
Abstract. Disorder Ð impurities and defects violating the ideal
long-range order Ð is always present in solids. It can result in
interesting and sometimes unexpected effects in multiband
superconductors, especially if the superconductivity is uncon-
ventional, thus having symmetry other than the usual s-wave.
This paper uses the examples of iron-based pnictides and chal-
cogenides to examine how both nonmagnetic and magnetic
impurities affect superconducting states with s� and s�� order
parameters. We show that disorder causes the transition be-
tween s� and s�� states and examine what observable effects
this transition can produce.

Keywords: unconventional superconductors, iron pnictides,
iron chalcogenides, impurity scattering

For two dangers never cease threatening

the world: order and disorder.

Paul Valery, ``Crisis of the Mind'' (1919)

1. Introduction

The phenomenon of superconductivity has always attracted
much attention of the scientific community. It was observed
for the first time in Kamerlingh Onnes's Leiden cryogenic
laboratory in 1911. Almost half a century passed before the
microscopic theory was developedÐ only in 1957 did
Bardeen, Cooper, and Schrieffer published an article [1]
where the superconductivity phenomenon was explained by
the formation of the condensate of Cooper pairs of electrons
having opposite momenta and spins due to the electron±
phonon interaction being attractive at small frequencies. The
theory of superconductivity developed later by Gor'kov,
Abrikosov, and Dzyaloshinskii in the frames of the Green's
functions method [2] allowed formalizing the approach to the
phenomenon and describing many of its interesting features.
From the second-order phase transitions point of view,
superconductivity is a transition to the state with broken
gauge invariance. The phenomenological Ginzburg±Landau
theory of superconductivity based on free energy functional
expansion depends on the complex superconducting order
parameter D. According to a theoretical-group classification,
the order parameter of an ordinary superconductor in crystals
obeying the tetragonal symmetry belongs to the simplest
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representation, A1g, and is isotropic in momentum space, i.e.,
exhibits an s-wave symmetry [3, 4]. In the simplest case, the
gap opening in the spectrum of Fermi quasiparticles is
determined by the absolute value of the order parameter,
jDj. Superconductivity as the fundamental ground state
occurs in almost all metals and doped semiconductors,
which are not magnetic at low temperatures.

An interesting development in the superconductivity
theory occurred during investigations of superconducting
states in 3He, heavy-fermion materials, and magnetic super-
conductors (see, for example, Refs [5±7]). An important
feature was the `unconventional', non-s-wave, symmetry of
the order parameter. For example, the order parameter in 3He
has a p-wave symmetry.

The next important milestone was the discovery of so-
called high-temperature superconductivity (HTSC) in copper
oxides, or simply, cuprates, in 1986 [8]. One of their features is
that the critical temperature of the transition to the super-
conducting state, Tc, exceeded the critical temperatures of
superconductors known at that time by four to five times. In
addition, the cuprates have an unconventional symmetry of
the superconducting gapÐ that is, most materials bear a d-
wave order parameter belonging to the B2g representation of
the tetragonal symmetry group [5, 9].

In the 1990s and 2000s, superconductivity in fullerides [10]
and magnesium diboride (MgB2) [11] was discovered, which
was explained in the framework of the electron±phonon
interaction contrary to the cuprates. A characteristic feature
of these materials was their significantly multiband nature,
i.e., several bands originating from the mixture of different
orbitals cross the Fermi level and form a multiply connected
Fermi surface consisting of several sheets. Thus, to describe
such systems, it is necessary to apply a multiband approach.
On the contrary, a single-band approach works well in the
cuprates despite their multiband nature.

The discovery of a new class of superconductors in 2008 Ð
iron-based materialsÐ started a new phase of unconven-
tional superconductivity studies [12]. While Fe-based systems
have not yet led to a technological breakthrough (these days,
Tc in bulk materials is only 15 K higher than that in MgB2;
besides, just like the cuprates, they are expensive to make and
difficult to work with), the conceptual importance of their
discovery is hard to overestimate. Indeed, like the cuprates,
fullerides and magnesium diboride reveal many unusual
features; however, Cooper pairing in them arises due to the
electron±phonon interaction, while in the cuprates the
mechanism of superconductivity probably has a nonphonon-
ic origin. Not surprisingly, there has been a growing feeling
among physicists that phonon superconductivity will prob-
ably never grow past 50±60 K, while true high-temperature
superconductivity is probably due to strong correlations and
limited to the unique family of layered cuprates. What the
discovery of iron-based systems brought to the table was the
understanding that however unique cuprates may be, these
features are not prerequisites for nonphonon, high-tempera-
ture superconductivity. And, if that is true, there are likely
many other crystallochemical families to be discovered, some
of which may have higher critical temperatures or be better
suited for applications than cuprates and iron-based super-
conductors. For example, the discovery of superconductivity
in sulfur hydrates under pressure with the record Tc � 200 K
was claimed recently [13, 14].

Superconducting Fe-based materials can be divided into
two subclasses, pnictides and chalcogenides. The square

lattice of Fe is the basic element of all the construction. Iron
is surrounded by As or P pnictogens situated in the
tetrahedral positions within the first subclass, and by Se, Te,
or S chalcogens within the second subclass. Fe d-orbitals are
significantly overlapped and, apart from that, out-of-plane
pnictogen or chalcogen are well hybridized with the t2g-subset
of the iron d-orbitals, and all of them contribute to the Fermi
surface. The minimal model is then a significantly multiband
model. In this regard, iron-basedmaterials aremore similar to
ruthenates and magnesium diboride than to cuprates. The
multiband electronic structure of the cuprates can be
described basically within an effective low-energy single-
band model due to the dominating contribution from the in-
plane dx 2ÿy 2 copper orbital.

Various mechanisms of Cooper pair formation currently
being discussed result in the distinct superconducting gap
symmetry and structure in iron-based materials [15]. In
particular, the random-phase approximation spin fluctua-
tion (RPA-SF) approach in the clean limit gives the extended
s-wave gap that changes sign between hole and electron Fermi
surface sheets (the so-called s� state) as the main instability
for the wide range of doping concentrations [16±20]. On the
other hand, orbital fluctuations enhanced by the electron±
phonon interaction lead to the state with the sign-preserving
order parameter, the so-called s�� state [21]. Electron±
phonon interaction by itself (without Coulomb repulsion)
also leads to the s�� gap [22, 23]. Thus, probing the gap
structure is a fundamental issue that might help in elucidating
the underlying mechanism of superconductivity.

Varying amounts of disorder are present in all actually
existing materials. Moreover, cuprates and iron-based mate-
rials in most cases become superconducting when doped, i.e.,
some atoms are replaced by others and, consequently, the
potential is changed at sites where the replacement was made.
In this regard, disorder is the inherent part of the observed
picture of superconductivity and one has to bear a clear-eyed
understanding of its role and impact on the features of studied
systems.

1.1 Comparison of iron pnictides
and chalcogenides with cuprates
High-Tc cuprates are known for their high critical tempera-
ture, unconventional superconducting state, and unusual
normal state properties. Fe-based superconductors, with Tc

up to 58 K in bulk materials [24], and probably up to 110 K in
FeSe monolayer at the SrTiO3 substrate [25±29], stand in
second place after cuprates. When superconductivity in iron-
based materials was discovered, the question immediately
aroseÐhow similar are they to cuprates? Let us compare
some of their properties.

At first glance, the phase diagrams of cuprates and many
Fe-based superconductors are similar. In both cases, the
undoped materials exhibit antiferromagnetism, which
vanishes with doping; superconductivity occurs at some
nonzero doping and then disappears, such that Tc forms a
`dome'. While in cuprates the long-range ordered N�eel phase
vanishes before superconductivity appears, in iron-based
materials the competition between these orders can take
several forms. In LaFeAsO, for example, there appears to be
a transition between the magnetic and superconducting states
at a critical doping value, whereas in the 122 systems
(BaFe2As2 and similar ones) the superconducting phase
coexists with magnetism over a finite range and then persists
to higher doping. It is tempting to conclude that the two
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classes of superconducting materials show generally very
similar behavior, but there are profound differences as well.
The first striking difference lies in the fact that undoped
cuprates are Mott insulators, whereas iron-based materials
are metals. This suggests that theMott±Hubbard physics of a
half-filled Hubbard model is not a good starting point for
pnictides, although some authors have pursued strong-
coupling approaches. It does not, of course, rule out effects
of correlations in iron-based materials, but they may be
moderate or small. In any case, density functional theory-
based approaches describe the observed Fermi surface and
band structure reasonably well in the whole phase diagram,
contrary to the situation in cuprates, especially in undoped
and underdoped regimes.

The second important difference pertains to normal state
properties. Underdoped cuprates reveal pseudogap behavior
in both one-particle and two-particle charge and/or spin
excitations, while a similar robust behavior is absent in iron-
based materials. Generally speaking, the term `pseudogap'
implies a dip in the density of states near the Fermi level.
There are, however, a wide variety of unusual features of the
pseudogap state in cuprates. For example, a strange metal
phase near optimal doping level in hole-doped cuprates is
characterized by linear-T resistivity over a wide range of
temperatures. In iron-based materials, different temperature
power laws for the resistivity, including linear T-dependence
of the resistivity for some materials, have been observed near
optimal doping and interpreted as being due to multiband
physics and interband scattering [30]. There are, however,
indications of a pseudogap formation in densities of states of
some pnictide bands; see, e.g., Refs [31, 32].

The mechanism of doping deserves additional discussion.
Doping in cuprates is accomplished by replacing one of the
spacer ions with another ion having a different valence, as in
La2ÿxSrxCuO2 and Nd2ÿxCexCuO2, or adding extra out-of-
plane oxygen, as in YBa2Cu3O6�d. The additional electron or
hole is then assumed to dope the plane in an itinerant state. In
iron-based materials, the nature of doping is not completely
understoodÐsimilar phase diagrams are obtained by repla-
cing the spacer ion or by in-plane substitution of Fe with
Co or Ni. For example, LaFeAsO1ÿxFx, Ba1ÿxKxFe2As2,
and Sr1ÿxKxFe2As2 belong to the first case, while
Ba�Fe1ÿxCox�2As2 and Ba�Fe1ÿxNix�2As2 belong to the
second one. Whether these heterovalent substitutions dope
the FeAs or FeP plane as in the cuprates was not initially
clear [33], but now it is well established that they affect the
Fermi surface, consistent with formal electron count doping
[34, 35]. Another mechanism to vary electronic and magnetic
properties takes advantage of the possibility of isovalent
doping with phosphorous in BaFe2�As1ÿxPx�2 or ruthenium
in BaFe2�As1ÿxRux�2. `Dopants' can act as potential scat-
terers and change the electronic structure because of the
difference in ionic sizes or simply by diluting the magnetic
ions with nonmagnetic ones. In iron-based materials, there-
fore, some of the doping mechanisms are connected with the
changes in the transition metal layer. But the phase diagrams
of all Fe-based materials in the first approximation are quite
similar, challenging workers in the field to seek a systematic
structural observable which correlates with the variation of
Tc. Among several proposals, the height of the pnictogen or
chalcogen above the Fe plane has frequently been noted as
playing some role in the overall doping dependence [36±38].

It is well established that the superconducting state in
cuprates is universally d-wave. By contrast, the gap symmetry

and structure of the iron-based materials can be quite
different from material to material. Nevertheless, it seems
quite possible that the ultimate source of the pairing
interaction in both systems is fundamentally similar,
although essential details, such as pairing symmetry and the
gap structure in iron-based materials, depend on the Fermi
surface geometry, orbital character of bands, and degree of
correlations [15, 39].

1.2 Role of disorder in cuprates
Conventional superconductors behave differently depending
on the type of introduced impurities. So, nonmagnetic
impurities do not suppress superconducting critical tempera-
ture Tc according to Anderson's theorem [40], while, on the
contrary, magnetic impurities cause Tc suppression with the
rate following the Abrikosov±Gor'kov theory [41].

Cuprate superconductors reveal a more complicated
picture. Phase diagram asymmetry for hole- and electron-
doped cuprates is closely related to the impact of nonmagnetic
and magnetic impurities replacing copper sites on super-
conducting properties. In electron-doped systems (n-type),
the situation is analogous to the conventional superconduc-
torsÐnonmagnetic impurities weakly suppress Tc, while
magnetic ones cause a collapse of superconductivity for
an impurity concentration of about one percent, which is in
close agreement with the Abrikosov±Gor'kov theory. These
results follow from studies of both polycrystalline samples
[42, 43] and Pr2ÿxCexCu1ÿyMyO4�z single crystals with
M � Ni, Co [44].

Contrary to the n-type cuprates, hole-doped counterparts
show a different behavior. Early studies on YBa2Cu3O7

(Y-123) [45] revealed the suppression of superconductivity
via replacement of copper not only by magnetic (Fe, Co,
Ni), but also by nonmagnetic (Zn, Al, Ga) ions. Notice,
however, that to compare effects of different types of
impurities on Tc, it is more convenient to study the
lanthanum-based system La2ÿxSrxCu1ÿyMyO4 (with y being
the amount of M � Fe, Co, Ni, Zn, Al, Ga), where all
impurities are located in the CuO2 layer, as opposed to the
Y-123 system. In the latter system, copper in-plane sites are
replaced by divalent ions, while trivalent ions generally
occupy Cu±O chains, which reduces their effect on Tc and
thus complicates interpretation of the results.

The problem described is absent in the
La1:85Sr0:15Cu1ÿyMyO4 compound, for which the following
results were obtained in Ref. [46]: both magnetic impurity,
Co, and nonmagnetic impurities, Zn, Al, Ga, result in almost
the same Tc�y� dependence. At the same time, Fe causes the
most rapid suppression of Tc, while Ni gives a slowest
decrease in it, though both should be magnetic due to their
atomic structure. To clarify the relation between super-
conductivity and the magnetic nature of impurities, static
susceptibility measurements were made [46, 47]. They
revealed the presence of an effective magnetic moment at the
impurity site in all systems studied.Moreover, it become clear
that the rate ofTc suppression has a weak correlation with the
impurity valence. Furthermore, themagnitude of themoment
strongly correlates with the critical impurity concentration at
which Tc vanishes. This argues in favor of the magnetic
mechanism of pairbreaking and against pairbreaking origi-
nating from the change in the hole doping level.

The authors of Ref. [46] suggested a qualitative explana-
tion for the concentration dependence of Tc�y� and for the
magnetic properties of impurities. It is based on indications

December 2016 Impurities in multiband superconductors 1213



that all impurities with zero spin (nonmagnetic Zn, Al, Ga, as
well as Co3� in the low-spin state) induce an effective
magnetic moment in close proximity to the Cu2� moment.
That is, one has to consider the copper ion spin removed by
the impurity. For an impurity with an open d-shell (Fe, Co,
Ni), it is necessary to consider not only the removed copper
spin but also its own impurity moment. The experimental
value of the Fe3� ion effective moment suggests that it resides
in a high-spin state with S � 5=2 in the lanthanum system,
and it generates an effective moment significantly larger than
the Cu2� moment. On the other hand, the anomalously small
experimental value of theNi2� effectivemoment suggests that
the spin should be no more than 0.32, instead of the expected
S � 1. The authors of Ref. [46] explain this by the significant
delocalization of the Ni spin state, in contrast to the strong
localization of the Fe state.

Besides a qualitative explanation of the anomalous result
of Cu with Ni replacement, proper treatment of the multi-
electron effects in the correlated band structure leads to a
quantitative description of the Tc�y� dependence [48]. With
the diamagnetic replacement of copper with zinc, the fraction
of ions in configuration d10 (Zn2�) is equal to y. Themodel for
such systems is the antiferromagnetic lattice of S � 1=2 spins
with one empty site that behaves as one paramagnetic center
due to the uncompensation of sublattices. As for the copper
replacement with nickel, the nickel ion Ni2�, which formally
should be in the d8 state with the spin S � 1, due to strong
intraatomic Coulomb repulsion acquires an intermediate
valence. The probability of it being in the nonmagnetic d10

state with the spin S � 0 is equal to u 2
0 , and the probability of

the d9 state with S � 1=2 is v 20 � 1ÿ u 2
0 . As follows from the

summary of optical, photoemission, and magnetic data on
La2CuO4, the weights of these states, u

2
0 and v 20 , are expressed

via such parameters of the multiband p±d model of copper
oxides [49] as energies of p and d holes in the crystal field and
matrix elements of Coulomb interaction. This way, the nickel
ion should have the effective spin S � v 20 �1=2� instead of a
nominalNi2� state withS � 1. Calculated values of v 20 � 0:72
and S � 0:36 [48] are in good agreement with the experi-
mental data.

Therefore, with the substitution of nickel for copper, the
amount of impurity ions in the d10 state (the same state as
for zinc) is equal to u 2

0 y. The probability of ions being in the
d9 state is v 20 y, and since their magnetic and charge
characteristics are almost the same as those of copper, such
ions should not suppress superconductivity. The resulting
ratio of Tc�y� slopes for nickel and zinc impurities is
u 2
0 � 0:28, which is close to the experimental value of 0.38

for La1:85Sr0:15Cu1ÿyMyO4 [46].
The change in the impurity effect with doping can be

summarized as follows. Suppression of Tc by impurities in
overdoped systems does not depend on the doping level p,
while in underdoped samples it is strongly doping-dependent
[50]. Given that the pseudogap state occurs exactly at low
doping, the observed p-dependence emphasizes the impor-
tance of the ground state in the response of the system to the
disorder.

It should be noted that an alternative to the chemical
introduction of impurities is the creation of defects via fast
neutron irradiation. Such a method benefits from avoiding
some of the difficulties related to the replacement of some
atoms with others. Suppression of Tc in this case, as well as
other physical characteristics of cuprates being irradiated by
neutrons, are extensively described in Refs [51±53].

Summarizing, strong electronic correlations causing the
formation of local moments due to the presence of formally
nonmagnetic impurities complicates significantly the inter-
pretation of disorder effects on Tc suppression. Among other
factors preventing the formulation of a consistent theory for
the role of defects in superconductivity of cuprates are the
absence of the theory for the correlated ground state,
difficulties with controling the disorder parameters, and the
presence of anisotropy in impurity scattering. Since a detailed
discussion of cuprate physics with the important role of
strong correlations is not the goal of the present review, here
we mentioned only a few important points of impurity
scattering. We direct the curious reader to other reviews, like
Refs [54±60].

Nor are we going further into the details of d-wave
superconductivity and related problems in cuprates. This
topic is extensively reviewed in many papers concerning
both the theories of impurity scattering in a d-wave super-
conductor [61±70] and the effect of impurities on observable
properties of cuprates [71±79]. Let us just mention that the
single-band d-wave superconductor can be approximately
treated as a two-band superconductor with opposite signs of
the gaps in different bandsÐ the analogy of the s� state [80].
In other words, parts of the Fermi surface with different signs
of the order parameter are considered to originate from
different bands. Though this is a rough approximation, it
can give some qualitative results.

1.3 Specific features of iron-based superconductors
Under normal conditions, iron is ferromagnetic. Under
pressure, however, once the Fe atoms form an hcp lattice,
iron becomes nonmagnetic and even superconducting at
T < 2 K [81], most probably due to electron±phonon
interaction [82]. On the other hand, iron-based superconduc-
tors are quasi-two-dimensional materials with the conduct-
ing square lattice of Fe ions. The Fermi level is occupied by
the 3d6 states of Fe2�. This was established in early DFT
(density functional theory) calculations [16, 83, 84] which are
in quite good agreement with the results of quantum
oscillations and ARPES (angle-resolved photoemission
spectroscopy). All five orbitals, dx 2ÿy 2 , d3z 2ÿr 2 , dxy, dxz, and
dyz, are at or near the Fermi level. This results in a
significantly `multiorbital' and multiband low-energy elec-
tronic structure, which could not be described within the
single-band model. For example, within the five-orbital
model [17] correctly reproducing the DFT band structure
[85], the Fermi surface comprises four sheets: two hole
pockets around the point (0, 0), and two electron pockets
around the points �p; 0� and �0; p�. Such k-space geometry
results in the possibility of spin-density wave (SDW)
instability due to the nesting between hole and electron
Fermi surface sheets at the wave vector Q � �p; 0� or �0; p�.
Upon doping x, the long-range SDW order is destroyed. If
electrons are doped, then for the large x hole pockets
disappear, leaving only electron Fermi surface sheets, as
observed in KxFe2ÿySe2 and in FeSe monolayers [26]. Upon
increasing hole doping, first, a new hole pocket appears
around the point �p; p� and then electron sheets vanish.
KFe2As2 just corresponds to the latter case. ARPES
confirms that the maximal contribution to the bands at the
Fermi level comes from the dxz; yz and dxy orbitals [86, 87]. At
the same time, as will be pointed out later, the presence of a
few pockets and the multiorbital band character significantly
affect superconducting pairing.
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Soon after high-quality samples of cuprates were pre-
pared, the dx 2ÿy 2 symmetry of the gap, with the
cos kx ÿ cos ky structure, was empirically established by
penetration depth, ARPES, NMR, and phase sensitive
Josephson tunneling experiments. No similar consensus on
any universal gap structure has been reached even after
several years of intensive research on high-quality single
crystals of iron-based superconductors. There is strong
evidence that small differences in electronic structure can
lead to a strong diversity in superconducting gap structures,
including nodal states and states with a full gap on the Fermi
surface. The actual symmetry class of most of the materials
may be generalized A1g (extended s-wave symmetry), prob-
ably involving a sign change of the order parameter between
Fermi surface sheets or its parts [15]. Understanding the
symmetry character of the superconducting ground states,
as well as a detailed structure of the order parameter should
provide clues to the microscopic pairing mechanism in iron-
based materials and thereby lead to a deeper insight into the
phenomenon of high-temperature superconductivity.

The group-theoretical classification of gap structures in
unconventional superconductors is rather complicated and
has been reviewed in, e.g., Ref. [9]. In the absence of spin±
orbit coupling, the total spin of the Cooper pair is well
defined and can be either S � 1 or S � 0. The easiest and
most accurate way to probe whether the pair is spin-triplet
is via the Knight shift measurements. These experiments
have been performed on several iron-based materials,
including Ba�Fe1ÿxCox�2As2 [88], LaFeAsO1ÿxFx [89],
PrFeAsO0:89F0:11 [90], Ba1ÿxKxFe2As2 [91, 92], LiFeAs
[93, 94], and BaFe2�As0:67P0:33�2 [95]. It was found that
the Knight shift decreases in all crystallographic directions.
This effectively ruled out triplet symmetries, such as p-wave
or f-wave.

Having ruled out the spin-triplet states, we focus first on
simple tetragonal point group symmetry. In a three-dimen-
sional tetragonal system, group theory allows only five one-
dimensional irreducible representations according to how
the order parameter transforms under rotations by 90� and
other operations of the tetragonal group: A1g (`s-wave'),
B1g (`d-wave', x 2 ÿ y 2), B2g (`d-wave', xy), A2g (`g-wave',
xy�x 2 ÿ y 2�), and Eg (`d-wave', xz; yz). Notice that the s��
and s� states all have the same symmetry, i.e., neither changes
sign if the crystal axes are rotated through 90�. By contrast,
the d-wave state changes sign under such a rotation. Notice
further that the mere existence of the hole and electron
pockets leads to new ambiguities in the sign structure of the
various states. In addition to a global change of sign, which is
equivalent to a gauge transformation, we can have individual
rotations on single pockets and still preserve symmetry. For
example, if for the d-wave case we rotate the gap in the hole
pocket, 90�, but keep the electron pocket signs fixed, it still
represents a B1g state. B2g states are also possible by symmetry
and would have nodes on the electron pockets. Further, more
complicated, gap functions with differing relative phases
become possible when more pockets are present and when
three-dimensional effects are included.

It is important to note that, while the d-wave does not
necessarily imply the existence of gap nodes, in combination
with a quasi-two-dimensional Fermi surface at the center of
the Brillouin zone such nodes are unavoidable: either vertical
for the B1g, B2g, and A2g symmetries, or horizontal for the Eg

symmetry. Since such a Fermi surface exists in pnictides, the
experimentally proven absence of nodes on it would evidence

against the d-wave symmetry. As for experiments, surface
probes such as ARPES show full gaps on the central Fermi
surface sheet. Moreover, the full gap on the whole Fermi
surface is observed in tunneling and bulk probes in hole-
doped systems, as well as in materials with a small electron
doping.

There are also direct experiments that provide evidence
against the d-wave. The Josephson current in the c-direction,
when the studied superconductor is coupled to a known s-wave
superconductor, would confirm the s-type of the former.
Exactly such current was observed in 122 single crystals [96].

Another piece of evidence comes from the absence of the
so-called anomalous Meissner effect (or Wohlleben effect)
[97]. This effect manifests itself in polycrystalline samples
with random orientation of grains. It was predicted at the
beginning of the cuprates era [98] and since then it has been
routinely observed only in d-wave superconductors. The
Wohlleben effect appears due to the fact that the response
to a weak external magnetic field is paramagnetic, i.e.,
opposite to the standard diamagnetic response of an s-wave
superconductor. This happens because half of the weak links
have a zero phase shift, and the other half have a p phase
shift.

The described separate pieces of evidence strongly suggest
that the pairing symmetry is s-wave, not d-wave. However, we
want to stress that direct testing similar to that performed in
cuprates, namely a single-crystal experiment with a 90�

Josephson junction forming a closed loop, is still lacking,
and it is highly desirable to make an ultimate conclusion.

It should also be borne in mind that nothing forbids
different iron-based materials from having different order
parameter symmetries, although our previous experience with
other superconductors tends to argue against this. Indeed,
there are several theories claiming that, while most iron-based
systems have the s-wave gap symmetry, those with unusual
Fermi surfaces with either electron or hole pockets can have
the d-wave symmetry of the order parameter [20, 99±103].

Notice that the term symmetry should be distinguished
from the term structure of the gap. The latter is used to
designate the k-dependent variation of an order parameter
within a given symmetry class. Gaps with the same symmetry
may have very different structures. Let us illustrate this for the
s-wave symmetry (Fig. 1). Fully gapped s-states without
nodes on the Fermi surface differ only by a relative gap sign
between the hole and electron pockets, which is positive in the
s�� state and negative in the s� state. On the other hand, the
gap vanishes in nodal s-states at certain points on the electron
pockets. These states are called `nodal s�' (`nodal s��') and
are characterized by the opposite (same) averaged signs of the
order parameter on the hole and electron pockets. Nodes of
this type are sometimes described as `accidental', since their
existence is not dictated by symmetry, in contrast to the
symmetry nodes of the d-wave gap. Therefore, they can be
removed continuously, resulting in either an s� or an s�� state
[104, 105].

Superconducting states with different symmetries and
structures of order parameters differently respond when
subject to the disorder. As we have mentioned earlier,
nonmagnetic impurities in the single-band s-wave super-
conductors do not suppress Tc, while magnetic impurities do
it in accordance with the Abrikosov±Gor'kov theory [41]. In
unconventional superconductors, suppression of the critical
temperature as a function of parameter G characterizing
impurity scattering may follow a complicated, yet very
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explicit, law. That is why many authors desire to attribute the
observed Tc�G� dependence as pointing towards a particular
gap structure is not surprising.

Several experiments on iron-based systems show that Tc

suppression is much weaker than expected in the framework
of the Abrikosov±Gor'kov theory for both nonmagnetic
[106±112] and magnetic disorder [107, 113±116]. It is worth
advising the reader to interpret Tc suppression results with
caution for several reasons. First, in some cases not all the
nominal concentration of impurity substitutes in the crystal.
Second, `slow' and `fast'Tc suppression cannot be determined
by plotting Tc vs impurity concentration, but only vs a
scattering rate directly comparable to the theoretical scatter-
ing rate, which is generally difficult to determine from
experiments. The alternative is to plot Tc vs residual
resistivity change Dr, but this is only possible, first, if the
r�T � curve shifts rigidly with disorder and, second, if
comparisons with theory include a proper treatment of the
transport rather than the quasiparticle lifetime. Finally, the
effect of a chemical substitution in an iron-based super-
conductor is quite clearly not describable solely in terms of a
potential scatterer, but the impurity may dope the system or
cause other electronic structure changes which influence the
pairing interaction. The most promising alternatives are
irradiation experiments, since the disorder is introduced
without altering the chemical composition of the studied
material. Experiments of this kind include irradiation by
protons [109, 117, 118], neutrons [106], electrons [105, 112,
119, 120], and heavy ions [121±123]. There are some specific
complications though. For example, consider the work on
neutron irradiation by Karkin et al. [106]. As seen from other
work by the same group [124], the structure of the studied
material changed after neutron irradiation. The doping is also
accompanied by changes to the structural parameters that
correlate with the Tc changes [36±38, 125]. And it might seem
that the problem of separating the role of defects and changes

to structural parameters with neutron irradiation is not a
simple one. Given the many uncertainties present in the basic
modeling of a single impurity, as well as the multiband nature
of iron-based materials, it is reasonable to assume that
systematic disorder experiments may not play a decisive role
in determining the order parameter symmetry and structure.
Nevertheless, one can extract useful information from the
qualitative effects appearing on the level of simple multiband
models of disorder [126, 127].

In this review, we demonstrate the basics of impurity
effects on multiband superconductivity using the simple
model for iron-based materials as an example. In particular,
within the T -matrix approximation, we discuss the role of
scattering on nonmagnetic and magnetic impurities for the s�
and s�� states in a two-band model. We show that for the
finite nonmagnetic impurity scattering rate, the transition
from s� to s�� occurs, i.e., one of two gaps changes sign when
going through zero. The transition happens for the positive
sign of the superconducting coupling constant averaged over
the bands. At the same time, Tc stays finite and almost
independent of the impurity scattering rate, which is propor-
tional to the impurity concentration and magnitude of the
scattering potential. There are two cases for scattering on
magnetic impurities when the transition temperature Tc is not
fully suppressed, in contrast to the Abrikosov±Gor'kov
theory, but the saturation of it appears in the regime of a
large scattering rate. The first case is characterized by purely
interband impurity scattering. At the same time, the s� gap is
preserved, while the s�� state transforms into the s� state with
increasing magnetic disorder. The second case corresponds to
the unitary limit of scattering with the gap structure
remaining intact. The reason for the s� $ s�� transitions is
the following: if one of the two competing superconducting
interactions leads to a state robust against impurity scatter-
ing, then, although it was not dominant in the clean limit, it
should become dominant while the other state is destroyed by
impurity scattering. Since the transitions between the s� and
s�� states go through the gapless regime, they should reveal
themselves in thermodynamic and transport properties of the
system and thus be observable in optical and tunneling
experiments, as well as in photoemission spectroscopy.
Because one of the gaps vanishes near the transition,
ARPES should reveal the gapless spectra and, in the optical
conductivity, the transition should result in the `restoring' of
the Drude frequency dependence of Re s�o�. We ignored the
complicated question of nonmagnetic and magnetic scatter-
ing channels coexisting due to its poor development in the
multiband case at the time of writing.

The layout of the review is as follows. In Section 2 we
present the Eliashberg formalism for a multiband super-
conductor and the T -matrix approximation for the impurity
self-energy. The approximation is then applied to the simple
two-band model, in which either the s� or s�� state occurs,
depending on the parameters. Section 3 contains a discussion
of qualitative impurity scattering effects in the Born limit. In
Sections 4 and 5, the roles of nonmagnetic and magnetic
impurities are described, respectively. Section 6 is devoted to a
short review of the experimental findings on the impact of
impurities on the superconducting state of pnictides and
chalcogenides. In Section 7, we discuss the effect of disorder
on such experimentally observable dynamical characteristics
as the density of states, the spectral function, optical
conductivity, and the magnetic field penetration depth.
Conclusions are contained in the final Section 8.

s� s��

Nodal s� Nodal s��

Figure 1. (Color online.) Schematic diagrams of four types of order

parameter structures having the s-wave symmetry in the two-dimensional

Brillouin zone (dotted square) corresponding to one iron atom per unit

cell. Different colors stands for different signs of the order parameter.
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2. Strong coupling formalism
and the TT -matrix approximation

For the sake of simplicity, we begin by considering a two-
band model with the interaction leading to superconductivity
with a spin-singlet order parameter that is isotropic in each
band. Results can be easily generalized for a larger number of
bands, as will follow from the equations below. The isotropy
of the order parameter allows us to obtain some results
analytically, though it is a heavy restriction of the theory.
On the other hand, with it, one can pursue the approximate
treatment of superconductors with sign-changing gap, like
the d-wave cuprates, where parts of the Fermi surface with
different signs of the gap can be roughly considered to be
contributions from different bands [80].

For the considered task of impurity scattering, the
Hamiltonian can be written out in the following form

H �
X
k; a;s

xkac
y
kasckas �Hsc �Himp ; �1�

where ckas is the annihilation operator of the electron with
momentum k, spin s, and band index a that equals a (first
band) or b (second one), and xka is the electron dispersion
that, for simplicity, we treat as linearized near the Fermi level,
xka � vFa�kÿ kFa�, with vFa and kFa being the Fermi velocity
and the Fermi momentum of the band a, respectively.

Superconductivity occurs in our system due to the
interaction Hsc. It has a different form for different mechan-
isms of pairing. That is, when the superconductivity is
mediated by spin and/or orbital fluctuations, it is the on-site
Coulomb (Hubbard) electron±electron interaction [17, 18,
128, 129]:

H sf
sc � U

X
f; l

nfl"nfl# �U 0
X
f; l<l 0

nflnfl 0

� J
X
f; l<l 0

X
s;s 0

c
y
flsc
y
fl 0s 0cfls 0cfl 0s � J 0

X
f; l 6�l 0

c
y
fl"c
y
fl#cfl 0#cfl 0" ; �2�

where nfl � nfl" � nfl# is the number of particles operator, f is
the site index, l and l 0 are orbital indices, U and U 0 are intra-
and interorbital Hubbard repulsions, J is Hund's exchange,
and J 0 is pair-hopping. Usually, parameters obey the spin-
rotational invariance, which leads to relations U 0 � Uÿ 2J
and J 0 � J, thus reducing the number of free parameters in
the theory.

In the case of electron±phonon interaction inducing
superconductivity, one of the examples of the Hamiltonian
is given by

H eÿph
sc �

X
q; l

oql

�
b
y
qlbql �

1

2

�

� 1����
N
p

X
k; q; l; a;s

gl�k; q��bql � b
y
ÿql� cyk�qasckas : �3�

Here, bql is the annihilation operator of the phonon with
momentum q, polarization l, and frequency oql, and gl�k; q�
is the electron±phonon interaction matrix element.

We assume hereinafter that the problem of finding the
effective dynamical superconducting interaction has already
been solved, and both coupling constants and the bosonic
spectral function have been obtained. The latter describes the

effective electron±electron interaction via an intermediate
boson. In the case of Hubbard interaction (2), intermediate
excitations are spin or charge fluctuations, while in the case of
electron±phonon interaction (3) they are phonons.Moreover,
if the retarded nature of the interaction in the case of phonons
is obvious from the beginning, for the Hubbard Hamiltonian
it is revealed only after the summation of a particular diagram
series [130]. The nature of the effective dynamical interaction
is not important for the following analysis of the role played
by disorder in a superconducting state. Rather, what is
important is the fact that the corresponding bosonic spectral
function is maximal at small frequencies and drops with a
further increase in frequency. For example, inelastic neutron
scattering experiments confirm such a behavior for spin
fluctuations.

Notice that though the dynamical interaction has a
complicated structure and is hard to write in a unified form,
everything becomes simplified in the mean-field approxima-
tion and can be cast in the Hamiltonian

HMF
sc �

X
k; a

ÿ
Dac

y
ka"c

y
ÿka# � h:c:

�
; �4�

where Da is a mean-field spin-singlet order parameter. For
example, sgnDa � sgnDb for the two-band superconductor in
the s�� state, while for the s� state it is sgnDa � ÿsgnDb.

Impurity scattering is described by theHimp term contain-
ing nonmagnetic (U) and magnetic (V) impurity scattering
potentials:

Himp �
X

Ri; s;s 0; a;b

ÿU ab
Ri
dss 0 � V ab

Ri
ŜRi

ŝss 0
�
c
y
RiascRibs 0 ; �5�

where ŜRi
is the operator of an impurity spin at siteRi with the

spin quantum number SRi
, and r̂ are the Pauli spin matrices

ŝ0 � 1 0
0 1

� �
; ŝ1 � 0 1

1 0

� �
;

ŝ2 � 0 ÿi
i 0

� �
; ŝ3 � 1 0

0 ÿ1
� �

:

In what follows, we will use the Eliashberg approach
generalized for multiband superconductors [131]. To describe
the thermodynamics of the superconducting state, we are
interested in Green's function Ĝ�k;on� of the quasiparticle
with momentum k and Matsubara frequency on�
�2n� 1� pT. Green's function is a matrix in the band space
and combined Nambu and spin spaces (we indicate quantities
in the band space in bold face, and quantities in the combined
Nambu and spin spaces by the circumflex accent). For
definiteness, we assume that the index a � a; b denotes the
band space, and Pauli matrices t̂i and ŝi denote the Nambu
(t̂i) and spin (ŝi) spaces. As a result of the direct product
(operation
) of all matrices, for the two-bandmodel we have
Green's function matrix with the dimension 8� 8.

Dyson equation

Ĝ�k;on� �
ÿ
Ĝÿ10 �k;on� ÿ R̂�k;on�

�ÿ1 �6�

establishes a connection among the full Green's function, the
`bare' Green's function (without interelectron interactions
and impurities)

Ĝ ab
0 �k;on� �

ÿ
iont̂0 
 ŝ0 ÿ xkat̂3 
 ŝ0

�ÿ1
dab ; �7�
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and the self-energy matrix R̂�k;on�. Further, we assume that
the latter does not depend on the wave vector k, but keep the
frequency and band index dependences:

R̂�on� �
X3
i�0

S�i� ab�on� t̂i : �8�

In this case, the problem can be simplified by averaging over
k. Thus, all equations will be written down in terms of
quasiclassical x-integrated Green's functions:

ĝ�on� �
�
dxĜ�k;on� � ĝan 0

0 ĝbn

� �
; �9�

where

ĝan � g0ant̂0 
 ŝ0 � g2ant̂2 
 ŝ2 : �10�

Here, g0an and g2an are the normal and anomalous (Gor'kov)
x-integrated Green's functions in the Nambu representation:

g0an � ÿ ipNa ~oan��������������������
~o 2
an � ~f 2

an

q ; g2an � ÿ pNa
~fan��������������������

~o 2
an � ~f 2

an

q : �11�

They depend on the density of states per spin at the Fermi
level in the corresponding band (Na; b), and on the order
parameter ~fan and frequency ~oan renormalized by the self-
energy:

i~oan � ion ÿ S0a�on� ÿ S imp
0a �on� ; �12�

~fan � S2a�on� � S imp
2a �on� : �13�

Often, it is convenient to introduce the renormalization factor
Zan� ~oan=on that enters into the gap function Dan� ~fan=Zan.
It is the gap function that generates peculiarities in the density
of states.

A part of the self-energy due to spin fluctuations or any
other retarded interaction (electron±phonon, retarded Cou-
lomb interaction) can be written out in the following way:

S0a�on� � T
X
o 0n; b

lZ
ab�nÿ n 0� g0bn 0

Nb
; �14�

S2a�on� � ÿT
X
o 0n;b

lf
ab�nÿ n 0� g2bn 0

Nb
: �15�

Coupling functions

lf;Z
ab �nÿ n 0� � 2lf;Zab

�1
0

dO
OB�O�

�on ÿ on 0 �2 � O 2

are represented by coupling constants lf;Z
ab , which include

density of states Nb, and by the normalized bosonic spectral
function B�O�, shown in Fig. 2. The matrix elements lf

ab can
be positive (attractive), as well as negative (repulsive) due to
the interplay between spin fluctuations and electron±phonon
coupling [130, 132], while the matrix elements lZ

ab are always
positive. For simplicity's sake, we set lZ

ab � jlf
abj � jlabj and

neglect possible anisotropy in each order parameter ~fan.
Effects due to anisotropy in the s� state have been
examined, for example in Ref. [104].

We use a noncrossing approximation (graphically
sketched in Fig. 3) to calculate the impurity self-energy R̂ imp:

R̂ imp�on� � nimpÛ� Ûĝ�on� R̂ imp�on� ; �16�

where Û is the matrix of the impurity potential, and nimp is
the concentration of impurities. Equation (16) represents the
T -matrix approximation.

The impurity scattering matrix Û is derived from
Hamiltonian (5). The procedure of further calculations is the
following: (i) solve equation (16); (ii) calculate renormaliza-
tions of frequency (12) and order parameter (13) self-
consistently, and (iii) use them to obtain Green's functions
(9) and (11).

The solution of equation (16) depends on the explicit form
of the impurity potential. Further, we consider two cases
separately: nonmagnetic (U ab

Ri
6� 0, V ab

Ri
� 0) and magnetic

(U ab
Ri
� 0, V ab

Ri
6� 0) impurities, respectively.

At the end of the present section, we write down
expressions for some of the observables which are affected
by the detailed structure of impurity scattering. In the first
place, this is the density of states that can be measured in
tunneling experiments and by ARPES:

N�o� �
X
a

Na�o� �
X
k; a

Aa�k;o� � ÿ 1

p

X
a

Im g0a�o� ;

�17�

where g0a�ion ! o� id� is the retardedGreen's function that
is Matsubara Green's function (11) analytically continued to
the real frequency axis, Na�o� is the partial density of states
for band a,Aa�k;o� is the quasiparticle spectral function,o is
the real frequency, and d! 0�.
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Figure 2. Spectral function B�O� reproducing the frequency dependence of
spin fluctuations [132±134].

� � �

Simp
aa Uaa UabS

imp
ba

UaaSimp
aa

� ��

Simp
ba Uba UbbS

imp
ba

UbaSimp
aa

Figure 3. System of equations for the intra- and interband parts of the

impurity self-energy R̂ imp in the self-consistent T -matrix approximation

[135]. Here, Uaa�bb� and Uab�ba� are the intraband and interband compo-

nents of the impurity potential, respectively.
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Another important characteristic of a superconductor is
the temperature dependence of the London magnetic field
penetration depth lL. In the local limit, it is related to the
imaginary part of the optical conductivity:

1

l2L; xx 0
� lim

o!0

4po
c 2

Im sxx 0 �o; q � 0� ; �18�

where x and x 0 are axis directions of the Cartesian coordi-
nates, c is the speed of light, and sxx 0 �o; q � 0� is the optical
conductivity at zero momentum q (in the local, i.e., London,
limit). If we ignore the effects of strong coupling and, in
general, Fermi-liquid effects, then for a clean uniform super-
conductor at zero temperature we have 1=lL;xx 0 � o xx 0

pa =c,
where o xx 0

pa � �8pe 2Na�0�hvxFavx
0

Fai�1=2 is the electron plasma
frequency. For impurity scattering, vertex corrections from
noncrossing diagrams vanish due to the q � 0 condition.
Thus, the penetration depth for the multiband system can be
calculated via the following expression:

1

l 2
L; xx 0

�
X
a

�
o xx 0

pa

c

�2

T
X
n

g 2
2an

pN 2
a

��������������������
~o 2
an � ~f 2

an

q : �19�

A so-called `superfluid plasma frequency'o xx 0
SF � c=lL;xx 0 can

be introduced. It is often mentioned in literature that this
function corresponds to the charge density of the superfluid
condensate. Notice that this is true only in a noninteracting
clean system at zero temperature.

We consider hereinafter a square lattice with x and x 0

in the ab plane. In this case, we denote the penetration depth
and corresponding plasma frequency by lL and opa, respec-
tively.

Optical conductivity is the third important observable
characteristic. In the local (London) limit with q � 0 in the ab
plane, it is equal to

s�o� �
X
a

sa�o� � i
X
a

Pxx
a �iom ! o� id�

o
; �20�

where the polarization operator is given by

P xx 0
a �om� � T

Nk

X
k;on

Tr ev x
a t̂0 
 ŝ0Ĝ aa�k;on � om�

� Ĝ aa�k;on� ĝ x 0a : �21�

Here, Nk is the normalization coefficient of the sum over
momenta, ĝ x

0
a is a vertex function, and the trace is taken over

the Nambu and spin spaces. As was mentioned before, vertex
corrections from noncrossing diagrams for the impurity
scattering at q � 0 vanish due to the vector nature of the
optical conductivity vertex, and the scalar character of the
impurity scattering. Thus, the zeroth order is a good
approximation for the vertex [136], in which the vertex is
equal to evx

0
a t̂0 
 ŝ0. It is also convenient to go over from the

summation over momenta to the integration over energy and
averaging over the Fermi surface, which results in
2e 2Na�0�hv x

Fav
x 0
Fai � �o xx 0

pa �2=�4p�. After the transformation,
the polarization operator becomes equal to [136]

P xx 0
a �om� �

�o xx 0
pa �2
4p

pT
X
on

Snm
a ; �22�

where Snm
a � ~f 2

an=Q
3
an at m�0, Snm

a �1=Qan at m�ÿ2nÿ 1,
and

Snm
a �

~oan�~oan � ~oan�m� � ~fan�~fan ÿ ~fan�m�
QanPanm

ÿ ~oan�m�~oan�m � ~oan� � ~fan�m�~fan�m ÿ ~fan�
Qan�mPanm

in all other cases. Here, Qan��~o 2
an � ~f 2

an�1=2 and Panm �
~o 2
anÿ ~o 2

an�m�~f 2
an ÿ ~f 2

an�m.
To obtain the optical conductivity, one has to perform an

analytical continuation of the polarization operator given
above to real frequencies (iom ! o� id). Another approach
is to make the analytical continuation together with the
integration [137±142]. This leads to the polarization operator
in the following form:

P xx
a �o� �

�o xx
pa �2
4p

�
do 0

�
tanh

�
oÿ=�2T �

�
QR� �QRÿ

�
�
1ÿ ~oR

ÿ ~oR
� � ~fR

ÿ ~fR
�

QRÿQ
R�

�
ÿ tanh

�
o�=�2T �

�
QA� �QAÿ

�
�
1ÿ ~oA

ÿ ~oA
� � ~fA

ÿ ~fA
�

QAÿQ
A�

�

ÿ tanh
�
o�=�2T �

�ÿtanh �oÿ=�2T ��
QR� ÿQAÿ

�
�
1ÿ ~oA

ÿ ~oR
� � ~fA

ÿ ~fR
�

QAÿQ
R�

��
; �23�

where QR;A
� �

���������������������������������������
�~oR;A
� �2 ÿ �~fR;A

� �2
q

, indices � set the fre-
quency o� � o 0 � o=2 which enters the corresponding
function, the band index a is omitted in the integrand, and
indices R and A refer to retarded and advanced branches of a
complex function F, i.e., FR�A� � ReF� i ImF.

Notice that the optical conductivity in the normal state is
expressed as

sN�o� �
X
a

�o xx
pa �2

8ipo

�
��1
ÿ1

dz
tanh

��z� o�=�2T ��ÿ tanh
�
z=�2T ��

~oa�z� o� ÿ ~oa�z� : �24�

In the following, we will utilize expressions from this
section to describe properties of different systems and their
observable characteristics.

3. Born approximation
for one- and two-band superconductors

3.1 Qualitative analysis
Nonmagnetic impurities in a conventional two-band super-
conductor with two isotropic gaps lead to scattering of
quasiparticles between bands or within each band. Interband
processes shown in Fig. 4 result in averaging the gaps and,
therefore, to the initial suppression of Tc, after which Tc

saturates and stays constant until localization effects become
important [143, 144]. Interband scattering in a two-band
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system with the sign-changing order parameter leads to a
much more complicated behavior [68, 80, 135, 145]. In this
case, nonmagnetic impurities with the interband component
of the scattering potential destroy the superconductivity even
for equal magnitudes of gaps and densities of states (the so-
called symmetric model). The reason is quite simpleÐ
interband scattering results in averaging the gaps in two
different bands and, since Da and Db have opposite signs in
the s� state, their average goes to zero. Critical temperature
Tc would then vanish for the finite critical impurity concen-
tration, similar to the theory of magnetic impurity scattering
in a single-band s-wave superconductor [41]. Such a char-
acteristic feature of iron-based superconductors was quickly
noticed by different groups of researchers [16, 132, 146±148].

As for the effect of nonmagnetic andmagnetic disorder on
a multiband anisotropic superconductor, the simple (and
naive!) qualitative rule of thumb is as follows: when a
nonmagnetic impurity scatters a pair from one point on the
Fermi surface to another point, such that the order parameter
does not change sign, scattering is not pair breaking; if the
order parameter flips its sign, it is pair breaking. For a
magnetic impurity, the opposite is true: scattering with an
order parameter sign change is not pairbreaking, otherwise it
is. As follows from calculations for some particular cases,
however, such a naive qualitative rule collapses and quite
unexpected results appear, which we discuss in Sections 4±7.
But before going further, we apply the simplest Born limit in
Section 3.2 to demonstrate the general results in single- and
two-band models.

3.2 Clean and Born limits
Here, we consider a weak coupling example, i.e., the case of
lab 5 1, and describe the effect of disorder on a macroscopic
characteristicÐ the critical temperature of the superconduct-
ing transition Tc. Scattering on static impurities would results
only in a decrease of Tc from its clean limit value Tc0.

Order parameter Dan in a multiband superconductor in
the clean limit is a solution of the equation that follows from
expressions (13) and (15). Neglecting the frequency depen-
dence of the coupling functions (which is the essence of weak
coupling), we have

Da � ÿT
X
on; b

lab
g2bn
Nb

: �25�

Summation over the Matsubara frequencies on goes until a
cut-off frequency oc. In the limit T! Tc0, we have Da ! 0

and g2an ! ÿpNaDa=jonj. Then, expression (25) becomes the
equation for the critical temperature in the clean limit, i.e.,
for Tc0:

1�pTc0

X
b

lab
X
on

1

Da

Db

jonj � 2pTc0

X
b

lab
X
on 5 0

1

Da

Db

on
:

�26�

The single-band case is realized at lab � ldab:

1 � 2pTc0l
Xoc

on 5 0

1

on
� l

XNc

n5 0

1

n� 1=2

� l
�
C
�
Nc � 3

2

�
ÿC

�
1

2

��

� l
�
C
�

oc

2pTc0
� 1

�
� C

�
! l

�
ln

oc

2pTc0
� C

�
;

where we have taken into account that on � �2n� 1� pTc0,
�2Nc � 1� pTc0 � oc, C�1=2� � ÿgÿ 2 ln 2 � ÿC, and
C�z� 1� ! ln z as z!1. Here, C is the digamma func-
tion, and g is the Euler constant. Since expC=�2p� � 1:13, the
solution of the above equation gives the well-known expres-
sion for the superconducting critical temperature Tc0 �
1:13oc exp �ÿ1=l�. Notice again that the coupling constant
includes the density of states, l / Na.

Expression (26) in a two-band case is a system of two
equations in Da and Db gaps. From the consistency condition
of the system (determinant of the corresponding matrix
should be equal to zero), one can derive the expression for
Tc0:

ln
1:13oc

Tc0
� max

� laa � lbb �
��������������������������������������������
�laa ÿ lbb�2 � 4lablba

q
2�laalbb ÿ lablba�

�
:

�27�

Let us consider the simplest case of treating the impurity
scattering by replacing the `bare' Green's function g2bn in
equation (25) with the full one (11) containing the renorma-
lized order parameter ~fan and frequency ~oan:

Da � pT
X
on;b

lab
~fbn

Qbn
; �28�

where Qbn � �~o2
bn � ~f2

bn�1=2. As T! Tc, we have g0an !
ÿipNa ~oan=j~oanj�ÿipNa sgnon and g2an ! ÿpNa

~fan=joanj.
The equation for the critical temperature becomes

1 � 2pTc

X
b

lab
X
on 5 0

�
1

Da

~fbn

~obn

�����
T!Tc

: �29�

As follows from a comparison with equation (26),Tc does not
depend on impurity scattering if the following condition is
satisfied:

~fbn

~obn
� Db

on
: �30�

In the Born approximation, only the contribution from
double scattering at the same impurity is allowed,
R̂imp�on� � nimpÛ� nimpÛĝ�on� Û. We can now derive

a

b

c

d

Da Db

k0 ÿ k

k k0

� � Da Db

k0 ÿ k

k k0

� ÿ

Da Db

k
k

k0� � Da Db

k
k

k0
� ÿ

k0ÿk k0ÿk
k
0 ÿ
k

k
0 ÿ
k

k0 k0

Figure 4.Diagramof twoFermi surfaces with the superconducting gapsDa

and Db having the same signs (a, b), and opposite signs (c, d). Interband
impurity scattering (panels a and c) mixes states with Da and Db, while the
intraband scattering (panels b and d) involves states within the boundaries
of each Fermi surface.
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expressions for the frequency and order parameters:

~oan � on � gaa
~oan

Qan
� gab

~obn

Qbn
; �31�

~fan � Da � gaa
~fan

Qan
� gab

~fbn

Qbn
; �32�

where gab / nimp�U�2ab is the scattering rate parameter; the
sign � (ÿ) corresponds to nonmagnetic (magnetic) impu-
rities. The different signs for magnetic disorder occur due to
the spin operators accompanying the impurity potential V ab

Ri

inHimp.
Let us first consider the single-band case. Then, gab � 0

and ~oan � on � gaa ~oan=Qan, ~fan � Da � gaa~fan=Qan, gaa �
2pNanimp U 2. Equations for nonmagnetic impurities are as
follows: ~oan�1ÿ gaa=Qan� � on and ~fan�1ÿ gaa=Qan� � Da,
which immediately lead to relation (30). Therefore, Tc is
independent of impurity concentration. This is the essence
of Anderson's theorem.

For magnetic impurities, the appropriate equations are
~oan�1ÿ gaa=Qan� � on and ~fan�1� gaa=Qan� � Da. Thus,
condition (30) is violated. Instead of it, we have� ~fan

Da

1

~oan

�����
T!Tc

�
�

1

1� gaa=Qan

1

~oan

�����
T!Tc

� 1

~oanjT!Tc
� gaa

� 1

on � gaa ~oan=j~oanj � gaa

� 1

on � 2gaa
;

since for the Tc equation we are interested in the case of
on 5 0. In the equation for the critical temperature, an
additional factor 2gaa appears in the denominator:

1 � 2pTcl
Xoc

on 5 0

1

on � 2gaa

� l
�
C
�

oc

2pTc
� gaa
pTc
� 1

�
ÿC

�
gaa
pTc
� 1

2

��
:

In the oc !1 limit, the last equation takes the form

1 � l
�
ln

oc

2pTc
ÿC

�
gaa
pTc
� 1

2

��
:

Combining this equation with the corresponding expression
in the clean limit, 1 � l �ln oc=�2pTc0� ÿC�1=2��, we finally
have

ln
Tc0

Tc
� C

�
gaa
pTc
� 1

2

�
ÿC

�
1

2

�
; �33�

which represents the formula for Tc suppression according to
the Abrikosov±Gor'kov theory [41].

Let us now consider the two-band case. For impurity
scattering within only one band (`intraband impurities'),
gab � 0, equations (31) and (32) for different bands are not
coupled. Therefore, all conclusions made for the single-band
case above are also true here for each band in the presence of
both nonmagnetic and magnetic impurities.

When both intra- and interband nonmagnetic impurity
scattering channels are present, from equations (31) and (32)

we have

~oan

�
1ÿ gaa

Qan
ÿ g 2ab
Qan

1

Qbn ÿ gbb

�
� on

�
1� gab

Qbn ÿ gbb

�
;

~fan

�
1ÿ gaa

Qan
ÿ g 2ab
Qan

1

Qbn ÿ gbb

�
� Da � Db

gab
Qbn ÿ gbb

:

Evidently, if Da � Db, then condition (30) holds and, thus, Tc

is independent of the disorder. Therefore, there is no impurity
effect on the multiband isotropic s-wave superconducting
state. If, however,Da 6� Db, then condition (30) is violated and
Tc will be suppressed by scattering on impurities.

For a magnetic impurity, equations (31) and (32) lead to

~oan

�
1ÿ gaa

Qan
ÿ g 2ab
Qan

1

Qbn ÿ gbb

�
� on

�
1� gab

Qbn ÿ gbb

�
;

~fan

�
1� gaa

Qan
ÿ g 2ab
Qan

1

Qbn � gbb

�
� Da ÿ Db

gab
Qbn � gbb

:

Obviously, condition (30) holds true only for Db � ÿDa and
gaa � gbb � 0. That is, the s� state with the equal absolute
values of gaps is not susceptible to the scattering by magnetic
impurities having an interband scattering channel only
(`interband impurities'). In all other cases, Tc would decrease
with increasing concentration and potential of magnetic
impurities.

4. Nonmagnetic impurities
in two-band superconductors

Since we found out what happens in the simplest cases, we
move on to solving Eliashberg equations in the T -matrix
approximation (16). Here, nonmagnetic impurities are con-
sidered first.

As was mentioned in Section 3, in the s� state, any
nonmagnetic impurity scattering only between the bands
with different signs of the gaps leads to suppression of the
critical temperature Tc, similar to magnetic impurity scatter-
ing in a single-band BCS superconductor [145, 149]. Then, Tc

is determined from the Abrikosov±Gor'kov formula (33).
Critical impurity scattering rateG determined by the equation
Tc�G crit� � 0 satisfies the relation G crit=Tc0 � 1:12 in the
Abrikosov±Gor'kov theory. On the other hand, several
experiments on iron-based superconductors, for example,
the introduction of zinc or proton irradiation [107±110],
reveal that Tc suppression is much weaker than expected
in the framework of the Abrikosov±Gor'kov theory. There-
fore, it was even suggested that the s� state is not realized in
these systems and the order parameter should be of an s��
type [21, 148].

The problem of disorder in iron-based superconductors
is much more intricate than the simple arguments may
suggest. Even assuming isotropic gaps on two different
Fermi surface sheets and nonmagnetic scattering, we find
the suppression of superconductivity for a systemwithmainly
intraband scattering to be slower than expected. Anderson's
theorem is applicable in the limit of pure intraband scattering,
the system is `insensitive' to the signs of the gaps, andTc is not
suppressed.

Therefore, the Tc suppression rate depends on the ratio
between intra- and interband scattering rates, and making
conclusions about the superconducting state on the basis of
systematic disorder studies is harder than in the single-band
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case. One approach to the problem is to try to determine
intra- and interband impurity potentials from first principles
methods for different materials and types of impurities [16,
34, 150]; however, the quantitative applicability of band
structure calculations here is questionable.

4.1 Solution of Eliashberg equations
in the TT -matrix approximation
In the case of a nonmagnetic disorder, we can simplify the
problem by reducing the dimension of matrices due to spin
degeneracy. Thus, instead of expressions (9) and (10), we have
4� 4 quasiclassical matrix Green's function in Nambu and
band spaces:

ĝ�on� � g0an 0
0 g0bn

� �

 t̂0 � g2an 0

0 g2bn

� �

 t̂2 ; �34�

where t̂i are Pauli matrices corresponding to the Nambu
space.

The impurity potential matrix entering the T -matrix
equation (16) is Û � U
 t̂3, where �U�ab � U ab

Ri
. Without

loss of generality, we set Ri � 0 for the single-impurity
problem studied here. For simplicity, intraband and inter-
band parts of the impurity potential are set equal to v and u,
respectively, such that �U�ab � �vÿ u� dab � u.

From equations (16) and (34), we then have

Ŝ imp
aa � nimpvt̂3 � vt̂3�g0ant̂0 � g2ant̂2� Ŝ imp

aa

� ut̂3�g0bnt̂0 � g2bnt̂2�Ŝ imp
ba ; �35�

Ŝ imp
ba � nimput̂3 � ut̂3�g0ant̂0 � g2ant̂2�Ŝ imp

aa

� vt̂3�g0bnt̂0 � g2bnt̂2� Ŝ imp
ba : �36�

Renormalizations of frequencies and gaps come from
S imp
0a � �1=2�Tr �Ŝ imp

aa t̂0� and S imp
2a � �1=2�Tr �Ŝ imp

aa t̂2�,
respectively. Equations for S imp

0b and S imp
2b are derived

through the replacement a$ b in the equations above.
Considering the relation g 2

0an ÿ g 2
2an � ÿp 2N 2

a , we derive the
following solution for S imp

0a and S imp
2a :

S imp
0a �

nimp

D

�
g0bnu

2 � g0anv
2 � g0an�u 2 ÿ v 2�2p 2N 2

b

�
;

�37�

S imp
2a � ÿ

nimp

D

�
g2bnu

2 � g2anv
2 � g2an�u 2 ÿ v 2�2p 2N 2

b

�
;

�38�
where

D � 1� p 2N 2
a v

2 � p 4N 2
a N

2
b �u 2 ÿ v 2�2

� p 2N 2
b v

2 ÿ 2u 2�g0ang0bn ÿ g2ang2bn� :

In what follows, apart from the general case, we will also
consider two important limits: the Born, weak scattering,
limit with puNa; b 5 1, and the opposite limit of very strong
scattering with puNa; b 4 1, called the unitary limit.

It is convenient to introduce the generalized cross-section
parameter

s � p 2NaNbu
2

1� p 2NaNbu 2
! 0; Born limit;

1; unitary limit;

�
�39�

and the impurity scattering rate

Ga�b� � 2nimppNb�a�u 2�1ÿ s� � 2nimps
pNa; b

!

!
2nimppNb; au

2 ; Born limit ;

2nimp

pNa; b
; unitary limit :

8<: �40�

Parameter Z controls the ratio between intra- and interband
scattering potentials:

v � Zu : �41�

With the introduced notations, we rewrite equations for
frequency (12) and order parameter (13) taking the impurity
self-energy (37), (38) into account:

~oan � on � iS0a�on� � Ga

2D

�
s

~oan

Qan
�1ÿ Z 2�2

� �1ÿ s�
�
Na ~oan

NbQan
Z 2 � ~obn

Qbn

��
; �42�

~fan � S2a�on� � Ga

2D

�
s

~fan

Qan
�1ÿ Z 2�2

� �1ÿ s�
�
Na

~fan

NbQan
Z 2 �

~fbn

Qbn

��
; �43�

where

D � �1ÿ s�2 � s�1ÿ s�

�
�
2

~oan ~obn � ~fan
~fbn

QanQbn
�N 2

a �N 2
b

NaNb
Z 2

�
� s 2�1ÿ Z 2�2 :

Let us examine important limiting cases. In the Born limit, we
have s! 0 (weak scattering, puNa; b 5 1); thus, D � 1,
Ga � 2nimppNbu

2, and

~oan � on � iS0a�on� � gaa
2

~oan

Qan
� gab

2

~obn

Qbn
; �44�

~fan � S2a�on� � gaa
2

~fan

Qan
� gab

2

~fbn

Qbn
; �45�

where gaa � 2pnimpNau
2Z 2 and gab � 2pnimpNbu

2. Evidently,
for the finite interband scattering gab, i.e., finite Z, different
bands are mixed in equations. This leads to the suppression of
Tc, similar to the one following from the Abrikosov±Gor'kov
expression (33).

In the unitary limit, with s! 1 (strong scattering,
puNa; b 4 1), we have Ga � 2nimp=�pNa�, and one must
distinguish two cases:

(1) Uniform impurity potential with Z � 1. We the have

~oan � on � iS0a�on� � nimp

pNaNbDuni

�
Na

~oan

Qan
�Nb

~obn

Qbn

�
;

�46�

~fan � S2a�on� � nimp

pNaNbDuni

�
Na

~fan

Qan
�Nb

~fbn

Qbn

�
; �47�

where

Duni � 2
~oan ~obn � ~fan

~fbn

QanQbn
�N 2

a �N 2
b

NaNb
:
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Obviously, different bands are mixed in equations for the
renormalized frequency and order parameter, so this leads to
a suppression of Tc.

(2) All other cases with Z 6� 1. We then have

~oan � on � iS0a�on� � nimp

pNa

~oan

Qan
; �48�

~fan � S2a�on� � nimp

pNa

~fan

Qan
: �49�

We get the same result as for the intraband impurities, since
the other band (b) does not contribute to the equations.
Surprisingly, Anderson's theorem works here independently
of the gap signs in different bands. Thus, Tc should be finite
for any impurity concentration.

In this way, there is a special case of Tc suppression in the
unitary limit for the uniform impurity potential Z � 1. Such a
situation arises due to the structure of the denominator D in
equations (42), (43). It vanishes at Z � s � 1 and we have to
accurately pass first to the limit Z! 1, and only then put
s! 1. This is a Z � 1 case, whichwas considered inRef. [148].
For all other values of Z (even for a slight difference between
intra- and interband potentials), impurities are not going to
affect the critical temperature. Of course, from the physical
point of view, the former situation is improbable, since it is
hard to imagine an impurity in a multiorbital system where
intra- and interband scatterings have equal intensities.

4.2 Critical temperature of the superconducting transition
As T! Tc, the equations become significantly simplified,
because the order parameter vanishes and Qan �
�~o 2

an � ~f 2
an�1=2 ! j~oanj. Thus, the linearized Eliashberg equa-

tions (12), (13) for the renormalization factors Zan � ~oan=on

and gap functions Dan � ~fan=Zan [131] can be rewritten, in
view of expressions (42), (43), as follows:

Zan�1�
X
b

~Gab

jonj � pTc

X
on 0 ;b

��lab�nÿ n 0��� sgnon 0

on
; �50�

ZanDan�
X
b

~GabDbn

jonj � pTc

X
on 0 ; b

lab�nÿ n 0� Dbn 0

jon 0 j ; �51�

where we have introduced renormalized impurity scattering
rates ~Gab [126]:

~Gab�ba� �Ga�b�
1ÿ s

s�1ÿ s� Z 2 �Na �Nb�2=�NaNb� � �sZ 2 ÿ 1�2 ;

�52�

~Gaa � Ga
s�1ÿ Z 2�2 � �1ÿ ~s� Z 2Na=Nb

s�1ÿs� Z 2�Na �Nb�2=�NaNb� � �sZ 2ÿ1�2 : �53�

After substituting Zan from Eqn (50) to (51), we obtain the
equation for the critical temperature Tc:

Dan � pTc

X
n 0; b

���lab�nÿ n 0��� sgnon 0
Dan

on

ÿ lab�nÿ n 0� Dbn 0

jon 0 j
�
�
X
b

~Gab
Dan ÿ Dbn

jonj � 0 : �54�

The last term is finite only for a 6� b. Therefore, intraband
terms/ ~Gaa and ~Gbb are cancelled and do not contribute toTc,

in agreement with Anderson's theorem. From the expression
for scattering rates (52), we recover explicitly the well-known
but counterintuitive result that in the unitary limit ~Gab � 0Ð
that is, nonmagnetic impurities do not affect Tc in the s� state
[68, 135].

Since Tc depends only on parameter ~Gab, we call it the
effective impurity scattering rate.

4.3 Results of the numerical solution
To determine Tc, we must solve numerically either equation
(54) or Eliashberg equations (50), (51) and vary T to find the
highest temperature at which nontrivial solution exists [126].
For definiteness, we choose Nb=Na � 2. The resulting Tc and
gap Da; n�1 as functions of Ga in the s�� state are depicted in
Fig. 5. Generally, the superconductivity is not suppressed
completely, though there is an initial drop of Tc due to the
scattering between bands with initially unequal gaps. Notice
that the system in the unitary limit seems not to care about
disorderÐneither critical temperature nor gaps depend on
Ga. As seen from equations (46), (47), there is, however, an
isolated point, Z � 1, corresponding to the vanishing of
determinant D. That is, superconductivity is suppressed for
the uniform impurity potential, v � u (see Fig 5).

Figure 6 demonstrates Tc as a function of Ga for the s�
state. As follows from calculations, Tc behavior is qualita-
tively different for different signs of the coupling constant
averaged over the Fermi surface [126]:

hli � �laa � lab� Na

N
� �lba � lbb� Nb

N
; �55�

whereN � Na �Nb is the total density of states in the normal
phase. We choose the following coupling constants for
illustrative purpose: �laa; lab; lba; lbb� � �3;ÿ0:2;ÿ0:1; 0:5�
for hli > 0 [133, 134], �1;ÿ2;ÿ1; 1� for hli < 0, and
�2;ÿ2;ÿ1; 1� at hli � 0. For the first set in the clean limit, a
critical temperature is Tc0 � 30 cmÿ1, for the second set it is
Tc0 � 27:96 cmÿ1, and for the third set it isTc0 � 31:47 cmÿ1,
which correspond to 43.1 K, 40.2 K, and 45.2 K. It should be
noted that the strongest Tc suppression occurs in the Born
limit for the pure interband potential, i.e., Z � 0. In the
opposite limit of pure intraband scattering with u � 0
(Z!1), pairbreaking is absent because ~Gab ! 0. Such a
situation appears in the unitary limit. As for the dependence
of Tc on ~Gab (52), shown in Fig. 7, all cases with different sets
of s and Z fall onto one of the universal Tc curves, depending
on the sign of the coupling constant averaged over the Fermi
surface, hli. It is clearly seen from Fig. 7 that, depending on
the sign of hli, one gets two types of Tc behavior for the s�
state: (1) the critical temperature vanishes at a finite impurity
scattering rate ~G crit

ab for hli < 0, and (2) for hli > 0, the critical
temperature remains finite as ~Gab !1. In the marginal case
of hli � 0, we find that ~G crit

ab !1 but with exponentially
small Tc. Therefore, we have found the universal behavior of
Tc controlled by a single parameter hli.

While the behavior of type (1) systems is in agreement with
the qualitative statement that s� superconductivity is
destroyed by nonmagnetic interband impurities due to the
`mixing' of gaps with different signs [145, 149], the behavior of
type (2) systems with hli > 0 is surprising. To understand
what happens in this case, we calculated the gap Dan for the
first Matsubara frequency n � 1 at T � 0:016Tc0. Results are
shown inFigs 8 and 9 for zero and finite intraband potential v,
respectively. Coupling constants lab are chosen to have
Tc0 � 40 K. It is seen that gaps on both bands, Da�b� n,
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converge to the same value DGa�b�!1, while Tc quickly
saturates. The initially negative order parameter Dbn (corre-
sponding to the smaller gap) increases and at some point in
time passes through zero and becomes positive. After that,

\Ga=Tc0

a
s�, hli4 0

s�, hli5 0
b

s � 0, Z � 0
s � 0.5, Z � 0
s � 1.0, Z � 0
s � 0, Z � 0.5

s � 0.5, Z � 0.5
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Figure 6. Critical temperature for various s and Z as a function of the

impurity scattering rate Ga for different signs of an average coupling

constant hli.
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Figure 7. (Color online.) Critical temperature Tc for various s and Z as a

function of the effective interband scattering rate ~Gab. Notice that curves

for different sets of s and Z overlap and fall onto one of the three universal

curves, depending on the sign of hli. Visible deviations originate from the

numerical calculating errors. Curve for the case of hli � 0 is situated

slightly above the curve for hli < 0, and they almost overlap.
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with v � u=2 (a, b) and v � u (c, d). At v � u, the suppression of superconductivity occurs even in the unitary limit. Here, the coupling constants are

�laa; lab; lba; lbb� � �3; 0:2; 0:1; 0:5�, which gives Tc0 � 43:1 K.
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since the gap signs for both bands are equal, we have the s��
state. Due to Anderson's theorem, this state is robust against
impurity scattering, thus having a finite Tc up to Ga !1.
Therefore, Tc stays finite in type (2) systems due to the
s� ! s�� transition.

The transition is also seen in gap functions ReDa�o�
analytically continued to real frequencies, which are shown
in Fig. 10.

Similar to the s�� state, there is no disorder effect on the
critical temperature or gaps in the unitary limit except for the
case of Z � 1, where the s� ! s�� transition occurs (see
Fig. 9), which again makes the case of uniform scattering
somehow unique [68].

There is a simple physical reason for the transition: with
increasing interband scattering, order parameters on different
Fermi surfaces `mix' due to the scattering processes and
converge to the same value. At the same time, the larger gap
`attracts' the smaller one that passes through zero and
changes its sign. Similar effects were discussed in Refs [145,
149, 152, 153] for the two-band s�� superconductor, and in
Ref. [104], where node lifting in the extended s� state on the
electron pocket was investigated. The discovered s� ! s��
transition allows us to explain themuch slower suppression of
critical temperature than that following from the well-known

Abrikosov±Gor'kov equation. Qualitatively, this result was
confirmed by agreement with the numerical solution of the
Bogoliubov±de Gennes equations [154, 155].

5. Magnetic disorder
in multiband superconductors

Here, we focus on magnetic impurities and their effect on the
properties of the s� and s�� models. We show that there are
few cases when the critical temperature Tc saturates and stays
finite in contrast to Tc following from the prediction of the
Abrikosov±Gor'kov theory for single-band superconductors
[127].

5.1 Eliashberg equations in the TT -matrix approximation
In the case of magnetic impurities, we have to consider a
Green's function matrix entering into equation (9) with the
dimension 8� 8. This considerably complicates the problem
in comparison with the study of nonmagnetic disorder. The
impurity potential for the noncorrelated impurities can be
written out as Û � V
 Ŝ, where

Ŝ � r̂ S 0

0 ÿ�r̂ S�T
� �

�56�
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an exceptional case with constant Tc and gaps. Gaps are shown for the Matsubara frequency on � pT�2n� 1� with n � 1 at T � 0:016Tc0.
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is the 4� 4 matrix, with �:::�T being the matrix transpose, and
S � �Sx;Sy;Sz� being the classic spin vector [156]. The vector
r̂ is composed of Pauli t-matrices, r̂ � �t̂1; t̂2; t̂3�. The
potential strength is determined by �V�ab � V ab

Ri�0. For
simplicity, the intraband and interband parts of the potential
are set equal to I and J , respectively, such that �V�ab �
�I ÿ J � dab � J . Then, V is given by

V � I J
J I

� �
: �57�

Components of the impurity potential matrix Û are then
Ûaa; bb � I Ŝ and Ûab; ba � J Ŝ, and the matrix itself takes the
form

Û � I Ŝ J Ŝ
J Ŝ I Ŝ

� �
: �58�

Coupled T -matrix equations (16) for the aa and ba
components of the self-energy in the introduced notations
become

Ŝ imp
aa � nimpÛaa � ÛaaĝaŜ imp

aa � ÛabĝbŜ
imp
ba ; �59�

Ŝ imp
ba � nimpÛba � ÛbaĝaŜ imp

aa � ÛbbĝbŜ
imp
ba : �60�

The solution of the system of equations in the matrix form is
given by

Ŝ imp
aa � nimp

ÿ
1̂ÿ Ûaaĝa ÿ ÛabĝbẑÛbaĝa

�ÿ1
� ÿÛaa � ÛabĝbẑÛba

�
; �61�

Ŝ imp
ba � ẑÛba

ÿ
nimp � ĝaŜ imp

aa

�
; �62�

where ẑ � �1̂ÿ Ûbbĝb�ÿ1. Renormalizations of frequencies
and gaps come from

S imp
0a �

1

4
Tr
�
Ŝ imp
aa �t̂0 
 ŝ0�

�
; �63�

S imp
2a �

1

4
Tr
�
Ŝ imp
aa �t̂2 
 ŝ2�

�
: �64�

Equations for S imp
0b and Simp

2b are derived from above
equations via replacement a$ b.

We assume that spins are not polarized and s 2 �
hS 2i � S�S� 1�. Since s enters everywhere together with the
components I andJ of the impurity potential (see expression
(58) for Û), without loss of generality we later set s � 1,
assuming that I and J are renormalized to include s in
themselves.

As follows from the calculations, similar to the results
presented in Section 4, expressions for S imp

0a and S imp
2a are
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proportional to the impurity scattering rate Ga; b and contain
the generalized cross-section parameter s that helps to
control the approximation for the `strength' of impurity
scattering. This ranges from the Born limit (weak scattering,
pJNa; b 5 1) to the unitary limit (strong scattering,
pJNa; b 4 1):

Ga; b � 2pnimpJ 2�1ÿ s�Nb; a

� 2nimps
pNa; b

!
2pJ 2nimpNb; a ; Born limit;

2nimp

pNa; b
; unitary limit;

8<: �65�

s � p 2J 2NaNb

1� p 2J 2NaNb

! 0 ; Born limit;
1 ; unitary limit:

�
�66�

We also introduce the parameter Z to control the ratio
between intra- and interband scattering potentials, I � ZJ .

Expressions for S imp
0�2�a at arbitrary temperature and Z are

too complicated and noninformative to write them down
here. It is much more convenient to consider limiting cases.
We also consider the three special forms of the impurity
potential: the uniform potential with Z � 1 (I � J ), the
interband-only potential with Z � 0 (I � 0, J 6� 0), and the
intraband-only potential with J � 0, I 6� 0 (formally,
Z � 1).

The Born limit corresponds to s � 0. Eliashberg equa-
tions (12), (13) are then written out as follows:

~oan � on � iS0a�on� � pJ 2nimp

�
Z 2Na

~oan

Qan
�Nb

~obn

Qbn

�
;

�67�

~fan � S2a�on� ÿ pJ 2nimp

�
Z 2Na

~fan

Qan
�Nb

~fbn

Qbn

�
: �68�

One of the significant differences between this expression
and the analogous one for nonmagnetic impurities [see
formula (44) and (45)] is the minus sign before the term
originating from impurity scattering in equation (68). In the
presence of interband-only scattering (Z � 0), we derive here
the remarkable result

~oan � on � iS0a�on� � pJ 2nimpNb

~obn

Qbn
; �69�

~fan � S2a�on� ÿ pJ 2nimpNb

~fbn

Qbn
: �70�

Indeed, for the s�� state we have sgn ~fbn � sgn ~fan and
equations written above correspond to the generalization of
the Abrikosov±Gor'kov theory to the two-band case; there-
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fore, impurities should suppress superconductivity. This,
however, as we will see later, is not always true due to the
complicated structure of equations, and their self-consistent
solution may lead to unexpected results. On the other hand,
for the s� state we have sgn ~fbn � ÿsgn ~fan and the sign of the
last term in formula (70), originating from impurity scatter-
ing, changes and the equations become similar to expressions
for a two-band superconductor with nonmagnetic impurities.
That is, Tc is not suppressed by disorder, except when Z � 1.

For the uniform impurity potential, we have Z � 1, then
~oan�on � iS0a�on��pJ 2nimp�Na ~oan=Qan�Nb ~obn=Qbn� and
~fan � S2a�on� ÿ pJ 2nimp�Na

~fan=Qan �Nb
~fbn=Qbn�. Here,

contributions from both the a and b bands are mixed, so we
expect a suppression of Tc by the disorder [151].

When the interband component is absent (Z � 1),
equations for different bands are decoupled:

~oan � on � iS0a�on� � pI 2nimpNa

~oan

Qan
;

~fan � S2a�on� ÿ pI 2nimpNa

~fan

Qan
;

and we have the suppression of superconductivity in each
band, following the Abrikosov-Gor'kov theory.

It is remarkable that equations in the unitary limit are
exactly the same as in the unitary limit for nonmagnetic
impurities (46)±(49). Therefore, all conclusions about sup-
pression of superconductivity for Z 6� 1 and Z � 1 are the
same.

Now, we write down the Eliashberg equations for special
shapes of the impurity potential. For the intraband-only
impurity potential (I � 0), terms in equations corresponding
to bands a and b are separated, namely

~oan � on � iS0a�on� � Ga

2D

�
s

~oan

Qa
� �1ÿ s� ~obn

Qb

�
; �71�

~fan � S2a�on� � Ga

2D

�
s

~fan

Qa
ÿ �1ÿ s�

~fbn

Qb

�
; �72�

where

D � 1ÿ 2�1ÿ s� s
�
1ÿ ~oan ~obn ÿ ~fan

~fbn

QaQb

�
:

For the impurity potential scattering solely between different
bands (J � 0), equations for different bands decouple:

~oan � on � iS0a�on� � Ga
Na

2D

~oan

Qa

�
sNa � �1ÿ s�Nb

�
;

�73�

~fan � S2a�on� � Ga
Na

2D

~fan

Qa

�
sNa ÿ �1ÿ s�Nb

�
; �74�

where

D � s 2N 2
a � �1ÿ s�2N 2

b � 2s�1ÿ s�NaNb

~o 2
an ÿ ~f 2

an

Q 2
a

:

5.2 Results of calculations
The results that follow were obtained by solving self-
consistently frequency and gap equations (12) and (13) with
the impurity self-energy from the solution of equations (59),
(60) for both arbitrary finite temperatures below Tc and at Tc

[127]. Hereinafter, we consider for illustrative purposes the
case of Nb=Na � 2 and choose coupling constants as
�laa; lab; lba; lbb� � �3;ÿ0:2;ÿ0:1; 0:5� for the s� state with
hli > 0 [133, 134], and as �3; 0:2; 0:1; 0:5� for the s�� state.
Critical temperature in the clean limit for both sets is
Tc0 � 30 cmÿ1, which corresponds to 43.1 K.

In Figs 11±13, we plot Tc and Matsubara gaps Dan for the
first Matsubara frequency on�1 � 3pT as functions of Ga for
both s� and s�� superconductors and for various values of s.
The real part of the analytical continuation of Dan to real
frequencies, the gap function ReDa�o�, is shown in Fig. 14.

First, we discuss the s� state. Critical temperature Tc

becomes insensitive to impurities for the pure interband
scattering, I � 0. This partially confirms qualitative argu-
ments that the s� state with magnetic impurities behaves like
the s�� state with nonmagnetic disorder [145, 149], and agrees
with theoretical calculations in the Born limit [157]. For the
initially unequal gaps, jDaj 6� jDbj, there is an initial decrease
in Tc for small Ga until the renormalized gaps become equal
and thenTc saturates, since the analog of Anderson's theorem
is achieved. For the finite I , intraband scattering on the
magnetic disorder averages gaps up to zero and, thus,
suppresses Tc. On the other hand, in the unitary limit
(s � 1) a T! Tc we obtains

~oan � on � iS0a�on� � Ga

2
sgnon ;

~fan � S2a�on� � Ga

2

~fan

j~oanj

for arbitrary values of Z, including the case of intraband-only
impurities, 1=Z � 0. This form of equation is the same as for
nonmagnetic impurities and, thus, there is no impurity
contribution to the Tc equation, in analogy to Anderson's
theorem. The only exception here is the special case of
uniform impurities, Z � 1, when

~oan � on � iS0a�on� � nimp

p�Na �Nb� sgnon ;

~fan � S2a�on� � nimp

p�Na �Nb�2
�
Na

~fan

j~oanj �Nb

~fbn

j~obnj
�
:

Both gaps are mixed in the equation for ~fan; thus, they tend to
zero with an increasing amount of disorder. That is also true
away from the unitary limit (see Fig. 13) and is the source for
the claim that the uniform potential with I � J is a special
case with the strongest Tc suppression.

In general, the multiband s�� state should always be
fragile against paramagnetic disorder, since magnetic scatter-
ing between bands having gaps of the same sign is equivalent
to pairbreaking scattering within the single (quasi)isotropic
band. Surprisingly, we found a regime with the saturation of
Tc for the finite amount of disorder right after the initial
downfall (similar to the one following from the Abrikosov±
Gor'kov theory) (Fig. 12b). The saturation of Tc is observed
for interband-only impurities, while the presence of the
intraband magnetic disorder ultimately suppresses Tc to
zero. However, depending on the `strength' of scattering s, a
decrease in Tc may proceed quite slow compared to the one
predicted by the Abrikosov±Gor'kov theory.

To understand the origin of theTc saturation, we analyzed
the gap function dependence on the scattering rate Ga (see
Fig. 12). For the s�� state after a certain value of the
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scattering rate, the smaller gap, Db, becomes negative. What
we see is the s�� ! s� transition. As soon as the system
becomes effectively s�, scattering on magnetic impurities
cancels out in the Tc equation, similar to Anderson's
theorem, and Tc saturates. Before the saturation, the initial
downfall akin to the one following from the Abrikosov±
Gor'kov theory occurs. The transition is also seen in the
frequency dependence of the gap function on a real frequency
axis (see Fig. 14).

Similar to the s� ! s�� transition for nonmagnetic
disorder, there is a simple physical argument behind the
s�� ! s� transition here. Namely, with increasing interband
magnetic disorder, the gap functions on different Fermi
surfaces tend to the same value and, if one of the gaps is
smaller than another, it crosses zero and changes sign. A
similar effect has been mentioned in Refs [145, 149, 152] for a
two-band systems with s�� symmetry in the Born limit.

Notice that here we do not consider a time-reversal
symmetry broken s� � is�� state. It may appear for T9Tc

in cases when translational symmetry is violated [158].

6. Experimental situation
with disorder-induced superconductivity
suppression in iron-based materials

Presently, there are not so many experimental studies of
impurity effects on the superconducting state of iron pnic-

tides and chalcogenides. Moreover, it is hard to determine
exactly whether the impurity is nonmagnetic or magnetic,
because of the possible magnetic moment induced by
nonmagnetic ions or irradiated particles, e.g., neutrons
[106]. Other concomitant difficulties in the interpretation of
results include changes in the crystal structure with the
replacement of one ion with another, and possible effective
doping also affecting the superconducting critical tempera-
ture. That is why further we describe the effects of various
kinds of disorder on the critical temperature Tc without going
into the details of the nature of the disorder.

Let us systemize the data in the following way: first, we
discuss the subset of studies on introducing impurities via
replacing one ion with another, and, second, we do a short
review of irradiation studies.

The chemical substitution of iron with copper or nickel in
the 122 system, Ba0:6K0:4�Fe1ÿxMx�2As2 withM � Cu or Ni,
resulted in the full suppression ofTc for x � 0:1 with the rates
of ÿ3:5 K per 1% of Cu, and ÿ2:9 K per 1% of Ni [159].
With the chemical substitution in Ba0:5K0:5�Fe1ÿxMx�2As2 of
iron with zinc (M � Zn), the effect on Tc is practically absent,
while with a change for manganese (M �Mn), Tc is
completely suppressed for x � 0:08 [107].

Another study of the Ba0:5K0:5Fe2ÿ2xM2xAs2 system with
M � Fe, Mn, Ru, Co, Ni, Cu, Zn revealed that all types of
chemical substitution result in full Tc suppression except for
M � Ru, when Tc changes quite weakly [116]. Rates of
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suppression for Mn, Co, Ni, Cu, and Zn are equal to 6.98,
1.73, 2.21, 2.68, and 2.22 K per 1% of Fe replacement with
these atoms, respectively. Differences in Tc suppression by
zinc in Refs [107, 116] are attributed to the technological
difficulties in zinc doping at atmospheric pressure and,
possibly, that in Ref. [107] zinc concentration did not exceed
2% in polycrystalline samples. The consistent study of zinc's
effect on the superconductivity in LaFe1ÿyZnyAsO1ÿxFx

revealed the dependence of this effect on x: Tc slightly
increases in underdoped samples (x � 0:05), stays practically
unchanged at optimal doping (x � 0:1), and becomes rapidly
suppressed in overdoped samples (x � 0:15) [108]. In
BaFe1:89ÿ2xZn2xCo0:11As2, zinc suppress Tc at the rate of
3.63 K per 1% of Zn [160], which is considerably weaker than
expected from the Abrikosov±Gor'kov theory. Chemical
substitution in LaFe1ÿxMxPO0:95F0:05 results in the Tc

suppression rate of ÿ2:2 K per 1% for M � Co, and
ÿ9:3 K per 1% for M �Mn [161]. According to magnetore-
sistance measurements, the authors of Ref. [161] claim that
cobalt (manganese) is a nonmagnetic (magnetic) impurity.
For K0:8Fe2ÿyÿxMxSe2 with M � Cr, Co, and Zn, a rapid
suppression ofTc is observed that is absent forM �Mn [114].
At the same time, based on electronic paramagnetic reso-
nance (EPR) measurements, the authors of Ref. [114] report
that the introduction of Cr, Co, and Zn cause the formation
of large local magnetic moments, in contrast to the Mn case.

Replacement of iron in Fe1ÿyMyTe0:65Se0:35 (M � Co, Ni,
Cu) results in the following Tc-suppression rates: 5.8, 2.6, and
1.3K per 1% for Cu,Ni, and Co, respectively [162]. StrongTc

suppression was observed in LaFe1ÿxZnxAsO0:85 with the
rate of 9 K per 1% of Zn [163]. Isovalent replacement of
potassium with sodium in K1ÿxNaxFe2As2 causes a drop in
Tc from 3.5 K at x � 0 to 2.8 K at x � 0:07 [111]. With
isovalent ruthenium doping in NdFe1ÿyRuyAsO0:89F0:11

[164] and LaFe1ÿyRuyAsO0:89F0:11 [163], Tc decreases much
more weakly than when iron is replaced with cobalt in
NdFe1ÿyCoyAsO0:89F0:11 and than expected from the Abri-
kosov±Gor'kov theory. In SmFe1ÿxRuxAsO0:85F0:15, the
isovalent substitution of iron with ruthenium results in
rapid (slow) Tc suppression for x < 0:5 (x > 0:5) [110]. The
authors of Ref. [110] connected such a change in the
behavior to the change in the role played by rutheniumÐ
initially it serves as nonmagnetic impurity and then, for
x > 0:5, the metallic behavior is restored due to the large
ruthenium concentration and its larger contribution to the
band structure.

In the K�Fe1ÿxCox�2As2 system, cobalt doping causes
the same rapid Tc suppression, as in the cuprates
YBa2�Cu1ÿxZnx�3O6:93 and La1:85Sr0:15Cu1ÿxNixO4, and at
x � 0:4 superconductivity vanishes [166]. Perhaps an ana-
logy with the cuprates arises here due to the presence of line
nodes in both cuprates and KFe2As2 [167].
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There are also unusual situations, for example,
LaO0:9F0:1FeAs1ÿd, where the arsenic disorder with d�0:06
causes not a decrease, but a slight increase in Tc [115].

Let us now switch to particle irradiation studies. Here,
the situation, in general, is less diversified than with the
chemical substitution of ions. In particular, the suppression
of Tc is observed, though it is much weaker than expected
from the Abrikosov±Gor'kov formula. This is true for
irradiation by neutrons of LaFeAsO0:9F0:1 [106], by pro-
tons of Ba�Fe1ÿxCox�2As2 (x � 0:045, 0.075, 0.113) [109] and
Ba�Fe0:9Co0:1�2As2 [117], by electrons of Ba1ÿxKxFe2As2
(x � 0:19, 0.26, 0.32, 0.34) [120] and Ba�Fe1ÿxRux�2As2
(x � 0:24) [112], by alpha-particles of NdFeAsO0:7F0:3 [113],
and by heavy ions of Ba�Fe1ÿxMx�2As2 (M � Co, Ni) [121]
and Ba�Fe1ÿxCox�2As2 [122]. In the latter case, optimally
doped Ba0:6K0:4Fe2As2 stands apart because the effect on Tc

was not observed in it altogether [123].
On a separate note, there are studies on the electron

irradiation of BaFe2�As1ÿxPx�2 [105] and SrFe2�As1ÿxPx�2
[119], where apparently `accidental' nodes in the nodal s�
state were removed with increasing disorder, as was predicted
earlier theoretically in Ref. [104]. However, this effect was not
observed with the proton irradiation of BaFe2�As1ÿxPx�2
[118].

Summarizing, there is a suppression of superconductivity
in most cases. At the same time, the Tc decrease rate is much
lower than expected from the Abrikosov±Gor'kov expres-
sion.

7. Dynamical properties of dirty superconductors

One of the important features of the discussed s� ! s�� and
s�� ! s� transitions is gapless superconductivity, which has
a direct relation to experiments on iron-based materials. In
particular, since one of the gaps changes sign it necessarily
goes through zero, corresponding to the gapless state. There-
fore, the transition should manifest itself in various dynami-
cal properties of the superconducting state. Those properties
are: first, the density of states (17) that can be probed in
tunneling experiments and ARPES; second, the temperature
dependence of the London penetration depth lL (19), and,
third, the frequency dependence of the optical conductivity
s�o� (20). A more subtle effect impurity scattering has on a
dynamical spin susceptibility and, thus, on 1=T1TÐthe spin±
lattice relaxation rate 1=T1, measured by NMR and normal-
ized to the temperature T. We discuss these points in detail in
the following Sections 7.1±7.4. Our choice of coupling
constants will be the same as in Section 5.2.

7.1 Density of states and penetration depth
First, we discuss the transition from the s� to the s�� state
induced by nonmagnetic impurities. A total density of states
N�o� calculated using expression (17) for systems with
hli > 0 is plotted in Fig. 15a. Upon increasing the impurity
scattering rate, the smaller gap closes, resulting in a finite
residual density of states at the zero frequency,N�o � 0�, and
then reopens. Such behavior is reflected in the temperature
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Figure 13. (Color online.) The same as in Figs 11 and 12, but for the special case of I � J .
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dependence of the London penetration depth (19), shown in
Fig. 15b. Here, we present results correspondingly normal-
ized to the plasma frequency opa. Evidently, 1=l

2
L in a clean

limit has an activation temperature dependence determined
by the smaller gap, then transforms into theTc behavior in the
gapless state, and finally shows a new activation regime in the
s�� state. In other words, atGa � 0 we have a typical two-gap
dependence [168]. For larger values of the scattering rate,
when the two gaps are almost equal, the temperature
dependence of the penetration depth becomes like that in a
single-band superconductor.

The density of states N�o� and the inverse square of the
penetration depth 1=l 2

L in the case of magnetic impurities
with I � J =2 and s � 0:5 are shown in Fig. 16 for the s�
and s�� superconductors. In the former case, we see the
expected behavior with gradually decreasing gaps. Gapless
superconductivity with the residual N�o � 0� occurs for
Ga > 10Tc0 when ReDa�o � 0� vanishes, which is seen in
Fig. 14b. As for the s�� state, the smaller gap vanishes upon
increasing the impurity scattering rate Ga, leading to a finite
residual density of states N�o � 0�. Then, the gap reopens
and Dbn 6� 0 until Tc reaches zero at Ga � 20Tc0. Still, the
superconductivity stays gapless with the finite N�0�, because
ReDa�o � 0� ! 0, as seen in Fig. 14d. Penetration depth in
the clean limit shows the activation behavior determined by
the smaller gap. In the case of the s�� state, the penetration
depth becomes proportional to T 2 in the gapless regime,

causing its significant reduction near Ga � 4Tc0 (Fig. 16d),
and then the penetration depth shows an activation tempera-
ture dependence in the s� state after the transition.

7.2 ARPES
The presence of the gapless state should definitely manifest
itself in ARPES spectra. The total measured photoemission
current intensity I�k;o� in the sudden approximation is given
by

I�k;o� �
X
a

��Ma�k;o�
��2 f �o�Aa�k;o� ; �75�

where M�k;o� is the matrix element of one-electron dipole
interaction, depending on the initial and final states of the
photoelectron, photon energy, and its polarization, f �o� is
the Fermi function, and Aa�k;o� is the spectral function. The
last can be expressed through the analytical continuation of
Green's function (6) to the real frequencies as

Aa�k;o� � ÿ 1

2p
Tr
ÿ
Im Ĝ aa�k;o� t̂0

�
� ÿ 1

p
Im

~oa�o�
~o 2
a �o� ÿ x 2

ka ÿ ~f 2
a �o�

: �76�

Notice that here we have to deal with a `bare' dispersion xka,
because the self-energy in our approximation does not depend
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on momentum and makes corresponding contributions
neither to the dispersion nor to the chemical potential shift.

The contribution from the electron±boson interaction to
the self-energy S0a�k;o� vanishes in the weak coupling
approximation [169]. Therefore, we have S0a�o� ! 0 and
S2a�o� ! Da�o� in the model with the isotropic self-energy.
Then, the spectral function takes the following form [169]:

Aa�k;o� � 1

p
Im

o
Da

�
1� i

X
b

Gab�������������������������
o 2 ÿ D 2

b �o�
q �

; �77�

where

Da � x 2
ka �

ÿ
D 2
a �o� ÿ o 2

��
1� i

X
b

Gab�������������������������
o 2 ÿ D 2

b �o�
q �2

:

�78�
Tobemore specific, letDb be the smaller gap. Two cases of

superconductivity should be distinguishedÐone with the full
total gap, and the other gapless. In the first case, Aa�k;o�
vanishes for energies below Da. On the other hand, the
spectral function of the same band in the gapless regime

with Db ! 0 will behave in the same fashion as it would in the
normal state:

Ab�k;o� � 1

p
Im

o�1� i
P

b Gbb=joj�
x 2
kb ÿ o 2�1� i

P
b Gbb=joj�2

: �79�

The fermionic spectral function Ab�k;o� for the band b
calculated via expression (76) is plotted in Fig. 17. For the
sake of argument, we show the calculations for jDbj < jDaj
and the scattering on nonmagnetic impurities with Z � 0:5
and s � 0:5, although these results are retained for the case of
magnetic impurities. In the clean limit (Fig. 17a), the behavior
ofAb�k;o� at smallo and xkb is determined by the presence of
the superconducting gap in the spectrum of excitations. On
the other hand, at the s�-to-s�� disorder-induced transition,
Ab�k;o� shows an absence of the gap (Fig. 17b). With a
further increase in the scattering rate Ga, when the transition
already happened, the gap in the spectrum of the b-band
reappears. Therefore, ARPES measurements in the super-
conducting state at different impurity concentrations would
help to detect the disorder-induced transition.

7.3 Optical conductivity
Considering nonmagnetic impurities as an example, here we
demonstrate how the optical conductivity changes its beha-
vior with increasing impurity scattering rate and, in particu-
lar, near the transitionbetween the s� and s�� states. Figure 18
shows the optical conductivity Re s�o� �Pa Re sa�o� cal-
culated as the solution of equations (20) and (23) at different
rates of disorder with Z � 0:5 and s � 0:5. Due to the
presence of the superconducting gap, in the clean limit we
have Re sa�o� � 0 at small frequencies o < 2Da. With an
increase in the impurity scattering rate in the s� state, as
opposed to the s�� superconductor, the range of the zero
value of Re sb�o� for the band b diminishes and the peak
above 2Db becomes narrower. This is surely due to a decrease
in the gap Db upon approaching the s� ! s�� transition
(Fig. 10b). It is clearly seen in Fig. 18b that the Drude peak
appears near the s� ! s�� transition at Ga � 1:2Tc0. This
peak is typical for a normal metal because of vanishing the
gap in the b-band, i.e., the gapless superconductivity regime in
the course of transition. With a further increase in Ga, the
optical conductivity regains the form of the full gap super-
conductor, though with a smaller width of the gap compared
with its initial value.

The behavior described differs significantly from the
behavior of the s�� superconductor, shown in Figs 18c and
d, where the gaps converge in the limit of the infinite impurity
scattering rate.

The temperature dependence of the optical conductivity
Re s�o� at a fixed frequency for the s� superconductor is
plotted in Fig. 19. Evidently, the low-temperature contribu-
tion to the optical conductivity of the band b increases with
increasing scattering rate Ga before the transition to the s��
state at Ga � 1:1Tc0, and then the contribution decreases.

The imaginary part of the optical conductivity, Im s�o�, is
proportional to the real part of the polarization operator
P�o�, as seen from its definition (20). The frequency
dependence of P�o� for the s� and s�� states in the presence
of impurity scattering is illustrated in Fig. 20. There is a dip at
frequency o � 2Da�o� in the case of the s�� superconductor.
This agrees with the results for single-band superconductors
[170]. In the s� state, interesting features are observed for the
band b: first, the location of the dip is a nonmonotonic
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function of the scattering rate, and, second, the dip disappears
in the gapless regime near the s� ! s�� transition.

A comparison of theoretical and experimental tempera-
ture dependences of the optical conductivity and the London
penetration depth on the dose of proton irradiation at THz
frequencies [117] is drawn in Fig. 21. It is interesting to trace
the behavior of the coherence peak in the real part of the
optical conductivity s1�T;o! 0�. The peak is analogous to
the Hebel±Slichter peak discussed in Section 7.4. With an
increase in the irradiation dose, the peak disappears and then
reappears (Fig. 21c). Such a behavior is a signature of the
gradual closing of the smaller gap and its later reopening. It is
exactly the process taking place at the s� ! s�� transition.

The general trend of the penetration depth behavior is the
same in the theory and in the experiment, as evident from a
comparison of Figs 21b and d. In the experiment, however, it
was not possible to `catch' the region of the s� ! s��
transition itself. The latter is marked in Fig. 21b by the red
arrow.

7.4 NMR spin-lattice relaxation rate
In addition to the Knight shift, which allows one to
distinguish between singlet and triplet pairing, NMR can
probe the spin-lattice relaxation rate 1=T1. Since we are going
to discuss Fe-based materials, later we imply NMR in iron
nuclei. The effect of the nuclei form factors is not very
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important here compared to cuprates, for example. It is
confirmed by a good agreement between 1=T1T data on
different nuclei (57Fe, 75As, 59Co, and 139La) in 122 and 1111
systems [92, 95, 171, 172]. It was also experimentally examined
[91] that the hyperfine couplingAhf�q�most probably does not
depend on the wave vector q.

The spin-lattice relaxation rate is determined by the spin
susceptibility integrated over the Brillouin zone, viz.

1

T1T
/ lim

o!0

X
q

Im w�q;o�
o

: �80�

As in the case with the spin resonance [15, 173±175], 1=T1

carries information about the underlying gap symmetry and
structure. For example, an isotropic s-wave state is character-
ized by a Hebel±Slichter peak just below Tc and an
exponential low-T temperature dependence. It is well known
that d-wave superconductors exhibit a weak or no peak and
demonstrate Tÿ11 � T 3 behavior for T5Tc.

In the case of iron-based materials, the situation is
somewhat more complicated. Typical data are given in
Fig. 22a. Apparently, there is no peak below Tc and the
temperature dependence does not follow the same simple
power or exponential law. However, simple arguments can
enable us to understand the main features revealed in
experiments.

In the case of a weakly coupled clean two-band super-
conductor below Tc, assuming that the main contribution to
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Im w�q;o� comes from interband interactions, we derive the
following expression for the inverse NMR spin-lattice
relaxation rate:

1

T1T
/
X
kk 0

�
1� DkDk 0

EkEk 0

��
ÿ q f �Ek�

qEk

�
d�Ek ÿ Ek 0 � ; �81�

where Ek is the quasiparticle energy in the superconducting
state, while k and k 0 � k� q lie on hole and electron Fermi
sheets, respectively. Thus, q is the vector connecting hole and

electron pockets. The above equation follows from the
expression for the `bare' susceptibility w0�q;o� at zero
temperature and for a vanishing frequency. It is written out
in a special way to emphasize the role of coherence factors for
the dominating interband processes. The coherence factor in
square brackets in formula (81) gives rise to an important
distinction between different symmetries of the gap. They
play a similar role in the formation of the spin resonance peak
in inelastic neutron scattering [173]. In the NMR 1=T1

coherence factors, the internal sign is different from that in
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coherence factors entering the spin susceptibility related to
neutron scattering. For the isotropic s��-state with
Dk � Dk 0 � D, we obtain

1

T1
/
�1
D�T �

dE
E 2 � D 2

E 2 ÿ D 2
sech2

�
E

2T

�
: �82�

The denominator gives rise to a peak for temperatures T9Tc

near Tc, which is just the Hebel±Slichter peak. As pointed out
earlier [16], it must be suppressed for the s�-state. Indeed, if
Dk � ÿDk 0 � D, then we have

1

T1
/
�1
D�T �

dE
E 2 ÿ D 2

E 2 ÿ D 2
sech2

�
E

2T

�
�
�1
D�T �

dE sech2
�

E

2T

�
; �83�

which is a monotonically decreasing function with a decrease
in temperature forT < Tc. The same can be demonstrated for
a more general s�-state with jDkj 6� jDk 0 j [132].

It is well known that pair-breaking impurity scattering
dramatically increases the subgap density of states just below
Tc, and even a weak magnetic scattering can broaden and
eliminate the Hebel±Slichter peak in conventional super-
conductors. In the case of a sign-changing gap, the similar
effect manifests itself due to nonmagnetic interband scatter-
ing [145]. Since the Hebel±Slichter peak is not present in iron-
based materials, even in the clean case [see equation (83)], the
pair-breaking effect is more subtle: it changes an exponential
behavior forT < Tc to amore power-law one. If the impurity-
induced bound state lies at the Fermi level, the relaxation rate
acquires a low-temperature Korringa-like term linear in
temperature over a range of temperatures corresponding to
the impurity bandwidth [176].

Qualitative arguments suggest that neither pure Born nor
pure unitary limits with a simple isotropic s�-state are well
suited for explaining the observed 1=T1 behavior: the former
leads to an exponential behavior at low temperatures in a
relatively clean system, while the latter to Korringa behavior.
Various data on 1111 systems appeared to be between these
two limits [89, 90, 171] (see Fig. 22b). Results of the 1=T1

calculation for the simple s� state are also shown there [132].

We observe that the s�-state result exhibits no coherence peak
and, as opposed to the Born and unitary limits, the
intermediate case with s not equal to 0 or 1 is capable of
reproducing the experimental behavior of 1=T1 [132, 146±
148, 177]. This result, taken alone, should not be seen as
evidence for an isotropic s� state, since a strong gap
anisotropy is probably present in some of these systems, and
will also lead to a higher density of states for quasiparticles
contributing at intermediate temperatures.

Regarding other systems, data obtained on
BaFe2�As1ÿxPx�2 shows a term linear in temperature in 1=T1

for an optimally doped sample, crossing over to something
roughly approximating � T 3 above T00:1Tc [95, 178],
consistent with reports of line nodes in this material from
other probes. In Ba0:68K0:32Fe2As2, 1=T1 shows an exponen-
tial decrease below T � 0:45Tc, consistent with a full s� gap
[179]. Finally, NMR in the LiFeAs system also shows a full
gap, which is consistent with other measurements [94].

8. Conclusions

Summarizing, the disorder in multiband systems may have an
unexpected impact on superconductivity. It is especially
important in cases of MgB2, iron pnictides, and iron
chalcogenides, as well as for the approximate treatment of
d-wave superconductors like cuprates, where parts of the
Fermi surface with different signs of the gap to some extent
can be considered to be different bands. As an example, here
we considered the problem of scattering on nonmagnetic and
magnetic impurities in two-band superconductors with s��
and s� order parameter types.

For nonmagnetic disorder, Tc is more stable against
impurity scattering than the trivial generalization of the
Abrikosov±Gor'kov theory (33). The exact rate of Tc

suppression depends on the relation between intra- and
interband coupling constants. Depending on the sign of the
averaged coupling constant, hli, originating from interelec-
tron interactions, s� superconductors can be divided into two
types. The first belongs to the case with hli < 0 largely
discussed in the literature, where the superconductivity is
primarily determined by interband scattering. In such
systems, Tc is suppressed with increasing disorder and
vanishes when the scattering rate reaches the critical value.
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Figure 22. Temperature dependences of 1=T1 in iron-based materials. (a) Experimental results for the 1111 system from Ref. [171]. (b) Log-log plot
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(04s4 1) and pairbreaking parameter ginterband � 0:4D0, and T 2:5 curve for demonstrating a power-law dependence [132].
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The second type of s� state exhibits hli > 0 and is character-
ized by a finite value of Tc with increasing disorder, while the
signs of order parameters for different bands become equal.
This last notion implies a transition from the s� state to the
s�� state. The case of hli > 0 corresponds to a sizeable
intraband attraction. In spite of this attraction, even a weak
interband repulsion leads to the opposite phases of order
parameters in two different bands, i.e., to the s� state. Notice
that the strong intraband attraction in the two-band model
considered here may be a consequence of a large intraband
pairing amplitude, as well as a result of the downfolding
procedure of the realistic multibandmodel onto the two-band
model. The large intraband pairing amplitude could be a
result of electron±phonon interaction and/or orbital fluctua-
tions. The downfolding procedure of the multiband model
with a small intraband attractive pairing potential and the
large band-asymmetric interband repulsion may also lead to
the effective strong intraband attraction in the two-band
model. Such a case was considered in Ref. [134] for the initial
four-band model.

Regarding the magnetic disorder, generally, the super-
conducting state is destroyed with an increase in scattering on
magnetic impurities. There are, however, a few special cases
with the absence of complete Tc suppression, in which it
saturates for a large impurity scattering rate. Such a situation
occurs in the unitary limit and in the s�� and s� states with the
interband-only impurity potential. Remarkably, the s��
superconductor is robust in this case against magnetic
disorder not by itself, but due to the transition to the s�
state insensitive to impurity scattering. This is in line with
qualitative arguments on the analogy between magnetic
impurities in the s� state and nonmagnetic impurities in the
isotropic s�� stateÐ that is, the equations have the same
form and, since the s�� state is robust against nonmagnetic
impurities, the s� state is robust against magnetic ones.
Notice that the finite intraband component of the scattering
potential leads to completeTc suppression, thoughwith a rate
slower than the Abrikosov±Gor'kov theory prediction for
single-band superconductors. In this case, even the s�� ! s�
transition cannot save the superconductivity from collapse.

Summary plots of the Tc dependence on the impurity
scattering rate Ga for the s� and s�� superconductors are
displayed in Fig. 23. For both the s� state with the positive
averaged coupling constant and the s�� state, the nonmag-
netic disorder does not completely destroy superconductivity.
The reason for this in the case of an s� superconductor is,
however, different from that for the s�� state: there is a
transition to the s�� state in the former case. Similarly, the
reason for the absence of complete Tc suppression by the
interband (Z � 0) magnetic disorder for the s�� state is the
transition to the s� state, which is robust against scattering on
magnetic impurities due to an analog of Anderson's theorem.
In the unitary limit, the results for all cases are the same except
for the uniform impurity potential (Z � 1) with a fall in Tc.
Notice that while the exact form of the impurity potential is
not known, it is hard to imagine that its intra- and interband
parts would be equal in different cases, e.g., upon adding Zn
or proton irradiation. This means that practically the case
with Z � 1 is highly improbable.

The general conclusion on the transition between states
with different gap structures is the following: if the system has
two interactions in the clean limit, dominating (1) and
subdominating (2), and interaction (2) may induce a super-
conducting state that is robust against impurities, then the

system will transform into this state as soon as the order due
to the interaction (1) is destroyed by a disorder. That is, the s�
state occurs due to the interband interaction, while the s��
state originates mainly from the intraband one. And if
initially there was an s� state without the intraband
component, then the interband nonmagnetic impurities
would completely destroy this state and suppress Tc to zero.
If there is an s� state with an intraband component (even a
small one) of the interaction, then the same impurities would
suppress the s� state but, due to the residual intraband
interaction, the s�� state that cannot be destroyed by
nonmagnetic impurities would stabilize. This is the
s� ! s�� transition. For magnetic impurities, the situation
is reversed. If initially there was an s�� state without the
interband component of the superconducting interaction,
then the interband magnetic impurities would destroy it.
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However, the presence of even a small interband interaction
would result in emerging the s� state after suppressing the s��
state by the magnetic disorder. It would be the s�� ! s�
transition.

Since these transitions proceed through the gapless
regime, they should manifest themselves in thermodynamical
and transport properties. For example, they can be observed
in optical and tunneling experiments, as well as in photoemis-
sion spectroscopy and tunneling conductivity in iron-based
superconductors and other multiband systems. That is, since
the smaller gap vanishes near the transition, ARPES should
demonstrate the gapless spectra, and the optical conductivity
would reveal the `recovery' of the Drude-like frequency
dependence of Re s�o�.
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