
Abstract. This paper reviews the statistical properties and
calculates the velocity structure functions of flows produced by
a large-scale random scaling force in the Burgers model.
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1. Introduction

Through the years, the Burgers equation has been a subject of
thorough studies dealing with various physical applications.
Numerous reviews andmonographs have been dedicated to it
(see, e.g., Refs [1±3]). In particular, the related research is
reflected in a series of publications in Physics±Uspekhi [4±6].
In the present work, we limit ourselves to questions related to
hydrodynamical turbulence, which are still insufficiently
studied in our opinion. The Burgers equation is known to be
the simplest variant of theNavier±Stokes equation. Formany
years by analyzing the stochastic properties of this equation,
researchers hoped to shed light on the problem of hydro-
dynamical turbulence and conjure up a physical picture of a
turbulent cascade. One of the `models' of the cascade relies on
the singularity. It has been proposed that the time evolution
described by the Navier±Stokes equation forced on large
scales results (in the limit of zero viscosity) in the appearance
of singularity [7, 8]. Namely this singularity underlies the
Kolmogorov scaling. It is well known that in the absence of
viscosity solutions to the Burgers equation can develop a
singularity v / x 1=3 in a finite time, but this singularity lasts

an instant only and, according to numerical simulations [1],
has no impact on statistically stationary properties of the
solution.

A traditional approach to turbulence excitation in
Burgers's equation resorts to adding a random force to its
right hand side:

vt � vvx � nvxx � g�x; t� : �1�

Such an approach was discussed, for example, in Refs [4, 5].
We assume that equation (1) is normalized to character-

istic problem parameters; then, n represents the inverse
Reynolds number. The random force g�x; t� is assumed to
be Gaussian and delta-correlated in time:


g�x1; t1� g�x2; t2�
� � k�x1 ÿ x2� d�t1 ÿ t2� :

The assumption that the random force g�x; t� is large-scale
implies that the correlation length, i.e., the decay scale of the
function k�x1 ÿ x2�, exceeds substantially the viscous scale.
In dimensionless units, the correlation length equals unity.
This difference in scales assumes the existence of an inertial
range

nÿ1 5 l5 1 ;

analogous to the inertial range of the Navier±Stokes equation
for Kolmogorovian turbulence.

In addition to the case of large-scale force confined to
small wave numbers, it is of interest to analyze solutions of the
Burgers equation driven by a scaling force. For such a force,
the Fourier image of the correlator k�x1 ÿ x2� is written out
as a power law:

k�k� � 2D0jkj b :

The exponent b in the last formula defines the scaling
properties of a driving. In the case of b > 0, the force
operates on small scales; for example, b � 2 corresponds to
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the thermal noise in the Kardar±Parisi±Zhang (KPZ) model
[9]. It is well known that the problem in this case can be solved
(see, for example, book [10]) and its solution demonstrates a
simple scaling. We are interested in the case of b < 0. The
force then operates on large scales (it is assumed that the
divergence is cut on this scale). In this case, the renormgroup
method does not work [11] and nonlinearity plays a decisive
role. For b < ÿ3, the driving force is differentiable, and
according to numerical simulations the solution becomes
piecewise continuous and contains a finite number of jumps,
whereas the exponents of structure functions take the form
xn � min �1; n�.

For a nondifferentiable external force, i.e., a force with
diverging correlations of derivatives as k!1�ÿ3 < b < 0�,
the presence of jumps and dimensional considerations lead to
the following structure function exponents [12]: xn �
min �1;ÿnb=3�. However, in neither case has a rigorous
derivation for the scaling of structure functions been
proposed. Notice also that dimensional considerations do
not always work for the Burgers equation. Indeed, for a large-
scale random forcing, the third correlation function
S3 � h�dv�l ��3i obeys the Kolmogorov law h�dv�l ��3i � el,
where e � k�0� is the energy flux [1]. Dimensional considera-
tions analogous to those used for turbulence governed by the
Navier±Stokes equation with regard to the finite number of
jumps would lead to xn � min �1; n=3�, but the observed
dependence is notably different: xn � min �1; n�.

2. Generating function and generating functional

The goal of this study is the consistent derivation of the
above-mentioned scaling laws. Earlier, for the derivation of
structure functions, A Polyakov proposed using the generat-
ing n-point function [13]

Zn�lj; xj; t� �
�
exp

�X
ljvj�xj�

��
: �2�

The correlation functions follow from expression (2) by
differentiation over li at li � 0:

hvi1 . . . viki �
qkZn

qli1 . . . qlik

����
li�0

:

This approach was generalized for the case of generating
functional [14]. The analysis of this functional was performed
for large l, which gives the possibility of finding an instanton
solution [13, 14], yet does not allow computations of structure
functions.

We also consider the generating functional, but to
analyze it we resort to a different methodÐmultiscale
expansions [15].

The generating functional is written out as

Z
�
Z�x�; t� � �exp�� Z�x� v�x; t� dx�� : �3�

If we select the functions Z�x� �Pi lid�xÿ xi� as delta-
functions centered at different points xi and having
amplitudes li, the result is Eqn (2). As usual, averaging is
carried out over an ensemble of random forcing realiza-
tions. However, if velocity correlation functions have a
finite correlation length, the ergodic hypothesis is valid
and the mean can be computed via spatial integration,

namely

Z
�
Z�x�; t� � � exp

��
Z�x� v�x; t� dx

��
� lim

L!1
1

L

�L
0

exp

��
Z�x� v�xÿ y; t� dx

�
dy :

Let us consider a stationary equation. In this case, the
variational equation for the generating functional takes the
form�
dx Z�x�

�
qx

d 2Z

dZ 2�x� ÿ nqxx
dZ

dZ�x� ÿ
1

2
g�x�Z�Z�x��� � 0 : �4�

Here, we introduced the function g�x� � � k�xÿ y�Z�y� dy.
Notice that the function g�x� is simply the function Z�x�
smoothed over the correlation scale. This equation also
contains a `fast' scale as n! 0, which is proportional to 1=n.
We introduce y � x=n and seek a solution as an expansion in
the small parameter using the method of multiscale expan-
sions [15]. With this aim, we assume that the number Z is
about unity and that the functions A�x� � d 2Z=dZ2�x�
and B�x� � dZ=dZ�x� depend on many scaled variables
A � A�y0; y1; . . .�, B � B�y0; y1; . . .�; in view of the above,
accordingly, g�x� � g�y1; y2; . . .�. Following the method of
multiscale expansions, we represent the derivative as
qy � qy0 � nqy1 � . . . . Since the variables y0; y1; . . . are
asymptotically very different, differentiation or integration
with respect to them is carried out independently. Inserting
the expansion into Eqn (4), we find�
dy0 dy1 . . . Z�y0; y1; . . .�

�
�qy0 � nqy1 � . . .�A�y0; y1; . . .�

ÿ �qy0y0 � 2qy0qy1�B�y0; y1; . . .� ÿ n
1

2
g�y1; y2; . . .�Z

�
� 0 :

We expand the functionsA andB in a power series in n and
collect terms with the same power in n:�

dy0 Z�y0; y1; . . .��qy0A0 ÿ qy0y0B0� � 0 ; �5��
dy0 Z�y0; y1; . . .�

�
qy1A0 � qy0A1 ÿ qy0y0B1 ÿ 2qy0qy1B0

ÿ 1

2
g�y1; . . .�Z

�
� 0 : �6�

Equations (5) and (6) should be satisfied for any function
Z�y0; y1; . . .�. Setting in Eqn (5) Z�y0; y1; . . .� � d�y0 ÿ y�,
where y is an arbitrary point, we get

qy
d 2Z

dZ2�y� ÿ qyy
dZ

dZ�y� � 0 :

It should be clear that if this equation is obeyed, formula (5) is
valid for any function Z. A solution to the last equation can
easily be found:

Z �
�
exp

��
Z�x�

X
Ui�xÿ xi� dx

��
;

where

dU 2
i

dy
ÿ d2Ui

dy 2
� 0 :
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The last equation is valid in the vicinity of some point set xi.
We consider the case xi ÿ xiÿ1 � 14 n. In this way, we
disregard the interaction between the points i and iÿ 1 in
the exact solution. As we shall see, the interaction is
exponentially weak, / exp �ÿ1=n�, and, consequently, can
be ignored in the asymptotic expansion.

The solution to the above equation is well known:

Ui � V0
1ÿ exp �V0y�
1� exp �V0y� :

Here, V0�x� � V0�i� is a function slowly varying on the scale
1=n; moreover, xi, in the vicinity of which this solution is
valid, is also a slowly varying function.

Thus, one obtains

U�x� �
X
i

Ui�x� ; Ui�x� � V0�i�
1ÿ exp

�
V0�i��xÿ xi�=n

�
1� exp

�
V0�i��xÿ xi�=n

� :
The positions of jumps xi and their amplitudes V0�i� are not
defined in the approximation considered. Because of the
homogeneity of the random force, we assume that xi are
distributed with uniform probability along the x-axis and the
mean should be understood as a spatial mean. To find the
relationships for the parameters of jumps (stepwise functions
or steps), we take advantage of an equation that follows
exactly from the averaged Burgers's equation. Multiplying
the equation by V 2�x� and V 2�x 0�, after standard manipula-
tions we get

qlS3 ÿ nqllS2 � k : �7�
Here, as usual, the third and second correlation functions are

S3 � 1

L

�L
0

ÿ
U�x� l � ÿU�x��3 dx ;

S2 � 1

L

�L
0

ÿ
U�x� l � ÿU�x��2 dx :

We fix n and let l! 0; since the functions Ui are smooth, it is
obvious that Sn / l n, and S3 ! 0 as l! 0. For the function
S2 we obtain

ÿn
X
i

1

L

�L
0

�
qUi

qx

�2

dx � k�0� :

As n! 0, the contributions to the integral are from steps
only, so we split the integral over intervals Li and, performing
integration for the function given above, find

1

N

XN
i

V 3
0 �i�
3L0

� ÿk�0� ; �8�

where V0�i� is the amplitude of the step function, N is the
number of steps, and L0 � L=N is the mean distance between
them.

We now let n � 0, S3 transforms into steps, and the
correlator on each of them is / V 3

0 �i�=L0l (the correlator of
the function sign x with itself). We get the same relationship
(8). Thus, a relationship is found between the amplitudes of
steps, energy dissipation, and mean distance between the
steps. This relationship resembles the Kolmogorov law (see
the discussion below).

We turn now to Eqn (6). Take Z�y0; y1; . . .� � Z�y1; . . .� to
be a slowly varying function. We integrate over y0 and y1.
Equation (6) will then gain diverging (secular) terms propor-

tional to y0 as y0 !1. According to the general principle of
the construction of asymptotic expansions, they should be set
to zero, which gives an equation for slowly varying functions:�
Z�y1� dy1 qy1

d 2Z

dZ2�y1� �
1

2

�
dy1 dy k�y1 ÿ y�Z�y�Z�y1�Z : �9�

3. N-point distribution functions

We found the form of the generating functional in the leading
approximation with respect to the parameter 1=n and derived
equation (9) in the next approximation. Further, we will limit
ourselves to the construction of the generating function.With
this goal, as mentioned above, we set Z�y1� �

P
lid�y1 ÿ xi�

in equation (9) to obtain [13]X
j

lj
q
qlj

�
1

lj

qZ
qxj

�
�
X
i; j

k�xi ÿ xj�liljZ : �10�

Following Polyakov [13], let us introduce the function F, so
that

Z � l1 . . . lNF�l1x1; . . . ; lNxn� :

We insert this expression into equation (10) to getX q2

qxiqli
F �

X
k�xi ÿ xj�liljF : �11�

In what follows, it is more convenient to consider other
functions FN which are the Laplace transform of F:

FN �


y
ÿ
u1 ÿ v�x1�

�
y
ÿ
u2 ÿ v�x2�

�
. . . y

ÿ
un ÿ v�xn�

��
:

The N-point distribution functions are then given by the
relationships

Pn � qnFN

qu1 . . . qun
: �12�

On applying the Laplace transform to equation (11), we
obtainX

ukqxkFN ÿ
X

k�xi ÿ xj�q2uiujFN � 0 : �13�

Equation (13) is linear and can easily be solved. We note,
however, that here we are dealing with an asymptotic
expansion which is obtained under the assumption that the
terms A0 and B0 are of the same order. This is violated in
equation (13) for small velocities, ui � 0, unless the velocities
tend to zero consistently with the gradients of functions. As
we shall see, namely this consistency sets the scaling.

Let us consider the two-point function F2, introducing
variables l � x1 ÿ x2 and v � u1 ÿ u2. Assuming that the pair
function F2 depends only on these variables, we get

vqlF2 �
ÿ
2k�0� ÿ k�l � ÿ k�ÿl ��q2vvF2 : �14�

According to Eqn (12), the equation for the probability
density P2 will take the form

qlP2 �
ÿ
2k�0� ÿ k�l � ÿ k�ÿl ��q2vv�P2

v

�
:

Consider the case when the random force is localized on
large scales, then 2k�0� ÿ k�l � ÿ k�ÿl � � k1l 2. Introducing
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Sn �
�
v nP2 dv, where n is an arbitrary number, we find

dSn

dl
� k1l 2n�nÿ 1�Snÿ3 :

It is easy to verify that the chain of structure functions in this
relationship allows the scaling solution Sn / l n. It should be
recalled that this scaling is governed by the slowly varying
part of the distribution function. The fast part, as we saw
earlier, always gives Sn / l. We therefore get a bifractal
scaling: xn � min �1; n�.

Consider a general case when the correlation function
can be written in a power-law form. The correlator in this
case takes the form k�l � � k0 ÿ k1jl jÿ1ÿb for b < ÿ1, and
k � k1l ÿ1ÿb for ÿ1 < b < 0.

If ÿ1 < b < 0, stationary equation (14) assumes in the
limit l! 0 the form

v qlF2 � k1l ÿbÿ1q2vvF2 :

Just as in the previous case, it is easy to see that the structure
functions defined by the slow part of the distribution function
take the scaling form

hv ni / lÿbn=3 : �15�

Thus, for forcing in the scaling form the power-law
exponents of the structure function also show the bifractal
scaling: xn � min �1; bn=3�.

4. Conclusions

We saw that the method of multiscale expansions allows the
distribution functions to be decomposed into fast and slow
constituents. The fast function is responsible for the correla-
tion of jumps in Burgers's equation, whereas the slow one is
related to smooth fluctuations in the case of a large-scale force
or the scaling bn=3 for the power-law spectrum of a driving
force.

The standard similarity considerations for the Navier±
Stokes turbulence rely on relationship (7) [16].We see that the
latter is also valid for the Burgers equation, but it does not
give the n=3 scaling for structure functions. Notice, however,
that the Kolmogorovian scaling is valid not only for S3, but
also for the correlation of velocity jumps at discontinuities,
residing in relationship (8). Indeed, the energy flux k�0� does
not depend on the scale of the correlation function, which is
on the order ofL in this consideration. The correlation length
can therefore be varied substantially, with an energy flux
keeping fixed; in this case, the mean cube of velocity jumps is
proportional to k�0�L, according to relation (8).

A great deal of attention in the literature was devoted to
the case of b � 1 [1], for it formally corresponds to the
Kolmogorov scaling (up to a logarithmic correction).
Furthermore, the scaling exponents of structure functions
hjvjni are described by a smooth curve with high accuracy (see
Fig. 1) in this case. It is important that at n � 3 the respective
structure function exponent x3 � 0:85 and stays practically
constant if the grid is varied from 2ÿ16 to 2ÿ18 (the respective
values are displayed in blue and red circles). The observed
contradiction with the theoretical consideration was elimi-
nated in Ref. [17]. Its authors noticed that the bifractal
structure is retrieved if the structure functions are considered
under the condition vl > 0. Notice that this property is also
present in our solutionÐa stationary solution to equation
(14) derived here exists if vl > 0.

It should also be noted that the Kolmogorov law for the
third correlation function (7) is derived not for hjvj3i but for
hv 3i. As mentioned above, the scaling n=3 of the Burgers
equation at b � 1 discussed here is not related to energy
dissipation and hence has little in common with the
turbulence in the framework of the Navier±Stokes equation.

This study was partly supported by the RAS program
Nonlinear Dynamics in the Mathematical and Physical
Sciences.
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Figure 1. (Color online.) The power-law exponents of structure functions

Smod�p� � hjvj pi as a function of p at b � 1. It can be seen that the

Kolmogorov law is not obeyed for the correlation functions Smod�p�,
because x3 � 0:85. Reference [17] reports that the curve x�p� in the plot is

described as x�p� � min �p=3; 1�, if the structure functions are computed

under the condition of vl > 0.
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