
Abstract. The nature of phase transitions in hot and dense
nuclear matter is discussed in the framework of the effective
SU(2) Nambu ± Jona-Lasinio model with a Polyakov loop with
two quark flavorsÐone of a few models describing the proper-
ties of both chiral and confinement±deconfinement phase tran-
sitions. We consider the parameters of the model and examine
additional interactions that influence the structure of the phase
diagram and the positions of critical points in it. The effect of
meson correlations on the thermodynamic properties of the
quark±meson system is examined. The evolution of the model
with changes in the understanding of the phase diagram struc-
ture is discussed.

Keywords: phase diagram, phase transition, spontaneous chiral
symmetry breaking, confinement, critical end point, thermo-
dynamics of quark matter, meson correlations

1. Introduction

The properties of nuclear matter under extremely high
pressures and temperatures have been studied in many
theoretical papers and can be explored in new accelerators
and experiments capable of reproducing these conditions.
Special attention in given to searches for the phase transition
from hot dense matter to the quark±gluon plasma. In hot and
dense nuclear matter, after nucleon overlapping, a state can
arise where quarks cannot be uniquely assigned to a given
object. Such a system can be regarded as a gas of quasi-free

particles consisting of strongly interacting quarks and gluons
(the quark±gluon plasma).

Presently, quantum chromodynamics (QCD) is the
commonly accepted theory of strong interactions, in which
the interaction between quarks and gluons is mediated by
color exchange [1]. The non-Abelian nature of QCD enables
introducing and describing two basic QCD features: asymp-
totic freedom and confinement. Asymptotic freedom is the
ability of a QCD system to weakly interact at high energies.
Confinement is the ability of quarks to form colorless states
(hadrons) in normal conditions (low temperatures and
densities). It is difficult to use the QCD Lagrangian to
directly calculate the mass spectrum, coupling constants,
and physical processes in nuclear matter. To investigate
phase states of nuclear matter, direct lattice QCD calcula-
tions [2] have been used. Phase transitions in hot and dense
nuclear matter suggest that with increasing the temperature
and/or density, deconfinement (liberation of quarks) can
occur, and the mass of quarks is reduced to its current value.
To fully describe the phase diagram structure, a theory
embodying the basic principles of quark±gluon interactions
is needed.

The lattice QCD suggests that a chiral phase transition
(partial chiral symmetry restoration due to conversion of
massive quarks into current quarks) occurs at the tempera-
ture T lat

c � 0:154� 0:009 GeV [2] in the case of 2� 1 quark
flavors and at 0.170 GeV in the case of two flavors [3], and it
should coincide with a deconfinement-type transition. The
lattice QCD approach may be quite precise, but there are
issues related, for example, to the insufficient power of
modern computers, which prevents making an elementary
cell sufficiently small. In addition, the quark mass used in
lattice calculations is an order of magnitude larger than that
of real quarks. The lattice calculations alsomeet difficulties in
regions with a finite chemical potential. This is related to the
appearance of a complex determinant when integrating over
fermionic degrees of freedom. Calculations with two quark
flavors are free from the last problem [4].
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These complications, in particular, motivated the devel-
opment of effective QCD models like the Nambu±Jona-
Lasinio (NJL) model [5, 6] or the linear s-model [7] as low-
energy limits of QCD. The NJL model was formulated in
1961 [5] in analogy with the Bardeen±Cooper±Schrieffer
(BCS) theory of superconductivity, but did not include
notions of quarks and gluons. For quarks, the model was
reformulated somewhat later in [8, 9], where it was shown
how the current quarks with zeromassm � 0 (the chiral limit)
are transformed into massive quarks with the mass
m � 0:3 GeV that form hadrons via a spontaneous chiral
symmetry breaking mechanism. Volkov and co-authors [10±
13] proposed a more realistic variant of the model with
nonzero masses of current quarks (m0 � 0:5 MeV). A great
advantage of the NJL model is the possibility of studying the
mass and internal properties of mesons at finite temperatures
and densities [14±21].

The NJL model includes four-fermion point-like interac-
tions and is therefore nonrenormalizable, and the choice of an
appropriate regularization is essential in order to apply this
model [17, 20, 22]. The constraints imposed by this choice are
relaxed in a nonlocal version of the Nambu±Jona-Lasinio
model [23±25]. But the problem of the choice of the nonlocal
interaction form emerges. For example, the instanton
representation of the QCD vacuum can be used to construct
a nonlocal theory [26±28].

The local interaction in the NJL model does not allow
describing confinement. But the NJL model remains relevant
because the presence of confinement is not essential in many
processes. A model coupling quarks to a homogeneous
background gauge field whose dynamics is described by a
Polyakov loop [29±32] was proposed on the basis of the NJL
model in 2004 [33±35]. The Polyakov-loop extended NJL
(PNJL) model is widely used to study the thermodynamic
properties of hadron matter under critical conditions in
heavy-ion collisions [34, 36±38] and in neutron star interiors
(see, e.g., [39±41]).

A shortcoming of the PNJL model is that the critical
temperature of the phase transition with a nonzero chemical
potential is significantly higher (� 0:23 GeV) than the lattice
QCD value (� 0:17 GeV) or even the usual NJL one
(� 0:19 GeV). In order to decrease the phase transition
temperature, the authors of [34, 35] suggested renormalizing
the model parameter T that determines the deconfinement
temperature in the absence of free quarks, down to
T0 � 0:19 GeV. Such an approach indeed decreased the
temperature Tc, but the chiral phase transition temperature
and the deconfinement temperature then became different,
again in contradiction to lattice QCD calculations [42], which
were carried out with an imaginary quark �mq� [43±45] and an
imaginary isospin �mI� [46, 47] chemical potential and showed
that these temperatures coincide within numerical errors.
Therefore, there should certainly be a strong coupling
between the quark condensate and the gauge field. The
author of [48] proposed to enhance the scalar coupling by
adding a phenomenological dependence of the four-quark
coupling constant on the Polyakov loop field F [49±51]. This
formulation of the PNJL model indeed decreases the phase
transition temperature by renormalizing T0 from 0.27 to
0.19 GeV, and the phase transition temperatures then
coincide [52].

The phase diagram structure is also affected by the
inclusion of repulsion between quarks (or a vector cou-
pling). This problem was considered in both the NJL [53, 54]

and PNJL [38, 55±60] models. In the QCDphase diagram, the
vector coupling decreases the domain of the first-order phase
transition, until its complete disappearance when the cou-
pling constant is sufficiently large. The situation changes in
the nonlocal NJL model with a Polyakov loop. This model
shows that the first-order phase transition region does not
depend on the vector coupling strength (see, e.g., [61]). The
vector coupling constant dependence on the Polyakov loop
field was discussed in [51, 52]. In the obtainedmodel, not only
the chiral phase transition coincides with the confinement±
deconfinement transition but also the first-order phase
transition domain disappears at much larger values of the
vector coupling constant.

Most of the papers studying the thermodynamic proper-
ties of the quark±hadron system in the framework of the NJL
or similar models are restricted by the mean-field approxima-
tion. In the critical conditions near the phase transition,
dissociation of hadrons and correlation of pre-hadron states
can also contribute to the system thermodynamics. In [62], the
two-particle correlation thermodynamics are described by a
generalized Bethe±Uhlenbeck equation, which enables esti-
mating the contributions from pre-hadron states to the
system pressure near a phase transitions.

The structure of this review is as follows. In Section 2, the
incorporation of the confinement properties into the chiral
NJL model via the introduction of quark interaction with a
background gauge field is described. The mass spectrum of
the model and the structure of the QCD phase diagram
corresponding to the Polyakov-loop extended NJL model
are discussed. It is shown which interaction parameters can
affect the phase diagram structure. In Section 3, the
thermodynamic properties of nuclear matter described by
this model are explored. Thermodynamic properties of quark
matter are presented and a procedure for including meson
correlations is proposed. In Section 4, we briefly consider the
problems that were not covered in Section 2: inclusion of a
minimal chemical potential into the model, a nonlocal PNJL
model, and the effect of magnetic fields on the phase diagram
structure.

2. Chiral models in QCD with confinement

2.1 Effective potential
The PNJL Lagrangian for scalar and pseudoscalar interac-
tions with two quark flavors has the form [34, 35]

LPNJL � �q�igmD m ÿ m̂0�q� Gs

���qq�2 � ��q ig5tq�2�
ÿ U�F; �F;T � : �1�

This includes the four-quark interaction of quark fields q and
�q, characteristic of the PNJL model with a coupling constant
Gs, t denotes the Pauli matrices in the flavor space, and m̂0 is
the diagonal matrix of current quark masses. Coupling to the
gauge field appears via the covariant derivative
Dm � q m ÿ iAm (Am is the gauge field) and the effective
potential U�F; �F;T � depending on the complex field F of a
Polyakov loop.

As is well known, QCD predicts a linearly increasing
interaction between color objects at large distances. There-
fore, it is possible to imagine that a quark and an antiquark
created at some point x pass some distance before annihilat-
ing at some point x 0. In this picture, the quark±antiquark
trajectory is a loop, which is described in QCD by the Wilson
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operator [63]

W��x� � tr

�
P
�
igs

�
C

Am dxm

��
; �2�

where Am is the total color vector potential of quarks and the
vacuum, P is the ordering operator along the loop, gs is the
strong coupling constant, and the trace tr is taken over color
indexes, because the quark±antiquark pair was created and
annihilated in a colorless state. In this case, in the absence of
dynamical quarks, the Wilson line is the order parameter
determining the confinement.

For practical applications at finite temperatures and
densities, confinement can be conveniently described by the
Polyakov loop [63, 64]

l�x� � tr

�
P exp

�
i

� b

0

dtA4�x; t�
��

; �3�

where A4 � iA0 is the time component of the gauge field
�A;A4�, which includes the constant gs: A

m�x� � gsA
m
a�la=2�,

where Am
a is an SU(3) gauge filed and la are the Gell-Mann

matrices.
The Polyakov loop can be interpreted in analogy with the

free energy Fq�x� [29, 35, 64] that has to be spent in order to
add a heavy color source (a dynamical quark):


l�x�� � exp
ÿÿbDFq�x�

�
:

If the system is closed, the amount of energy spent should be
infinitely large; therefore, hl�x�i � 0 corresponds to the
confinement phase (Z3-symmetric phase). If there is a color
source in the system, the field F emerges that in the SUc�3�-
gauge theory is introduced as the expectation value of the
Polyakov line in a finite space volume [65]:

F�x� � 

l�x��� � 1

Nc
tr



L�x��� ; �4�

where L�x� is the expression in brackets in the right-hand side
of (2).

In the pure-gauge SU�Nc� theory, confinement is described
by an effective potential that can be related to the Polyakov
loop complex field [35, 64, 65]. The effective potential
U�F; �F;T � for the PNJL model can be determined from the
lattice QCD results obtained in the absence of dynamical
quarks. The effective potential is subjected to two constraints:
it must satisfy the Z3-symmetry conditions and it must
reproduce the results of gluodynamics in lattice QCD [66].
This gives a certain freedom in choosing the approximating
function to describe the effective potential [34, 36, 38, 67].
� A polynomial from of the potential is most frequently

used [34]:

URTW05�F; �F;T �
T 4

� ÿ b2�T �
2

�FFÿ b3
6
�F 3 � �F 3� � b4

4
� �FF�2 ;
�5�

b2�T � � a0 � a1

�
T0

T

�
� a2

�
T0

T

�2

� a3

�
T0

T

�3

: �6�

� The highest-degree terms in (5) can be replaced by a
logarithmic dependence [36, 67]:

URTW06�F; �F;T �
T 4

� ÿ 1

2
a�T �F �F� b�T � ln h�F; �F� : �7�

� Another approximating function was proposed in [38]:

UFU08�F; �F;T �
bT

� ÿ54 exp
�
ÿ a

T

�
F �F� ln h�F; �F� : �8�

� To study hadron matter in neutron stars, an explicit
dependence of the effective potential on the chemical
potential m was introduced [68, 69]:

UDS09�F; �F;T �
bT

�
�
a0 � a1

m 4

T 4
� a2

m 2

T 2

�
F �F

� a3

�
T0

T

�4

ln h�F; �F� : �9�

In formulas (6)±(9),

h�F; �F� � 1ÿ 6 �FF� 4� �F 3 � F 3� ÿ 3� �FF�2 ;

a�T � � ~a0 � ~a1

�
T0

T

�
� ~a2

�
T0

T

�2

; �10�

b�T � � ~b3

�
T0

T

�3

;

and T0, ai, bi, ~ai, and ~bi are model parameters. The parameter
T0 depends on the number of flavors and the chemical
potential, but T0 � 0:27 in the pure-gauge sector [70].

To determine the model parameters and the effective
potential, the following condition should be taken into
account: F! 1 and P=T 4 ! 1:75 [the Stephan±Boltzmann
(SB) limit for gluons] as T!1. This immediately implies
that ~a0 � 3:51 for the logarithmic function in potential (7)
and a0=2� b3=3ÿ b4=4 � 1:75 for polynomial function (5).
By minimizing U�F; �F;T � in F, taking into account that
F � �F at m � 0, and using the least-square method, the
remaining coefficients in the effective potential can be found.

To approximate the potential, the lattice calculations data
obtained in [66] and shown in Fig. 1 by the filled triangles are
used. In 2009, the effective potential was calculated in [70] (the
unfilled circles in Fig. 1). Calculating the parameters of the
polynomial and logarithmic potentials that reproduce these
data allows assessing how the parameterization of the
effective potential affects the thermodynamics of hadrons.
The obtained coefficients are listed in Table 1.
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Figure 1. Normalized gluon pressure P=PSB as a function of the normal-

ized temperature. Old [66] and new [70] lattice data are respectively shown

by filled triangles and circles. The dotted line shows a polynomial

approximation of the old data. The solid and dashed line corresponds to

the logarithmic and polynomial potential approximation.

April 2016 Phase diagram of baryon matter in the SU(2) Nambuë Jona-Lasinio model with a Polyakov loop 369



The results of the approximation are also shown in Fig. 1.
It is seen that the original lattice QCDdata are quite different,
by about 10% for T=T0 � 2, while the logarithmic and
polynomial approximations of the effective potential with
fitted parameters are in very good agreement.

Figure 2 shows the effective potential U�F; �F;T � as a
function of the field F for different temperatures. The figure
implies that the way of describing the effective potential and
its parameterization does not truly affect the general behavior
of the potential. When the system is in the confinement state
(the Z3-symmetric phase), i.e., for temperatures below the
critical 0.27 GeV value for gluons, the potential has a single
minimum at F � 0. As the temperature tends to the critical
value, the effective potential flattens. At temperatures above
the critical one, when the Z3-symmetry is broken and
deconfinement occurs in the system, the potential minimum
occurs already at F 6� 0. In the limit T!1, the location of
the minimum tends to 1. The applicability domain of the
model with a Polyakov loop is restricted by the temperature
T � 2:5T0 [71].

A comparison of the Polyakov loop field with lattice
QCD calculations is shown in Fig. 3. It is seen that
irrespective of the potential approximation, the values of F
obtained from the new data are somewhat smaller than those
obtained from old data. This can be explained by noticing
from Fig. 1 that the pressures obtained from the new and old
data are significantly different. Although, strictly speaking,
the Polyakov loop ceases to be an order parameter when a
dynamical color charge (quark) appears in the vacuum, it
remains a phase indicator for a large number of colors Nc

(and even for Nc � 2; 3).

2.2 Constituent quarks and mesons
The Lagrangian of the PNJL model with a finite chemical
potential has the form

LPNJL � �q�igmD m ÿ m̂0 � g0m�q� Gs

���qq�2 � ��q ig5tq�2�
ÿ U�F; �F;T � ; �11�

T � 2Tc

T � 1:15Tc

T � Tc

T � 0:7Tc
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Figure 2.Effective potentialU of the (a) polynomial and (b) logarithmic form as a function ofF for different temperatures for old (dashed curves) and new

(solid curves) parameters.

Table 1. Parameters of the effective potential U�F; �F;T � in polynomial and logarithmic approximations.

Data
Polynomial Logarithmic

a0 a1 a2 a3 b3 b4 ~a0 ~a1 ~a2 ~b3

Old [66]

New [70]

6.75

6.47

ÿ1:95
ÿ4:62

2.625

7.95

ÿ7:44
ÿ9:09

0.75

1.03

7.5

7.32

3.51

3.51

ÿ2:47
ÿ5:121

15.2

20.99

ÿ1:75
ÿ2:09
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Figure 3. Polyakov loop field F for (a) polynomial (5) and (b) logarithmic (7) effective potentials. The solid (dashed) curve corresponds to the new (old)

parameters. (Lattice data from [72].)
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whereGs is the constant of the local scalar±pseudoscalar four-
point interaction of the quark fields q and �q, t is the Pauli
matrices in the flavor space, and m̂0 is the diagonal matrix of
the current quarkmassesm 0

u � m 0
d � m0. Quarks are coupled

to the gauge field by the covariant derivative D m � q m ÿ iAm

withAm�x� � gA m
a la=2, whereA m

a are fields in the pure-gauge
SU�3� theory, la are the Gell-Mann matrices, and
Am � dm

0A
0 � ÿidm

4A4 are gauge fields in the Polyakov gauge.
The quark self-energy caused by the interaction terms in

the Lagrangian is calculated in the Hartree approximation.
The corresponding Schwinger±Dyson equation in diagram
form is presented in Fig. 4. This interaction leads to the
appearance of a constant shift in the quark mass, and in the
momentum representation, the equation takes the form

m � m0 ÿ 2iGs

�
dp

�2p�4 trS�p� ; �12�

where m0 is the current quark mass,

iS�p� � i
1

p̂� g0�ÿiA4 � m� �m
�13�

is the propagator of the `dressed' quark (solid line), and the
trace is taken over the color, flavor, and Dirac indices. In
analogy with the BCS theory, Eqn (12) is frequently referred
to as the gap equation, and themassm is called the constituent
quark mass. This equation is related to the quark condensate

h�qqi � i

�
d4p

�2p�4 trS�p� ; �14�

with which Eqn (12) takes the form

m � m0 � 2Gsh�qqi ;

whence the spontaneous chiral symmetry breaking mechan-
ism is clearly seen: the quarks moving in a background gauge
field acquire mass by adding the quark condensate. After
taking the trace over Dirac and flavor indices and making the
Matsubara replacement�

dp0
2p

�
d3p

�2p�3 ! iT
X�1
n�ÿ1

�
d3p

�2p�3 ; �15�

we arrive at the equation

m � m0� 8NfGsm iT
X1

n�ÿ1

�
d3p

�2p�3
1�

p̂� g0�ÿiA4 � m��2 ÿm 2

�16�

with a four-momentum p̂ � g0p0 ÿ cp, where p0 �
ion ÿ �iA4 � m�, on � �2n� 1�pT is the Matsubara fre-
quency, and m is the quark mass. After the Matsubara
summation, summation over the color indices is performed,

which leads to the appearance of modified Fermi functions:

trj
�
f
�
Ep ÿ �ÿiA4jj � m��	

�
XNc

j�1

1

exp
�
b�Ep ÿ m�� exp �ibA4jj� � 1

�
hÿ
exp

�
b�Ep ÿ m�� exp �ibA422� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA433� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA411� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA433� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA411� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA422� � 1

�i
�
hÿ
exp

�
b�Ep ÿ m�� exp �ibA411� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA422� � 1

�
� ÿexp �b�Ep ÿ m�� exp �ibA433� � 1

�iÿ1
� Nc

n
�F exp

�ÿb�Ep ÿ m��� 2F exp
�ÿ2b�Ep ÿ m��

� exp
�ÿ3b�Ep ÿ m��o

�
n
1� 3

ÿ
�F� F exp

�ÿb�Ep ÿ m��� exp �ÿb�Ep ÿ m��
� exp

�ÿ3b�Ep ÿ m��oÿ1 � Nc f
�
F �Ep ÿ m� : �17�

Similarly,

trj
�
f
�
Ep � �ÿiA4jj � m��	

� Nc

n
F exp

�ÿb�Ep � m��� 2 �F exp
�ÿ2b�Ep � m��

� exp
�ÿ3b�Ep � m��o

�
n
1� 3

ÿ
F� �F exp

�ÿb�Ep � m��� exp �ÿb�Ep � m��
� exp

�ÿ3b�Ep � m��oÿ1 � Nc f
ÿ
F �Ep � m� : �18�

In expressions (17) and (18),Nc � 3 and f �F are the modified
Fermi functions.

As a result, we obtain the equation

m � m0 � 8GsNfNc im

�
d3p

�2p�3
1

Ep

ÿ
1ÿ f �F �Ep� ÿ f ÿF �Ep�

�
;

�19�
where Nf is the number of flavors. The NJL model can be
considered the limit case of the PNJL model as F � �F! 1.

Mesons in the PNLJ model are introduced as collective
modes (quark±antiquark bound states). The meson propaga-
tor in the random phase approximation (Fig. 5) is defined in
terms of the T-matrix as

TM�k 2� � 2iGs

1ÿ 2GsPM�k 2� : �20�

= +

Figure 4. The Schwinger±Dyson equation in the Hartree approximation in

diagram form. The thin solid line corresponds to the current quark

propagator and the thick solid line shows the `dressed' quark propaga-

tor. The loop describes the quark self-energy.

= + + + . . .

Figure 5.Effective interaction in the random phase approximation. On the

left-hand side, the double-dashed line denotes the meson propagator. The

solid lines stand for quark lines; circles denote the quark±meson coupling

constant.
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All information on the meson properties is contained in the
function PM called the polarization operator of mesons

PM�k 2� � i

�
d4p

�2p�4 tr
�
GMS�p� k�GMS�p�� ; �21�

where S�p� is quark propagator (13) and GM corresponds to
the vertex function of a givenmeson:Gp � ig5t

a for a p-meson
and Gs � 1 for a s-meson.

In the pole approximation, the matrix TM can be
represented in the form

TM �
g 2
Mqq

k 2 ÿm 2
M

: �22�

By comparing (22) with (20), we see that to find the mass of a
meson mM, we must solve the equation

1ÿ 2GsPM�k 2���
k 2�m 2

M

� 0 ; �23�

and the meson±quark coupling constant is calculated as

gÿ2Mqq �
qPM�k 2�

qk 2

����
k 2�m 2

M

: �24�

For mesons in the rest frame �k � 0�, equations for their
mass have the form

1ÿ 8NcNfGsI1 � 2NcNfGsk
2I2�k 2���

k 2�m 2
p
� 0 ; �25�

1ÿ 8NcNfGsI1 � 2NcNfGs�k 2 ÿ 4m 2�I2�k 2���
k 2�m 2

s
� 0 ;

�26�

where

I1 �
�
p 2 dp

4p2
1

Ep

ÿ
1ÿ f �F �Ep� ÿ f ÿF �Ep�

�
; �27�

I2�k 2� �
�
p 2 dp

2p2
1

E�k 2 ÿ 4E 2
p �
ÿ
1ÿ f �F �Ep� ÿ f ÿF �Ep�

�
: �28�

The dependence of the meson masses and double quark mass
on temperature is shown in Fig. 6 for two approximations of
the effective potential and two parameter sets from Table 1.
Clearly, for the polynomial effective potential, the results for
the old and new parameters differ more than for the
logarithmic approximation.

2.3 Grand thermodynamic potential.
Mean-field approximation
To describe thermodynamic properties of a system with a
variable number of particles, the definition of a canonical
ensemble is required. Here, the partition function is defined as
a sum over all eigenenergies of the QCDHamiltonian and can
be expressed via the generating functional

Z �
X
a

exp
�ÿb�Ea ÿ mbBa�

�
; �29�

where b is the inverse temperature, a is a state with the baryon
number Ba and energy Ea, and mb is the baryon chemical
potential. On the other hand, in the imaginary time formalism
with t � it, the generating functional has the form

Z�T;V; m� �
�
D�qDq exp

�� b

0

dt
�
v

d3xLPNJL

�
: �30�

After applying the Hubbard±Stratonovich transformation,
auxiliary meson fields are introduced, and the functional
takes the form

Z�T;V; m� �
�
Ds 0Dp 0D�qDq exp

��
d4x

�
L0PNJLÿ

s 0 2� p 0 2

4Gs

��

� exp

�
ÿ
�
d4xU�F; �F;T �

�
: �31�

For the simplest estimate, the mean field (MF) approx-
imation is used, in which the meson fields are described as
fluctuations about the mean value s 0 � s� sMF and
p 0 � p� pMF. Retaining only terms relating to the mean
field, we obtain the functional

ZMF� exp

��
d4x

�
ÿ s 0 2MF

4Gs

�
� tr lnSÿ1MF�m�ÿ

V

T
U�F; �F;T �

�
:

�32�

Then the grand thermodynamic potential for the PNJLmodel
in the MF approximation has the form

OPNJL�T; m� � ÿT

V
lnZMF�T;V; m� ; �33�

OPNJL � U�F; �F;T � � Gsh�qqi2 � Oq �34�
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Figure 6. Temperature dependence of the double quark masses and meson masses for the (a) polynomial and (b) logarithmic parameterization of the old
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with the quark part

Oq � ÿ2NcNf

�
d3p

�2p�3 Ep

ÿ 2NfT

�
d3p

�2p�3 trc

h
ln
ÿ
1� Ly exp

�ÿb�Ep ÿ m���
� ln

ÿ
1� L exp

�ÿb�Ep � m���i : �35�

The integrand in (35) contains the sum of the functions

N�F �Ep� � trc
�
ln
ÿ
1� Ly exp

�ÿb�Ep ÿ m����
� 1� 3

ÿ
F� �F exp

ÿÿbE�p �� exp �ÿbE�p � � exp �ÿ3bE�p � ;
�36�

NÿF �Ep� � trc
�
ln
ÿ
1� L exp

�ÿb�Ep � m����
� 1� 3

ÿ
�F � F exp �ÿbEÿp �

�
exp �ÿbEÿp � � exp �ÿ3bEÿp � ;

�37�
whereE�p � Ep � m, b � 1=T, and the quark energy is defined
as Ep � �p2 �m 2�1=2.

Because spontaneous chiral symmetry breaking is accom-
panied by the appearance of massive quarks in the system, the
quark mass (or the quark condensate) is an order parameter
of the chiral phase transition. At the same time, the Polyakov
loop field F � �F � is an order parameter of the confinement±
deconfinement phase transition. Correspondingly, the system
thermal equilibrium condition is given by

qOPNJL

qh�qqi � 0 ;
qOPNJL

qF
� 0 ;

qOPNJL

q �F
� 0 ; �38�

and the first condition again leads to the gap equation
m � m0 � 2Gsh�qqi.

To illustrate processes of symmetry restoration and
breaking, Fig. 7 shows the behavior of the Polyakov loop
field F and the quark condensate normalized to the zero-
temperature value, h�qqi=h�qqi0, as a function of temperature
for the PNJL model at Gv � 0. The appearance of a dynamic
quark decreases the slope of F in the transition region,
compared to its slope in the gulodynamic case (see Fig. 3).
Figure 7 shows that at low temperatures, when F � 0,
confinement is observed in the system, and the Z3-symmetry

is apparently restored. But, at the same time, the chiral
symmetry is spontaneously broken, which is due to the
quarks having nonzero constituent mass in hadrons. After
the transition region, the quark mass becomes a current one,
which leads to partial chiral symmetry restoration (the chiral
symmetry restoration cannot be complete because the
current quark masses are nonzero). Meanwhile, the field F
becomes nonzero, which leads to Z3-symmetry violation
and, as a consequence, to deconfinement. Lattice QCD
studies showed that these transitions should occur at one
temperature [72, 73].

2.4 Phase diagram of hadron matter in the PNJL model
We can now discuss the structure of the QCD phase diagram
of hadronmatter inNJL-typemodels with the Polyakov loop.
Thermodynamic equilibrium conditions are given by
Eqns (38). Traditionally, in the NJL and PNJL models, the
line of the phase transition from the spontaneously broken
chiral state to the restored chiral symmetry state (the chiral
phase transition) at low temperatures is determined as the
maximum of the derivative qh�qqi=qT jm�const. The phase
transition point from confinement to deconfinement is
determined as max �qF=qT � at m � const [34, 36]. At low
temperatures, the PNJL model, as well as the NJL model,
demonstrates a crossoverÐa soft phase transition character-
ized by a considerable increase in the order parameter. As the
chemical potential increases, three roots appear in the gap
equation solution, and finding the phase transition line by the
above means becomes impossible. The appearance of three
roots suggests a first-order phase transition in the system. In
this case, the first-order phase transition is defined in terms of
the quark susceptibility [74] introduced as

wq�T; m�
T 2

� q2�p=T 4�
q�m=T �2 �

q
q�m=T �

�
r
T 3

�
: �39�

The first-order phase transition region ends at a temperature
at which wq as a function of the chemical potential demon-
strates a sharp maximum; this is the critical end point (CEP).
At temperatures below TCEP, wq has a discontinuity as a
function of the chemical potential. At temperatures above
TCEP, the discontinuity disappears, and wq has a weak
maximum. The behavior of the order parameters is shown in
Fig. 8.

Figure 9 shows the phase diagrams of the PNJL model
with effective potentials (5) and (7) with the old and new
parameters from Table 1 and the free parameters L �
0:639 GeV, m0 � 5:5 MeV, and Gs � 5:227 GeVÿ2 at
T0 � 0:27 GeV. The figure shows that the critical tempera-
ture of the chiral phase transition at zero chemical potential is
greatly overestimated in all cases: at zero chemical potential,
the transition occurs at the temperatures Tc � 0:2395,
0:253 GeV for the polynomial effective potential and at
Tc � 0:23, 0:234 GeV for the logarithmic potential with the
new and old parameters, respectively. Clearly, the choice of
parameters affects the model with the polynomial effective
potential more strongly, but nevertheless the parameteriza-
tion of the effective potential is less signiécant than the
effective potential form for the phase diagram. The critical
point location �TCEP; mCEP� is determined as (0.118, 0.3166)
and (0.11, 03192) for the logarithmic, and (0.10, 0.3175) and
(0.09, 0.322) for the polynomial approximations of the
potential for the new and old parameters, respectively. It is
seen that new parameters affect the critical point shift along
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the chemical potential more strongly than along the tempera-
ture shift.

The problem of the increased critical temperature at zero
chemical potential in the PNJL model (0.23±0.253 GeV
against 0.19 GeV in NJL and 0.17 GeV in the lattice
calculations) was discussed in earlier papers devoted to the
PNJL model [34, 36], where it was proposed to renormalize
the parameter corresponding to the deconfinement tempera-
ture in the gluon sector from T0 � 0:270 GeV to 0.19 GeV.
This decreased the chiral phase transition temperature to
0.18±0.19 GeV, but then it ceases to coincide with the
deconfinement temperature. To avoid that inconsistency,
the phase transition temperature was taken to be the
pseudocritical transition temperature at zero chemical poten-
tial, equal to the mean value of the chiral transition
temperature and the deconfinement transition temperature.
Nevertheless, this approach does not resolve the inconsis-
tency between the two phase transition temperatures.

The search for the CEP is of great interest, but no
consistency has been achieved here yet. For example, if a
vector interaction is added to the model, it is possible to find
parameters such that the first-order phase transition and the
CEP disappear.

2.5 Vector interaction in the PNJL model
The inclusion of vector interaction in the NJL model was
considered in [53, 54] and in the PNJL model, in [38, 55±60].
Vector interaction is introduced into the PNJL model by

adding the term Gv��qgnq�2:
LPNJL � �q�igmD m ÿ m̂0 ÿ g0m�q� Gs

���qq�2 � ��qig5tq�2�
ÿ Gv��qgnq�2 ÿ U�F; �F;T � : �40�

Here, Gv is the vector coupling constant and the other
notation is the same as in (1).

The grand thermodynamic potential in the MF approx-
imation with vector interaction is given by [34, 35]

O�F; �F;m;T; m� � U�F; �F;T � � Gsh�qqi2 � Gvr2 � Oq ; �41�

where h�qqi is the quark condensate, r � h�qg0qi is the density
of quarks, and the quark part is

Oq � ÿ2NcNf

�
d3p

�2p�3 Ep

ÿ 2NfT

�
d3p

�2p�3
ÿ
ln ~N�F �Ep� � ln ~NÿF �Ep�

�
: �42�

Here, the functions ~N�F differ from (36) and (37) by the
appearance of a normalized chemical potential ~m:

~N�F � 1� 3
�
F� �F exp �ÿbE�p �

�
exp �ÿbE�p � � exp �ÿ3bE�p � ;

�43�
~NÿF � 1� 3

�
�F� F exp �ÿbEÿp �

�
exp �ÿbEÿp � � exp �ÿ3bEÿp � ;

�44�
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where E�p � Ep � ~m, Ep �
�����������������
p2 �m 2

p
, and ~m is expressed in

terms of the quark chemical potential m and the quark density
as ~m � mÿ 2Gvr.

The thermodynamic equilibrium state of the system is
now determined by four equations

qO
qh�qqi � 0 ;

qO
qF
� 0 ;

qO
q �F
� 0 ;

qO
q~m
� 0 :

As before, the first of these leads to the gap equation

m � m0 � 4GsNcNf

�
L

d3p

�2p�3
m

Ep

ÿ
1ÿ ~f �F �Ep� ÿ ~f ÿF �Ep�

� �45�
with the normalized chemical potential

~m � mÿ 4GvNcNf

�
L

d3p

�2p�3
m

Ep

ÿ
~f �F �Ep� ÿ ~f ÿF �Ep�

�
; �46�

and the modified Fermi functions that also incorporate the
normalized chemical potential

~f �F �Ep��
�
F� 2 �F exp �ÿbE�p �

�
exp �ÿbE�p �� exp �ÿ3bE�p �

~N�F
;

�47�

~f ÿF �Ep��
�

�F� 2F exp �ÿbEÿp �
�
exp �ÿbEÿp �� exp �ÿ3bEÿp �

~NÿF
;

�48�

where E�p � Ep � ~m
Figure 10a shows the phase diagram of the PNJL model

with vector interaction. The effective potential is chosen in the
polynomial form with parameters from Table 1 and with
T0 � 0:19 GeV. As mentioned in Section 2.4, this normal-
ization of the parameter decreases the critical temperature of
the phase transition at zero chemical potential but causes the
chiral phase transition and deconfinement to occur at
different temperatures. This is seen from Fig. 10b, in which
the model order parameters are also shown. Figure 10 also
confirms that as the vector coupling constant increases, the
first-order phase transition disappears.

The four-quark interactionGs, which is present in theNJL
and PNJL model Lagrangians, can be regarded as a diagram
of gluon exchange between two quarks. The gluon field An

and its time component A0 are coupled to the Polyakov loop

field [75], and Gs can be substituted by an effective vertex
depending on F. Because the PNJL model respects an
extended Z3-symmetry,1 it is possible to introduce a phenom-
enological dependence of Gs�F� [48]:

~Gs�F� � Gs

�
1ÿ a1F �Fÿ a2�F3 � �F 3�� ; �49�

where parameters a1 � a2 � 0:2 are chosen such that the
model reproduces the lattice QCD data at m � 0. This idea
was later used in many papers [49, 50, 77] to explore the
structure of the phase diagram without vector interaction. In
[52, 78], it was first proposed that the dependence of the vector
coupling constant on the Polyakov loop be included:

~Gv�F� � Gv

�
1ÿ a1F �Fÿ a2�F3 � �F 3�� : �50�

The normalization of the vector coupling constant is chosen
such that the constant ratio ~Gv= ~Gs remains independent ofF,
and the same parameters a1 and a2 are used for ~Gv and ~Gs.

Due to such an increase in the quark±gluon coupling, the
renormalization of the parameter T0 makes the phase
transitions occur at the same temperature, and the phase
transition temperature at zero chemical potential significantly
decreases. This is seen from Fig. 11, in which the phase
diagram and the order parameter are plotted. Figure 11 also
implies that the vector coupling constant at which the first-
order phase transition disappears is significantly larger in the
model with a F-dependent vector coupling constant.

Lattice QCD calculations meet some difficulty at a finite
chemical potential. This is related to the so-called sign
problem [79], where the determinant of the mass operator
becomes imaginary, which prevents Monte Carlo methods
from being used. To extrapolate the results obtained at zero
chemical potential to finite chemical potentials and to
determine the CEP, the so-called `crossover curvature' has
been introduced. It is derived from the observation that
critical curves for all physical quantities (chiral condensate,
quark susceptibility, strange quark susceptibility, Polyakov
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Figure 10. (a) The phase diagram of the PNJL model and vector interaction. (b) Order parameters of the NJL models with the Polyakov loop and vector

interaction for Gv � Gs. The solid curves represent the order parameter of the chiral phase transition; the dashed lines show the order parameter of the

confinement±deconfinement phase transition

1 As shown in [76], besides the Z3-symmetry, QCD also incorporates a

periodicity in the parameter Yq: OQCD�Yq� � OQCD�Yq � 2pk=3�, where
k is an integer and mq � iYqT. This combination was called the extended

Z3-symmetry. A series of papers on the PNJL model with imaginary

chemical potentials proved that this model also respects the Z3-symmetry.
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loop) must converge at one point, which is the CEP:

Tc�m�
Tc�0� � 1ÿ k

�
m

Tc�m�
�2

: �51�

In lattice QCD, this value is defined differently. For example,
for 2� 1-flavor quarks, a Taylor series expansion in [80]
yields k � 0:059� 0:020; scaling the properties of the chiral
condensate and chiral susceptibility respectively yields
k � 0:0089� 0:0014 and 0:0066� 0:002 [70], and calcula-
tions for the imaginary chemical potential yield k �
0:0132� 0:0018�0:003� [81]. Unfortunately, data for two
flavors are almost absent. This can be explained by the fact
that, as stated in some papers (e.g., [82]), the sign problem
arises only in SU(3) models. The most precise is apparently
the result for two degenerate fermions obtained in [43]:
k � 0:00563� 0:00038. But because the s-quark does not
affect the system thermodynamics and only chemical poten-
tials of light quarks are taken into account in calculations in
the 2� 1-flavor case, the correspondence between the results
obtained in the SU(2) PNJL model and in lattice QCD seems
to be quite reasonable.

The calculations of the crossover for the PNJLmodel and
the PNJLmodel with the coupling constant depending on the
Polyakov loop are presented in Fig. 12 as a function ofGv=Gs.
It is seen that, without vector interaction, the model results
significantly exceed those of lattice QCD.With increasing the
vector coupling constant, the crossover curvature becomes
comparable with these results. This is seen especially well for
the model with the vector coupling constant depending on F.

To summarize, in heavy-ion collisions, the hot nuclear
matter can reach conditions when the quarks confined in
hadrons become free: deconfinement occurs, which is accom-
panied by partial restoration of chiral symmetry, i.e.,
restoration of quark masses to their current values, much
smaller than the quark masses in hadrons. Predictions of
models with physical (i.e., nonzero) current quark masses
suggest two possible scenarios of the transition from hadron
matter to the quark±gluon plasma. At high temperatures and
low matter densities, a soft phase transition (crossover) is
assumed. At low temperatures and high chemical potentials
(matter densities), a first-order phase transition is assumed.
The point at which one phase transition is transformed into
another is called the CEP. Present and future experiments are
raising interest in the search for the CEP location on the

temperature±chemical-potential (quark or baryon) plane.
Here, no consistency has been achieved yet. As an example,
results of some theoretical models, including those discussed
in this paper, and of lattice QCD calculations are presented in
Fig. 13.

3. Equation of state of excited nuclear matter

3.1 Equation of state of quark matter
All other thermodynamic quantities can be derived from the
grand thermodynamic potential O in (34): the pressure P, the
energy density e, the entropy density s, and the particle
number density r:

P � ÿO
V
; �52�

s � ÿ
�
qO
qT

�
m
; �53�

e � ÿP� Ts� m r ; �54�

r � ÿ
�
qO
qm

�
T

: �55�
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The thermodynamic potential in the MF approximation
has form (34) for the PNJL model and (41) for the PNJL
model with vector interaction. In each case, the vacuum part
can be separated:

Ovac � �mÿm0�2
4G

ÿ 2NcNf

�
d3p

�2p�3 Ep : �56�

This quantity does not vanish asT! 0 and m! 0. Therefore,
to obtain the physical value of the thermodynamic potential
that would correspond to the pressure vanishing at zero
temperature and density, �T; m� � �0; 0�, it is necessary to
renormalize the potential by extracting vacuum part (56).
This leads to the following physical definition of pressure:

P

T 4
� P�T; m;m� ÿ P�0; 0;m�

T 4
: �57�

Figure 14a shows the pressure obtained in the PNJL
model with vector interaction and polynomial effective
potential (5) with parameters from Table 1 at T0 �
0:19 GeV, m � 0, and Gv � 0. Figure 14b shows the pressure
calculated in the PNJL model with vector interaction where
the coupling constants depend solely on F.

As the temperature increases, the pressure should reach
the Stephan±Boltzmann limit [91]

PSB

T 4
� �N 2

c ÿ 1� p
2

45
�NcNf

7p2

180
' 4:053 ; �58�

where the first and second terms in the right-hand side
respectively correspond to the gluon and quark contribu-
tions.

Because the normalized pressure does not include direct
dependence on the quark density, the values of the vector
coupling constant at zero chemical potential do not affect the
pressure, and the results are exactly those presented in Fig. 14.

As the quark density (or chemical potential) increases, a
first-order phase transition occurs. As noted in Section 2.4,
this is manifested in the appearance of three roots of the gap
equation. In this case, the relation between the pressure and
the chemical potential for the PNJL model and the PNJL
model withGv � ~Gv�F� is shown in Fig. 15. The mixed phase,
in which quark and hadron degrees of freedom coexist, is
represented by the straight line connecting two branches that
form a triangle around the phase transition point. The two
extreme points of this line bound a thermodynamically
unstable domain in which random fluctuations can give rise
to the appearance of a two-phase mixture.

The first-order phase transition corresponds to the
domain of energies (temperatures) and/or densities where
the derivative of pressure with respect to the quark density
becomes negative. The domain boundary itself (the spinodal)
is determined by setting the derivative of pressure with
respect to quark density to zero. This is clear from Fig. 16,
where the spinodal domain boundary is shown by a dashed
line. Figure 16 also suggests that the instability region
corresponds to the domain where qm=qm < 0. We note that
with increasing vector interaction, the instability region
decreases and the first-order phase transition weakens.

3.2 Effect of meson correlations
on the hadron matter equation of state
All calculations in the PNJL model presented in Sections 2
and 3.1 were carried out in the MF approximation, which
enabled only the quark contribution to the pressure to be
estimated. Nevertheless, it is quite possible that not only
quarks but also mesons (mixed phase) can be present near the
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crossover boundary and contribute to the system pressure. To
obtain the equation of state of a quark±hadron system [92, 93]
so as to allow assessing the contributions of the bound states
to the thermodynamics of the system near the phase
transition, it is necessary to include the part of functional
integral (50) responsible for fluctuations, which is usually
ignored in the MF approximation:

ZFL�T;V; m� �

�
�
DsDp exp

�
ÿ
�� b

0

dt
�
V

d3x
2ssMF � s 2 � p 2

4Gs

�
� tr ln

�
1ÿ SMF�m��s� ig5tp�

��
: �59�

Accounting for this term allows describing bound quark
states and their effect on the thermodynamics of the system.
After some transformations, integration over the external
fields yields

Z �2�FL �T;V; m� �
�
det �Dÿ1s �

�ÿ1=2�
det �Dÿ1p �

�ÿ3=2 �60�

with the meson propagator

Dÿ1M � 1

2Gs
ÿPM�q0; q� : �61�

Using the identity�
detDÿ1M

�ÿn=2 � exp

�
ÿN

2
tr lnDÿ1M

�
; �62�

where N � 1 for a s-meson and N � 3 for a pion, we obtain
the grand thermodynamic potential

OFL � 1

2

T

V
tr lnDÿ1s �

3

2

T

V
tr lnDÿ1p : �63�

The logarithm of the propagator can be conveniently
expressed in terms of the spectral function Ag

M�o; q� [94]:

lnDÿ1M � ÿ
� Gs

0

dg
1

2g 2

1

1=�2g� ÿPM�q0; q�

� ÿ
� �1
ÿ1

do
2p

1

q0 ÿ o

� Gs

0

dg

2g 2
Ag

M�o; q� ; �64�

here, g is a parameter that has the meaning of some coupling
constant over which integration is performed. We next
analytically continue the propagator to the complex plane
via a small shift o� iZ from the real axis:�Gs

0

dg

2g 2
Ag

M�o; q�

� ÿi
� Gs

0

dg

2g 2

ÿ
Sg
M�o� iZ; q

�ÿ Sg
M�oÿ iZ; q��

� ÿi ln
�
1ÿ 2GsPM�oÿ iZ; q�
1ÿ 2GsPM�o� iZ; q�

�
� ÿi lnSM � 2FM ; �65�
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where FM�o; q� is the phase shift and SM�o; q� is the
scattering matrix [95]. Hence, we obtain� Gs

0

dg

2g 2
Ag

M�o; q� � ÿi lnSM�o; q� � 2FM�o; q� : �66�

After substituting (66) in formulas (63) and (64), taking the
trace, and integrating by parts, we arrive at the result

O �2�M �T; m� � ÿ
NM

2

�
d3q

�2p�3
� �1
0

do
p

d

do

�
�
ÿo� T ln

�
1ÿ exp

�
b�oÿ m��	

� T ln
�
1ÿ exp

�
b�o� m��	�F�o; q�

� ÿNM

2

�
d3q

�2p�3
� �1
0

do
p

�
�
ÿo� T ln f1ÿ exp

�
b�oÿ m��	

� T ln
�
1ÿ exp

�
b�o� m��	� dFM�o; q�

do
; �67�

where FM�ÿo; q� � ÿFM�o; q� is the scattering phase.
A further estimate of the pressure includes a physical

interpretation and analytic description of the propagator
1ÿ 2GsPM�o; q�. This can be illustrated from the standpoint
of the simplest assumption that the propagator has the pole
approximation

1ÿ 2GsPM�o; q� � �o2 ÿ E 2
M� g 2

Mqq ; �68�

where E 2
M � q2 �m 2

M is the meson energy and mM is the
meson mass. Then

d

do
ln

1ÿ 2GsPM�oÿ iZ; q�
1ÿ 2GsPM�o� iZ; q� � ÿ2pid�oÿ EM� ; �69�

and the thermodynamic potential is

OM � NM

2

�
d3q

q

�
EM � T ln

�
1ÿ exp

�ÿb�EM ÿ m��	
� T ln

�
1ÿ exp

�ÿb�EM � m��	� : �70�

Such a potential corresponds to a system of noninteracting
mesons [96].

By combining the contribution from bound states
described by the delta function and the contribution from
scattering states �dFM=do�, it is possible to obtain a general-
ized Bethe±Uhlenbeck equation. Masses of the bound states
and the scattering phase shift in the corresponding channel
depend on the scattering medium. For example, chiral
symmetry restoration sharply reduces the quark mass to a
current value in the phase transition domain. The pions then
become resonance states that can be described by the complex
pole q0 � mM ÿ iGM=2, where GM is the resonance state
width. By ignoring the medium effects, it is possible to
calculate the effect of the meson resonance state broadening.
For this, a spectral Breit±Wigner (BW) function is intro-
duced:

dFR�o;T �
ds

� AR�o;T � � aR
mMGM

�oÿmM�2 � �mMGM�2
; �71�

where aR is the normalization factor determined from the
standard normalization condition:� �1
ÿq 2

doAR� aR

� �1
ÿq 2

do
mMGM

�oÿmM�2� �mMGM�2
� 1 ; �72�

whence

aR � p
p=2� arctan

��q2 �m 2
M�=�mMGM�

� : �73�

The width of mesons is virtually zero for temperatures
below the Mott temperature TMott and becomes finite for
T > TMott, describing the spectral broadening of the reso-
nance states. To determine GM, it is usually assumed that the
polarization function can be analytically continued into the
complex plane (as was similarly done in (65)):mM � iE. From
(25) and (26), we then obtain the system of equations

RePM � ÿ 1=�4GsNcNf� ÿ 2I1��I2�mM � iE���2 Re I2�mM � iE� ; �74�

ImPM � ÿ 1=�4GsNcNf� ÿ 2I1��I2�mM � iE���2 Im I2�mM � iE� ; �75�

where RePM � m 2
p ÿ G 2

p=4 for a pion and RePM � m 2
sÿ

4m 2 ÿ G 2
s=4 for a s-meson, and ImPM � mMGM for both

mesons.
The temperature behavior of the meson masses and

widths is presented in Fig. 17. The figure shows that the
s-meson has a nonzero width even at temperatures below
TMott, but because this value is close to zero, a s-meson is
considered a bound state. For T > TMott, the meson masses,
as well as their widths, rapidly become identical. This
confirms the chiral symmetry restoration: a s-meson and a
pion become chiral partners.

If all necessary quantities are known, their substitution in
(67) allows calculating the pressure. Figure 18b shows both
the pressure ofmesons for a noninteractingmeson gas and the
pressure with spectral broadening taken into account. It is
clearly seen that at temperatures T5TMott, the pressure of
the mesons decreases, which is related to themelting of bound
states. A comparison of the meson pressure and the quark
pressure calculated in the MF approximation is presented in
Fig. 18a.

It was shown in [62, 95] that in theNJL and PNJLmodels,
the Levinson theorem holds for pions, relating the scattering
phase shift to the number of bound states in the system. In the
integral form, this relation can be expressed as� �1

4m 2

do
dFM

do
� np ; �76�

where n is the number of bound states in the system. As shown
in [62], to satisfy the Levinson lemma, the phase shift FM

taken in form (71) must be split into parts: the phase shift
corresponding to quark±quark and quark±antiquark scatter-
ings (the background phase shift fsc), and the phase shift
caused by correlations of mesons �fR�. The phase shift FM

and the degree of realization of this theorem in the PNJL
model for pions �n � 1� are shown in Fig. 19. Figures 19a, b
show the phase shift due to quark±quark scatterings �fsc� and
the phase shift due to meson correlations �fR�. As seen from
Fig. 19a, at T < TMott, a pion is a bound state; therefore, the
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phase shift demonstrates a jump from 0 to p. ForT > TMott, a
pion becomes a resonance state, and the phase shift in the
energy range from 0 to

��
s
p � mp gradually increases from 0

to p. At higher temperatures, the phase shift ceases to reach p,
which suggests the absence of bound states in the system. The
background phase shiftfsc shown in Fig. 19b is due to quark±
quark scatterings with the intermediate formation of p- and
s-mesons, and at low temperatures it has the threshold
s � 2m. Clearly, with increasing the temperature, the back-
ground phase shift stops changing. Figure 19c presents the
total phase shift.

4. Conclusion

The PNJL model arose from the attempt to unify the
properties of chiral models with confinement. The PNJL
model is one of a few enabling a description of both the
chiral phase transition and the confinement±deconfinement
phase transition.

Confinement in the PNJL model is determined by the
effective potential, which is in turn found by approximating
lattice QCD data in the absence of dynamic quarks. In this
connection, the PNJLmodel is in good agreement with lattice
QCD data at finite temperatures. To study the properties of

nuclear matter at finite chemical potentials, lattice QCD
calculations increasingly use an imaginary chemical poten-
tial; these results can then be extrapolated into the domain of
finite real chemical potentials. But it turns out that such a
straightforward extrapolation into the region of real chemical
potentials gives reasonable results only for low values of m=T
[43±45]. This problem can be solved if there is an effective
model capable of correctly estimating the partition function
for both real and imaginary chemical potentials, i.e., capable
of reproducing the lattice QCD data in the imaginary
chemical potential domain [58]. The PNJL model can be
such a model. It was shown in [58, 97, 98] that the PNJL
model also satisfies the extended Z3-symmetry [O�Y� �
O�Y� 2pk=N� for the Z�N�-symmetry] [76] if a modified
function of the Polyakov-loop field is introduced: C �
exp �iY�F and �C � exp �ÿiY� �F. This assumption stimu-
lated searches for the CEP [99±103].

A limitation of the PNJLmodel, as well as theNJLmodel,
is the need of regularization. The three-dimensional momen-
tum cutoff restricts the applicability of themodel to the region
jpj < L, which, for example, precludes perturbative QCD
phenomena to be studied. A nonlocal NJL model with a
Polyakov loop is free from these shortcomings. The nonlo-
cality of the four-quark interaction gives rise to a momentum
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dependence of the dynamic mass of quarks. The use of the
momentum-dependent dynamic quark mass enables a direct
comparison of the model results with lattice QCD calcula-
tions [104] and a decrease in the critical temperature and
density for the CEP on the phase diagram. It was shown in
[36, 38] that the CEP location depends on the model
parameters. As shown in [61], the CEP location on the phase
diagram is highly sensitive to changes in the parameters of the
nonlocal interaction form factors and to taking the vector
interaction into account. For some model parameters, the
CEP disappears on the phase diagram.

Thus, the PNJL model can be used to solve a broad range
of problems related to the thermodynamic properties of dense
hot nuclear matter that are relevant in ion collisions and
under the conditions existing in neutron star cores. The PNJL
model is also used for calculations related to the CP-
invariance violation in strong interactions as a consequence
of the chiral anomaly effect on the topological structure of the
QCD vacuum in strong magnetic fields generated in heavy-
ion collisions [105, 106]. However, so far, the results obtained
in the NJL and PNJL models disagree with lattice QCD
calculations [107].

In addition, the PNJL model enables studies of quark
scattering on quarks and lightmesons [108, 109], as well as the
processes of decay and scattering of light mesons at finite
temperatures [110±112].
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