponderomotive
energy of an electron in the driving laser field, which is
proportional to the product of laser radiation intensity / and
the square of its wavelength 1: U = E}/(4w})  I)*. The
possibility of extending the plateau towards higher frequen-
cies by increasing the intensity of the driving laser is limited by
the rapid growth of the tunneling ionization rate with
intensity. Ionization of the gas results in (a) a reduction in
the number of atoms involved in the process of harmonic
generation, (b) an increase in the phase mismatch associated
with the presence of free electrons, and (c) defocusing of the
laser beam.

An alternative method of producing higher-order harmo-
nics involves the use of laser light with longer A, which was
first experimentally demonstrated in Refs [175, 176]. Exploit-
ing a laser source with 1= 1.6 um, the generation of
harmonics in the ‘water window’ from neutral gases was
demonstrated for the first time [177] (in experiments on HHG
driven by a Ti:sapphire laser, the generation of harmonics
within the ‘water window’ was achieved only with ions as a
nonlinear medium), whereas the tapping of a laser source with
A= 3.9 pm has allowed for the first time the production of
high-brightness harmonic emission with photon energies up
to 1.6 keV [151].
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Figure 8. Harmonic spectra calculated analytically for (a) an He atom, and
(b)an He ™ ion, driven by a linearly polarized Gaussian laser pulse with the
duration of 6 optical cycles, central wavelength of 3.9 um, and peak
intensities of 2.35 x 10'° and 6.7 x 10> W cm~2, respectively.

At sufficiently long 4, the effect of the magnetic field of the
laser pulse becomes the other important factor restricting the
width of the spectrum of the generated harmonics [178]. This
effect manifests itself, in terms of the classical theory, in the
distortion (‘magnetic drift’) of the electron trajectories and, as
a consequence, in a reduced probability of electron collisions
with the parent ions and emission of high-energy photons
[179, 180]. The role of this factor raises with increasing
ionization potential 7, of the particles of a nonlinear gaseous
medium. In the conditions of magnetic-drift limited high-
order harmonic generation, the reduction in the number of
electron trajectories contributing to HHG leads to the
formation of an arc-like harmonic spectrum instead of a
plateau [178, 181], which, in fact, means the narrowing of the
effective width of the spectrum of the generated harmonics.
This is illustrated in Fig. 8, which displays the spectra of high-
order harmonics generated in neutral (see Fig. 8a) and ionized
(see Fig. 8b) helium at 2 = 3.9 um and at high peak intensities
of the laser pulse (the pulse was assumed to be Gaussian, with
FWHM equal to six optical cycles). The calculations were
carried out using the modified strong-field approximation,
which, in contrast to Lewenstein’s theory [52], takes into
account the atomic bound-state depletion and the magnetic-
drift effect [178]. According to these calculations, for neutral
helium (/, = 24.6 eV) driven at 4 = 3.9 pm, the dominating
factor restricting the magnitude and spectral width of the
nonlinear response is the depletion of atomic energy levels. As

a result of a progressive jump-like depopulation of the atomic
bound states, occurring at the electric field maxima on the
leading edge of the laser pulse, the harmonic yield declines
stepwise with increasing photon energy (see Fig. 8a); the
maximum photon energy of the most intense part of the
harmonic emission spectrum ranges 5-7 keV. In the case of
ionized helium (/, = 54.4 eV), the electric field required to
liberate an electron is so high that the oscillation velocity of a
free electron driven at A = 3.9 um is comparable with the
speed of light. This leads to a strong magnetic drift of the
electron and, therefore, to the formation of an arc-shaped
HHG spectrum (see Fig. 8b); in this case, a relatively efficient
generation of harmonic photons with energies of about 15—
20 keV is expected [182]. The calculations for even higher 4
indicate that, for example, at A = 10.6 pum (CO; laser) HHG is
greatly affected by the magnetic field even in the case of
neutral atoms [178].

2.5.2 Magnitude of the atomic response. The possibility of
generating higher-energy harmonic photons by exploiting
longer-wavelength laser sources is severely limited by a rapid
decrease in the magnitude of a high-frequency atomic
response and, consequently, in the intensity of the harmonics
with increasing laser wavelength. This, to a large extent, is due
to the spreading of the electron wave packet on the stage of
free motion: obviously, this spreading is greater for a longer
optical cycle. Both theoretical [45, 183—187] and experimental
[188, 189] studies revealed that the intensity of the harmonic
emission in a given spectral range decreases with increasing 4
as A~*. The numerical value of x = 5—6 for the exponent of
the power-law scaling of the harmonic yield was obtained in
the theoretical calculations of atomic nonlinear response for
different atoms [45, 184, 185, 187]. In experiment [189], the
role of factors related to the gas density (and, therefore, the
phase mismatch) was minimized. Nevertheless, an even faster
decrease in the intensity of harmonics in the spectral window
of 16 to 32 eV (x = 6.3—6.5) was observed. However, as a
theoretical analysis predicts [119], the above-mentioned
unfavorable tendency can be greatly mitigated in multielec-
tron atoms thanks to the anomalously large cross sections of
free—bound electronic transitions in certain intervals of
electron energies. For instance, calculations give evidence
that the efficiency of frequency conversion of laser radiation
into the vacuum ultraviolet range in xenon can be several
orders of magnitude higher than in other noble gases due to
the presence of giant resonance in the cross section of free—
bound transitions at electron energies on the order of 100 eV.
This finding has been confirmed in a recent experiment [125].

2.5.3 Attosecond chirp. According to the semiclassical model
of HHG, the group delay dispersion of high-order harmonics
(chirp of attosecond pulses, or attochirp) should decrease
with the driving laser wavelength as 1 /4, which was confirmed
by experimental measurements [190]. Because of this, when
using a longer-wavelength driving field with the same
intensity, (i) shorter APs compared to the case of a shorter-
wavelength driver can be obtained when the attochirp
compensation is not carried out, and (ii) the implementation
of attochirp compensation becomes easier.

2.5.4 Phase matching. When exploiting long-wavelength
sources, the problem of phase matching appears to be
particularly serious, because the generated radiation with a
given wavelength is obtained as a harmonic of higher order
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than in the case of a Ti:sapphire laser utilized as a driver;
accordingly, the phase mismatch (28) is even more sensitive to
the generation conditions. However, an important feature of
this regime is that, in order to generate radiation with a given
wavelength, lower laser intensity is needed. Consequently, the
degree of ionization of the atoms in the medium may be
significantly reduced. The employment of high-density gas
targets allows a partial compensation for the reduction in the
magnitude of the microscopic response with increasing 4 and
with decreasing intensity of the driving field [151, 191].

The use of long-wavelength lasers for driving HHG entails
an increased role of nonadiabatic effects in phase matching in
the case of a few-cycle laser field. As the calculations revealed
[192], under certain conditions it can result in an efficient
high-order harmonic generation within a short time window
lasting for one or a few half-cycles of the driving field.

2.5.5 Isolated attosecond pulse production via polarization
gating. The threshold ellipticity decreases with increasing /4
[48]. This facilitates the production of isolated APs via
polarization gating [193].

2.5.6 Spectroscopic applications of HHG. One of the spectro-
scopic applications of HHG relies on the observation of the
multicenter interference minima in the spectra of harmonics
generated in molecular gases [93, 94, 194, 195]. The positions
of these minima depend on the internuclear distances in
molecules, allowing the extraction of information about the
molecular structure from the measured HHG spectra. Since
the maximum experimentally attainable width of the HHG
spectrum is restricted by the saturation intensity at which the
molecular ionization occurs, for molecules with a relatively
low ionization potential such measurements with a
Ti:sapphire laser are hampered by the narrowness of the
plateau. Making use of longer-wavelength driving lasers
allows the generation of a wider plateau suitable for
extracting information about the structure of these mole-
cules (see recent experiments [196]).

Important for spectroscopic applications is also the fact
that a smaller energy of the pumping laser photon yields a
denser frequency comb in the harmonic spectrum, which
actually (i) means a finer frequency tuning of the generated
radiation, and (ii) provides higher spectral resolution in
measurements utilizing interference patterns in the HHG
spectra.

3. Attosecond pulse generation
through the interaction of a laser pulse
of ultrarelativistic intensity

with the surface of high-density plasma

3.1 Introduction
As already mentioned in Section 2, the APs generated in gases
have low power, which constraints their application in a
physical experiment. It is expected that taking advantage of
a reflection of short relativistically intense laser pulses from
the surface of condensed-phase targets will allow the genera-
tion of APs with significantly higher intensities and lower
durations, including isolated (i.e., single) pulses in the near
future. The possibility of efficient generation of such APs was
convincingly demonstrated in numerical calculations.

In this research area, the ‘particle-in-cell’ (PIC) numerical
method is widely applied. In this method, the plasma is

represented as a set of large quasiparticles with a charge-to-
mass ratio equal to this ratio for real particles (electrons and
ions). The quasiparticles interact with each other, not directly
but through electromagnetic fields radiated by them. The
fields are determined from the Maxwell equations defined on
Euler’s coordinate grid. The equations of motion for
quasiparticles are written down in the relativistic form. The
serial numbers of quasiparticles can be considered as their
Lagrangian coordinates. A detailed description of the method
can be found in monographs [197, 198]. In the above-
mentioned simulations, the target is usually modelled by a
layer of dense (supercritical) plasma with the given initial
parameters.

Physical experiments have not yet demonstrated the
generation of isolated APs on the plasma surface. It was
shown in experiments [28, 29] that the high-order harmonics
(HHs) generated on the target surface irradiated by laser
pulses with a duration of 45 fs are phase-locked and are
emitted as an AP train.

In contrast to harmonic generation in gases, HHs from the
plasma surface are classical in nature, and qualitative models
applied to explain them are relatively simple. However, a
quantitative description of the phenomenon faces serious
difficulties. It is challenging to find any reliable analytical
solutions of a complex set of equations describing this
phenomenon, whereas a numerical study is highly demand-
ing. Moreover, the mechanism of the phenomenon is
ambiguous and depends on the experimental conditions.

At subrelativistic intensities (intensity referred to as
subrelativistic is that satisfying the condition 7 < [, where
L = [¢/(87)](mcw/e)* ~ 1.37 x 10" (1 um/4)* [W cm2)),
the generation of HHs is apparently governed by the
‘coherent wake emission” (CWE) mechanism [199], which, in
brief, is as follows. When the surface of a condensed-phase
target is exposed to intense light, electron bunches arise in an
expanding plasma, which penetrate deep into the plasma [200]
and excite plasma oscillations with frequencies that are
multiples of the bunch repetition frequency and, hence, the
frequency of light. In inhomogeneous plasma, the plasma
oscillations are partially transformed into electromagnetic
waves leading to the HH emission. The frequencies of HHs
are bounded by the plasma frequency (Qp = \/4nNe?/m,
where N is the plasma concentration) and are relatively low.
The CWE proceeds most efficiently at the oblique incidence
of p-polarized light on the target.

At relativistic intensities ({ > I ), the generation of HHs
with frequencies not bounded by the plasma frequency is
possible [201, 202], which makes this generation regime more
interesting in terms of producing APs (including isolated
ones). To explain the HH generation in this regime, the
‘oscillating mirror’ model was proposed [203]. This model
assumes that the electron spatial distribution has a sharp
border which oscillates against immobile ions. The surface
oscillations cause Doppler frequency shifts which determine
the spectrum of the reflected light.

Under certain conditions, the plasma evolution in the
relativistic regime turns out to be correlated with the laser
field in such a way that ultradense electron nanobunches are
formed near the plasma—vacuum interface [204-207], which
release the energy accumulated by them in a process
analogous to synchrotron radiation. Thanks to the narrow-
ness of these bunches, all the electrons within them are
emitted coherently; the emission spectrum in this case is
characterized by a slower decrease in intensity with the
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Figure 9. Distribution of electrons and positive charges in the plasma. The
positive charge border (plasma—vacuum interface) is located in the plane
x = 0, the electron component border X(7) moves in the region of x > 0, in
accordance with the field strengths. The electrons that were originally in
the region between 0 and X(r) are grouped in a thin layer around the
coordinate X(7).

harmonic order [204, 208] than in other cases mentioned
above. For this reason, the process underlying this regime of
HHG is singled out as one more HH generation mechanism
called ‘coherent synchrotron emission’. The physics of
processes leading to the production of APs in this regime
with an oblique incidence of light on a plasma surface was
discussed in detail in Refs [204, 206]. In particular, the
‘relativistic electron spring’ model was proposed [206],
which describes the accumulation and release of energy in
the near-surface plasma layer compressed by the light
pressure force.

A detailed discussion and comparison of the above
mechanisms of HH generation on a plasma surface and their
theoretical description can be found in recent reviews and
original papers [25, 26, 209, 210]. The theory presented below
describes HHG on the edge of dense plasma in the parameter
range typical for the model of a relativistic oscillating mirror.

3.2 Analytical model

Electron motion activated by incident light is influenced by
the intensity and frequency of light, the plasma density, and
other factors. Analytical models describing the electron
motion are usually based on a rather simplified picture of
this motion. Typically, the construction of such models
implicitly assumes that the laser pulse comprises many field
cycles and that the plasma surface oscillations are periodic in
time.

We will discuss here an alternative model, assuming that
the laser pulse duration is short (two or three optical cycles),
plasma motion is not periodic, and the frequency and
intensity of light are not too great, so that the electron
movement is only restricted by potential fields (not inertia).
We assume that the plasma is fully ionized. Before the
arrival of the electromagnetic pulse, the sharp edge of the
plasma resides at x = 0 (see Fig. 9). We also assume that the
plasma density is very high, so that the skin layer thickness
can be considered arbitrarily small, the critical plasma
frequency is much higher than the frequency of light, and
the displacement of electrons induced by the light pressure is
many times smaller than the laser wavelength. Under these
conditions, the position of the border of the electron
component adiabatically tracks the change in light pres-

sure, and its coordinate X(¢) can be found from the
equation

Piigni (1, X) = Py, (X ), (41)

where Piigni(1, X) = [(1 + R)/(4m)|E2.(t — X/c) is the pres-
sure of light reflected from the border of the electron
component, Ei,.(#) is the electric field strength of the incident
wave in the plane x = 0, R is the reflectivity (hereinafter, it is
assumed that R~ 1), Py (X)=2n(NeeX)” is the surface
density of potential forces that keep the electron component
from further displacement, and N, is the initial electron
concentration.

When postulating condition (41), we disregard the term
on the right-hand side which takes into account the inertia of
the electrons, i.e., the term dP/dt, where P is the electron
momentum surface density. This is valid at relatively high
densities N, utilized in the calculations.

Equation (41) can be easily solved numerically. Let X(z)
be the solution of this equation, and E.(7) the electric field
strength of the reflected wave in the plane x = 0. Then, one
finds

b1+ 29) < 1 X0,

Using relationship (42), one can simulate numerically the
dependence E(1).

(42)

3.3 Numerical results

3.3.1 Normal incidence. Sharp plasma-vacuum boundary.
Figure 10 plots the dependence Ef(f) obtained with the aid
of the model described in Section 3.2 for the incident pulse
given by

Enc(t) = a @ exp [~ (3.4no0)?] sin (i), (43)
with A = 0.8 um, a = 15, and N, = 10% cm 3.

It is seen that the overoscillations of the reflected field
become saw-toothed with increasing incident field amplitude.
It appears that the time intervals at which the electric field
modulus | Erf| rises are lengthened, as well as the intervals at
which it falls are shortened, exhibiting increasingly sharp

Field strength, rel. units

1/ Topt

Figure 10. (Color online.) Incident (gray line) and reflected fields
calculated using relationship (42) (dashed line) and by the PIC method
(solid red line) in the plane x = 0. Field strengths are given in relativistic
units.
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Figure 11. Spectrum of the reflected field shown in Fig. 10 and approxima-
tion of the envelope of the spectrum.

jumps. These are just those jumps from which one can
produce short pulses by filtering out the low-frequency

components of the field.
Figure 11 displays the spectrum of the reflected field

|Erer(Q)]* calculated numerically. The envelope of the spec-
trum is well approximated by
2 A
) ‘Einc‘27

()

where ne; = mw?/(4me?) is the critical plasma density, and
Eiy is the Fourier amplitude of the incident field Einc(7) at

ang;
Ne

(44)

|E™

frequency w.
Our calculations give evidence that, at least in the

parameter range of 10 cm™ < N, < 6 x 102 ecm™ and
Ix(Nex1073 cm?) < a < 15 x (N x 10723 cm?), the values
of the square of the amplitude for odd harmonics of order
from 5 to 50 predicted by this formula differ little (by no more
than twice) from those given by |Er(Q)[*. They are propor-
tional to the square of the intensity of the driving field and
inversely proportional to the square of the plasma density.
The conversion efficiency |EXPP"(Q)*/|Einc|* is inversely
proportional to the square of the similarity parameter
S = N¢/nera introduced in Ref. [211]. Figures 10 and 11 also
give the results of PIC simulations. They are qualitatively
consistent with the results of calculations based on the model
adopted here. It is worth noting that the relationship
|Erer(Q)] ~ (Q/w) ™ was obtained more than once in the
analytical models. It also appears that different models give
different values for the exponent ¢: 5/2 [212], 8/3 [213], 2
[214], and others. PIC simulations indicate that the index ¢
decreases (in absolute value) with decreasing plasma density
or with increasing light intensity. The numerical model
applied here is based on assumptions which are more valid
for higher plasma density and become inadequate for both
very large and very low (subrelativistic) radiation intensities.
Figure 12 demonstrates a train of attosecond pulses
obtained from the field E.(¢), shown in Fig. 10, through
spectral filtering described by the formula

)
2 Q

|

2
exp (—iQt) dQ

Egn (1)
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Figure 12. Square of the reflected field calculated using relationship (42)
before filtering (dashed line, just as in Fig. 10) and after spectral filtering
using formula (45) with Q; = 10w and 2, = 50w (thick solid line). Field
intensities are given in relativistic units.
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Figure 13. Square of the reflected field calculated by the PIC method
before filtering (thin solid line, just as in Fig. 10) and after spectral filtering
using formula (45) with Q| = 4w and @, = 50w (thick solid line). Field

intensities are given in relativistic units.

with Q; = 10w and Q, = 50w. Attosecond pulses appear
synchronously with the jumps of the field E.(z).

It should be emphasized that, even when the duration of
the driving pulse [i.e., FWHM of envelope EZ ()] is equal to
two cycles of the field, the central AP significantly exceeds in
amplitude the adjacent pulses. In the oblique incidence case,
the pulses closest to the central AP disappear (see below).

Figure 13 demonstrates the train of APs separated by
spectral filtering (45) of the field, shown in Fig. 10, being
calculated by the PIC method. Qualitatively, it is close to the
train represented in Fig. 12.

Thus, for the parameters invoked above, AP generation
can be described well in the framework of the proposed
model. However, the field intensities on the order of
10 W cm~2 considered here have not yet been reached for
such a short pulse. Furthermore, the plasma density used
above is unrealistically small. Indeed, the plasma parameters
relevant to equation (41) correspond to N./ne = 60. Let us
estimate the value of this ratio in a real experiment. At
relativistic intensities, a deep and fast ionization of the
medium occurs. It proceeds in the barrier suppression
regime if the electric field strength exceeds U?/4Ze3, where
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U is the ionization potential, and Z is the charge of the
atomic core [215]. Estimates show that, for instance, for
quartz irradiated with an intensity of 10 W cm™~2, barrier-
suppression ionization involves almost all the electrons
(except K-electrons of silicon). Upon complete ionization
of the target, the plasma density is close to 3x10%p per g,
where p is the mass density, so that, for example, with
/. =0.75pm and p = 2 g cm3, we obtain N,/n., ~ 300.

3.3.2 Oblique incidence. Sharp plasma—vacuum boundary. Not
only is the transition from normal to oblique incidence
technically convenient; it also leads to a significant increase
in the AP amplitude and simplifies the selection of a single AP
from the train. At oblique incidence of p-polarized light, the
electric field comprises a component normal to the target
surface, which oscillates at the fundamental frequency,
whereas the Lorentz force is always directed into the target
and oscillates at the doubled frequency. In one half-cycle, this
component of the field enhances light pressure on the electron
component of the plasma, whereas in the other half-cycle it
contributes (together with the potential field) to electron
acceleration in the direction opposite to the beam propaga-
tion. As a result, the AP amplitude increases and the
repetition frequency is one half that of normal incidence
(with large angles of incidence, only those APs survive
which are generated in the half-cycle in which the electric
field of the wave is directed into the plasma).

For illustration, Figs 14 and 15 display, respectively, the
reflected field and its spectrum calculated using PIC code for
the case of an obliquely incident sinusoidal pulse similar to
that given by formula (43), with a 2.5-cycle duration, intensity
I = 100/, and incidence angle /5 with respect to the surface
of a plasma with density N, = 100n,,.

The results of calculations performed for different
intensities of a 2-cycle Gaussian pulse incident at angle /5
on the plasma with a density one hundred times the critical
density are listed in Table 1. The middle column shows the
intensity of APs extracted from the reflected field by spectral
filtering [see formula (45)], with Q; = 5w and Q, = 45w; the
right-hand column demonstrates the contrast of the most
intense APs with respect to adjacent pulses in the train. At
driving pulse intensities below 407, APs with a contrast
greater than two were not observed.

3.3.3 Oblique incidence. Smooth plasma—vacuum boundary.
HHG efficiency increases significantly as one proceeds from a
sharp plasma—vacuum boundary case to the case of a
smoother plasma density distribution [216]. The reason for
the high efficiency of the laser light—plasma interaction in the
latter case consists presumably in the fact that this interaction
occurs mainly in a quasiresonance region with a plasma
density slightly higher than the critical density.

Field strength, rel. units
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Figure 14. (Color online.) Incident (gray line) and reflected (thin red line)
field calculated by the PIC method. Field strengths are given in relativistic
units.
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Figure 15. (Color online.) Spectrum of the reflected field shown in Fig. 14,
and approximation of the envelope of the spectrum.

It turns out that the case of oblique incidence on a plasma
with a smooth boundary is the most favorable in this regard.
Below, we discuss the results of calculations carried out for
the following distribution of the plasma density: for x < 0, the
initial density is zero; within the interval 0—8L it grows
exponentially as Ne = Npax exp (x/L — 8) (below, the para-
meter L is called the gradient length), and for x > 8L the
density is equal to Nyax.

Table 2 lists the results of calculations performed for the
case of a 2-cycle laser pulse incident at angle 2nt/15 on the
surface of a plasma with Ny,x = 2001, and gradient length of
L =0.0641.

These results indicate that in the experiments with an
oblique incidence of light on the plasma with a smoothly

Table 1.
Driving pulse intensity, Intensity of AP, Contrast
relativistic units relativistic units; Q; = 5w,
2, =45m
200 85 4.6
160 67 6.8
120 34 3.75
80 9.6 33
50 2.54 2.7

Table 2.
Driving pulse Range of Intensity of AP, Contrast
intensity, spectral filtering | relativistic units
relativistic units (21 —2)/w

40 5-60 37.9 2.85
20 5-60 19.6 2.2
5 5-30 3.5 4.6

2.5 5-30 0.6 3.5
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Figure 16. (Color online.) Square of the field of the incident (thick line) and
reflected (thin red line) radiation.

varying density, APs with relatively high contrast and
intensity can be obtained utilizing driving light with an
intensity an order of magnitude lower than in the case of
plasma having a sharp boundary.

For slightly larger angles of incidence and driving beam
intensities, it turns out that the pulse reflected from a
plasma with a smoothly varying density breaks up into a
train of short pulses whose duration falls within the
attosecond range without any spectral filtering, and their
intensity is significantly higher than that of the incident
(driving) pulse. Figure 16 plots such an AP train obtained in
the calculation with L = 0.064), Npya.x = 1001, and the
angle of incidence w/5; the incident pulse is given by
expression (43) with a = 10. The duration of the central
pulse in the reflected AP train is approximately 30 times
shorter than the period of the incident light; the contrast
with respect to the adjacent pulses is about 3.25.

The results of numerical simulations show that in the
range of L €[0;0.3] the intensity ratio Ilwr/linc Of the
reflected and incident pulses increases and the AP duration
decreases with increasing the gradient length.

Both the methods and the capability of preparing flat
plasma layers with relatively large gradient lengths (L ~ 0.14)
and controlled parameters are independent issues which have
not yet been considered in detail. The creation and utilization
of such layers may be significantly hampered by the
instabilities arising during the expansion of a dense plasma.
Notice, however, that, as the research implies, an efficient AP
generation with driving pulses of ultrarelativistic intensity can
be achieved in the cases of both a smooth (with a gradient
length L on the order of a few tenths of 1) and a sharp (L = 0)
plasma—vacuum interface. In particular, making some model
assumptions the authors of Ref. [206] concluded against the
possibility of obtaining a large value of the ratio frer/fine > 1
with a stepwise profile of the plasma density. Calculations
give evidence that for L in the range of 0 to 0.8/, the above
ratio can significantly exceed unity [204] and the emission
spectra may exhibit a slow decay with a harmonic order [205]
characteristic of the coherent synchrotron emission mechan-
ism.

3.4 Concluding remarks

Summing up this section, we point out a number of studies
which have explored various configurations of the plasma
targets and driving light for producing APs on a plasma
surface.

AP generation in the interaction of intense laser pulses
with thin plasma layers having a rectangular density profile
was studied in Refs [214, 217]. The results of simulations
(using the PIC method) have revealed the feasibility of
producing a high-contrast isolated APs if certain strict
requirements on the intensity of the driving light or the
thickness of the layer are met. According to the findings
[217], the intensity should be comparable with some critical
value

1l N, 2
Icr = 1rel 7’17 3
L Her

where /is the thickness of the layer (at an intensity exceeding
I.;, the plasma layer is destroyed).

In Refs [218, 219], a method of producing an isolated AP
was proposed, based on the application of tight focusing of
the driving laser beam, providing a plasma surface deforma-
tion which entails, in turn, both scanning the angle of
reflection of the radiation and focusing it. The simulations
[218, 219] involved relatively low plasma densities and laser
intensities (on the order of 10/). It seems likely that, when
working with real targets, the intensity requirements will
become much more severe.

In Ref. [220], a mechanism was proposed for AP
generation with the driving radiation composed of a funda-
mental field and its second harmonic. It has been demon-
strated that under certain conditions a 5% conversion of the
fundamental field into the second harmonic leads to an
increase in the intensity of the generated isolated AP by an
order of magnitude.

In paper [221], a more complex method of isolated AP
generation was elaborated, which is based on making use the
two beams with different intensities, polarizations, and
frequencies.

In recent years, a number of experimental groups have
made significant progress in obtaining relativistically intense
pulses of short duration and high contrast (see, e.g., Refs [201,
222]), suitable for experiments on the generation of high-
order harmonics and APs on the surface. Analysis indicates
that the parameters of the laser pulses obtained in these
studies do not yet provide the possibility of producing
isolated APs in experiments with plasmas having a sharp
boundary and high density. It is expected that in the coming
years few-cycle optical pulses with significantly higher power
and shorter duration will be available. Isolated AP generation
may also benefit from the employment of targets made of
low-density materials, such as polymethacrylate. Naturally, it
would be extremely useful to engineer controllable plasma
layers with a large gradient length (about a few tenths of the
laser radiation wavelength).

Finally, we note also that there are discussions of the
possibility of AP generation in the interaction of a laser field
of ultrarelativistic intensity with rarefied plasmas [223, 224].

4. Conclusion

In this review, two approaches to AP production are
considered, which make use of the interaction of moderately
intense (about 10'* W cm~2) radiation with gaseous media
and the interaction of ultrarelativistically intense laser
radiation with a dense plasma. The first of these approaches
has been explored in great detail to date. At the same time,
active theoretical research in this direction continues nowa-
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days and is focused on issues such as resonance-enhanced
HHG, relativistic effects in HHG, harmonic generation in
molecular gases and crystals, and HHG in fields containing
components of different frequencies and polarizations.

HHG remains the only well-studied nonlinear high-order
optical process. Great progress can be expected to come soon
in the research on other nonlinear optical processes of a high
order; for instance, the results of experimental [225] and
numerical [226] research were published recently, which
were interpreted by the authors as the demonstration of
multiphoton parametric amplification in the UV region; this
became the subject of a lively discussion [227-229]. The study
of purely optical multiphoton processes opens the way to the
development of nonperturbative nonlinear optics [230]. The
generation and amplification of coherent ultraviolet radia-
tion on the basis of these processes may lead to new methods
of producing intense APs in gaseous media.

Ways of producing APs without utilizing HHG are also
discussed, in particular:

(1) summation of many anti-Stokes components gener-
ated by stimulated Raman scattering [231-233]. The advan-
tages of this method are the relatively high efficiency of
generation and, therefore, high energy (at the level of a few
microjoules) of the generated UV radiation, whereas the
drawback is a much narrower, compared to the HHG case,
spectral band in which the anti-Stokes components of
comparable intensity are generated, resulting in a rather
long pulse duration (about 1 fs) of the generated UV
radiation;

(i1) resonant generation of in-phase spectral components
in the process of the interaction of vacuum ultraviolet or
X-ray radiation with the atoms in a gas simultaneously
irradiated by an intense laser field, which causes quasistatic
ionization of excited atomic states and/or a shift of excited
energy levels [234, 235]. This method implies the availability
of a source of narrow-band high-frequency radiation. One of
the advantages of the method consists in the originally present
synchronization of the spectral components, which allows AP
production [236]. A similar approach was applied in an
experiment on the formation of time-bin qubits and pulse
sequences from single y-ray photons [237].

Theoretical studies of AP generation in the interaction of
laser radiation with dense plasmas are based mainly on
numerical simulations employing the PIC method. For a
qualitative analysis of the phenomenon, several models were
constructed which have different ranges of applicability. In
this review, we presented the theory built around the
oscillating mirror model; this theory provides good quantita-
tive agreement with the numerical results in a certain range of
parameters.

On the basis of both numerical and simple model
calculations, it can be concluded that the APs produced via
reflection of a laser pulse from the dense plasma boundary
can be of much higher energy than those generated in gases.
However, such a method for producing APs is much more
complex from the experimental point of view, since it requires
both high intensity and high contrast of the driving pulse,
which makes it difficult to fabricate on this basis devices for
practical use in attosecond physics. Recent advances in the
production, measurement, and applications of APs relate
mainly to attosecond pulses generated in gas media.

This study was partially supported by the Russian
Foundation for Basic Research (grant Nos 14-02-00762-a,
16-02-00858-a, and 14-02-00878-a).
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