
Abstract. By controling interparticle interactions, it is possible
to transform a fermionic system into a bosonic system and vice
versa, while preserving quantum degeneracy. Evidence of such a
transformation may be found by monitoring the pressure and
interference. The Fermi pressure is an indication of the fermion-
ic character of a system, while the interference implies a non-
zero order parameter and Bose condensation. Lowering from
three to two spatial dimensions introduces new physics and
makes the system more difficult to describe due to the increased
fluctuations and the reduced applicability of mean field meth-
ods. An experiment with a two-dimensional ultracold atomic
gas shows a crossover between the Bose and Fermi limits, as
evident from the value of pressure and from the interference
pattern, and provides data to test models of 2D Fermi and Bose
systems, including the most-difficult-to-model strongly coupled
systems.

Keywords: ultracold atomic and molecular gases, Bose gas, Fermi
gas, Fermi-to-Bose crossover, Fermi liquid, Bose±Einstein conden-
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1. Introduction

Ideas about the quantum degeneracy of fermions [1, 2] and
the condensation of bosons [3] were formulated at nearly the
same time. The paths to understanding the physical signifi-
cance of these concepts turned out to be quite different. Ideas
about the low-temperature behavior of fermions were
immediately employed in explaining the heat capacity of
metals [4]. A system suitable for testing the ideas of Bose
condensation appeared only 10 years later. Following the
P L Kapitza report about the helium superfluidity [5], Fritz
London conjectured that the superfluidity is connected to
Bose condensation [6, 7]. Today, this point of view seems
natural. According to the theory of those days, however, the
Bose condensate could not be superfluid. Only the ideal Bose
gas condensate was known then. Its dispersion relation is
quadratic and, therefore, does not satisfy the Landau super-
fluidity criterion [8], which requires either linear or convex
dependence of the energy on the momentum.

The situation changed only in 1947, when Bogoliubov
showed that any weak coupling makes the dispersion relation
linear at low momenta, meaning that the Bose gas becomes
superfluid [9]. Later on, it was established that a noninteract-
ing Bose gas does not even undergo a phase transition in
Landau's sense, because no order parameter appears [10].
Therefore, interactions are what makes Bose-gas physics
interesting.

Moreover, by tuning the interactions in a system, one may
drastically change the quantum statistics from bosonic to
fermionic and vice versa. On the one hand, such a problem
may look trivial: indeed, nearly all know bosons are
composed of fermions, just as the hydrogen atom consists of
a proton and electron, and, seemingly, ionization resolves the
problem of creating two Fermi systems from a hydrogen
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condensate. However, such systems would hardly be degen-
erate and, moreover, stable. For example, electrons will not
have enough room in the momentum space upon monochro-
matic excitation of a uniform condensate.

To convert a degenerate bosonic system into a fermionic
one and vice versa, smooth control of interactions is
necessary. This issue was first considered by Keldysh and
Kozlov [11] in 1968 for a gas of excitons which substantially
overlap upon small electron±hole coupling and transform
into a gas of point-like bosons as the coupling increases.

In the 1980s, it became clear that the smooth transform of
a Fermi gas into a Bose condensate is already contained in the
Bogoliubov superconductivity theory [12, 13]. Even with
infinitely small attraction, fermions with opposite spins
form Cooper pairs. In response to adiabatically increasing
attraction, the pairs contract and smoothly cross over into
point-like bosons, as described, for example, inRef. [14]. Such
a transformation of a fermionic system into a bosonic one is a
principally many-body effect. Initially, the bond in the pairs
appears due to the presence of the Fermi surface. Only after
the interaction strength overcomes a threshold does the
bound state become stable in the vacuum. The bound-state
emergence is not accompanied by any jumps in system
properties. Such a change in the statistics has been consid-
ered not only for excitons but also for electrons in super-
conductors and for quark matter [15]. Physical implementa-
tion of the phenomenonwas realized in an experiment with an
ultracold gas of Fermi atoms [16].

In a two-dimensional system, a bound state always exists
in the case of attractive interaction of two particles even in the
vacuum: infinitely small interaction may bind two fermions
into a boson. Nevertheless, the problem of crossover between
Bose and Fermi statistics naturally appears in a many-body
two-dimensional system. Such a crossover is schematically
shown in Fig. 1. In cases where the vacuum bound-state size is
larger than the interparticle distance, the system looks like a
gas of fermions. Upon contraction of the bound-state to a size
much smaller than the interparticle distance, the system
becomes bosonic. Between the fermionic and bosonic limits
lies the region of strong many-body interactions, where the
size of fermion pairs is comparable to the interparticle
distance.

In two-dimensional uniform systems, long-range order
does not appear at finite temperatures due to thermal
fluctuations of the order parameter. In particular, this
prohibits Bose condensation. Nevertheless, the reduction of
the spatial dimensionality from three to two does not
impoverish many-body physics, but makes it more diverse.
New phase transitions appear [17±21]. For example, the
superfluid phase is destroyed at the Berezinskii±Kosterlitz±
Thouless (BKT) transition [17, 18] via the appearance of pairs

of vortices with opposite circulations. The role of interactions
in the BKT transition is even clearer than in the Bose
condensation in the three-dimensional space: for vanishing
coupling, the critical temperature goes to zero, though
logarithmically [22].

The BKT transition became the first-known phase
transition with nontrivial topology. Presently, topological
phase transitions in two-dimensional systems are actively
being studied [19±21]. Other examples of interesting physics
in two dimensions include the integer [23] and fractional [24]
quantum Hall effects.The high-temperature superconductiv-
ity observed in materials with two-dimensional kinematics
has yet to be explained [25].

In two-dimensionality, a description of the Fermi-to-Bose
crossover turned out to be nontrivial. Such a unified theory
has to describe weakly interacting Fermi and Bose gases, as
well as the systems in the intermediate strongly interacting
regime. Two-dimensional systems differ from three-dimen-
sional ones: in the former, the mean-field model applicability
is limited because according to the Ginzburg±Levanyuk
criterion [26, 27], the precision of mean-field approximations
decreases with decreasing dimensionality. For example, the
mean-field model of Cooper pairs, unlike in three dimensions,
yields a qualitatively incorrect solution for thermodynamic
properties, e.g., predicting that the Fermi pressure is present
in the bosonic limit. Descriptions of the crossover free from
such qualitative contradictions appeared just recently [28±
33]. The results of such calculations, however, contain
significant quantitative discrepancies.

Construction of a quantitatively correct two-dimensional
theory is of practical significance at least in two cases:

Ð first, to explain high-temperature superconductivity in
layered systems where the Cooper pair size is comparable to
the interparticle distance, as in the strongly interacting regime
of the Bose-to-Fermi crossover problem. Noted models
account for s-wave coupling only, while the d-wave symme-
try dominates in the superconducting phase of the cuprates.
Despite that, models with s-wave coupling are also important
because the s-wave symmetry has been detected in the
pseudogap phase of cuprate superconductors [34];

Ð second, to understand the dynamics of neutron stars
where the so-called nuclear lasagna phase may exist. The
nuclear lasagna is an area consisting of strongly interacting
fermions with predominantly two-dimensional kinematics,
possibly limiting the rotation period of pulsars [35].

Therefore, the problem of two-dimensional Fermi system
behavior, especially in the strongly interacting regime, is
important. Furthermore, there is an interesting question of
condensation of bosonic particles in finite-size systems with
strong repulsion between bosons.

Description of interactions is a common question for
kinematically two-dimensional systems. In the high-tempera-
ture superconductivity theory, for example, purely two-
dimensional models are frequently used [36]. These models
assume motion along the xy plane and independence of
interactions from z. An example where such a pure two-
dimensional model is insufficient is 3He on a substrate: the
increase in zero-point oscillations relative to the interaction
radius brings about formation of a self-bound liquid [37]. A
unified and correct description of interactions in all regimes is
required during construction of a model for a system with
tunable statistics. Experiments with such a system may test
the applicability of purely two-dimensional models to real
systems.

Bose gas Strongly interacting
Fermi gas

Fermi gas

Figure 1. (Color online.) Sizes of fermion pairs at different stages of the

crossover between the Fermi (on the right) and Bose (on the left) statistics.
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A two-dimensional ultracold gas of Fermi atoms [38],
similarly to the three-dimensional one, allows broad tun-
ability of s-wave interactions. Because of this, the properties
of two-dimensional Fermi gases have been studied in different
modes. It has been found that a reduction in the kinematic
dimensionality indeed favors pairing of the particles [39, 40].
Thermodynamic properties have been measured at nearly
zero [41, 42] and finite [42, 43] temperatures.

This paper is devoted to the crossover of a two-dimen-
sional system between the Fermi and Bose limits. For the role
of the experimental system, an ultracold gas of fermionic
lithium-6 atoms is chosen. Evidence of such a crossover may
be found by monitoring the pressure in the gas and by
observing the interference. Fermi pressure tells us about the
fermionic character of the system, while the interference
indicates the appearance of the order parameter and con-
densation of diatomic bosonic molecules.

The paper outline is as follows. In Section 2, we discuss the
properties of ultracold quantum gas that make these gases an
attractive research subject; we also describe the spin states of
Fermi atoms and a means for establishing two-dimensional
kinematics. Section 3 is devoted to the control of interactions
and their parameterization. In Section 4, we explain how the
crossover between Fermi and Bose statistics is observed in the
pressure. Section 5 is devoted to condensation of Bose
molecules. In Section 6, we discuss available models of the
crossover and compare predictions of such models with
measured pressure.

2. Two-dimensional gas of lithium atoms
in optical dipole traps

2.1 Ultracold quantum gases
Experiments with ultracold quantum gases have allowed
observing states of matter and effects that were previously
just a matter of theoretical discussions: Bogoliubov weakly
interacting Bose gas [44], Bertsch fermionic matter with
resonantly strong attraction [45], crossover between the
fermionic Bardeen±Cooper±Schrieffer superfluidity and
Bose condensation [16], Tonks±Girardeau fermionization of
a one-dimensional Bose gas [46], and Efimov trimers [47].
Ultracold gases are involved for quantitative tests of theories
that are applicable to condensed matter, high-energy and
nuclear physics [48, 49].

The success of experiments is facilitated by a set of unique
conditions:

Ðuncontrolled impurities are absent in ultracold gases,
because the gas preparation is done by spectroscopic methods
that are sensitive not only to chemical elements but also to
isotope composition;

Ðboth the interactions and the spin composition may be
tuned smoothly and reversibly;

Ðkinematic dimensionality is controlled;
Ðmeasurements are performed directly: it is possible to

instantaneously image the density distribution owing to
absorption of light by the atomic gas, to measure thermo-
dynamic properties, and to observe the momentum spatial
distribution and the difference between the order parameter
phases of subsystems.

Achievement of quantum degeneracy requires cooling to
temperature T of micro- to nanokelvin range. In the simplest
case, the atomic gas is prepared in two stages, taking a few
seconds each. At the first stage, the trapping and cooling of

atoms is performed using laser radiation with a frequency
close to the resonance [50]. The gas is collected in a magneto-
optical trap from either an atomic beam or ambient vapor.
The trap is schematically depicted in Fig. 2a. By means of the
viscous light pressure force, whose value is adjusted by the
Zeeman shift, the atomic gas is gathered near the point where
the magnetic field is zero.

The trap collects from millions to billions of atoms. Their
state is far from quantum degeneracy. For example, the phase
space density is just � 10ÿ6 for the lithium used in this work.
Further cooling is impossible due to the resonant light used at
this stage. Due to reemission of photons, there appears a
temperature minimum which is a few tens of microkelvins for
lithium. Moreover, a further increase in the density is
prevented by the light pressure of the atoms upon each
other, appearing due to the reemission. Therefore, the next
stage of cooling is needed. At the start of this stage, the
resonant light fields are instantaneously extinguished, and the
atomic gas finds itself in a conservative potential which is
produced by a nonresonant electric or magnetic field.

The optical dipole trap [51] in the simplest case is created
in the focus of a laser beam, as shown in Fig. 2b. The radiation
frequency is tuned far below the electrodipole transitions in
the atom which is held back by potential V � ÿ�1=2�dE,
where E is the electric field, and d / E is the induced dipole
moment. The potential is conservative due to the large
detuning between the laser frequency and the atomic
transition frequency. In the optical dipole trap, the magnetic
field remains a free parameter and may be used to control the
interaction among the particles (see Section 3.1).

Further cooling is done by means of evaporation [52].
Particles with the highest energies leave the trap, while the
remaining particles collide and attempt to form an equili-
brium distribution at a lower temperature. This repopulates
the higher momentum states, which again brings about losses
of the energetic particles. To speed up the evaporation, the
trap depth is slowly decreased. As a result, the cooling brings
the gas into a degenerate state with the phase space density of
� 1.

The ultracold quantum gases are extremely dilute. The
interparticle distance ranges between hundreds of nan-
ometers and several microns, which is much larger than the
intermolecular distance of 3 nm in the air and the typical scale
of the interatomic potentials: r0 � 0:1ÿ1 nm. At the same
time, it is possible to speak about the collective behavior
typical of fluids: parts of the system feel each other at large
distances due to the appearance of a collective wave function
or due to the Pauli exclusion principle; similarly to fluids,
strong interparticle interactions, whose energy is comparable

a b

s�

sÿ

Atomic cloud

Figure 2. (a) Trapping and cooling of an atomic gas in a magneto-optical

trap. Six trapping beams, two magnetic coils with opposite currents, and

the atomic cloud are shown. (b) Confinement of an atomic cloud in an

optical dipole trap formed by the focus of a laser beam.
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to the kinetic energy, may appear [53]. Finally, the Fermi gas
with weak attraction provides an example of a Fermi liquid in
the Landau sense. Moreover, this is one of a few systems
where the Fermi-liquid parameters are computed from first
principles [54].

2.2 Spin states of Fermi atoms
The spin degree of freedom is fundamental to the properties
of Fermi systems. The role of spin in atomic gas is played by
the internal state of the atom. In experiments described
below, the lithium-6 atom is used. Together with potassium-
40, this is one of the two most popular atoms in Fermi gas
experiments. The states of lithium-6 corresponding to the
ground-state orbital of the single valence electron 2s1 are
shown in Fig. 3. These states differ by the mutual orientation
of the valence-electron spin S � 1=2 and the nuclear spin
I � 1. In the absence of the magnetic field, the states may be
expanded in the basis of the total angular momentum
operator F̂ � Ŝ� Î. The mixture of states j1i and j2i is an
analog of the gas of spin-up and spin-down electrons in a solid
body. Problems requiring more spin diversity may be
implemented using a gas of lithium-6, as one may see from
Fig. 3.

In the experiment, an equal mixture of states j1i and j2i is
used. In the external magnetic field B, which is turned on for
controling the interactions, the states are expanded in the
basis jSz; Izi [55]:

j1i � cos y�

����ÿ 1

2
; 1

�
ÿ sin y�

���� 12 ; 0
�
; �1�

j2i � cos yÿ

����ÿ 1

2
; 0

�
ÿ sin yÿ

���� 12 ; ÿ1
�
; �2�

where

sin y� � 1���������������������������������������
1� �Z� � R��2=2

q ;

Z� � 2mBB
a
� 1

2
; R� �

���������������������
�Z��2 � 2

q
;

mB is the Bohr magneton, and a=�2p�h� � 152:1 MHz is the
hyperfine interaction constant. In the field of B � 600±
1000 G, typical for the experiment, first terms of states (1)
and (2) dominate. These terms correspond to projection
Sz � ÿ1=2. At B � 800 G, for example, sin2 y� � 0:002.
Despite this, the part of the state corresponding to projec-
tion Sz � 1=2 is fundamental to the tunability of the
interactions.

2.3 Two-dimensional kinematics
In the experiment, the gas clouds are held in a series of traps,
as shown in Fig. 4a schematically. The trapping potential is
produced by a standing wave of radiation with wavelength
l � 10:6 mm, which gives a 5.3 mm of distance between the
antinodes and, as a result, lets us resolve each cloud in the
images.

An image of the cloudsmade along the xy plane ofmotion
is shown in Fig. 4b, where each light strip is a separate two-
dimensional system. To take this snapshot, the clouds are
shined upon by monochromatic radiation of wavelength
671 nm, which is resonant to the electric dipole transition
2S1=2 ! 2P3=2 in the lithium-6 atom. As a result of the
resonant absorption, a shadow appears and is further
projected onto a charge coupled device. The absorption lets
us reconstruct the gas density distribution integrated along
y-axis [38, 41]. Such photography is selective to the internal
atomic state. The imaging destroys the state of the system due
to the energy input, which is much larger than the Fermi
energy. Preparing a few dozen clouds in identical conditions
allows, first, averaging the data over the ensemble for the sake
of noise suppression and, second, observing interference.

Near the bottom of each trap, the confining potential is
close to a harmonic one:

V�x; y; z� � mo2
zz

2

2
�mo2

xx
2

2
�mo2

yy
2

2
; oz 4ox;oy ; �3�

Fz � ÿ 3

2

j3iF � 3=2

F � 1=2

228 MHz

Fz � 3

2

j6i
Fz � 1

2

j5i

Fz � ÿ 1

2

j4i

Fz � 1

2

j1i
Fz � ÿ 1

2

j2i
Figure 3. Spin states of lithium-6 in a zero magnetic field, B � 0, which

correspond to the ground state of the valence electron 22S1=2. The states

are numbered in the order of increasing energy in the magnetic field.
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Figure 4. (Color online.) (a) Confinement of two-dimensional gas clouds in antinodes of a standing electromagnetic wave. The gas is shown in dark red,

while the intensity of the radiation forming the trap is shown in light purple. (b) Image of the clouds along the y direction. (c) Two-dimensional ideal Fermi

gas at T � 0, whose motion is quantized along z- and nearly free along x- and y-axes.
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wherem is the atom mass. Due to the strong trap anisotropy,
oz 4o? � �����������

oxoy
p

, it is possible to put the absolute majority
of the atoms into the ground state of motion along the z-axis,
while, according to the Pauli exclusion principle, the fermions
populate many states of motion in the xy plane, as shown in
Fig. 4c. As a result, the gas is kinematically two-dimensional.
In Fig. 4b, the gas clouds reside in a potential with frequencies
of ox=�2p� � oy=�2p� � 102 Hz, oz=�2p� � 5570 Hz. The
number of atoms in a single cloud per spin state is N � 660,
which gives the Fermi energy EF � �ho?

�������
2N
p � 0:67�hoz and,

together with deep degeneracy, nearly excludes thermal
population of the excited states of motion along the z-axis.

3. Tunable interparticle interactions

3.1 Tuning the interactions by means of the Feshbach
resonance for three-dimensional kinematics
Initially, we consider control of interactions for atoms that
freely move in three dimensions, while in Section 3.2 we show
how restriction of spatial dimensionality affects the interac-
tions.

Since the kinetic energy is small, it is sufficient to keep just
the s-wave term in the partial wave expansion of the
interaction. In this approximation, only the atoms in
different internal states collide, e.g., in states j1i and j2i for
lithium-6. The scattering length a may be tuned to any value
by adjusting the external magnetic field B using the Fano±
Feshbach resonances [56].

The appearance of the resonance and tunability of the
scattering length are illustrated in Fig. 5. At the interaction of
two univalent atoms, the valence electrons are found in a
superposition of the triplet state with collinear spins, and a
singlet state with opposite spins. Different potentials of
interparticle interaction, Vtriplet�r 0� and Vsinglet�r 0�, respec-
tively, correspond to the triplet and singlet states of the pair.
These potentials are depicted in Fig. 5. The external magnetic
field B shifts the zero level of the triplet-state kinetic energy,
because the state has a large magnetic moment of about 2mB.
If the energy of the unbound state of the pair, shown by the
gray dashed line, becomes equal to the singlet-channel bound-
state energy (black dashed line), then a scattering resonance
appears: in the case of zero kinetic energy, the scattering
length diverges to1. By detuning bound and free states from
each other, any desired scattering length between ÿ1 and
�1 may be obtained. Near the resonance, an approximate
formula may be devised for the s-wave scattering length of

two unbound particles:

a�B� � abg

�
1� D

Bÿ B0

�
; �4�

where B0 and D are the center location and the width of the
resonance, respectively, while abg is the background scatter-
ing length stemming from the triplet channel alone. In
experiments, the Feshbach resonance with parameters
B0 � 832 G, D � 262 G, abg � ÿ1580a0 (a0 is the Bohr
radius) [57] was employed. Notice that in such a strong
magnetic field, the triplet-state part of the electronic spin
dominates in the state of the pair of atoms j1i and j2i [see
formulas (1) and (2)], because coefficients sin y� are small.
The presence of a singlet part, even if small, in the state of
electronic spins is fundamental to the coupling of the channels
Vsinglet�r� andVtriplet�r�, the tunability of the interactions, and
the appearance of the resonance.

In a many-body system, the Fermi atoms are joined into
diatomic molecular bosons by tuning the interactions. For
this purpose, the magnetic field smoothly changes from larger
values, where the bound state is above the energy of the free
state in the triplet channel (as in Fig. 5), to smaller values. On
the bosonic side of the resonance �B < B0�, a Bose condensate
of molecules appears at sufficiently large detuning from the
resonance. The molecules interact with s-wave scattering
length 0:6a [58]. The gas is extremely dilute: the interparticle
distance is 3±4 orders of magnitude larger than the electro-
static potential scale r0, which is a few tenths of a nanometer
for lithium. The condition a4 r0 is easily satisfied. This
justifies the exclusion of details of interparticle interactions
from the problem, and the relation of all interaction processes
to a single parameter, viz. the scattering length a.

3.2 Parameterization of interactions
for two-dimensional kinematics
The theory of two-dimensional systems traditionally has to
do with the two-dimensional s-wave scattering length a2 [59,
60]. The s-wave part of the wavefunction of two unbound
atoms at large distances asymptotically behaves as
c?�r 0� / ln r 0=a2 (r 0 � jq 0j, q 0 is the vector passed
between two atoms in the xy plane), while the energy of
the bound state may be expressed via a2 as Ebound �
ÿ4�h 2=�ma 2

2 exp �2g��, where g ' 0:577 is Euler's constant.
The quantity a2

�����
n2
p

is a natural parameter of a many-body
problem [41], where n2 is the two-dimensional number density
of particles in one of two equally populated spin states. In the
parameter a2

�����
n2
p

, the spatial scale of interaction of two
particles is divided by the mean interparticle separation.
Values of a2

�����
n2
p

4 1 and a2
�����
n2
p

5 1 correspond to the
fermionic and bosonic limits, respectively, while a2

�����
n2
p � 1

is the region of strong interactions.
In experiments with ultracold atoms, the interaction

potential size r0 is much smaller than the quantization size
lz �

��������������������
�h=�2moz�

p
. The interaction potential may be regarded

as a three-dimensional d-function on the scale of the problem.
As a result, the interactions are quasi-two-dimensional rather
than two-dimensional, because at distances 5 lz the wave-
function of colliding atoms is determined by three-dimen-
sional scattering length a. Mathematically, the problem of
such a collision is equivalent to that in a purely two-
dimensional potential [61]. Here, a2 may be uniquely
expressed as a function of a, lz, and the relative momentum
of two atoms �hq � jp1 ÿ p2j=2, where p1 and p2 are the

Vsinglet�r 0�

Vtriplet�r 0�

2mBB

Figure 5. Fano±Feshbach resonance: unbound pair of particles in the

triplet channel with energy marked by the gray dashed straight line comes

into resonance with the energy of the singlet-channel bound state (black

dashed straight line). Mutual location of the bound and unbound states in

the figure corresponds to a < 0.
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momenta of the colliding atoms in the laboratory reference
frame. For the sake of finding the dependence a2�a; lz; q�, one
may notice that for both the two-dimensional and quasi-two-
dimensional scatterings, the atomic-pair wavefunction at
large distances takes the form

c?�q 0� ' exp �iqq 0� ÿ f
exp �iqr 0 ÿ ip=4��������������

8pqr 0
p : �5�

Only the expressions for the amplitude f differ. For the
purely two-dimensional problem, the amplitude is

f � f2D�q; a2� � ÿ 2p
ln
�
qa2 exp g=�2i�

� ; �6�

while for the quasi-two-dimensional one [61], the relevant
expression is

f � fQ2D�q; a; lz� � 2p���
p
p

lz=a� w�q 2l 2z �=2
; �7�

where function w�x� is defined via the limit:

w�x� � lim
J!1

" ������
4J

p

r
ln

J

e 2
ÿ
XJ
j�0

�2jÿ 1�!!
�2j �!! ln � jÿ xÿ i0�

#
:

�8�

As a result, a2 may be found from the relationship [41]

fQ2D�q; a; lz� � f2D�q; a2� : �9�

In the limit q! 0, this approach yields the known expression
[61]

a2 ' 2:96 lz exp

�
ÿ lz

���
p
p
a

�
; �10�

where, we note, no break appears at the resonance, as a jumps
from ÿ1 to �1. In a many-body system, the momentum
differs from zero, while the typical momentum scale may be
expressed via the chemical potential m: �hq � ���������

2mm
p

. Also,
formula (10) shows that the interaction size in a two-
dimensional gas may be controlled by changing either a oroz.

Thus, the two-dimensional and quasi-two-dimensional
problems are related to each other. This lets us parameterize
the atomic gas state, as well as the state of the molecular gas
emerging from the atomic gas, via the quantity a2

�����
n2
p

. An
opportunity appears to compare experimental data with
purely two-dimensional models.

4. Reflection of statistics in the pressure
at nearly zero temperature

4.1 Temperature measurement
The Fermi pressure is a direct consequence of the fermionic
statistics, while the bosonic statistics causes the appearance of a
collective wavefunction which may be detected by the inter-
ference. For revealing the Fermi pressure, the quantum effect
has to be distinguished from a thermal one. For this purpose,
we have to be sure that the temperature is close to zero.

The form of the trapped gas density profile serves as a
source of information about the temperature. A two-dimen-
sional number density profile similar to that of Fig. 4b is
integrated along z, providing the one-dimensional density
profile n1�x� averaged over 30 nearly identical clouds. An
example of such a profile is demonstrated in Fig. 6a. For a
high temperature, T > EF, the gas is close to a classical one,
and its density profile is close to the Gaussian distribution. At
T � 0, the edges of the distribution n1�x� are sharper, and the
number density distribution has the form

n1�x� �
8N

3pRx

�
1ÿ x 2

R 2
x

�3=2

; for x < Rx ;

0 ; for x > Rx ;

8<: �11�

where Rx �
���������������������
2m=�mo2

x�
p

is the Thomas±Fermi radius. At an
arbitrary temperature T, the number density profile of a
nearly ideal Fermi gas is expressed as

n1�x� � ÿ
�����������
mo?
2p�h

r �
T

�ho?

�3=2

Li3=2

�
ÿ exp

�
m
T
ÿmo2

?x
2

2T

��
;

�12�

where Li3=2 is the 3=2-order polylogarithmic function, and the
chemical potential m is to be found self-consistently from the
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Figure 6. (Color online.) (a) Linear number density profile n1�x�. Dots: data for a2
�����
n2
p � 55, B � 1400 G, ox=�2p� � 94 Hz, oy=�2p� � 141 Hz,

oz=�2p� � 6020Hz, andN � 660. Fits of the Thomas±Fermi (12) andGaussian profile to the data are respectively shown by the solid and dashed curves.

(b) Two-dimensional number density distribution in the xy plane, n2�~r�, found from n1�x�. Dots are the measured data. The curve is the fit of parabola

n2�~r� � n2 ÿ ~r 2n 002 =2 for finding the central number density n2 � n2�~r � 0�.

February 2016 Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment 179



constraintN � � n1�x� dx. By fitting this profile to the data of
Fig. 6a, one may retrieve the temperature T. In experiments,
temperatures T9 0:1EF are accessible, which gives � 10 nK
in absolute units.

For comparison, an attempted fit by a Gaussian curve is
shown in Fig. 6a. It can be seen that the Gaussian profile is off
at both the edges and the center. For interacting Fermi and
Bose gases, the number density profiles differ from profile
(12). Despite this, since at T � 0 the dependence of the
chemical potential on the number density is nearly quadratic
�m / n 2

2 � [62], the closeness of the density profile to distribu-
tion (11) firmly indicates deep degeneracy and smallness of
the temperature with respect to EF and chemical potential.

4.2 Pressure measurement
For studying the effects connected to quantum degeneracy,
the system's properties at the center are especially interesting,
because the gas is mostly degenerate there. The degree of
degeneracy is determined by the ratio of the temperature to
the local Fermi energy eF�x; y� � 2p�h 2n2�x; y�=m. The ratio
T=eF�x; y� takes the smallest value at the cloud center. In
addition, all known models are constructed for uniform
systems. For quantitative comparison, therefore, we need
measurements in the mostly uniform cloud part, which the
cloud center is. While the imaging is done from a side and the
cloud centers are not seen directly, it happens to be possible to
measure the pressure and number density of particles at the
cloud center.

The force balance equation is the basis for measuring the
pressure at any cloud point:

H?P2�x; y� � ÿn2�x; y�H?V�x; y; 0� ; �13�
where P2�x; y� is the partial pressure of each spin component.
Integrating equation (13), we find that for a harmonic
potential the central pressure is independent of the interac-
tion: P2 � mo2

?N=�2p�. To make the measurement more
informative, we normalize the pressure to the local Fermi
pressure, i.e., to the ideal Fermi gas pressure at T � 0 and at
the same number density as in the cloud center: n2 � n2�0; 0�,
P2 ideal � pn 2

2 �h 2=m. As a result, the value ofP2=P2 ideal close to
unity would point to the fermionic character of the system,
while a value much below unity would point to the bosonic
nature.

Both quantities, n2 and N, needed for finding P2=P2 ideal,
are obtained from the n1�x� profile. The particle number N is
found by integration. The number density profile n2�x; y� is
fully reconstructed from the integral n1�x� owing to the
cylindrical symmetry of potential (1) in stretched coordinates
�x; ~y � yoy=ox�. The inverse Abel transform yields

n2�~r� � ÿoy=ox

p

�1
~r

dn1�x�
dx

dx����������������
x 2 ÿ ~r2

p ; �14�

where ~r �
����������������
x 2 � ~y 2

p
. Profile n2�~r� is displayed in Fig. 6b. It is

known that the inverse Abel transform emphasizes noise,
especially on a small scale. To avoid noise in the n2�~r�
distribution, we filter out small-scale noise in profile n1�x�
prior to its substitution into formula (14). A fit of parabola
n2�~r� � n2 ÿ ~r 2n 002 =2 to the data near the origin yields the
sought after quantity n2.

4.3 Fermi-to-Bose crossover observation using the pressure
The pressure at the cloud center has been measured for the
interaction parameter varying in a large interval. The results

of measuring the normalized pressure at the cloud center,
P2=P2 ideal, vs the interaction parameter are plotted in Fig. 7.
The measurement destroys the quantum states of the system.
Therefore, the system must be prepared for each measure-
ment from the beginning.

The qualitative form of the normalized pressure depen-
dence on the coupling parameter tells us that the system
crosses over from fermionic statistics (on the right-hand side
of Fig. 7) to bosonic statistics (on the left-hand side of Fig. 7).
For a2

�����
n2
p

4 1, the pressure in the system closely approaches
the Fermi pressure. Such high pressure cannot be explained
by thermal effects, because the temperature is low. As the
binding of the particles becomes stronger, the pressure
decreases to values much below the Fermi pressure. The
pressure measured in the Bose regime is due to weak
repulsion between diatomic molecular bosons. The center of
the strong-interaction region �a2 �����

n2
p � 1� approximately

corresponds to a pressure drop by a factor of 2.
In the Fermi region of a2

�����
n2
p

5 5, the temperature falls in
the interval T � �0:02ÿ0:15�EF. Meanwhile, at a2

�����
n2
p � 5,

the temperature of pair breaking is expected at 0:01EF [64],
and even lower at higher a2

�����
n2
p

. Therefore, the superfluid
phase is most probably absent in the Fermi regime and the
system resides in the Fermi-liquid state.

5. Condensation in a gas of Bose molecules

Condensation is not possible in a two-dimensional ideal
uniform Bose gas, because too many states are available
near the zero energy. Meanwhile, the density of states
behaves in a parabolic potential like the square root of
energy, which makes condensation possible at temperature
Tc � EF

���
3
p

=p. The interactions change the density of
states and the condensation conditions, because at nearly
zero temperature each molecule resides in the effective
potential

Veff�x; y� �
2m�o2

xx
2 � o2

yy
2�

2
� g2

�h 2

2m
n2�x; y� ; �15�
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Figure 7. (Color online.) Normalized pressure at the cloud center vs the

interaction parameter. Dots are the experimental data. Horizontal dotted

line represents the mean-field Cooper-pair model [63]. Green curve is the

mean-field model supplemented by fluctuations [30]. Dashed curve is the

Fermi-liquid theory [60]. Purple solid curve traces a lattice Monte Carlo

simulation [31]. Red curve is a diffusion Monte Carlo [28]. Black curve

follows an auxiliary-field Monte Carlo [32].
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which consists of the trap potential and the mean field of the
ambient particles. The mean-field value is determined by the
bosonic coupling parameter g2. PotentialVeff�x; y� is uniform
in the whole area occupied by the cloud. Despite the
uniformity of the potential, condensation is possible because
of the finite size, which cuts off the long-wave fluctuations
that would destroy condensation in an infinitely large system.
With increasing repulsion g2 between the bosons, the size of
the cloud should increase, while the condensation tempera-
ture should decrease. This phenomenon has not been studied
experimentally. The actual instance of condensation, how-
ever, has been established [41].

To detect the condensation in the Bose limit, the
interference of the clouds has been observed upon their
abrupt release from traps. A photo of the system at t � 0,
prior to the release, is shown in Fig. 8a. Upon abrupt turn-off
of the trapping potential at t � 0, the molecular gas evolves in
the free space and may be observed at later instants t. The
system after the evolution at t � 1:7 ms is shown in Fig. 8b.
One may see straight interference fringes. This indicates that
in each cloud there is a wavefunction whose phase is
invariable across the cloud. Therefore, a Bose±Einstein
condensate forms in each cloud.

In this case, the natural question is whether the con-
densates of separate clouds are independent from each other.
Studies of the interference let us answer this question. If all
clouds formed a common condensate, their phases would be
equal. Therefore, a kind of Talbot effect [65] would be
observed in the evolution: the system would reproduce its
initial wavefunction along the z-axis at times that are integer
multiples of the Talbot period

TTalbot � ml2

2p�h
� 1:7 ms ; �16�

which would naturally appear in the course of evolution due
to the initial period along the z-axis that equals
l=2 � 5:3 mm. In the analysis, one may neglect cloud
expansion in the xy plane, because this is a slow process.
Furthermore, when analyzing the evolution one may neglect
the repulsion between the molecules, because the number
density is small for most of the time. In addition to the

evolution periodicity, the spacial period along the z-axis
should be preserved.

In Fig. 8b representing the image at t � TTalbot, a picture
that qualitatively differs from the one expected within the
Talbot effect can be seen. Instead of revival of the initial
distribution along the z-axis, similar to the initial distribution
in Fig. 8a, a spatial period that is two times bigger is seen. The
qualitative difference with the Talbot effect indicates that
phases of condensates are different and, consequently,
condensates in adjacent clouds are independent.

6. Fermi-to-Bose crossover models

6.1 Mean-field Cooper-pair model
for a three-dimensional system
For a three-dimensional system, a Fermi-to-Bose crossover
theory may be constructed on the basis of the Bogoliubov
superconductivity model with the Hamiltonian

Ĥ �
X
k

�h 2k2

2m

ÿ
ĉ
y
k"ĉk" � ĉ

y
k#ĉk#

�� g3
X
k; k 0

ĉ
y
k"ĉ
y
ÿk#ĉÿk 0#ĉk 0" ;

�17�
where the coupling constant g3 is expressed via the three-
dimensional scattering length: g3 � 4p�h 2a=m. The solution
for the ground state in the form of the direct product of
Cooper pairs, namelyY

k

ÿ
uk � vkĉ yk"ĉ yÿk#

� jvacuumi ; �18�

turned out to be applicable not just for small negative a, as in
the initial problem statement, but for any value of a [49]. An
analytical solution has been found [66], which shows that the
change of 1=a fromÿ1 to�1 brings about a decrease in the
Cooper pair size, which eventually becomes much smaller
than the interparticle distance. Such a course of things is not
accompanied by any jumps in thermodynamic quantities.
This solution qualitatively correctly reproduces the behavior
of the pressure smoothly decreasing to zero.

6.2 Two-dimensional system's models
For a two-dimensional system, the use of a mean-field
Cooper-pair model similar to Eqns (17) and (18) gives a
qualitatively incorrect answer. While a two-body quantity,
the two-fermion binding energy, shows qualitatively correct
behavior implying its growth with strengthening the interac-
tion [63], many-body quantities such as pressure, on the
contrary, happen to be independent of the interaction. In
particular, such amodel predicts that the Fermi pressuremust
be present in the Bose limit. In Fig. 7, where the prediction of
the mean-field Cooper-pair model [63] is shown by the dotted
line, qualitative disagreement with the experimental data is
seen.

The addition of fluctuations into the mean-field model
yields the qualitatively correct dependence of the pressure on
the interaction strength [30], shown by the green curve in
Fig. 7. Indeed, according to the Ginzburg±Levanyuk criter-
ion [26, 27], the reduction in the dimensionality is accom-
panied by an increasing role of fluctuations.

Models with a qualitatively correct description of the
Fermi-to-Bose crossover have appeared only in a few recent
years, such as model [30]. These models include quantum
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Figure 8. Interference of Li2 molecule Bose condensates: (a) the initial

state, where the condensates are in the traps, and (b) image in 1.7 ms after

turn-off of the traps and free-space evolution.
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diffusion Monte Carlo [28, 33], self-consistent T-matrix [29],
finite-temperature lattice Monte Carlo [31], and auxiliary-
field Monte Carlo simulations [32]. Predictions of some of
these models are depicted in Fig. 7. Results of all models are
given at T � 0. A quantitative discrepancy may be noted
between the models.

Analytical models for the gas in the Bose [67] and Fermi
[59, 60] asymptotes appeared much earlier. For a two-
dimensional gas with s-wave interaction, it was possible to
calculate the Fermi liquid theory from first principles [59, 60].
Starting from the results of Ref. [60], one may calculate the
pressure:

P2

P2 ideal
� 1ÿ 1

ln
ÿ ������

4p
p

a2
�����
n2
p �� 0:787�

ln
ÿ ������

4p
p

a2
�����
n2
p ��2 ; �19�

which is plotted in Fig. 7 with the dashed curve. This
analytical result agrees with the fixed-node diffusion Monte
Carlo numerical calculation [28], but differs from the
measurements. The discrepancy with the measurement is
significant because, within the Fermi-liquid theory, the
pressure is counted from the Fermi pressure rather than
from zero. The difference between the experimental data
and the Fermi-liquid theory [60] may be due to the meso-
scopic character of the experimental system [41], because the
calculation was done for an infinitely extended Fermi liquid.
On the other hand, calculations within the mean-field model
supplemented by fluctuations [30] agree better with the
experimental data. The Fermi-liquid theory, which belongs
to mean-field models, does not account for fluctuations;
therefore, the additional pressure may be related to fluctua-
tions in the two-dimensional system.

7. Conclusion

In experiments with the kinematically two-dimensional
ultracold gas of Fermi atoms, states lying between the Bose
and Fermi limits are observed. In all states, the gas is deeply
degenerate. The condensate of diatomic molecular bosons
serves as the Bose limit. The state may be judged from the
pressure and the interference. The pressure drop in response
to the tuning of the interaction indicates Fermi pressure
disappearance and crossover into the Bose regime. The
interference lets us see the appearance of the long-range
order which unambiguously points to condensation. The
pressure data may serve for quantitative testing of two-
dimensional Bose and Fermi system models.
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