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Abstract. The system of thermals that makes the fine structure
of a turbulent convective layer of a fluid is considered. A
simplified probabilistic-geometrical approach is outlined that
uses measurements along the observation line to determine the
average in-plane parameters of the system. A dynamic equation
for an isolated thermal interacting with its environment is
derived. A Langevin equation similar to the stochastic equation
for an ensemble of ‘fast’ Brownian particles is constructed for a
system of thermals. The nonlinear Langevin equation for such a
system leads to the associated kinetic form of the Fokker—
Planck equation. It is shown that the stationary solution of the
kinetic Fokker—Planck equation is identical to the Maxwell
distribution and approximately consistent with the distribu-
tions measured in the turbulent convective layer of the atmo-
sphere.
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1. Introduction

An ensemble of Brownian particles is the best known
stochastic ensemble of physical kinetics. Its studies, begun
with the research in [1-3], were comprehensively completed
in [4, 5].

We assume that spherical Brownian particles with fixed
masses and radii move with certain velocities in a medium
with uniform density, temperature, and viscosity. Let the
Brownian particles be of microscopic or ultra-microscopic
size such that their motion in a viscous fluid corresponds to
small Reynolds numbers, Re < 1. According to the Stokes
approximation, the drag force pnq is proportional to the
velocity of particle motion for constant radius and viscosity,
i.e., pmd ~ Re, and the related Langevin equation is linear.

A mathematical model of an ensemble of ‘fast’ Brownian
particles was proposed in Refs [6-9]. In this model, the drag
force depends arbitrarily on the particle motion velocity, i.e.,
Pmd = Pmd(Re), and the corresponding Langevin equation is
nonlinear. The application of this model to relativistic
Brownian motion is considered in Refs [10, 11].

We note that classical ensembles of Brownian particles are
‘thermodynamical’ systems because they are placed in a
thermostat with a fixed temperature 7. Such ‘thermodyna-
mical’ systems are characterized by a constant value of the
thermal velocity squared, v? = 3kgT/(2m) = const, where kg
is the Boltzmann constant and m is the particle mass.

There also exist non-‘thermodynamical’ stochastic sys-
tems, i.e., the systems lacking connection to a thermostat,
which can be regarded as analogs of Brownian particles. It is
known that in the case of well-developed turbulent convec-
tion, a system of localized buoyant vortices (thermals) always
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develops over a horizontally homogeneous heated surface;
they uniformly populate the convective layer, forming its fine
structure [12-14].

The isolines of vertical velocity fields and temperature
pulsations separate a sufficiently well-defined warmer rising
thermal from the ambient medium. The form of isolines
suggests that the thermal be considered a body of rotation
around a vertical axis and its form be characterized by the
radius of the largest horizontal cross section. This observa-
tion allows interpreting the system of thermals as an ensemble
of particles.

Convective thermals are spawned from a rather thin
surface layer adjacent to the heated surface and rise from
there under the action of the Archimedes force. Importantly,
the process of their formation is related to surface layer
instability and is manifestly stochastic. The interaction of
convective vortices among themselves and with their neigh-
borhood is also random, making the system of thermals a
stochastic ensemble.

A substantial part of the convective layer is occupied by
the so-called layer of intense mixing, where the magnitude of
the second turbulent moment of vertical velocity stays
practically constant, w2 = const. This analogy between a
thermostat and the mixed layer allows using random forces
of the same structure in the Langevin equations for a system
of thermals and for an ensemble of Brownian particles.

In atmospheric conditions, penetrating turbulent convec-
tion develops over a heated horizontally homogeneous
surface of land or the ocean. The existence of atmospheric
thermals and a fine structure in the convective layer were first
noted in [15]. Systematic processing of airborne measure-
ments of temperature pulsations in rising thermals was first
carried out in Ref. [12]. Measurements with the help of
airplane laboratories present the most efficient and compre-
hensive method to explore turbulent convection in the
atmosphere (see, e.g., Refs [16, 17]).

Warmer atmospheric thermals are detected rather reliably
by lidars [18] and Doppler radars [19]. Their characteristic
sizes range from several dozen centimeters to several dozen
meters. The characteristic amplitudes of velocities and
positive temperature pulsations are of the order of 0.5 m s~!
and 0.3°C.

Systems of thermals evolve in the oceanic boundary layer
subjected to abrupt surface cooling. However, their chaotic
motion bears a descending character in this case [20]. An idea
of what an ensemble of thermals looks like can be gained from
laboratory modeling at large Rayleigh numbers. The results
of laboratory experiments [21], presented in Fig. 1, clearly
exhibit the chaotic character of the motion of thermals.

In this review, it is assumed that convective thermals are
localized warm vortices rising with random vertical velocities.
It is additionally assumed that thermals are of equal size and
buoyancy. Thus, a system of convective thermals is consid-
ered a generalized ensemble of Brownian particles. In the
framework of the model proposed, a special Langevin
equation is used to describe the system of thermals, with a
nonlinear dissipative force and a random force of the
structure known for the system of Brownian particles. In
other words, the stochastic force in the equation of motion for
thermals is the square root of the Einstein diffusion coeffi-
cient times Gaussian white noise.

This Langevin equation gives rise to the kinetic Fokker—
Planck equation in the phase space of vertical velocities for
the probability density of the thermals of a stochastic

Figure 1. Ensemble of thermals in the form of dense salt fingers descending
in a water layer, according to Ref. [21]. The descending motion of thermals
is visualized by adding fluorescein to the salt and illuminating the fingers
through a slit.

ensemble. The interpretation of the stochastic integral in the
Langevin equation is chosen such that the probability density
of thermals satisfies the K-form of the associated Fokker—
Planck equation with variable coefficients (see Refs [9; 22,
pp- 292-294; 23]). Later, similar equations were considered in
[24, 25].

From a kinetic standpoint, the use of the K-form of the
Fokker—Planck equation with variable coefficients is essen-
tial, because only for this equation do nonstationary distribu-
tions over vertical velocities converge to the Maxwell
distribution at large times.

The equilibrium distribution of convective thermals over
vertical velocities is constructed as a stationary solution of the
Fokker—Planck equation in the K-form. It is shown that the
Maxwell distribution over vertical velocities, constructed
theoretically, agrees qualitatively and quantitatively with
known empirical distributions for ascending motions found
in field experiments.

The possibility of extending the methods of physical
kinetics to turbulent flows of homogeneous fluids was
discussed in monographs [26, 27]. The method proposed
there turned out to be efficient for describing homogeneous
isotropic turbulence. The application of the kinetic approach
to the problem of turbulent convection was considered for the
first time in Refs [28, 29]. The results of research presented in
this review continue and substantiate this work.

2. Turbulent convective layer and its parameters

We consider a static layer of liquid or gas in the field of
gravity, bounded from below by a flat surface. Under uniform
heating, a turbulent convective layer is formed over the
surface.

Let ¢ be the time; x, y, z be the coordinates of a Cartesian
reference system with the z axis directed opposite to the
gravitational acceleration g and the axes x and y lying on the
flat heated surface; u and w be the components of the velocity
vector along the plane xy and the z axis; p(x,y,z,1),
O(x,y,z,1), and p(x,y,z,t) be the respective local values of
the density, potential temperature, and pressure, with p(z),
O(z), and p(z) being the reference values of density, potential
temperature, and pressure, related through the equation of
state for an ideal gas and the equation of statics; and
®' =0 — O and p’ = p — p be the deviations of the poten-
tial temperature and pressure from their static background
values. The modified pressure and dimensionless pulsations
of the potential temperature are denoted as

!
o=" 9:%. (1)
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Then the equations of the Boussinesq convection theory in
the form given in Refs [30, 31] with a fixed neutrally
stratified potential temperature profile take the form

dw_ g, dv_ e
dr P TR I A )
do ow

E—O, Vu-'-g—o

Averaging possible products of w and 6 over the area,
we obtain various turbulent moments of the convective
layer.

Let 4 be the convective layer height, and gSy = gOw, the
buoyancy flux per unit area of the underlying surface, of the
dimension [m? s—3]. The availability of parameters gSp and /
allows introducing the Deardorff parameters for the velocity
and buoyancy [32] in the convective layer:

wp =h'3(gS)'*, glp =h~"3(gSy)* . 3)

In what follows, we deal with a convective layer that is
developed sufficiently well over it vertical extent. In such
layers, the Deardorff parameters can be treated as constant:
wp = const and gfp = const.

The lower part of the turbulent convective layer,
0<z/h<0.5, is referred to as a mesolayer of intense
convection. This layer is permeated by an ensemble of
evolving thermals. In the layer above, 0.5 < z/h < 1.0, the
convective thermals move inertially because, on crossing the
level of intense convection z/h = 0.5, the mean buoyancy of
the thermals drops substantially. The qualitative difference
between the lower and upper parts of the convective
turbulent layer is fully confirmed by laboratory measure-
ments [33].

Turbulence in the layer of intense convection is described
by the theory of local self-similarity (see Ref. [34]). Accord-
ing to Ref. [35], the second turbulent moment of the vertical
velocity in the turbulent layer can be approximately
expressed as

w? 2\ 2\ ?
— = Zyw| — 1-08—-) . 4
=) (1-08) @

The coefficient 4,,, = 1.8 was obtained in the process of direct
measurements of the near-surface layer in the Minnesota 1973
Atmospheric Boundary Layer Experiment and the Air-Mass
Transportation Experiment 1975 (for details, see Refs [35,
36]).

Some data from field measurements of the second vertical
velocity moment in the atmospheric mesolayer of intense
convection [35] are presented in Fig. 2, together with the
results of laboratory experiments [37, 38]. These data indicate
that the dependence of w2 on the height z is relatively weak in
the layer 0.1 < z/h < 0.5.

The observed scatter of points, which is a result of the
stochastic character of convection, accompanies all measure-
ments in turbulent flows.

Using the classification in Ref. [39], we single out the
following layers in the mesolayer of intense convection:

(1) the layer of free convection 0 < z/h < 0.1;

(2) the well-mixed layer 0.1 < z/h < 0.5.

For developed turbulence, the layer of free convection is
the fluid layer adjacent to the heated surface. It is defined as
the layer of constant flux, gSy = const > 0.
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Figure 2. Values of dimensionless second moments of the vertical velocity.
The vertical lines correspond to the relation 117/ w]z) = 0.38. (a) The dots
represent empirical values of w? /w3 in the atmosphere based on the data
of AMTEX-1975 according to Ref. [35]. (b) The diamonds and dots
represent empirical values of w2/w3 in the fluid according to respective
laboratory experiments in Refs [37] and [38].

The turbulent moments in the layer of free convection
0 <z/h <0.1 can be determined on the basis of the self-
similarity theory (see Refs [34, 40—43] for details).

The turbulent moments in the mixed layer 0.1 <z/h<0.5,
of interest for physical kinetics, satisfy the relations

o

Ww=0, 5= 0, w2=038w3. (5)

The first equality in (5), following from the continuity
equation, is valid across the entire convective layer. The
second equality in (5) shows that the stratification of the
potential temperature is close to the neutral one within the
mixed layer, which allows this layer to be considered an
analog of a homogeneous fluid layer. The third equality in
(5) indicates the spatial uniformity of the second moment of
vertical velocity (see Fig. 2), which allows considering the
mixed layer to be an analog of a thermostat in statistical
mechanics.

3. Empirical mean parameters
of the system of convective thermals
in the mixed layer and their approximation

It is essential that airborne measurements of the parameters
characterizing systems of thermals are performed along
certain horizontal lines of observation [12, 14, 16]. When a
system of thermals is carried by the wind, the data obtained
at meteorological towers and masts [13, 14] also correspond
to measurements along some horizontal line of observa-
tions. _

Let R, and g6; be the mean radii and buoyancies for
thermals in the ensemble along the line of observations /
located at a level z. The measurements in[12, 16, 45] provided
field data on the mean values of R; and 6, as functions of the
dimensionless height z/h (Fig. 3).

According to Refs [16, 45], the mean radius R, and
buoyancy g6, vary sharply in the free convective layer
0 < z/h < 0.1 and remain practically constant in the layer of
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Figure 3. The dependence of mean values of (a) the diameters 2R;/h and
(b) the buoyancy (~),/0D on the dimensionless height z/A for a system of
warm updrafts in a convective layer based on observational data in
Ref. [16] (dots) and Ref. [45] (triangles). The vertical lines correspond to
the approximation (6) of data in the mixed layer.

intense mixing 0.1 < z/h < 0.5 (see Fig. 3). Using similarity
theory, we assume that the mean radius and buoyancy in the
mixed layer are approximately described by
2R g0,
—=0.1 =2— =1.12. 6
7 " el (6)

The first relation in (6) shows that the mean diameter of
thermals 2R, is the thickness of the free convection layer 0.1A.
The second relation in (6) means that the mean dimensionless
temperature of thermals 0, is defined by the Deardorff
parameter 0p. A comparison of approximations (6) with
observational data [16, 45] is presented in Fig. 3.

Let R, and 6, be mean values of the radius and buoyancy
for an ensemble of thermals on the horizontal plane a located
at a level z. Obviously, the cross section of a system of
spherical thermals by the horizontal plane z = const forms a
system of randomly placed circles in plane a. An aircraft
conducting measurements crosses only a part of these circles
along random chords. Because the length of a chord never
exceeds the diameter, we can argue that R, > R;. The
correspondence between the mean parameters on a plane
and along a line was thoroughly discussed in Refs [12—14]. In
what follows, we assume that

R,=—-R,, 0,=0,. 7
p 1 1 ()

A justification of (7) based on the method of geometric
probabilities is presented in Appendices A and B. .

_ Itfollows from Eqns (5)—(7) that the mean parameters Ra,
g6,,, and w2 satisfy the relation

20,R, = 0.04753w2 = 0.125w2. (8)

[SSIN S

The existence of an equality similar to (8) also follows
from laboratory studies with isolated bubbles rising in a
homogeneous fluid [46, 47]. These experiments led to the

empirical relation

% gOR, = ogw?, 9)
where w and 0 are the volume mean values of the vertical
velocity and potential temperature pulsations, Ry is the
maximum bubble cross section radius, and og is a constant
dimensionless coefficient: ag ~ 0.2 according to Ref. [46] and
as =~ 0.26 according to Ref. [47].

In analogy with the model of an ideal gas, we consider an
idealized ensemble of ‘isolated’ thermals, each moving as if
the others were absent. We use the averaged invariant (9) to
describe the ensemble of thermals with differing values of
buoyancy and radii; then (2/3)(g0R) = us(w?). Because
thermals ascend in the ambient fluid that is practically at rest,
we can set (w?) = w2. As a consequence, the averaged invariant
for the ensemble of isolated thermals can be written as

% g0,R, = 0.26w?. (10)

Obviously, the thermals of a real convective ensemble
interact with each other, because they are situated sufficiently
close (see Fig. 1) Thus, the mean distance between convective
thermals is approximately 3R, according to Ref. [12]. The
thermals of the ensemble therefore expand less than their free
isolated counterparts. This explains the reduced value of the
numerical factor in the right-hand side of (8) with respect to
the numerical factor in the right-hand side of Eqn (10).

4. Equation of motion for an isolated thermal
in the mixed layer

Anisolated thermal is a basis element of turbulent convection
(see Refs [48-50]). We consider dynamical equations for an
isolated thermal in more detail.

Let y/(x,y,z,¢) = 0 be an arbitrary smooth closed surface
with the area Sy, = Sy (), and let V, = V},(¢) be the volume
bounded by this surface; we also let n be the normal, D,, be the
normal velocity of the surface, and b = b(x,y,z,¢) be an
arbitrary substance filling the volume V). Following
Ref. [51], we use the theorem on differentiation of a moving
volume, whence

EJ bdv:J %dv—l—J bD, ds.

With Eqn (11), integrating the equations of motion and the
entropy conservation equation in Boussinesq form (2) over an
arbitrary volume Vy, =V, (), we find

(11)

d m
—J wvarJ w(vn—Dn)ds:gJ 9dv+g,
dt vy S, vy p

d

(12)
—J 9dU+J O(vn — Dp)ds =0.
V./, S,/,

dt

Here, v, is the normal velocity on the moving surface, piq is
the pressure-related surface force exerted on the thermal by
the ambient medium, which is different from the Archimedes
force, and p = const is the ambient density.

We introduce the parameters averaged over the volume
Vy: the mean velocity w and the perturbation of the
dimensionless potential temperature 6,

1 J ~ 1 J
w=—1_ wdv, 60=—1] 0dv. 13
Vl// Vy Vlﬁ Vy ( )
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Substituting (13) in Eqns (12), we obtain

w(vy — Dy)ds = g@Vl/,  Pmd ,
p

d _
—wl,
a" ‘/’+sz

O(vn — Dp)ds =0.
S./,

d -
T oV, + J
A convective thermal can be identified either as the closed
surface w = 0 or as the closed surface 0 = 0. Both definitions
lead to some simplification in Eqns (14).
Following Ref. [12], we assume that a rising thermal is the
relatively warmer spatial domain 6 > 0 bounded by the
moving surface § = 0. Then, for iy = 0, we obtain

d ) m

—®V9—|—J w(vn—D,,)ds:g@Vg—|—pd7

d[ Sy P (15)
d -

—0Vy=0.

dar ! 0

We assume that at any instant of time, the thermal is a
sphere with a variable radius R and the center of mass z. It is
also assumed that the thermal maintains its spherical form in
the process of vertical motion. Then

de . dR_dRdz_

—=w —_— = Z)w

T T RN TR (16)
1 dVy 3dR 3

— = = agr(z)w,

V, dt R dr R

where og(z) is the entrainment coefficient for the thermal.

We next set ag(z) = ag = const. According to experi-
mental observations, the entrainment coefficient is ap =
0.2—0.26 above individual buoyant thermals (for details, see
Refs [46, 47]).

In the approximation where the ambient medium does not
move, w = 0 and @ = 0, and therefore the surface integral as
well as the surface interaction force between the thermal and
the ambient medium are absent, p,g = 0. From Eqns (15) and
(16), it then follows that

dz _ dw -~ 3

— . — =00 — = gaw?
T w, T g0 R ARW
L (17)
o__3 w0, — = ogw
dl_ ROCRW s dr = ORW.

The model of thermal in (17), based on the approximation of
an ambient medium at rest, was considered in Refs [48—50].

We note that for 0 = 0, Boussinesq equations (2) become
the equations of a homogeneous fluid. Therefore, in con-
structing a model for the motion of a thermal with its
interaction with a neutrally stratified ambient medium taken
into account, it is reasonable to rely on the equations of
motion for a rigid body in a homogeneous medium.

It is known that the equation describing the uniform
motion of a rigid body in a homogeneous fluid [52] includes
the vortex drag force

(18)

1 ~
Png =~ clSpi”,

where p = const is the fluid density, S'is the area of the largest
cross section, and cé) is the effective coefficient of vortex drag
exerted on the rigid body. In particular, for a uniformly

moving sphere of constant radius R,

4
V==nR3.

1 3 w
pa = g 4nRpi = = cvp =

3 g (19)

With (19), the equation of motion for a sphere in a
homogeneous ideal fluid under the action of the buoyancy
force can be written as

dw 3 w?
B

psV g, = —(ps—p)Ve -5 cirV & (20)

where pg = const is the sphere density.

In [53, 54], the motion of a thermal is described by using
the equation of motion for a sphere with constant radius (20)
with the vortex drag coefficient ¢4 # ¢{. In the framework of
vortex model [53], a theoretical estimate ¢4 < 9/8 is available
for the dimensionless vortex drag coefficient.

We mention that Eqn (20) includes vortex drag force (18)
but not the force exerted on the rigid sphere by the ambient
fluid due to the added mass. This force arises for accelerated
motion and is manifested as an opposing force equal to the
added mass times the acceleration. If the rigid body is a
sphere, the more precise expression for the opposing force pmqg
becomes

dw 1 _
Pmd = _,UPVE—E chpwz,
1 4 @)
n=5, V:§RR3, S=nR>.

Modifying (20) by taking opposing force (21) into account
(including the added mass), we obtain

1 dw 3, ow?
- == —(pg — -2 =@
(ps+2p> Vg = (s =p)Ve—gcarV 4 (22)

For a hard sphere with the density close to that of the
fluid, pg =~ p, Eqn (22) takes the limit form

dw 2 ps—p 1 0»?12
=—= d — .
4R

3% 0 4 (23)
Notably, relation (23) has a hydrodynamic origin, as shown in
monograph [55].

We consider the case where a sphere with a rigid shell can
change its radius. In this situation, in order to construct a
heuristic equation of motion, it is reasonable to use an analog
of the Meshcherskii equation instead of Eqn (22),

d, 3, w1 dw
ps WV =—(ps = p)Ve—gcipV =5 pV - (24)
With Eqns (16), Eqn (24) is modified to
,+l d_f”f_( —p) 30 &_3 Ed_R
PsTH5P)q; = Ws=PIE—3 P ¢ Ps Rdr -
(25)

The question of the motion of a sphere with a rigid shell
of variable radius in an ideal fluid is considered in [55], where
it is shown that with the use of the hydrodynamical method
and a set of simplifying assumptions, the equation of motion
becomes similar to Eqn (25). An approximate equation
proposed in Ref. [55] can be obtained by replacing the
factor 3 in the last term in Eqn (25) by 3/2.
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We construct a heuristic equation for a sphere with a rigid
shell of variable radius assuming that the sphere density is
close to that of the fluid, pg ~ p. Relying on Eqn (25) and
taking entrainment coefficient (16) into account, we obtain

dw 2 ps—p 1 w2
oz B b
de 3¢ 0 4CClJr *RIR

Based on the foregoing, we turn to the description of the
motion of thermals in a moving adiabatic medium,
df/dz=0,0=0.

Using Eqn (19), we approximate the surface integral in
Eqn (15) as

(26)

3 w2
w(vy — Dp)ds == cdV — .
La t . 8 R

(27)

Inserting (27) in Eqn (15) and taking the effect of added mass
into account, we obtain

dw 2 1 w
a4 3g6— <4 cd+2aR> R

We note that the vortex drag coefficient ¢4 = ¢{ + ¢} can
differ to some degree from that for a hard sphere, c).

In the approximation of convection theory, relation
(28) is fully analogous to the equation of motion for a sphere
with a rigid shell of variable radius (26).

We conclude that the system of equations for an
individual thermal moving in a mixed layer and interacting
with a neutrally stratified medium can be written as

(28)

dz _ dw 2 - 1 w?
a3 (zcd”“R)? 29)
d0 3 . dr ~ 9
a:—ﬁaRw& —t:och, cdég.

The model of an isolated thermal in (29) is similar to those of
thermals in Refs [53, 54, 56], which use slightly different forms
of the equation of motion.

5. Equations of motion for thermals
of an ensemble in the mixed layer

We now consider an ensemble of thermals in a mixed layer.
Obviously, the thermals of the ensemble move in a random
medium and interact with each other, and therefore they
differ somewhat from isolated mixed-layer thermals.

We suppose that the action of surrounding thermals on
thermal i can be described by including a random rapidly
oscillating force ¢;(w;, ) in equation of motion (29),

do; 3 o5 4R _
__ 2 5. 0. — )

dr R ARrRW; Uj, ARWi,
dw:. 2 - - - -

LR g0 — y(wi, Ri)wi + qi(wi, 1) (30)
dr 3

w; 9
7(wi, R;) = (4 + 20612) Ri 4 < 3

Here, y(w;, R;) is the mobility coefficient, which linearly
depends on the velocity and has the dimension [s~!].

We use the approximation oz = 0 assuming that the
interaction of any thermal with the neighboring elements of

the ensemble limits the variation in its radius as the height is
changed. In this situation, the individual radii of thermals in
the ensemble stay fixed, which fully agrees with the approx-
imation of experimental data (Fig. 3a).

In the approximation a.g = 0, the dynamical equations for
the ensemble of thermals in the mixed layer take the form

do;  dR

i _ N

dt Toode ’

dw;, 2 -~ ,\

% =3 g0 — y(wi, Ri)wi + qi(wi 1) (31)
. ¢4 Wi 9

V(W,',R,') = Zd ﬁl, , Cd < g .

Let all the thermals in the ensemble share identical values
of temperature pulsations 0, and radius R,. These assump-
tions allow integrating the first two equations of system (31)
with mean parameters (6) and (7). Omitting the index i of the
individual thermal, we obtain

2
dw _ g0, —y(W)w + q(w, 1),
dr 3 32)
w)=—cq4 =, =80 R =<w? <.
Y 4 d Ra ) 3 14 d 3

In the framework of the proposed ensemble model, the
mixed-layer thermals have equal buoyancy, radii, and
random vertical velocities. Based on measurements in [12,
16, 45], the number of convective thermals in the mixed layer
can also be considered constant.

We specify the magnitude of a rapidly oscillating force
q(w, 1), in analogy with that for an ensemble of Brownian
particles, by using the product of the generalized Einstein
diffusion coefficient Dg(w) = y(w)(w?2) and a time-dependent
function &(r), where £(f) is Gaussian white noise. Thus,
following [8, 57, 58], we obtain

qw, 1) = \/Dg(w) &(¢
(&(n) =0, (&(net)) =28(t—1").

Here, the Einstein diffusion coefficient Dg(w) is expressed in
units [m? s73], &(7) is a random function of time with
dimension [s~!/2], §(¢ —t') is the Dirac delta function, ¢
and ¢’ are arbitrary time instants, and angular brackets
denote ensemble averaging. The relation (¢(7)) =0 in
Eqns (33) naturally follows from the validity of the
equation of motion (29) for an isolated thermal being
applied to the motion of thermals in the ensemble. The
last relation in Eqns (33) expresses the property of being
delta-correlated.

The coefficients of system (33) allow some transforma-
tions of the buoyancy parameter g6, in the equations of
motion. Indeed, let f be the numerical factor satisfying
pecq = 1. It then follows from equality (8) that

) DE W —'))(W)( ' )7

(33)

2 o Iw2 1 oegw? 1,0 (leg —
55’(’“—@@—5/}2@7—55%(@‘””)
— 10 .
=5 — y(m)w =5bF35; e(w). (34)

Manipulations with Eqns (32) using Eqns (33) and (34) lead to
a nonlinear stochastic equation for the ensemble of convec-
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tive thermals in the form [24] 150

dw 1 0 _ - =

— == —De(w) —y(w)w+ /De(w) &(1),

de 2" ow

_ 4w ~ 5 9

100 =5 0 De) =W, paa=1, c<g.

(&) =0, (&n)et")) =20(t—1"). (35) 100~
Setting ¢4 = 1, we find f = 1. In this case, the special form of TE
(35) is similar to the nonlinear Langevin equation in a -4
thermostat in the interpretation of Stratonovich, proposed S
in Refs [7-9, 23].

It is essential that nonlinear Langevin equation (35) is 50
valid in the layer of intense mixing, 0.1/ < z < 0.5A.
6. Vertical homogeneity of the velocity
probability density of convective thermals
The presence of a random force in Eqn (35) necessitates a 0 o . ! A

4 8 12 16 20

statistical description of the ensemble of convective thermals
of the elementary layer.

Let a be a horizontal plane located at an arbitrary level z,
0.1h < z<0.5h. We can define the probability density
Jaw(z,w, 1) in the plane a.

We assume that n)(z, w, ) dw is the number of thermals
per unit area of plane « with velocities in the interval from w to
w+ dw. Let n,(z, t) be the total number of thermals per unit
area of plane a, or the concentration of thermals in the plane.
Using a statistical definition, we suppose that the probability
of a thermal appearing in an elementary phase volume dw on
the plane a is given by

ny(z,w,t)dw

.faw(za w, [) dw = }’la(Z, [)

)

(36)

~ 00
J n) (z,w, t)dw = ng(z,1).
0

We assume that the approximation based on separation of
variables is valid for the functions n)’(z, w, t),

n)(z,w,t) = My(z)m) (w, 1), (37)
where M,(z) and m,’(w, t) are the multipliers into which it is
factored. Relation (37) is referred to as the condition of
vertical homogeneity in what follows.

Substituting (37) in Eqn (36), we arrive at the approxima-
tion for the concentration of thermals in the plane:

o0

na(z,1) = My (2)ma() , m”(t):J m*(w, ) dw.  (38)

0

Here, the function M,(z) characterizes the change in the
concentration of thermals with height at a fixed time
instant 7. The function m,(r) characterizes the change in the
concentration of thermals with time at a fixed level z.

The existence of approximation (38) for the concentration
of atmospheric thermals in the layer of intense mixing
0.1h < z < 0.5k is confirmed by measurements [12] (Fig. 4).

For the convective layer height 4 =~ 2500 m, the layer of
intense mixing 0.1 < z/h < 0.5 is bounded by the heights
250 m < z < 1250 m. Thus, the data plotted in Fig. 4 should
be considered an empirical justification of approximation
(38) and the condition of vertical homogeneity (37).

t,h

Figure 4. Diurnal evolution of the concentration of thermals in the mixed
layer. The dots, squares, and triangles represent the respective results of
measurements of the concentration of thermals at the height of 300, 500,
and 1000 m.

Substituting relations (37) and (38) in definition (36), we
obtain
ny(z,w,t)dw  m) (w, 1) dw

Jau(z 9, ) A = na(z,t)  ma(r)

:.f‘i‘(wa l) dw.
(39)

Hence, for any level z, the equality f.(z,w, 1) = f,(w,1)
holds; it expresses the property of vertical homogeneity of
the probability density in the layer of intense mixing
0.1 <z<0.5h

7. Probability density of the distribution
of convective thermals over velocities.
Nonlinear Langevin equation

and the kinetic Fokker—Planck equation

The metric space Q" = {w: 0 < w < oo} is referred to as the
Maxwell space in what follows. An ensemble of convective
thermals in the Maxwell space is depicted by a ‘cloud’ of
particles. As the ensemble of convective thermals moves, the
cloud of points flows in the phase space as a continuous
medium with the density f,(w, 7).

We introduce the phase fluid whose velocity in the metric
Maxwell space is defined by the Langevin equation like
Eqn (35).

Monographs [8, 57-59] show that for ensembles of
particles satisfying the Langevin equations, the probability
densities f,,(w, ) satisfy the associated Fokker—Planck
equations. We note that in the presence of Gaussian white
noise in the stochastic Langevin equation, the correlator of
Eqn (33) includes the Dirac generalized function. The
process £(1) is therefore a generalized stochastic process. A
mathematical description of generalized stochastic processes
is possible only on the basis of an integral representation.
The stochastic integral is defined as the limit of the integral
sum. A rectangle in the integral sum can be computed in
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several ways, depending on the distribution of height in the
elementary subdivision interval (for details, see Ref. [60]).
Hence, the uniqueness of the computation of the integral
sum is controlled by the internal parameter 0 <o <1,
which is related to the interpretation of the stochastic
integral. In particular, the case o =0 corresponds to the
choice of the height of the rectangle on the left boundary of
the elementary subdivision interval and leads to the Ito
interpretation. The case o = 1/2 corresponds to the height
selection in the middle of the elementary subdivision
interval and leads to the Stratonovich interpretation. The
case o = 1 corresponds to the height selection on the right
boundary of the elementary subdivision interval and leads
to the Hanggi—Klimontovich interpretation (for details, see
Refs [10, 60]).

According to Ref. [24], for a fixed parameter 0 < o < 1,
the Fokker—Planck equation associated with Eqn (35) takes
the form

O _ 8 (v DFC
1 0f, 0Dg(w)
—(F+20-2) 5 o= —— “

If we choose the parameter of interpretation o from the
condition

p+20—-2=0, (41)

then the related Fokker—Planck equation takes the form of
the kinetic equation

o 0 [ o,
Lo 2 (vt + et ).

(42)

Equation (42) was considered in Refs [7-9] (see also Refs [61,
62]).

In the framework of the vortex model [53], the vortex drag
coefficient ¢4 remains undefined, but is bounded by the
inequality ¢g < 9/8. We assume the vortex drag coefficient
¢a =0.5; then f=1/cqg =2 and hence « = 0. In this case,
nonlinear Langevin equation (35) corresponds to the Ito
interpretation.

If we assume the vortex drag coefficient ¢y = 1, then
p=1/ca=1 and hence o =1/2. In this case, Langevin
equation (35) corresponds to the Stratonovich interpreta-
tion.

We consider the properties of the K-form of the Fokker—
Planck equation (42) in more detail. It is obvious that any
solution of Eqn (42), by construction, satisfies the normal-
ization condition

[ fulw, oy div=1.

0

(43)

Additionally, solving kinetic Fokker—Planck equation (42)
requires that initial and boundary conditions be set. As the
initial condition, we can use an arbitrary positive function
0 = £9(w) such that

w

Fo(5,0) = £2(7) > 0. LOC 7o) din=1. (44)

We take the following relations as the boundary conditions:

- . 0fy
lim {y(w)w w+ Dp(w) ]i} =0,
P00 ow (45)
. NIAY
i, (DE(”) aw) =0

The boundary conditions in form (45) can be regarded as the
condition that the full diffusive flux vanishes in the phase
space. The first limit in Eqns (45) implies that the function
Jfw(w, 1) decays sufficiently fast as w — +o0.

Integrating Fokker—Planck equation (42) over the velo-
city space Q" with boundary conditions (45) leads to the
equality

o[> . . PN,
_J fw dw = _V(W)wa 0

=0.
ot J

(46)
This confirms that boundary conditions (45) are consistent
with normalization condition (43).

8. Generalized Maxwell distribution
for an ensemble of convective thermals.
Comparison with experimental data

The kinetic form of Fokker—Planck equation (42) admits a
unique stationary solution satisfying boundary conditions
(45) in the form of a generalized one-dimensional Maxwell
distribution,

2 — 1 ~2
Surlw)dw= \/;(wz)*lﬂ P (_5 L) dw, 0<w<oo.
(47)

The classical one-dimensional Maxwell velocity distribution
for ideal gas molecules and Brownian particles follows from
distribution (47) if we assume that the mean parameter w2 is
proportional to the temperature of the medium.

It can be shown that stationary Maxwell solution (47) is
the limit of the general nonstationary solution of Fokker—
Planck equation (42) as t — +oc.

The empirical vertical velocity probability densities in the
atmospheric mixed layer, as obtained by field measurements,
are given in Refs [63-65]. However, comparison with
Maxwell distribution (47) is only possible for those data
whose reprocessing allows representing the empirical prob-
ability density in the form ¢(v), where v = ﬂk/(wz)m.

The distribution over vertical velocities in an ensemble of
convective thermals on the lower boundary of the atmo-
spheric mixed layer (z = 100 m~ 0.1/) was constructed in
Ref. [63]. Generalized Maxwell distribution (47) is juxtaposed
with the results of airborne measurements [63] in Fig. 5a.

The distribution over vertical velocities in an ensemble of
thermals in the mixed layer at the levels z/h =0.42 and
z/h = 0.55 was constructed in Ref. [64]. A comparison of
generalized Maxwell distribution (47) with reprocessed
results of balloon measurements [64] is plotted in Fig. 5b.

In the convective turbulent layer, the region of ascending
motion is populated solely with buoyant thermals. The results
presented in Fig. 5 show that in the region of ascending
motion Q7 = {w: 0 < w < oo}, normal curve (47) can be
used to approximate the experimental data. Thus, general-
ized one-dimensional Maxwell distribution (47) is indeed
realized in an ensemble of thermals in the convective mixed
layer.
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Figure 5. (a) Probability density of the vertical velocity distribution according to experimental data [63]. The dots and diamonds respectively correspond
to airborne measurements along horizontal directions at a height of 100 m in directions parallel and perpendicular to the wind direction. Generalized
Maxwell distribution (47) is shown by the solid line. (b) The probability density of the vertical velocity distribution according to experimental data [64].
The dots and diamonds respectively correspond to balloon measurements recomputed to the along-wind direction at the levels of z/h = 0.42 and

z/h = 0.55. Generalized Maxwell distribution (47) is shown by the solid line.

9. Conclusions

The experimentally observed Maxwell velocity distribution in
a system of updrafts allows treating the system of convective
thermals as an ensemble of ‘fast” Brownian particles. The
rigorous development of such a kinetic approach opens up
new possibilities for the description of moments of the
turbulent convective layer.

The theoretical derivation of the one-dimensional Max-
well distribution for a system of convective updrafts convinc-
ingly demonstrates the possibility of constructively using
physical kinetics methods to describe non-‘thermodynami-
cal’ stochastic systems, i.e., systems that are not connected to
a thermostat. This result is without a doubt of general
physical significance.

The authors are indebted to the anonymous referee for a
number of constructive remarks. The work was supported by
the grant 15-05006849-a from the Russian Foundation for
Basic Research.

Appendix A. Mean radii for a system
of thermals on a plane and along a line

We relate the mean length of a semichord R, to the model
mean radius R, of a system of thermals on the plane. To
simplify geometrical consideration, we replace each spherical
thermal by a vertical cylinder with the circular cross-section
radius R, and height 4R,/3, i.e., of equal volume.

Obviously, the cross section of the system of model
cylindrical thermals by the plane z = const forms a system
of'identical randomly placed circles in this plane. An airplane
passing along a horizontal line parallel to the y axis crosses
only some of these circles (Fig. 6a). It is assumed that a model
circular isolated thermal is crossed along a random chord
x = const of the length 2R(x) (Fig. 6b).

Let ¢(x)dx be the probability of the chord passing
through the interval [x, x 4+ dx] perpendicular to the line of
observation (Fig. 6b). From geometrical considerations, it

a b

d) @ “ R, 2R()
OO -

Figure 6. Mutual location of cross sections of horizontally identical
thermals and the line of observations in the plane z = const. (a) The
crossing of the system of horizontally identical thermals with the line of
observation. (b) The crossing of an individual thermal by a random
chord.

then follows that

_dx

— = A-l
R, (A.1)

o(x)dx

Let R, be the mean length of a semichord along the line of
observations, given by the expectation value

R= JRi R(x) (x) dx = LJR” R(x)dx,

A2
—Ry R, Jo ( )

where ¢(x) dx is the probability of the chord passing through
the interval dx. -

We transform (A.2) into polar coordinates R,, o (Fig. 6b).
Then

x=R, cosa, dx= —R,sina do, k(x) = R,sina. (A.3)
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Table 1. Height dependence of mean radii for a system of atmospheric thermals.

Flight height, m 10 30 50 100 300 500 1000 2000 3000
Number of measurements 761 2480 7611 8728 4748 4007 2656 1409 523
Mean radii of thermals, m 21.0 24.5 27.5 30.5 34.0 35.0 36.0 37.0 40.5
Substituting (A.3) in (A.2), we obtain X = const is given by
~ 0 _pn2 72
R = —RaJ sin® o do = RaJ sin® o do 0(x,y,z) = 0)(x,2)4/1 — <—) )
/2 0 R (B.3)
_ (2] 0\ 2
= —(1— . ) 0
R, Jo 3 (1 —cos2a)do (A4) 0i(x,2) = 0 (z)4 /1 — <E> ,
Integration of (A.4) leads to the relation where 0(x, z) is the dimensionless random temperature of the
o thermal at the center of the random ch9rd, and y is the
R = y R,. (A.5)  coordinate along the chord. In this case, 0 (x, z) — the mean

Equality (A.5) links the observed mean length R; of a
semichord with the model mean radius R, of the system of
thermals and is a justification of relation (7).

The reasoning above, valid for an ensemble of identical
thermals cylindrical in shape, can also be repeated for an
ensemble of spherical thermals. We do not present a
description of this more complicated variant in order not to
encumber this appendix with too much detail.

The dependence of the mean radius R, on the height z,
computed from the data in Ref. [12], is presented in Table 1.

For the height of convective layer 4 &~ 2500 m, the layer of
intense mixing 0.1 < z/h < 0.5 is bounded by the heights
250 m < z < 1250 m. It is essential that the mean radii of the
system of ascending thermals are considered constant,
R, = const, in the convective layer of intense mixing.

Appendix B. Mean buoyancy of a system
of thermals on a plane and along a line

We consider a system of horizontally identical thermals with
dimensionless potential temperatures that satisfy the approx-
imation

0(r,z) = 0°(z)4 /1 — (Rj—>2 .

(B.1)
Let { = r/ﬁu be the dimensionless polar coordinate in a
circular section of a thermal. Then, with the profile shape in
(B.1), the cross-sectional mean buoyancy g0, of a thermal is
given by

R 1 (> (R b R,
gli(z) = — J j g0(r,z)rdrde = — J g0(r,z)rdr
0 R Jo

1
o KOS R S O N LX)

Equality (B.2) connects the mean dimensionless potential
temperature of the system of horizontally identical thermals
0, on the level z with their common amplitude 0.

Let an aircraft cross a thermal of a circular cross section
along a chord x = const with the length 2R(x). The profile of
temperature pulsations in the thermal is presented in Fig. 7.

Then the temperature of the thermal along the chord

dimensionless temperature along an arbitrary chord
x = const through the circular cross section of the ther-
mal — takes the form

Accordingly, the mean dimensionless potential temperature
0:(x, z) along the observation line /is given by the expectation
value

_ 1 (R
0(x,z) = ﬁj kg@(x,y, z)dy

(B.4)

0/(z) = JRi 0(x,z) p(x)dx = L‘[R: 0(x, z) dx

_R,
1
=3 E
We transform (B.5) taking (B.3) into account and using
polar coordinates R,, o [see (A.3)]:

R
J 0/(x,z)dx.
0

(B.5)

X = féacosoc, dx = —R, sinw do,
(B.6)

— Y 2., _ 00
0, =0,vV1—cos’a=0,sino.

Figure 7. Surface of the dimensionless potential temperature and its cross
section by a random vertical plane x = const; 93 and 0, are the respective
dimensionless potential temperatures at the centers of a thermal and a
random chord, R, is the radius of the thermal, and R, is the random
semichord length.
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Table 2. Height dependence of mean temperature pulsations for a system of atmospheric thermals.

Flight height, m 10 30 50 100 500 1000 1500 2000 2500 3000
Temperature 0.70 0.32 0.28 0.25 0.17 0.13 0.12 0.11 0.10 0.18 0.19
perturbations, °C
Substituting (B6) in (BS) leads to the equality 10. Dunkel J, Hianggi P Phys. Rev. E71 016124 (2005)
11. FaK S Braz. J. Phys. 36 777 (2006)
n/2 2 12. Vulfson N I Convective Motions in a Free Atmosphere (Jerusalem:
~ T o .2 I 0 . . .
0=-10, sin“ada=—10, . (B.7) Israel Program for Scientific Translations, 1964); Translated from
4 0 16 Russian: Issledovanie Konvektivnykh Dvizhenii v Svobodnoi Atmo-
sfere (Moscow: Izd. AN SSSR, 1961)
With (B.2), it then follows that 13.  Frish A’ S, Businger J A Boundary-Layer Meteor. 3 301 (1973)
5 14.  Manton M J Boundary-Layer Meteor. 12 491 (1977)
> 3nc - A 15.  Scorer R S, Ludlam F H Quart. J. R. Meteor. Soc. 79 94 (1953)
80 = 32 80a = 0.92g0, . (B.8) 16.  Lenschow D H, Stephens P L Boundary-Layer Meteor.19 509 (1980)
17.  Renno N O et al. J. Geophys. Res. 109 E07001 (2004)
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