
Abstract.We study the relation between the energy±momentum
tensor of the electromagnetic field and the group velocity of
quasi-monochromatic waves in a nonabsorptive, isotropic, spa-
tially and temporally dispersive dielectric. It is shown that the
Abraham force acting on a dielectric is not needed for the
momentum conservation law to hold if the dielectric is free of
external charges and currents and if the Abraham momentum
density is used. The energy±momentum tensor turns out to be
symmetric, and the Maxwell stress tensor is expressed either in
terms of the momentum density vector and the group velocity or
in terms of the energy density and the group velocity. The stress
tensor and the energy density are essentially dependent on the
frequency and wave vector derivatives of the functions that
describe the electromagnetic properties of the medium (i.e.,
the dielectric permittivity and the magnetic permeability). The
obtained results are applicable to both ordinary and left-handed
media. The results are compared with those of other authors.
The pressure a wave exerts on the interface between two media
is calculated. For both ordinary and left-handed media, either
`radiation pressure' or `radiation attraction' can occur at the
interface, depending on the material parameters of the two
media. For liquid dielectrics, the striction effect is considered.

Keywords: energy±momentum tensor, dispersive media, group
velocity, light pressure, striction effect

1. Introduction

The energy±momentum tensor is a fundamental concept
characterizing the electromagnetic field in the vacuum and
media. The temporal components of this tensor represented in
the four-dimensional form determine the energy and momen-
tum densities and the energy flux density. The spatial
components give the momentum flux density. These quanti-
ties play an important role in all electrodynamic phenomena,
and the energy±momentum tensor and related questions have
been discussed in various aspects by many authors [1±15].

The energy±momentum tensor in a dispersive medium
was constructed only for spectral intervals corresponding to
`transparency windows', i.e., with dissipation neglected [1].
The electromagnetic energy density in the medium in these
regions is described by the Brillouin formula

w � 1

16p

�
q
qo

ÿ
oEab�k;o�

�
E �aEb � B�B

�
; �1�

containing the permittivity tensor Eab�k;o� that relates the
Fourier harmonics of the macroscopic electric field E and the
generalized electric induction vector ~D. The Brillouin formula
pertains to a wave packet with harmonics whose frequencies
and wave vectors are located in narrow intervals Do5o and
Dk5 k in vicinities of the specified values of k and o. In (1),
averaging over themain periodT � 2p=o is performed. In the
absence of spatial dispersion and using the permittivity e�o�
and the magnetic permeability m�o�, the Brillouin formula
takes the usual form

w � 1

16p

�
q
qo

ÿ
oE�o��E�E� q

qo

ÿ
om�o��H�H� ; �2�

where H � B=m�o�.
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We note that both the setting of the problem of the energy
density in a dispersive medium and its solution are approx-
imate. In expressions (1) and (2) for the energy density, small
terms of the order of Do=o5 1, Dk=k5 1 are omitted in
Maxwell's equations (for completeness, we reproduce the
corresponding calculations in Section 4). As regards the
setting of the problem, the limitations are even more
significant. This is explained by the fact that the `field in
matter' physical system consists of two constantly interacting
subsystems. The main limitations are the smallness of the
external field compared to internal fields in matter (linear
responses to the field are considered), the closeness of the
medium to statistical equilibrium (the Gibbs distribution for
the unperturbed medium), and the absence of strong dissipa-
tion, providing the free penetration of the field into the
medium. Weak dissipation can be considered using the
perturbation theory. For strong dissipation, as pointed out
in [1], the energy±momentum tensor probably cannot be
expressed only in terms of the permittivity tensor. It can
contain, for example, a macroscopic parameter of the
medium such as the heat capacity.

For the momentum density g of the electromagnetic field,
as evidenced by the history of the formation of this important
concept, difficulties emerged due to different definitions of
this quantity proposed by Minkowski and Abraham [8±10]
(see also the discussion of this question in [12]). Although the
Abraham representation

g � 1

16pc

�
E� � B� E� B� ÿ o

c

qEab
qk

E �aEb

�
�3�

is already firmly adopted at present, leading to a symmetric
four-dimensional energy±momentum tensor and to the
conservation of the angular momentum in an isotropic
medium, we present some additional arguments in Section 6
in favor of this expression for temporally and spatially
dispersive media. In the absence of spatial dispersion, the
momentum density takes the form

g � 1

16pcm�o�
ÿ
E� � B� E� B�

�
: �4�

The Minkowski representation for the momentum density
and its generalization to dispersive media are discussed in
Section 5.

Most controversy surrounds the concept of the momen-
tum flux density in a dispersive medium. Pitaevskii concluded
in his classic paper [16] that the momentum flux density in an
alternating electromagnetic field in a dispersive medium is
expressed the same as for static fields with the static
permittivity e and magnetic permeability m replaced by the
corresponding frequency-dependent quantities e�o� and
m�o�, and the products EaEb replaced by those averaged
over the field period,

EaEb ! EaEb ; HaHb ! HaHb : �5�

This gives the stress tensor for a liquid dielectric

sP
ab �

1

4p

ÿ
e�o�EaEb � m�o�HaHb

�ÿ 1

8p

�
eÿ r

qe
qr

�
E 2dab

ÿ 1

8p

�
mÿ r

qm
qr

�
H 2 dab ; �6�

where r is the dielectric mass density. The same method of
passing to an alternating field was recommended in a recent
review by Makarov and Rukhadze [17].

The tempting simplicity of this result casts some doubts,
however. It is known that wave packets in a dispersive
medium are transferred (together with their energy and
momentum) at the group velocity u � do=dk, which can be
written in an isotropic medium without spatial dispersion in
terms of the frequency derivatives of the permittivity and
magnetic permeability:

u � c

d
ÿ
o

�������������������
e�o�m�o�p �

=do

k

k
: �7�

Therefore, the absence of the group velocity in the expression
for the momentum flux density brings up questions. We note
that the role of the group velocity was discussed in the well-
known review [18] for the relativistic generalization of this
velocity and construction of the energy±momentum tensor in
the four-dimensional formalism. The results in [18] contain
the group velocity.

We also note that unlike the phase velocity having the
exact geometrical (and physical) meaning, the group velocity
is an approximate concept. This velocity appears as a linear
term in the expansion of a quasimonochromatic wave
frequency o�k� in the wave vector [see below (21)]. How-
ever, we recall the approximationsmentioned above that were
used in calculations of the main component of the energy±
momentum tensor, i.e., the energy density. The use of the
group velocity is within the limits of the original assumptions
about the smallness of the parameters Do=o5 1 and
Dk=k5 1 and is appropriate in solving the formulated
problem. The group velocity is quite illustrative and plays
an important role in various problems concerning the
propagation of waves.

The absence of the group velocity in Pitaevskii's formulas
can be related to the use of the quasistationary model with a
capacitor with an alternating voltage applied to its plates. It is
clear that in the quasistationary approximation, waves do not
propagate in the capacitor and the group velocity cannot be
manifested. But it becomes significant beyond this approx-
imation. The reference to the book by Landau and Lifshitz [1,
p. 384], where Pitaevskii's work is also considered, does not
remove doubts: ``To satisfy the quasistationarity conditions,
the circuit size should be small compared to the wavelength
c=o. This restriction, however, is not essential in nature and
does not minimize the generality of the conclusion made.''

Moreover, direct verification shows that stress tensor (6)
does not ensure the electromagnetic field momentum con-
servation law, which must hold in a homogeneous medium
without dissipation. This disadvantage of expression (6)
manifests itself not only in the presence of dispersion but
also in nondispersive media, i.e., when the permittivity e > 0
and the magnetic permittivity m > 0 are independent of the
frequency and wave vector (see expressions (71)±(74) and the
corresponding text in Section 7). To satisfy the momentum
conservation law by specifying the momentum density in
Abraham's representation (3), (4) and specifying the stress
tensor by Pitaevskii's expression (6), it is necessary to
introduce the additional Abraham force applied to matter
into the balance equation. In the case of a narrow packet of
transverse eigenmodes of a dielectric, which is the most
important case for dispersive media, there are no reasonable
physical grounds for such a complication of the theory and
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the introduction of phantom quantities into it. It is more
natural to modify the stress tensor by using the group velocity
that has a clear physical meaning.

Therefore, it is reasonable to refine the form of the
energy±momentum tensor in a dispersive medium. This is
also stimulated by the increasing use of metamaterials in
which the temporal and spatial dispersions play a key role
(see, e.g., review [19]). We note at once that we consider this
class of artificial materials, which is diverse and complicated
to describe, using the simplest isotropic model. The model
assumes that (i) these materials can be described using the
negative frequency-dependent permittivity e�o� < 0 and
magnetic permeability m�o� < 0, and (ii) the group velocity
in thesematerials, unlike that in ordinary isotropic dielectrics,
is directed oppositely to the phase velocity and wave vector.
The last condition can be satisfied only in dispersive media.
Otherwise, the phase and group velocities have the same
magnitude and direction.

2. Initial equations

We consider an isotropic, nonabsorbing, statistically homo-
geneous, temporally and spatially dispersive medium. To
advance to the high-frequency region, the field-induced
macroscopic current jint in a dielectric should be described as
a unified phenomenon, without separation into polarization
and magnetization currents. Therefore, it is convenient to use
the system of Maxwell's equations with three field vectors E,
B, and ~D [1, 20, 21], where ~D is the generalized electric
induction vector, expressed in terms of the total current
produced by particles in the medium:

~D�r; t� � E�r; t� � 4p
� t

ÿ1
jint�r; t 0� dt 0 ; �8�

or

~D�r; t� �
� t

ÿ1
dt 0
�
d3r 0 Eab�rÿ r 0; tÿ t 0�Eb�r 0; t 0� : �9�

Here, Eab�r; t� is the linear response function for a homo-
geneous and stationary medium, having the form

Eab�k;o� � el�k;o� kakb
k 2
� et�k;o�

�
dab ÿ kakb

k 2

�
;
�10�

~Da�k;o� � Eab�k;o�Eb�k;o�

in the Fourier representation, where el and et are the long-
itudinal and transverse permittivities. The tensor Eab is
symmetric in nongyrotropic media. The dependence of et
and el on the modulus k � jkj is due to the assumed isotropy
of the dielectric.

In the case of an ideally transparent (nonabsorbing)
medium, the tensor Eab�k;o� is real. The dissipation of the
electromagnetic energy is described by the imaginary parts e 00l
and e 00t . Because the real and imaginary parts of the linear
response functions are connected by the Kramers±Kronig
dispersion relations, a medium in which dissipation would be
absent at any field frequencies does not exist. However, media
that are weakly dissipative in certain spectral regions
(transparency windows) can exist. We consider just such
regions, assuming that the medium is nondissipative.

If the field in themedium is described by four vectorsE,H,
D, and B without spatial dispersion, then the total permittiv-

ity tensor contains both the permittivity e�o� and the
magnetic permeability m�o�, which are independent of k, but
the tensor itself retains the dependence on the wave vector k,

Eab�k;o� � e�o�dab �
�
ck

o

�2�
1ÿ 1

m�o�
��

dab ÿ kakb
k 2

�
: �11�

The dependence on k appears because the tensor Eab is related
to the total current of the medium and describes both
electrical and magnetic properties of the medium. By
comparing (10) and (11), we find a relation between
permittivities et, el and e, m:

el�o� � e�o� ; et�k;o� � e�o� �
�
ck

o

�2�
1ÿ 1

m�o�
�
: �12�

Maxwell's equations with three field vectors in the
presence of external charges rext and currents jext have the
form

HH� E � ÿ 1

c

qB
qt

; �13�

HH� B � 1

c

q~D

qt
� 4p

c
jext�r; t� ; �14�

HH ~D � 4prext�r; t� ; HHB � 0 : �15�
By using this system of equations, we write the balance
equation for the energy transferred to the field from an
external source,

ÿjext E �
1

4p

�
B

qB
qt
� E

q~D

qt

�
� c

4p
HH �E� B� : �16�

The force density with which the field acts on external
charges and currents is

fext � rextE�
1

c
jext � B � ÿ 1

4pc

�
q~D

qt
� B

�
� 1

4p
�HH� B� � B� 1

4p
E�HH ~D�

ÿ 1

4pc

�
~D� qB

qt

�
ÿ 1

4p
~D� �HH� E� : �17�

The last two terms, whose sum vanishes, are included for
symmetry.

3. Wave packet in a dispersive medium

In a dispersive medium, it is necessary to consider an
electromagnetic field in the form of a narrow wave packet,
as in the derivation of Brillouin formula (1). Otherwise, it is
difficult to express the quantities of interest in terms of the
permittivities et�k;o� and el�k;o� depending on the frequency
and wave number, which are calculated in microscopic
theory. Other methods for introducing permittivities are
considered, e.g., in [22, 23]. The vectors of the electromag-
netic field for a narrow wave packet in the Fourier space can
be written in the form of Fourier integrals over small
frequency and wave-vector intervals a4Do5o and
q4Dk5 k:

E�r; t��
�
EE�k� q;o� a� exp�i�k� q�rÿ i�o� a�t� d3q da�2p�4

� EE�r; t� exp �ij� ; j�r; t� � krÿ ot : �18�
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The amplitude EE�r; t� is determined by the sources rext and
jext. It varies in space and time slowly compared to the fast
phase factor exp �ij�. In particular, the coordinate and time
derivatives of EE�r; t� are of the order of Dk=k and Do=o,
unlike the derivatives of the phase factor.

But in regions where rext � jext � 0, the coordinate and
time dependences of the amplitude can be specified. In these
regions, the Fourier harmonics can only be the eigenmodes of
the dielectric. Therefore, the quantities k and o are related by
the dispersion equation that follows from the system of
Maxwell's equations (13)±(15) and has the form

o2�k�et�k;o� � c 2k 2 �19�

for transverse waves. The Fourier integral in relation (18)
becomes three-dimensional,

E�r; t� �
�
EE�k� q� exp �i�k� q�rÿ io�k� q�t� d3q

�2p�3 : �20�

With the group velocity u introduced standardly as

o�k� q� � o�k� � uq ; u � do
dk

; �21�

we obtain a wave packet with a slowly varying amplitude,
which propagates with the group velocity u:

EE�rÿ ut� �
�
EE�k� q� exp �iq�rÿ ut�� d3q

�2p�3 ; �22�
E�r; t� � EE�rÿ ut� exp �ij� :

In the approximation used here, the wave packet does not
change its shape.

The generalized electric induction vector ~D can be
expressed in terms of the Fourier harmonics of the linear
response and electric field strength:

~Da � exp �ij�
�
Eab�k� q;o� a�Eb�k� q;o� a�

� exp �iqrÿ iat� d
3q da

�2p�4 : �23�

We calculate the integral to find the electric induction in the
first order in the parameters Dk=k, Do=o:

~Da�r; t� � Eab�k;o�Eb�r; t� exp �ij� ÿ i exp �ij�

�
�
qEab
qk

HHÿ qEab
qo

q
qt

�
Eb�r; t� : �24�

If the wave packet consists of eigenmodes of the dielectric,
then the slow amplitude of the electric field has the argument
rÿ ut, i.e., Eb�r; t� � Eb�rÿ ut�.

The magnetic induction B is expressed in terms of E with
the help of Maxwell's equation (13). In the zeroth order, the
relation between the vectors is the same as in the case of
monochromatic waves,

BB � c

o
k� EE ; �25�

where BB is the slowly varying amplitude of the magnetic
induction. Taking the first-order correction into account, we

obtain

BB � c

o
k� EE ÿ ic

o

�
HH� EE � k

o
� qEE

qt

�
; �26�

B�r; t� � BB�r; t� exp �ij� :

In regions without external charges and currents, BB�r; t� �
BB�rÿ ut�.

4. Averaging the energy transfer equation
and the group velocity

We calculate the current density induced by a wave packet
with electric field (18) in a homogeneous medium:

j inta �r; t� �
�
kab�rÿ r 0; tÿ t 0�Eb�r 0; t 0� d3r 0 dt 0

� exp
�
i�krÿ ot�� � kab�rÿ r 0; tÿ t 0�

� exp
�ÿik�rÿ r 0� � io�tÿ t 0��Eb�r 0; t 0� d3r 0 dt 0 : �27�

Here, the tensor function of the linear response kab has the
meaning of a generalized electric conduction. In the Fourier
representation, these tensors are related by the well-known
expression

kab�k;o� � ÿ io
4p

ÿ
Eab�k;o� ÿ dab

�
: �28�

The slowly varying amplitude can be expanded in a power
series in the vicinity of a point �r; t�, through the first-order
terms,

EE�r 0; t 0� � EE�r; t� � ��r 0 ÿ r�HH�EE�r; t� � �t 0 ÿ t� qEE�r; t�
qt

:

Substituting this expression in (27) and integrating gives the
induced current in terms of the slowly varying amplitude and
also the Fourier transform of the linear response function and
its frequency and wave vector derivatives:

j inta �r; t� � kab�k;o�Eb�r; t� � exp
�
i�krÿ ot��

�
�

q
qo

o�Eab ÿ dab�
4p

q
qt
ÿ o
4p

qEab
qkg

Hg

�
Eb�r; t� : �29�

Averaging the product jintE over the main period gives the
result

jintE �
1

16p

�
q
qo
�oEab� ÿ dab

�
q
qt

E �aEb

ÿ o
16p

HH
�
qEab
qk

E �aEb

�
: �30�

The zeroth-order term in (29) makes no contribution if the
electromagnetic energy dissipation is neglected. By using the
previous result in averaging the initial equation (16), we
obtain the energy balance in a dispersive medium:

ÿ jextE �
q
qt

�
1

16p

�
q
qo
�oEab�E �aEb � B �B

��

� div

�
c

16p

�
E� B � � E � � Bÿ o

c

qEab
qk

E �aEb

��
: �31�
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We see that the energy density w (the quantity under the
time derivative) and the energy flux density c (under the
divergence) obtained here from Maxwell's equations are
described by relations (1) and (3) (the latter expression
should be multiplied by c 2). They depend on slowly varying
amplitudes and do not contain rapidly changing phase
factors.

It is convenient to represent w and c in a simpler form in
terms of the electric field vector E by eliminating the vector
B with the help of relations (25) and (26) for the wave
packet obtained from Maxwell's equations. In this case, we
do not go beyond the above-mentioned approximations,
because relations (1) and (3) themselves are approximate,
which is obvious from the foregoing. Using (25) and (26),
we find

w � 1

16p
EE � EE

�
et � q

qo
oet

�
; �32�

c � c

8p
EE � EE ����

et
p �

1ÿ k

2et

qet
qk

�
n ; n � k

k
: �33�

Expressions (32) and (33) are applicable in regions where
external field sources are absent, jext � 0, rext � 0.

The ratio c=w has the form

c

w
� nvph

et ÿ �k=2� qet=qk
et � �o=2� qet=qo ; vph � c����

et
p ; �34�

where vph is the phase velocity. Expressions (34), like c

and w separately, do not contain the longitudinal permit-
tivity el, which is quite natural because the magnetic vector
B is absent in longitudinal oscillations and they cannot
freely propagate. As regards the fraction in the right-hand
side, according to the meaning of this ratio, it is the energy
transfer rate in a dispersive medium, i.e., the group
velocity

u � do
dk
� kc

k
����
et
p et ÿ �k=2� qet=qk

et � �o=2� qet=qo : �35�

This can be easily verified by using dispersion equation (19)
for transverse waves and the formula u � do=dk:

o�k� � ck����������������
et�k;o�

p ;
do
dk
� n

c����
et
p ÿ ck

2e 3=2t

�
qet
qk
ÿ qet
qo

do
dk

�
;

�36�

which gives (35). The group velocity in isotropic dispersive
media, as follows from its explicit form, can be directed both
along the wave vector and in the opposite direction.

Our calculations show that the group velocity naturally
appears in the study of energy characteristics of transverse
waves and completely corresponds to the initial approxima-
tion concerning a `narrow' wave packet in the Fourier space.
As mentioned above, in the absence of spatial dispersion, the
group velocity can be calculated from (7).

5. Averaging the momentum transfer equation
and the Minkowski representation

Equation (17) is bilinear in the field vectors, which must be
real-valued.We take the complex description of fields in (18)±
(26) into account and represent Eqn (17) in terms of the real

parts of the field vectors,

fext � ÿ 1

16pc
q
qt
�~D� � B� ~D� B��

ÿ 1

16p

�
~D� � �HH� E� � ~D� �HH� E��

� B� � �HH� B� � B� �HH� B�� ÿ E��HH~D� ÿ E�HH~D��� :
�37�

Here, the terms containing rapidly oscillating factors
exp ��2ij� are omitted. Averaging the terms with time
derivatives over the main period T � 2p=o gives

1

T

� t�T

t

q
qt 0

�
~D� � B� ~D� B�

�
dt 0

� 1

T

�DD� � BB �DD� BB��t�T
t
� q

qt

�DD� � BB �DD� BB�� ;
�38�

where DD without a tilde denotes the slowly varying electric
induction amplitude. The terms containing exp ��2ij� give
second-order terms after averaging, which should be omitted.
In averaging terms involving coordinate derivatives, we
should take into account that the differentiation of the
exponential HH exp ��ij� � �ik exp ��ij� gives not only
zeroth-order terms but also terms of the next orders in
Dk=k5 1. The order-of-magnitude estimate of individual
terms can be done using the identities

ik EE � HHEE � 0 ; ikBB � HHBB � 0 ; �39�

which follow from the equalities HH~D � 0 and HHB � 0. The
first of these is applicable in regions where external charges
are absent.

The zeroth-order terms mutually cancel. The second-
order terms should be omitted. As a result, using relations
(10) and (24), we obtain the groups of first-order terms
averaged over the period:

1

T

� t�T

t

�
~D���HH�E� � ~D��HH�E�� ÿ E��HH~D� ÿ E�HH~D���dt 0

� ÿet�k;o�
�
HH�EE EE ��ÿ �EE �HH�EE ÿ �EE HH�EE �ÿ EE�HHEE ��ÿ EE ��HHEE��

ÿ iet
�EE ��k EE� ÿ EE�k EE �� ÿ EE ��HHDD� ÿ EE�HHDD��ÿ

ÿ k

�
qet
qk

1

k

�EE�kHH�EE � � EE ��kHH�EE�ÿ qet
qo

�
EE qEE �

qt
� EE � qEE

qt

��
:

�40�
The terms containing themagnetic inductionB have a simpler
structure:

1

T

� t�T

t

�
B� � �HH� B� � B� �HH� B���a dt 0

� q
qxb

��BBBB��dab ÿ BaB�b ÿ B�aBb� : �41�

Using results (38)±(41), we can average momentum balance
equation (37). Terms under the time derivative take the form

gM � 1

16pc

�
DD� � BB �DD� BB� � nck

qet
qo
EE �EE
�

�42�
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after averaging. Expression (42) is a generalization of the
Minkowski momentum density [8, 9] to a dispersive medium.

To verify this, we take into account that in the absence of
dispersion �qe=qo � 0, qm=qo � 0� for transverse waves,
according to equalities (10)±(12) and (19),

~DD � emE � mD ; �43�

where D � eE is the ordinary electric induction used in
Maxwell's equations with four field vectors. The vectors E
and B are the same in both variants of the equation
representation. Using (12), the last term in the right-hand
side of (42) can be written in the form

nck
qet
qo
�EE �EE� � ÿ�mÿ 1��D� � BB �D� BB�� : �44�

Substituting (43) and (44) in (42), we obtain the Minkowski
momentum density averaged over the main period. In the
modern notation (see [12, 21]), we have the expression

gM � 1

16pc
�D� � B�D� B�� �45�

containing the nongeneralized (ordinary) electric and mag-
netic inductions.

Returning to expression (42) in the general case, we apply
it to a wave packet composed of the eigenmodes of a dielectric
(i.e., assume that the electromagnetic field source �rext; jext� is
located outside the region under study). By eliminating the
vectorsDD and BB with the help of relations (10), (19), (22), and
(25), we simplify the equation to the form

gM � n

8pc
�EE �EE �e 3=2t

�
1� o

2et

qet
qo

�
; n � k

k
: �46�

Passing to the permittivity e�o� and permeability m�o�, we
obtain

gM � n

8pc
�EE �EE �e�o� �����emp �

1� o
2e

qe
qo
� o
2m

qm
qo

�
: �47�

In the vacuum, all the representations of the vector gM

presented above describe the momentum flux density of the
wave packet,

g vac � 1

16pc
�EE � HH� � EE � � HH� ; �48�

averaged over the main period.
It is important for further consideration that all the

coordinate derivatives in the right-hand side of (37) are
expressed in the form of the divergence qsM

ab=qxb of the
symmetric second-rank tensor

sM
ab �

1

16p

�
E �a Eb � EaE �b ÿ

�
etdab ÿ nanbk

qet
qk

�
EE �EE

� BaB�b � B�aBb ÿ BBBB�dab
�
: �49�

On passing from a dielectric to the vacuum et � 1, the vectors
EE and BB transform into the macroscopic field strengths EE and
HH, the vector g transforms into the electromagnetic field
momentum density, and sab transforms into the Maxwell
stress tensor for the vacuum averaged over the main period
(see, e.g., [24]), which differs in sign from the momentum flux
density. Finally, for fext � 0, the momentum balance in

differential form (37) takes the form of the continuity
equation

qgM
a

qt
ÿ qsM

ab

qxb
� 0 : �50�

In regions where fext 6� 0, Eqn (50) acquires a source:

qgM
a

qt
ÿ qsM

ab

qxb
� ÿfext : �51�

In this case, the form of gM and sM
ab becomes complicated,

and they can be calculated only when the field sources rext and
jext are specified.

Equation (50) expresses the conservation law for the
volume integral of the vector gM following from macro-
scopic Maxwell's equation, and it can be written in the
integral form

d

dt

�
�V�

gM
a dV �

�
�S�

sM
ab dSb : �52�

Because we started from the expression for the force density
applied to external charges and currents, the left-hand side of
(52) can be treated as an increase in the momentum related to
the electromagnetic field in the volumeV. The right-hand side
of (52) gives the momentum flux flowing into this volume
through a closed surface that bounds the volume.

The tensor sM
ab can be considerably simplified using

relation (25), which allows expressing all the summands in
terms of the electric field:

B�aBb � BaB�b � et
�
2�dab ÿ nanb� EE EE � ÿ E �a Eb ÿ EaE �b

�
: �53�

This gives the compact expression

sM
ab � ÿ

nanb
8p

et

�
1ÿ k

2et

qet
qk

�
EE EE � : �54�

In all the equalities starting from (38), averaging was
performed over the field period. The dielectric was assumed
isotropic, incompressible, and having a constant density and
temperature, but the temporal and spatial dispersion was
taken into account.

We recall that the tensor under the divergence sign is
defined ambiguously. An arbitrary second-rank tensor ~sab
having zero divergence �q~sab=qxb � 0� can be added to it. The
most general form of such a tensor is the divergence ~sab �
qlabg=qxg of some third-rank tensor, labg�x; y; z� � ÿlagb,
antisymmetric in the indices b and g.

However, as Fock has shown in [25], a tensor like labg,
bilinear in field vectors, can be constructed only if derivatives
of these vectors are included in it. Because of this, Fock
postulates a principle to be satisfied by the energy±momen-
tum tensor of the electromagnetic field: it must be a function of
the state of the system under study. In our case, this means that
the tensor must depend on field vectors that, together with
other parameters (the mass density and temperature or the
mass density and specific entropy), completely describe the
state of the dielectric. The derivatives of the field vectors are
not among the parameters determining the state. This
principle eliminates the ambiguity introduced by terms like
qlabg=qxg. The principle formulated byFock is also important
for the choice of the energy flux density c, because the
Poynting vector is initially under the divergence sign, and
the ambiguity mentioned above also concerns it.
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If expression (35) for the group velocity is used, the
Minkowski momentum flux density of the electromagnetic
field takes the form of the product gM

a ub of the corresponding
component of the momentum density and the propagation
velocity of the wave packet and allows representing this
tensor in the simplest and clearest symmetric form:

sM
ab � ÿgM

a ub � ÿgM
b ua : �55�

Again, as in Section 4, the group velocity emerged from
Maxwell's equations for the wave packet. In the given case,
it is the momentum transfer velocity. There is no mystery in
the constant appearance of the group velocity in transfer
equations for the packets of quasimonochromatic waves.
After averaging over the period, physical quantities bilinear
in the field under study contain only slowly varying field
amplitudes depending not on r and t separately but on the
single argument rÿ ut including the group velocity. This
circumstance was pointed out in Section 3. Therefore, any
vector G depending on the slow amplitudes EE and BB satisfies
the continuity equation

qGa

qt
ÿ qSab

qxb
� 0 ; �56�

where Sab � ÿGaub can be treated as the flux density of the
vector G. The tensor Sab is symmetric if the vector
G�rÿ ut� � G�rÿ ut�n is directed along the wave vector
k � kn. Such an ambiguity in the choice of the momentum
density of the electromagnetic field and its flux in a dispersive
medium shows that the use of the continuity equation only,
which is obtained from Maxwell's equations, is insufficient
for determining the quantities mentioned above. It is
necessary to additionally apply some general physical
principles.

The tensor sM
ab taken with the opposite sign is the spatial

part of the four-dimensional energy±momentum tensor of the
electromagnetic field in a transparent medium. The stress
tensor in review [18] is written in a similar form, including the
group velocity. But in our opinion, the momentum density is
written in [18] incorrectly and the explicit expressions for
these quantities in terms of the permittivity are not presented.

6. Symmetry of the energy±momentum 4-tensor
and the momentum density

Although the quantities gM and sM
ab are related by continuity

equation (50), they cannot be treated as the momentum
density and the momentum flux density in a dispersive
medium. Besides the ambiguity discussed at the end of
Section 5, this is explained by the fact that the four-
dimensional energy±momentum tensor containing these
quantities is not symmetric:

TM
ik �

w ÿcgM

ÿ c

c
ÿsM

ab

 !
: �57�

Here, i; k � 0; 1; 2; 3, a; b � 1; 2; 3, and w is the energy density
(Brillouin formula (1)) which, with the use of tensor (10),
takes the form

w � 1

16p

�
q
qo

oet�k;o� EE �EE � BB�BB
�
; �58�

or, if the vector BB is eliminated with the help of Maxwell's
equations,

w � 1

16p
EE �EE
�
et � q

qo
oet

�
;

�59�
w � e�o�

8p

�
1� o

2

�
1

e
qe
qo
� 1

m
qm
qo

��
EE �EE :

The last expression ignores the spatial dispersion and uses the
permittivity e�o� and permeability m�o� depending only on
frequency. We note that although frequency derivatives
entering the above formulas can have different signs, the
electromagnetic energy density w5 0 cannot be negative;
otherwise, the field could be generated without any energy
being spent by the source.

The generalized Poynting vector (the energy flux density)
can be written as (see [1, 20, 21] and the results in Section 4)

c � c

16p

�
EE � � BB � EE � BB� ÿ o

c

qEab
qk
E �a Eb

�
�60�

and takes the form

c � c

8p
EE �EE ����

et
p �

1ÿ k

2et

qet
qk

�
n �61�

for a packet of transverse waves (61). The ratio of (61) and
(59) is equal to group velocity (35). If the permittivity e�o�
and permeability m�o� are independent of the wave number,
expression (61) can be written as

c � c

16p
�EE � � HH� EE �HH�� ; �62�

whereHH � BB=m�o�, or as

c � c

8pm

�
ck

o

�
�EE �EE �n � c

�����
em
p
8pm

�EE �EE �n : �63�

We note that
�����
em
p

=m 6� �������
e=m

p
if e < 0 and m < 0 (metamater-

ials) and the positive value of the square root is considered, as
usual. The direction of the vector c, like the momentum flux
density g, can coincide with the direction n of the wave vector
or can be opposite.

Returning to energy±momentum tensor (57) and compar-
ing the components TM

0a and TM
a0 using expressions (46) and

(61), we conclude that this tensor is not symmetric,
TM
0a 6� TM

a0 , but the stress tensor is symmetric, sM
ab � sM

ba .
The nonsymmetricity of TM

ik is not surprising, because it is
well known that the Minkowski energy±momentum tensor is
also nonsymmetric in the absence of dispersion. Many
authors, starting with Abraham [9], consider the nonsymme-
tricity of the tensor an essential disadvantage of the
Minkowski treatment and use the Abraham formula (see [1])

gA � 1

16pc
�EE � � HH� EE �HH�� �64�

for the momentum density (its value is averaged over the
period). In this case, an additional termÐ the Abraham
forceÐ appears in the momentum balance equation.

The symmetricity of the energy±momentum 4-tensor is
required for the conservation of the angular momentum of a
closed matter� field system and for representing it in the
traditional illustrative form in terms of the momentum itself.
This property is obvious for a system consisting of an
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electromagnetic field and charged particles in a vacuum. In
the case of a dielectric at rest, the momentum density contains
contributions from the field itself and the electron subsystem
of the dielectric interacting with its nuclear core, and the
requirement that the 4-tensor be symmetric for such a
nonclosed system is not so obvious. Notably, Polevoi and
Rytov [18] do not believe that this requirement is obligatory:
``In such a formulation of the problem, there is no physical
foundation for requiring the symmetricity ofTik.'' The author
of [26] also resolutely expresses his opinion against the
Abraham tensor, even denying its tensor status.

However, the main properties of the symmetry of a
dielectric medium required for the angular momentum
conservation, homogeneity and isotropy, are preserved in
the case under study. These properties are inherent in a space
filled with a homogeneous and isotropic nonabsorbing
dielectric treated as a macroscopic `continuous medium'.
Therefore, there are no grounds to give up the symmetricity
of the energy±momentum 4-tensor. In addition, in our case of
a wave packet in a transparent dielectric, an additional
argument appears in favor of the symmetricity of the
energy±momentum tensor related to the ambiguity of
determining the momentum density from the continuity
equation. This ambiguity is eliminated by subjecting the
energy±momentum tensor to the condition of symmetry that
it, of course, has in the vacuum model and, according to the
arguments presented above, should have in the case of a
homogeneous and isotropic dielectric medium under study.
The symmetry condition leads to the relation T0a � Ta0 or, in
the three-dimensional case, to the relation cg � c=c. Using
(61) and (63), we find

g � n

8pc
�EE �EE � ����etp �

1ÿ k

2et

qet
qk

�
�65�

in the presence of spatial dispersion, and

g � n

8pcm
�����
em
p �EE �EE� �66�

if the permittivity e�o� and permeability m�o� depending only
on the frequency are used. For such a choice of the
momentum density, its vector is directed along the phase
velocity vph � c�k=k� �����emp in an ordinary medium and in the
opposite direction in left-handed media �e < 0, m < 0�. But in
both cases, the direction of g coincides with the group velocity
direction, whose projection on k can have both signs. The
energy±momentum tensor contains frequency derivatives of
e�o�, m�o�, and et�k;o� not only in the component T00 � w
(the energy density), but also in the stress tensor

sab � ÿTab � ÿgaub � ÿgbua �67�

because of the presence of the group velocity in it. We
represent this tensor in two forms according to two expres-
sions (65) and (66) for the momentum density:

sab � ÿ un

8pc
�EE �EE � ����etp �

1ÿ k

2et

qet
qk

�
nanb ;

�68�
sab � ÿ un

8pcm
�����
em
p �EE �EE � nanb :

Expressions (68) contain only the electric field. It is also easy
to write a symmetric expression containing both electric and
magnetic field strengths. Because ga � ga=c

2 � wua=c
2, from

(68) we obtain the totally symmetric expression

sab � ÿ uaubw

c 2
; �69�

where the energy density w is described by Brillouin formula
(1) or (2).

7. Comparison with the stress tensor obtained
by other authors

We return to Pitaevskii stress tensor (6) and write it for a wave
packet in the notation used here:

sP
ab �

e�o�
8p

�
EaE �b � E �a Eb ÿ

1

2
EE EE �dab

�
� 1

8pm�o�
�
BaB�b � B�aBb ÿ

1

2
BBBB�dab

�
: �70�

Here, striction terms, which are insignificant for the problem
under study, are omitted, i.e., we assume that the medium is
incompressible, r � const. Using expression (25), we simplify
the expression for the stress tensor to

sP
ab � ÿnanb

e�o�
8p
EE EE � : �71�

We have shown that the continuity equation

qga
qt
� qsab

qxb
�72�

is satisfied, where ga is the Abrahammomentum density given
by expression (4) or expression (66) for a wave packet, and sab
is determined by the second expression in (68). This means
that the total momentum of the packet G � � g dV is
conserved. Pitaevskii stress tensor (71) differs from (68) both
in the absence of dispersion and in its presence:

sP
ab

sab
� c

u

�����
em
p 6� 1 : �73�

The stress tensor in a dispersive medium, like energy density
(1), contains the frequency and wave-vector derivatives
introduced into the theory via the group velocity. The
continuity equation with the Pitaevskii tensor is violated:

qga
qt
6� qsP

ab

qxb
: �74�

The equality can be recovered either by using our tensor (68)
or by adding the density of some force (the Abraham force) to
the right-hand side of (74). In this case, the volume integral�
g dV is not conserved, and it cannot be considered the total

momentum of the system but can be treated only as some part
of themomentum. Themomentum turns out to be distributed
between the electromagnetic field andmatter. The principle of
this distribution (the construction of the tensor sP

ab) is based
on the quasistationary model, inapplicable to wave phenom-
ena, and therefore has an arbitrary character. In fact, the
momentum density and flux are produced by combined
oscillations of the electromagnetic field and charged particles
of matter. A consistent separation of the momentum into two
parts pertaining to only the field or matter seems impossible,
because these interacting subsystems freely exchange the
physical characteristics, including momentum.
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Wealso compare our result with the results concerning the
electromagnetic field obtained by Polevoi and Rytov [18].
Their formulas (51) and (53) in our notation take the form

w � T00 ; �75a�
ga � wua � ÿcTa0 ; �75b�
sab � ÿgaub � ÿTab ; �75c�
ga � w

o
ka � ÿT0a : �75d�

According to equality (75c), the relation of the stress tensor to
themomentum density and group velocity corresponds to our
result. But the momentum density g is defined such that the
energy±momentum tensor is nonsymmetric, which is espe-
cially pointed out by the authors themselves. As mentioned
above, it is difficult to agree with this.

In concluding this section, we compare our result (69) for
the stress tensor with the one for the electromagnetic field in a
vacuum (see, e.g., [2, 13, 24]). For a quasimonochromatic
field in a vacuum, we have the tensor averaged over the period

s v
am �

1

16p
�E �a Em � EaE �m �H�aHm �HaH�m �

ÿ 1

16p
�EE �EE � HH�HH� dam ; �76�

the relations between field vectors

n� EE � HH ; j EE j � jHHj ; n � k

k
; ua � cna ; �77�

and the field energy density

w � 1

16p
�EE �EE � HH�HH� : �78�

Using these, we find

s v
am � ÿwnanm : �79�

Stress tensor (69) in a dielectric without losses differs from
expression (79) for the vacuum by the replacement of energy
density (78) with Brillouin expression (1) and unit vectors
with the ratios ua=c. Maxwell stress tensor (69), like energy
density (1), contains frequency andwave-vector derivatives of
the permittivity et�k;o�.

8. Light pressure
at the interface of two media

Different relations characterizing the momentum of the
electromagnetic field can be most directly verified by
measuring the force. It seems that the most convenient object
for this purpose is light pressure, which was first measured by
Lebedev in 1899±1907 [27]. In this connection, we calculate
the force applied to a planar interface between twomedia, one
of which (or both) is a transparent dielectric. This problem is
of interest in connection with the recent discussion [17, 26, 28,
29] about so-called light attraction, which is related by the
participants of the discussion to metamaterials, i.e., artificial
materials having negative permittivity and magnetic perme-
ability, e�o� < 0 and m�o� < 0, in some frequency interval
(see, e.g., [28, 30] and [17, 26, 29, 31]).

We describe the interaction of a wave with the interface
between media in the geometrical optics approximation, as in

the derivation of Fresnel formulas [32], and exclude spatial
dispersion from the consideration. This last condition is very
important because spatial dispersion leads to a nonlocal
interdependence of the field vectors and does not allow the
boundary conditions for them to be written in the ordinary
form. We also recall that we consider metamaterials in the
simplest model (see the end of Section 1) and do not intend to
give any detailed description of this quite diverse class of
artificial materials with complicated properties.

We start from the simplest case of normal incidence of a
plane quasimonochromatic wave (a wave packet) on a flat
interface between two transparent dielectrics with positive
permittivites and permeabilities e1, m1 and e2, m2, in the
absence of temporal dispersion. The reflection coefficient R,
which is calculated from Fresnel formulas, has the form

R �
� ���������

e1m2
p ÿ ���������

e2m1
p���������

e1m2
p � ���������

e2m1
p

�2

: �80�

For e1=e2 � m1=m2, reflection is absent, R � 0. At the inter-
face, the vectors E and H are continuous, and therefore the
momentum density g � g1 � g2 is also continuous, but the
group velocity experiences a jump, u1=u2 � e2=e1 � m2=m1.
Therefore, the momentum flux density also experiences a
jump. The pressure Prad at the interface between media is
produced by the difference between momentum fluxes on the
two sides of the interface,

Prad � g�u1 ÿ u2� � gu1

�
1ÿ e1

e2

�
; �81�

where gu1 � e1 EE EE �=�8p� > 0 is the momentum flux density
incident on the wave boundary. As follows from (81), the
wave exerts pressure on the interface (pushes it in the
propagation direction) if e2 > e1. Otherwise, the interface
boundary is attracted to the incident wave. Thus, `light
attraction' is also possible on the boundaries of ordinary
transparent dielectrics with positive e and m.

We note that expression (81) describes only the pressure
produced by the electromagnetic wave. This pressure is
applied in a layer a few wavelengths in thickness where the
field configuration changes on both sides of the geometrical
interface. This layer can also be subjected to the action of
nonelectromagnetic forces, for example, gravitation and
hydrostatic pressure in a liquid dielectric. Expression (81) is
not valid for metamaterials, because it neglects dispersion.

We next consider the case where the first medium has
e1 < 0 and m1 < 0. A quasimonochromatic wave is incident
from this medium on the interface with another medium.
This means that the Poynting vector, the momentum density,
and the group velocity are directed to the interface. The wave
vector and phase velocity are directed away from the
interface. All the considerations about the directions of
fluxes and velocities, in particular, for waves with oppo-
sitely directed phase and group velocities, were clearly
explained in detail in the well-known lectures by Mandel-
shtam [33, pp. 431±437]. Thus, the momentum flux g1u1 > 0
directed from one medium to another is incident per unit
time on the interface.

If the second medium absorbs all the energy incident on
the interface (an absolutely black body), then for the normal
incidence we have

Prad � g1u1 > 0 ; �82�
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i.e., the interface is subjected to light pressure applied in a
layer of the order of the absorption length in thickness. In the
case of a perfectly reflecting second medium, the pressure is
doubled. Our results differ from statements in [17, 26, 29] that
light pressure is replaced in left-handed media by `light
attraction' because of the inequality e < 0. It is clear from
the data presented above that this statement contradicts the
momentum conservation law. This error is probably
explained by the fact that Pitaevskii stress tensor (7) and our
tensor (68) behave differently on passing from an ordinary
medium to a left-handed medium. Pitaevskii tensor (71)
changes its sign after the substitution e! ÿe, m! ÿm,
whereas the sign of our tensor (68) does not change (the
signs of n � k=k, e, and m change). The incorrect conclusion
about light attraction made in [17] is explained by the use of
incorrect expression (6) for the stress tensor in a dispersive
medium and the neglect of the Abraham force. This force is
taken into account in our calculations, being included in the
stress tensor.

In using expression (66) for a left-handed medium, it is
necessary to change the sign in it twice: first, to change the
signs of e and m, and then to make the replacement n! ÿn,
because the direction of the wave vector in left-handed media
is opposite to the direction of the energy and momentum
fluxes of the wave. As regards the group velocity, in left-
handed media, as in ordinary media, it is oriented in the
direction of the energy and momentum fluxes and is opposite
to the wave vector. This is possible only in dispersive media
and, according to (7), requires the fulfillment of the
condition

d

do
o

�������������������
e�o�m�o�

p
< 0 or 1�P�o� < 0 ;

P�o� � o
2

�
1

e
de
do
� 1

m
dm
do

�
: �83�

We note that this condition is compatible with the propaga-
tion of electromagnetic waves only in media where simulta-
neously e < 0 and m < 0; otherwise, the electromagnetic
energy density (59) becomes negative:

w � e�o�
8p

EE�
�
1�P�o�� � m�o�

8p
HH�

�
1�P�o�� : �84�

This would indicate the instability of the mediumwith respect
to the spontaneous increase in the electromagnetic field, and
such a medium cannot be realized in nature.

With the normal incidence of a quasimonochromatic
wave on the interface between two transparent media, one
of which is left-handed and the other ordinary, the light
pressure on the interface can be calculated as the difference
between themomentum density fluxes at this interface, taking
the incident and reflected waves and the waves transmitted
into the second medium into account:

Prad � g1u1�1� R� ÿ g2u2�1ÿ R� : �85�

Here, the quantities g and u are positive and are the
projections of the corresponding vectors on the normal to
the interface directed from the first medium to the second.
The reflection coefficient

R �
����
�����������je1jm2

p ÿ �����������
e2jm1j

p�����������je1jm2
p � �����������

e2jm1j
p ����2 �86�

can be easily calculated using the corresponding Fresnel
formulas.

For a wave incident on the boundary at an arbitrary angle
y0, different polarizations of the incident wave should be
considered. For each polarization, the vectors g and u should
be projected on the normal. As a result, we obtain the
expressions

P 0rad � g 01u1
ÿ
1� R?�y0�

�
cos2 y0 ÿ g 02u2

ÿ
1ÿ R?�y0�

�
cos2 yr ;

�87�
P 00rad � g 001 u1

ÿ
1� R?�y0�

�
cos2 y0 ÿ g 002 u2

ÿ
1ÿ R?�y0�

�
cos2 yr ;

�88�
where yr is the angle of refraction. The quantity g 0 in equality
(87) is the momentum density produced by the field
components E? and Hk, while the vector g 00 in (88) is
produced by the components Ek andH? of the incident wave.

The value of Prad in expressions (85)±(88) can be both
positive and negative, depending on the parameters of the
media, and therefore both light pressure and `light attraction'
are possible.

9. Striction effect in a dispersive medium

We have assumed so far that a medium is incompressible, i.e.,
the mass density r � const was assumed fixed and invariable.
However, an electromagnetic field can produce internal
stresses in matter, which cause variations in the density in
liquids and gasses and can also produce shear deformations in
solids. These are the so-called striction effects. Although, as
Tamm pointed out [3], striction forces make no contribution
to the total force acting on a dielectric body placed in a
vacuum or surrounded by other bodies in mechanical
equilibrium, their influence on internal deformations cannot
be assumed small.

The striction effect was first considered by Helmholtz [34]
back in the 19th century. Striction contributions to the
Pitaevskii tensor (6) correspond to terms with the derivatives
qe=qr and qm=qr. It is obvious that the corresponding terms
also appear in our consideration if we drop the assumption
about the incompressibility of the medium.

For this purpose, we rank the temporal and spatial scales
of our macroscopic problem. The smallest scale l � 2p=k
corresponds to the wavelength of a quasimonochromatic
wave. The spatial size of the wave packet under study has a
considerably larger scale, l � 2p=Dk. To take the striction
effect in a liquid dielectric (i.e., in the absence of possible shear
stresses) into account, we consider a weakly inhomogeneous
medium with the density r�r� depending on coordinates. We
assume that the inhomogeneity scaleL �qr=qr � r=L� is large
compared to the wave packet size,

l5 l5L : �89�

Otherwise, the preceding analysis becomes invalid, because
the group velocity depends on the coordinates and the
propagation of the wave packet is considerably complicated.

In the calculations presented above, we considered the
limit caseL!1. Now, we assume that the scaleL is finite. In
this case, the quantities e�o; r� and m�o; r� and the group
velocity u�o; r� become slow functions of coordinates due to
the dependence r�r�. The state of an isotropic medium is
characterized, along with the density, by another parameter,
either the temperature T or the specific entropy s. We assume
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that this parameter is constant, i.e., we adopt the isothermal
or adiabatic conditions (depending on experimental condi-
tions).

We calculate the time derivative of the momentum density
written in the symmetric form in terms of the vectors EE andHH:

g � ÿ n

16pc

� �����
em
p
m
EE �EE �

�����
em
p
e
HH�HH

�
: �90�

Time enters the arguments of the fields EE�rÿ ut� and
HH�rÿ ut�. The differentiation gives

qEE
qt
� ÿub qEE

qxb
;

where terms of the order of l=L are omitted, as are analogous
expression for the magnetic field. This allows us to write the
derivative of the momentum density as

qga
qt
� ÿ nanb

16p

�
Ze�o; r�

q
qxb
�EE �EE � � Zm�o; r�

q
qxb
�HH�HH�

�
;

�91�

where the quantities

Ze�o; r� �
�����
em
p

u

mc
; Zm�o; r� �

�����
em
p

u

ec
�92�

include the permittivity and permeability, as well as the group
velocity, and u is its projection on the wave-vector direction k.

We now transform the right-hand side to the divergence of
the stress tensor. Performing the identical transformation

qga
qt
� ÿ nanb

16p
q
qxb
�Ze EE �EE � ZmHH�HH�

� nanb
16p

�
qZe
qr
�EE �EE � � qZm

qr
�HH�HH�

�
qr
qxb

; �93�

we integrate both parts of the resultant equality over a spatial
region that completely includes the wave packet under study.
Due to the conservation of the total momentum of the
electromagnetic field in a medium without losses, we have

d

dt

�
ga dV � 0 ; �94�

which gives��
qZe
qr
�EE �EE � � qZm

qr
�HH�HH�

�
qr
qxb

dV

� ÿ
�
r

q
qxb

�
qZe
qr
�EE �EE � � qZm

qr
�HH�HH�

�
: �95�

The factor r in the last integral can be introduced with the
accuracy used under the derivative sign, which gives an error
of the order of l=L. With the integrand in (95), we can write
Eqn (93) in terms of the divergence of the stress tensor

sab� ÿ nanb
16p

��
Ze� r

qZe
qr

�
EE �EE �

�
Zm� r

qZm
qr

�
HH�HH

�
�96�

in the usual form

qga
qt
� qsab

qxb
: �97�

We note that, as follows from the derivation presented
above, the expression qsab=qxb consistently takes terms of the
order of E 2=l into account, but terms of the next order of
smallness E 2=L are calculated inaccurately. Therefore, by
neglecting the last small terms upon differentiation of (96)
over the coordinates, the terms containing r, Ze, and Zm can be
assumed constant.

If the dispersion is negligible and e > 0, m > 0, and
u � c=

�����
em
p � vph, then the stress tensor takes the form

sab � ÿ nanb
16pem

��
eÿ r

de
dr

�
EE �EE �

�
mÿ r

dm
dr

�
HH�HH

�
: �98�

It becomes similar to the stress tensor for static electric and
magnetic fields [1], but the complete equivalence is impossible
because, we are dealing with a field of transverse electro-
magnetic waves propagating in the specified direction n, and
the tensor is averaged over the main period of the field.

10. Conclusions

Our study shows that a packet of the eigenmodes of a
nonabsorbing isotropic dielectric has simple and obvious
properties. In particular, the tensor of the momentum flux
density of the electromagnetic field is expressed as the
momentum flux density of classical particles, i.e., as the
product of the corresponding components of the momentum
density and the group velocity of the packet. The latter is an
analog of the velocity of particles. This makes it possible to
represent the Maxwell stress tensor in the obvious form
sab � ÿwuaub=c 2, which is the same for the field in a vacuum
and in a dispersive medium. An analogous relation is also
fulfilled for the momentum density itself in a vacuum and a
medium: ga � wua=c

2. In the vacuum, the ratio ua=c is
replaced by the ratio ka=k.

In this case, of course, we should bear in my mind that the
group velocity, despite its clearness and important role in the
theory of wave propagation (see, in particular, the historical
note by Levin [35]), is in fact an approximate concept and
appears as a linear term in the frequency expansion in the
wave-vector powers. Consideration of the next terms of the
expansion leads to a spread of the wave packet and to
corrections to most expressions containing the group velo-
city. But the formulation of the problem itself on the energy±
momentum tensor in a dispersive medium is approximate,
because it involves an expansion in the small parametersDk=k
and Do=o specifying the width of a spectral interval. There-
fore, the use of the group velocity is not beyond the scope of
our initial assumptions. This statement was substantiated in
detail in the derivation of the energy and momentum transfer
equations from Maxwell's equations in Sections 4 and 5.

Correct equations for the momentum flux density allow
easy calculations of the electromagnetic force applied to the
interface between two media with different electromagnetic
properties, in particular, with a negative permittivity and a
negative magnetic permeability, e < 0 and m < 0. This force
(the pressure of quasimonochromatic waves) can have
different directions with respect to the normal, depending on
the parameters of both media.

Thus, based on the results obtained, we can make the
following conclusions:

(i) The total AbrahammomentumG of a packet of quasi-
monochromatic transverse waves in a nonabsorbing isotropic
dielectric is conserved without introducing the additional
Abraham force: G � � g dV � const.
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(ii) The tensor of the momentum flux density of the
electromagnetic field is symmetric and is given by the
product of the density components ga of the momentum
itself and the group velocity ub of the packet: Tab �
gaub � gbua.

(iii) The tensor of the momentum flux density, like the
energy density, strongly depends on the frequency derivatives
of functions describing the electromagnetic properties of a
medium (permittivity and magnetic permeability). This
dependence appears due to the group velocity.

(iv) Our results are applicable to both ordinary and left-
handed media in which e < 0 and m < 0 and the group and
phase velocities are directed oppositely.

(v) At the interface between two media, depending on
their parameters, either light pressure or light attraction is
possible. It results from the pressure on the interface between
two media with different electromagnetic properties, which
we calculated.
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