
Abstract. In 1943, V L Ginzburg derived a simple and elegant
solution to the polarization optics problem when a linear bire-
fringent medium is uniformly twisted along the optical axis. In a
torsion-comoving coordinate frame, mutually orthogonal polar-
ization eigenmodes, i.e., helical modes, of such an optical med-
ium are characterized by two ellipses with the electric field
vector of light bypassed in the opposite sense. Current applica-
tions of V L Ginzburg's theory are reviewed.
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The purpose of this short science history paper is to discuss
V L Ginzburg's important contribution to the field of optics
and electrodynamicsÐhis proposal [1] to use the so-called
helical reference frame (HRF) twisting together with the
medium to calculate radiation polarization states (RPSs)
when both linear ray birefringence and circular birefringence
due to the twisting of the optical medium are present. The
paper also reviews the advantages of the HRF over the
laboratory reference frame (LRF) in calculating RPSs and
takes a look at applications and further development of the
method. Because [1] is beyond the main scope of VLGinz-
burg's research and because it was published during the
tumultuous years of the Great Patriotic War (GPW), far
from everyone involved in the field is even aware of its
existence. Although the method of Ref. [1] has found
extremely wide application and is currently considered
classic, there are, to the author's knowledge, just a few
dozen references to it, cited primarily by V L Ginzburg's
disciples, his disciples' disciples, or the researchers who were
in direct contact with him.

In 1943, V L Ginzburg addressed the problem of
measuring mechanical stresses optically in the most general
case in which transverse compression (tensile) or bending and
twisting stresses are simultaneously present [1]. In this case, if
a loaded body is transparent and isotropic, the mechanical
stresses produce two types of ray birefringence in it: linear,
due to compression/tensile stress, or bending, and circular,

due to torsion stress. Describing the evolution of RPSs as the
radiation travels along the optical axis of the sample under
study requires solving the Riccatti differential equationÐa
solution which cannot be obtained in quadratures for a
sample twisted arbitrarily along its optical axis [2]. V L Ginz-
burg obtained a simple and elegant solution not by solving the
Riccatti equation but instead bymoving to anHRFwhich has
axes comoving with the optical axes of the sample being
twisted. In the HRF, the two natural (or normal) mutually
orthogonal polarization modes of light are two ellipses with
the electric field vector wrapped around in opposite direc-
tions; importantly, in the absence of dichroism, the axes of the
ellipse are mutually orthogonal and do not rotate, whereas
the axes of the ellipse in the LRF undergo rotation when
propagation is along the optical axis of the medium, the
amount of the rotation being numerically equal to the
geometric torsion of the medium [1]. Later, these modes
were named `helical elliptically polarized modes' (HEPMs)
or, in short, `helical modes'.

The question VLGinzburg addressed arose in connection
with the photoelastic study of mechanical stresses (see review
[3]). The photoelasticity method is intended as a means for
probing the stress distribution in structures and structural
components subjected to both their own weight and external
forces. Theway this is done is by preparing from a transparent
isotropic material a (usually reduced-scale) model of the
object to be studied and placing it between two crossed linear
polarizers. The input polarizer is illuminated by light, and, if
there is no load, then at the output of the second, crossed
polarizer, no light appears. But if the system is loaded, then
some type of ray birefrignece occurs, resulting in the fact that
at the output of the second polarizer a certain light intensity
pattern can be observed, from which the localization, type,
and intensity of mechanical stresses in the object can be
determined.

When first discovered by D Brewster in 1816, the
photoelasticity effect was not studied for mechanical torsion
stresses. J CMaxwell, in 1847±1850, studied the simultaneous
development of linear and circular birefringence in a
transparent material subjected to various mechanical stres-
ses, including torsion [5]. He was not, however, successful in
explaining the phenomenon, and the experiments of Ref. [5]
were forgotten for a long time [3]. Later, similar experiments
were conducted in Russia and the USSR [6], Germany, and
the USA [3]. These experiments should be the subject of a
separate review. Early attempts at interpreting this phenom-
enon cannot be considered successful [3], and in the early
1940s, the need arose to develop a physical model of how
RPSs evolve in this problem.
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V LGinzburg's seminal work, paper [1], was submitted to
Zhurnal Tekhnicheskoi Fiziki (Technical Physics journal) on
3 June 1943Ð implying that it had been written in Kazan, to
which the Physical Institute of the Academy of Science of the
USSR had moved and from which V L Ginzburg returned to
Moscow only in late 1943 [7]Ðand was published in March
1944. Let us have a look at the method V L Ginzburg used.
Referring to his work [8], he wrote the following in Ref. [1]:
The propagation of light in an inhomogeneous anisotropic
mediumÐwhich is the general caseÐpresents a complicated
picture... The ray trajectories and the polarization of both
waves 1 are virtually impossible to find because to do this
requires the solution of quite complicated differential equa-
tions. (Below, we will follow V L Ginzburg's notation in
quotations from Ref. [1]).

V L Ginsburg then continues by successively simplifying
the problem using the fact that in practical cases the linear
birefringence in an optical material is small compared to
unity, and hence the electric field E and the electric
displacement D in the beam are both along the normal to
the beam. He further considers the case where the beam is
along the main optical axis. He then goes on to note [1]:

The resulting oscillationE � E1 � E2, whereE1 andE2 are
the normal oscillations, i.e., oscillations corresponding to a
certain propagation velocity, are elliptic. The ellipticity along
the beam changes due to the change in the phase difference
between E1 and E2 .

Thus, V L Ginzburg was the first to realize that in the
presence of linear birefringence and torsion, the natural
(normal) polarization modes are elliptic and that in the LRF
the azimuths of the ellipse's axes and the ellipticity vary along
the beam. For this reason, he introduced new axes, y and z,
which rotate along the beam (along the x axis) and in
whichÐunlike the unmoving axes y 0 and z 0Ðthe natural
polarizationmodes retain their ellipticity along the beam. The
y and z axes are the axes of the HRF. He also determined the
distance after the travel alongwhich the polarization ellipse of
light returns to its positionÐa distance which is now known
as the polarization beat distance.

In Ref. [1], V L Ginzburg paid great attention to the
necessary conditions of geometric opticsÐconditions which
validate the approximations he used. In particular, the
condition

Al5 1 �1�

must hold, where, in the notation of Ref. [1], A � 2j=x, j is
the angle of rotation over a distance x, and l is the vacuum
light wavelength. In fact, A is the circular birefringence
induced by the torsion of the optical medium. Condition (1)
means that the torsion of axes over a light wavelength is very
small. A second limitation on the applicability of geometrical
optics is given by [1]

R � Al
2pdn

5 1 ; �2�

where dn � ny ÿ nz is the refraction index difference (related
to the HRF) between the slow and fast axes of the linear
birefringence of the medium. Because 2pdn=l is the linear
birefringence, the physical meaning of the parameterR is that
it is the ratio of the amount of torsion-induced circular
birefringence to linear birefringence, and hence condition (2)

implies that this circular birefringence can be much smaller
than the linear birefringence. At the same time, it is noted in
Ref. [1] that for dn! 0 the geometric optics approximation
breaks down.

As pointed out in Ref. [1], the general-form solution of the
problem can even be obtained for arbitrary R Ð provided,
though, that condition (1) and two additional conditions,
�qn=qx� l5 1 and dn5 1, hold. This can be achieved by
expanding in the small parameter l as suggested by
V L Ginzburg in Ref. [8].

Now, after the solution for the ellipticity of natural
HEPMs is obtained, what remains is to find the magnitude
of the elliptic birefringence of thesemodes. VLGinzburg goes
on to write: [1]

We will not, however, undertake such an analysis here
because in the case of rectilinear propagation, which is of
interest for photoelasticity... the problem allows a simple and
completely comprehensive solution. The corresponding method
was in fact already used by Druker and Mindlin [9].2 However,
the fact that they use the notation of elasticity theory and our
desire to highlight certain details and conclusions seem to
warrant a reexamination of the problem.

A close look reveals, however, that the study in Ref. [9]
mainly focuses on the mechanical deformations of an elastic
medium and, as for optics, the only issue addressed is the
transfer of the elliptic light polarization in a squeezed and
twisted medium. The fact that the natural polarization modes
conserve their ellipticity in the HRF is not mentioned in
Ref. [9]. Note also the use of the theory of `luminiferous ether'
in the calculations in Ref. [9].

V LGinzburg usedMaxwell's equations and the dielectric
constant tensor e to solve rigorously the problem of finding
the natural polarization modes in a linearly and circularly
birefringent optical medium. His starting point was to write
two differential equations of second order in dx 2 for the
electric field vector components Ey 0 and Ez 0 in the reference
frame x, y 0, z 0, with the electric displacement componentsDy 0

and Dz 0 entering as constant terms. He then moved to the
HRF and wrote the corresponding set of second-order
differential equations for Ey and Ez, making the substitution
x, y, z in the process. In addition, the first derivatives of Ey

and Ez with respect to dx appear in these equations. As a
result, the following equation is obtained for the propagation
constants of two HEPMs [1]:

k� � o
c
n0 � dny � dnz

2
� dny ÿ dnz

2

���������������
1� R 2

p
; �3�

where c is the vacuum light speed, n0� ����
e0
p

, dny�dey=2
����
e0
p

,
and dnz � dez=2

����
e0
p

.
The phase difference between the radiation in the different

orthogonal HEPMs passing the distance x is given by [1]

D � 2p
l
�dny ÿ dnz�

���������������
1� R 2

p
x : �4�

If condition (2) (R5 1) holds, then, as pointed out in
Ref. [1], the field is totally `dragged' by the rotating axes, i.e.,
the axes of the polarization ellipses of the orthogonal natural
polarization modes exactly follow the torsion of optical axes
of the medium.

In the first (1960) edition of hismonograph [10], VLGinz-
burg applied the results of Ref. [1] to the propagation of
electromagnetic waves in a magnetized plasma. The subse-

1 Note by the author: ordinary and extraordinary. 2 In the bibliography of Ref. [1], this work is numbered [5].
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quent development of V L Ginzburg's method is considered
briefly below.

In 1968, Y A Kravtsov [11] considered the case in which,
as shown in Ref. [10], the geometrical optics approximation
cannot be represented in the form of independent orthogonal
waves. He showed, however, that based on the results of
S M Rytov [12] (quasi-isotropic approximation), the geo-
metric-optics solution of Maxwell's equations can be
obtained.

In 1972, E V Suvorov [13] considered the propagation of
normal waves in a plasma with a strong magnetic field shear
(an effect in which the magnetic field component perpendi-
cular to the beam direction rotates along the light ray path)
or, in other words, in the case of the helical structure of the
magnetic field. E V Suvorov used the approximation of
geometric optics to find normal waves in a uniformly sheared
heterogeneous plasma.

Subsequently, V L Ginzburg's student V V Zheleznyakov
and V V Zheleznyakov's students V V Kocharovskii and
Vl V Kocharovskii published a series of studies on various
applications of HEPMs (see Ref. [14] for a review). The
studies examined the helical mode structure for the case of
rotating anisotropy axes and an arbitrary dielectric constant
tensor; showed that the helical modes are nonorthogonal even
in the absence of absorption; developed a geometric optics
model of helical modes; and derived general linear coupling
equations explicitly taking into account the `helical' symme-
try of the electromagnetic properties of the continuous
medium. Based on qualitative analysis results and a number
of exact and approximate solutions of these equations,
features of the linear coupling of helical modes in inhomoge-
neous weakly anisotropic media with nonuniformly rotating
anisotropic axes were investigated together with the transfer
of radiation polarization in a magnetically active medium
with magnetic field shear and the linear coupling of light
waves in holesteric (initially twisted) liquid crystals (LCs) and
twisted single mode fibers (SMFs).

About forty years ago, the problem arose of how to
describe the evolution of the degree of polarization of
nonmonochromatic radiation traveling through a randomly
inhomogeneous SMF and how to calculate the inhomogene-
ity-induced zero drift of fiber ring interferometers (FRIs). To
solve thisproblem, thepresentauthor, alongwithVIPozdnya-
kova and I A Shereshevskii, developed a statistical model of
random inhomogeneities in a SMF, in which the coupling of
orthogonal polarization modes is considered to be primarily
due to the random torsions of linear birefringence axes in
SMF that arise when the wire has been drawn from a preform
and is not yet fully frozen [15]. Thus, different HEPMs occur
on each random segment of the SMF. The model proposed in
Ref. [15]Ðunlike the available qualitative integral models of
SMFÐadequately explains the known experiments on the
change in the polarization conservation parameter in SMF
and provides analytical expressions for the degree of polar-
ization of nonmonochromatic radiation and zero drift in an
FRI with an arbitrarily birefringent contour made of SMF.
The results of these studies were published in a number of
papers and are presented in monographs [16, 17].

Let us now consider the advantages of V L Ginzburg's [1]
HRF over the LRF, which were first amply demonstrated in
review [14] by explicitly constructing the geometric optics of
helical modes and developing the theory of their linear
coupling and thereby taking a major step forward in the
study of the polarization features of the wave field, in contrast

to the often-used Jones matrix eigenvector approach. In our
paper [18], we point out that HEPMs can be described both
analytically in the formalism of Jonesmatrix eigenvectors [19]
and using the simpler and more transparent Poincar�e sphere
(PS) method [19±21]. These expressions are not presented
here due to space limitations, but Ref. [18] suggests that
expressions in the HRF are markedly simpler than in the
LRF. Accordingly, the evolution of RPSs of natural HEPMs
as a function of the optical length of the twisted medium on
PS in the LRF is a rather complicated curve, whereas in the
HRF it is a non-moving point on PS. Even for non-natural
HEPMs, the evolution of RPSs on SP is much simpler in an
HRF than in the LRF.

At this point, it is appropriate to mention studies on
holesteric LCs [22, 23] that preceded Ref. [1]. Study [22]
showed the existence of a preferred HRF but failed to expand
the original linear polarization in terms of the eigenmodes of
the HRF, i.e., HEPMs, and hence to realize the potential of
the method of Ref. [1]. Reference [23] says nothing on the
existence of a preferred HRF and does not consider the
ellipticity of natural HEPMs. That is, the authors of
Refs [22, 23] came close to but did not obtain expressions
for HEPMs.

In 2008, V L Ginzburg told the present author that he
remembered well his publication [1], that it was a simple
matter for him to obtain expressions for HEPMs, and that he
was, well, so very young at the time [24].

Note added in proof. The following is an interesting story
which I learned from Boris Mikhailovich Bolotovskii when
the paper was in the proof stage and which has a direct
relation to the present workÐor, more precisely, to the
application of the results of V L Ginzburg's work [1].

At the very end of the 1940s, the Moscow Electric Lamp
Plant was assigned to the task of mastering the production of
TV kinescopes. Before that, the plant produced only
incandescent bulbs and had had no experience producing
kinescopes, so 97% of the kinescope bulbs broke when
cooledÐmainly where their necks started to widen. Vladi-
mir L'vovich Indenbom (1924±1998), then a plant employee
(a GPW participant, reserve captain, researcher at the
Institute of Electrovacuum Glasses in 1950±1955 years, and
M V Lomonosov Moscow State University graduate; for
more on him, see Ref. [25]), took it upon himself to eliminate
this problem. Well familiar with V L Ginzburg's work [1],
V L Indenbom proposed that stresses in a kinescope bulb can
be spotted using the polarizationmethod ofRef. [1], which (to
recall) observes mechanical stresses in an optical medium
between two crossed polarizers. This innovative idea having
met with a cold response at the plant, V L Indenbom went to
FIAN (Lebedev Physical Institute) to consult with V L Ginz-
burg 3, a visit which provided him with a number of valuable
suggestionsandencouragedhimtokeepgoing.VLGinzburg's

3 There was nobody else but V L Ginzburg in 1949 whom V L Indenbom

could possibly ask for consultation. In this connection, mention should be

made of another expert in the matter, Lidiya Eduardovna Prokof'eva-

Mikhailovskaya, associate professor at Leningrad State University (LSU)

(the author of Ref. [6] and translator of paper [3] in Uspekhi Fizicheskikh

Nauk journal, parenthetically), who lectured on optical methods at the

Elasticity Theory section of the LSU Mechanics and Mathematics

Department and who, in 1926±1930, led the foundation of the USSR's

first laboratory on the study of stresses by the polarization optical method.

L E Prokof'eva-Mikhailovskaya died of hunger in February 1942 in

Leningrad [27].
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authority had its effect on those in command at the plant, and
Indenbom's innovative proposal was accepted. After finding
out the localization of mechanical stresses in kinescope bulbs,
Indenbom proposed that hot bulbs be oven-annealedÐa
measure which proved to have a strong stress reduction effect.

The introduction of polarization control together with the
annealing treatment resulted in the fraction of defective bulbs
dropping from 97% to a mere 3%. V L Ginzburg's study [1]
was instrumental in arranging the mass production of black
and white TV sets in the USSR. Thus, although purely
theoretical, V L Ginzburg's study [1] proved to be of applied
value. In 1955, V L Indenbom defended his candidate
dissertation [26] and, on the recommendation of V L Ginz-
burg, was invited by M V Klassen-Neklyudova to the
Institute of Crystallography of the Academy of Sciences of
the USSR, where in 1966 he became the Chair of the
Theoretical Department.
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