
Abstract. The most-studied classes of exact solutions to Vla-
sov±Maxwell equations for stationary neutral current struc-
tures in a collisionless relativistic plasma, which allow the
particle distribution functions (PDFs) to be chosen at will, are
reviewed. A general classification is presented of the current
sheets and filaments described by the method of invariants of
motion of particles whose PDF is symmetric in a certain way in
coordinate and momentum spaces. The possibility is discussed
of using these explicit solutions to model the observed and/or

expected features of current structures in cosmic and laboratory
plasmas. Also addressed are how the magnetic field forms and
the analytical description of the so-calledWeibel instability in a
plasma with an arbitrary PDF.

Keywords: neutral current structures, collisionless relativistic plas-
ma, invariants of motion, kinetic theory, magnetosphere

1. Introduction. Magnetic fields
in a collisionless plasma and Weibel instability

1.1 Objective of this review
Quasistationary magnetic fields maintained by intrinsic
currents in a plasma determine to a large extent its kinetic,
dynamic, and radiative properties. This phenomenon is
especially apparent in collisionless neutral structures, where
such fields are responsible for interactions between particles
and are correlated with the local anisotropy of particle
distribution. The energy distribution of particles may be far
from a Maxwellian one in different physical conditions
prevailing in both, cosmic and laboratory (including laser)
plasmas. Despite the lack of quantitative data, results of in
situ observations, laboratory experiments, and numerical
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simulations have one thing in common: they all suggest the
existence in a collisional plasma of various long-lived
(quasistationary) current structures considerably different in
terms of particle distribution anisotropy, energy distribution
of particles, spatial configuration of the current density, and
magnetic fields generated by the current.

Numerous publications report attempts to kinetically
describe magnetostatic self-consistent structures in a colli-
sionless plasma [1±36]. Most of them refer to analytical
studies, because numerical simulation does not yet provide a
general approach to the solution to this complicated non-
linear problem. Unfortunately, many authors confine them-
selves to considering a very limited set of anisotropic particle
distributions (usually a shifted Maxwellian distribution),
which leaves only a narrow choice of spatial current density
distributions. The few studies that allow an arbitrary particle
distribution over energies and/or arbitrary spatial current
profiles fail to provide a clear understanding of possible types
of self-consistent current structures and their characteristic
properties [14, 22, 27, 37].

A consistent analytical theory of self-consistent current
structures in a collisionless plasma with arbitrary energy
distribution of particles has only recently attracted the serious
attention of researchers, with the most interesting results
obtained by our method based on the invariants of particle
motion and allowing the general case of relativistic multi-
component strongly anisotropic plasma to be analyzed [38].

The present review is the first one in this area of plasma
physics; it encompasses the majority of the currently known
classes of stationary analytical solutions of self-consistent
Maxwell equations and kinetic equations of particle motion.
It includes planar layered, cylindrically symmetric, and two-
dimensional structures with a variety of current and magnetic
field profiles, both localized and nonlocalized, rigorously
taking into account the complicated motion of trapped and
transit particles and the spatial nonuniformity of the aniso-
tropy of their distribution function. An analytical description
of a number of possible current structures at the boundary
between a nonmagnetized plasma and a plasma in a strong
external magnetic field is presented. The large number of
exact solutions for special particle distribution functions
(PDFs) makes practically impossible a detailed discussion of
all available solutions in the framework of a single review.We
rely on the understanding of those authors whose data
remained beyond the scope of this review; moreover, it does
not include all our own results.

The review is focused on the comparative analysis of the
most representative solutions with reference to their applica-
tion for the construction of analytical models of various
current configurations in cosmic and laboratory plasmas,
and for the interpretation of results of numerical simulations
of collisionless plasma dynamics. To make the picture
complete, the Introduction includes a concise analysis of
Weibel type instability that strongly depends on PDFs and
may be responsible for the formation or destruction of
current structures. In addition, Section 4.4 contains data on
certain specific features of the anisotropy of synchrotron
radiation spectra from self-consistent current sheets that
have recently been clarified due to exact solutions for
structures with the polynomial PDFs.

1.2 Magnetic field problem in a collisionless plasma
The problem of the formation and prolonged occurrence of
the magnetic field in a nonequilibrium weakly collisional

plasma has remained in the focus of attention over decades
(see, for instance, reviews [39±46]).

This problem includes, besides an analysis of the develop-
ment and saturation of Weibel type instabilities responsible
for generating a magnetic field, the solution to the compli-
cated nonlinear problem of possible quasistationary current
structures consistent with their inherent and/or external
magnetic field. Such structures can qualitatively alter the
particle and field dynamics in a plasma and thereby its kinetic
and dynamic properties at large. Investigations in this area
are especially topical for the study of strongly nonequilibrium
plasmas, e.g., explosive phenomena in astrophysical objects,
active regions of solar and planetary magnetospheres, or the
ejection of matter from targets irradiated by strong laser
beams.

Considerable progress in solving this problem has thus far
been achieved only in the magnetohydrodynamic approxima-
tion that holds true for a sufficiently dense plasma and
structures with scales much larger than the mean free path
of a particle [43, 47, 48]. For smaller-scale structures, i.e.,
rarefied or so-called collisionless plasma, only scattered data
are available [9, 40±42, 49±54], which do not provide a
complete understanding of the mechanisms underlying
collective interactions among particles via the intricately
structured magnetic field they generate. This field is involved
in practically all essential phenomena occurring in a collision-
less plasma, such as the formation of collisionless shock
waves, the reconnection of magnetic tubes of force, particle
acceleration in various stratified plasma flows, the formation
of mutually consistent radiation spectra and PDFs. Solving
such problems inevitably requires an analysis of the structure
of a self-consistent magnetic field in the plasma with a rather
arbitrary energy distribution of particles.

A description of the possible diversity of the types and
properties of quasistationary current structures is of special
importance, bearing in mind that information yielded by
experiments with laboratory (e.g., laser) and cosmic (geo-
and heliospheric) plasmas virtually reduces to the character-
istic of such structures. This problem has acquired special
significance in recent years [34, 42, 45, 46, 55] with the advent
of powerful lasers and laser plasma diagnostic systems, as well
as the launching of specialized spacecraft providing informa-
tion on the structure of magnetic fields and PDFs. Results of
such experiments and observations of self-consistent current
configurations, as well as numerical calculations, suggest a
great diversity of PDFs that may be quite different from
Maxwellian ones and give evidence that current andmagnetic
field profiles are multiscale, split, and even indented [34, 44,
52, 56]. Such current structures maintaining the presence of a
long-lived quasistationary magnetic field in a nonequilibrium
collisionless plasma are known to be important for the
description of large-scale regular structures, e.g., current
sheets in Earth's magnetosphere [34, 45], on the Sun [47], in
the equatorial region of the magnetospheres of neutron stars
with a pulsar wind [57, 58], in small-scale turbulent structures,
e.g., chaotic current structures in the turbulent part of the
current sheet in Earth's magnetosphere [59], and in current
filaments of plasma jets or in the vicinity of a collisionless
shock wave front [51, 53, 54, 60].

Let us apply the collisionless plasma approximation, i.e.,
we are interested in l-scales much smaller than the mean free
path of charged particles lsc:

l5 lsc : �1�
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The most important structural elements of such a plasma
responsible for the dynamics of the particles and the
electromagnetic field are self-consistent quasistatic config-
urations of currents and magnetic fields, whose lifetimes are
significantly longer than time l=vT of the free particle
expansion with a mean speed vT, both in nonrelativistic
(where vT 5 c) and relativistic (where vT � c) plasmas. The
existence of such structures is confirmed not only by direct
observations, first of all in the regions of reconnection of
magnetic lines of force in laboratory (especially laser) plasma
[46, 55, 61±71] and solar and planetary magnetospheres [14,
17, 45, 47, 72±78], but also by indirect observations in plasma
jets, accretion disks, and interstellar and intergalactic space
[43, 44, 57, 79±83], by numerical calculations of Weibel
instability evolution [40, 48, 52, 54, 56, 60, 84±91], by the
formation of collisionless shock waves [90, 92±98], and by
observations of synchrotron radiation emission from the
nonequilibrium plasma of remote space objects [58, 99±104].
Interpretation of the last, given that the energy of these
objects is known, implies the assumption of long-lived
magnetic fields with high energy density up to a magnetic
equipartition density comparable to the kinetic energy
density of particles.

If the nonuniformity scale of a magnetic field and the
currents generating it did not satisfy inequality (1), decay of
the field would be determined, in accordance with the
magnetohydrodynamic (MHD) approximation, by the fol-
lowing decay rate [47, 105]:

n � c 2

4pl 2s0
� gc 2vT

o2
pl

2lsc
; �2�

where the simplest estimate for ohmic conductivity
s0 � lscNe 2=gmevT of electron plasma with the number
density N is used, and electron plasma frequency
op � �4pNe 2=me�1=2 (e and me are electron charge and
mass) was introduced in the last relation, with c being the
speed of light in a vacuum, and g the characteristic Lorentz
factor of the particles. This means that decay of magnetic
fields with a characteristic spatial scale l in the magnetohy-
drodynamics takes more time than the formal time l=vT of
free particle expansion, provided that

gc 2

o2
pl
< lsc < l ; �3�

i.e., only when scale l is sufficiently large and exceeds the
plasma scale c

���
g
p
=op.

However, in the collisionless case (1), the MHD approx-
imation is inapplicable to large spatial scales greater than the
plasma scale and, therefore, does not explain the durable
existence of current structures at times longer than the particle
expansion time l=vT. At the same time, the formally calculated
time of MHD decay for current structures smaller than or
equal by order of magnitude to the plasma scale turns to be
shorter than the particle expansion time, which implies that the
prolonged existence of such structures must be accounted for
in kinetic terms (cf., e.g., Refs [70, 74, 82]).

In what follows, it will be shown that in general and
specifically for c

���
g
p
=op > l, i.e., when inequalities (3) are

violated, there is a large variety of small-scale magneto-
static structures created by self-consistent currents in an
inhomogeneous anisotropicÐ generally speaking, non-
equilibriumÐplasma that can exist for times much longer
than the free particle expansion time; in other words, they can

be long-lived entities like large-scale MHD fields. This
inference, which needs to be substantiated based on the
solution of a rather complicated nonlinear problem, had
until recently been put into question bymany authors [95, 99].

For simplicity, we shall confine ourselves to neutral
current structures for which spatial separation of charges is
either unessential or nonexistent (as is natural for scales
greater than the Debye radius) and show that self-consistent
(quasi-)stationary current configurations in a collisionless
plasma may have an arbitrary scale and exist practically for
arbitrary (in terms of energy) PDFs. True, the stability of such
configurations not surprisingly remains unclear, because the
knownWeibel instability, its criterion, saturation conditions,
and dependence on the PDF are still poorly explored even in
the absence of a magnetic field (see Section 1.3).

We shall also present a wide class of exact (mostly one-
dimensional) solutions of the above nonlinear problem and
demonstrate the possibility of a detailed analytical study of
rather complicated self-consistent stationary current config-
urations with different parameters, profiles, and even PDFs.

The main focus will be on currently available efficient
methods for the analytical description of self-consistent
magnetostatic neutral structures with the use of special
expansions of the PDFs in terms of the invariants of their
motion, and classification of solutions to the nonlinearGrad±
Shafranov type equation, discovered by these methods. We
shall also present examples illustrating the analytical descrip-
tion of structures and possibilities of their use for interpreting
observations of current configurations in cosmic and laser
plasma and for the analysis of results of their numerical
simulations. For reasons of space, we do not consider such
issues as structure formation in real plasmas, stability,
accounting for fluctuations, violation of quasineutrality,
and possible slow dynamic evolution under the influence of
external factors.

The majority of the known exact solutions have been
obtained by the method of invariants of particle motion,
leaning upon a degree of problem symmetry and having a
century-old history of applications in theoretical physics,
starting from Jeans's seminal work [106]. In connection with
the analytical description of the stationary solution to the
Vlasov±Maxwell equations, this method, briefly summarized
in Section 2.1, makes it possible to find the explicit functional
expression of current density using the vector potential. The
key role of a magnetic field should be emphasized, for it
considerably complicates the problem in comparison with
known problems for noninteracting particles, e.g., dark
matter particles and galactic stars.

Magnetostatic structures described with the employment
of three invariants of particle motion and including an
important case of the magnetic field shear involving two
components of the vector potential are considered in
Sections 2.2 and 2.3. Section 2.4 deals with solution to two-
dimensional problems limited by the presence of a single
vector potential component and the use of two invariants of
particle motion; it also contains a brief discussion of axially
symmetric current filaments, the description of which is
unidimensional in the cylindrical system of coordinates.
Various one-dimensional solutions are qualitatively described
in Section 2.5, where the complete classification of the
respective neutral planar layered current structuresÐ includ-
ing those in the presence of an external magnetic fieldÐ is
presented. Admissible nonlinear superpositions of such planar
layered structures with orthogonal magnetic fields, giving rise
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to current configurations with the shear ofmagnetic field lines,
are considered in Section 2.6.

Section 3 presents typical exact solutions for planar
layered current structures with a shearless magnetic field for
those cases when it is possible to find the explicit functional
relationship between the effective potential in the Grad±
Shafranov equation and the particle distribution that are
functions of the vector potential. In particular, power-law
(Section 3.1), exponential (Section 3.2), polynomially expo-
nential (Section 3.3), and nonsmooth (Section 3.4) expansions
of PDFs in terms of the projection of the generalized
momentum onto the current direction are considered.

Section 4 is designed to discuss the expected applications
of the exact solutions to the interpretation of modern
observations and diagnostics of current structures, in the
first place in the near-Earth, solar, and laser plasmas, as well
as to the proper treatment of the results of numerical
simulations of the corresponding plasma processes with the
involvement of magnetic fields. The concluding section
summarizes results and unresolved problems of the theore-
tical analysis of self-consistent current structures.

1.3 Weibel instability and its relation
to the particle distribution function
1.3.1 Dispersion equation for relativistic plasma. Let a plasma
consist of particles of different types denoted by the subscript
a. Speed distribution and dynamics of a type particles will be
described using the respective distribution function fa�r; p; t�,
with p momentums acquiring relativistic values. Certain and
even all arguments at fa will be omittedwhere theymay not be
a source of misunderstanding. The charge of a type particles
that can be either positive or negative is denoted by ea, and
their mass by ma.

The kinetic equation in the absence of collisions has the
form [107]

q fa
qt
� va

q fa
qr
� ea

�
E� 1

c
va� B

�
q fa
qp
� 0 ; �4�

where E and B are electric and magnetic (self-consistent)
fields (at point r and time moment t), va � p=maga is the
particle velocity, and ga � �1� p2=m 2

a c
2�1=2 is the Lorentz

factor.
The electromagnetic field will be described by Maxwell

equations in the differential form taking explicit account of
charges and currents, i.e., without attaching the role of a
`medium' to the plasma and introducing the corresponding
vectors of electric and magnetic inductions [107]:

rotB � 4p
c

j� 1

c

qE
qt

; �5�

rotE � ÿ 1

c

qB
qt

; �6�

divB � 0 ; �7�
divE � 4pr; �8�

where r and j are total charge and current densities,
respectively, of all plasma particles at a given point,
described by the expressions

r�r; t� �
X
a

Naea

�
fa�r; p; t� d3p ; �9�

j�r; t� �
X
a

Naea

�
fa�r; p; t� p

maga
d3p : �10�

Here, Na are constants related to normalization of functions
fa [formally arbitrary by virtue of the linearity of equation
(4)]. For an analysis of problems in unbounded spatial
regions, the following normalization is convenient:��

fa�r; p; t� d3p
�

r

� 1; �11�

where angle brackets h. . .ir denote averaging over space (the
entire plasma volume). In this case, constantNa has a physical
sense of a type particle concentration averaged over space. In
the description of certain inhomogeneous structures, such
averaging is either impossible or inappropriate; a different
(specially specified) normalization is then applied. The local
concentration of a type particles is denoted by na.

The analysis of instability and dispersion characteristics is
performed by the method of complex amplitudes based on
certain additional assumptions. Let an unperturbed plasma
be homogeneous, and electric and magnetic fields absent.
This, in particular, mean that the plasma is in equilibrium
(possibly unstable) and distribution functions of all sorts of
particles are independent of time. Let us denote them by
f0a�p�. The condition of absence of macroscopic magnetic
fields implies the absence of macroscopic current density,
j � 0. In the discussion below, the word `macroscopic' will be
omitted, because we are not interested in fluctuating fields
and currents.

In the presence of perturbations of the state described in
the preceding paragraph, the distribution functions are
written out in the form of sums:

fa�r; p; t� � f0a�p� � dfa�r; p; t� : �12�

Let us consider the initial problem and, linearizing kinetic
equation (4) as usual, analyze harmonic perturbations in the
form of exp �ÿiot� ikr� with the actual wave vector k and
frequency o, possibly having an imaginary part (for simpli-
city, the complex amplitudes are denoted by the same
subscripts that denote time- and coordinate-dependent
quantities). Such a procedure, i.e., the application of the
Fourier transform over spatial variables and the Laplace
transform over time, allows us to get rid of differential
operators and obtain the following algebraic relations:

ÿ io dfa � ikva dfa � ea

�
E� 1

c
va� B

�
q f0a
qp
� 0 ; �13�

k� B � ÿ 4pi
c

jÿ o
c
E ; k� E � o

c
B ;

�14�
kB � 0 ; kE � ÿ4pir :

Whence, one finds

dfa � ÿiea oE� k�vaE� ÿ E�vak�
o�oÿ kva�

q f0a
qp

; �15�

and charge and current densities take the form

r � ÿi
X
a

Nae
2
a

�
oE� k�vaE� ÿ E�vak�

o�oÿ kva�
q f0a
qp

d3p ; �16�

j � ÿi
X
a

Nae
2
a

��
oE� k�vaE� ÿ E�vak�

o�oÿ kva�
q f0a
qp

�
p

maga
d3p :

�17�
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It is evident from the Maxwell equations (14) that the
following relation holds true:

Ek 2 ÿ k�kE� ÿ o2

c 2
Eÿ 4pio

c 2
j � 0 : �18�

Substituting the current density from formula (17) into this
expression yields

Ek 2 ÿ k�kE� ÿ o2

c 2
E

�
X
a

4pNae
2
a

mac 2

�
p

�ÿoEÿ k�vaE� � E�vak�
oÿ kva

q f0a
qp

�
d3p

ga
� 0 ;

�19�
where all the terms are proportional to the magnitude of an
electric field. Consistency condition (19) as a system of three
scalar linear equations for components of the electric field is
the well-known dispersion relation for minor wave perturba-
tions being considered.

Expression (19) in the tensor form can be written out as
[108, 109]�

k 2di j ÿ kikj ÿ o2

c 2
ei j�o; k�

�
Ej � 0 ; �20�

where di j is the Kronecker symbol, and summation over
repeating indices (i; j � 1; 2; 3) is implied everywhere. The
dielectric permittivity tensor is introduced in the form

ei j � di j �
X
a

4pNae
2
a

o

�
pi

kl pj=maga � dl j�oÿ kva�
o�oÿ kva�

� q f0a
qpl

d3p

maga
; �21�

usually used in the kinetic theory of plasma [105]. The general
dispersion relation takes then the form�k 2 ÿ o2

c 2

�
di j ÿ kikj �

X
a

4pNae
2
a

mac 2

�
�
pi

kl pj=maga � dl j�oÿ kva�
oÿ kva

q f0a
qpl

d3p

ga

 � 0 ; �22�

where the symbol k . . . k stands for the determinant of the
matrix.

It is convenient to write out the expression for the
components ei j of the dielectric permittivity tensor (21) in
the form containing no derivatives of distribution functions.
Integration of expression (21) by parts, bearing in mind that
distribution functions f0a tend toward zero as p!1, yields,
after cumbersome calculations, the expression

ei j � di j ÿ
X
a

4pNae
2
a

o2

�
�

f0a
maga

�
di j� kivaj � kjvai

oÿ kva
� vaivaj�k

2c 2 ÿ o2�
c 2�oÿ kva�2

�
d3p ; �23�

showing explicitly that tensor ei j is symmetric: ei j � eji.
Although expression (21) does not contain in the explicit

form the speed of light c, one of the terms in Eqn (23) includes
the factor �k 2c 2 ÿ o2�. This apparent discrepancy can be
accounted for by the fact that the speed of light is involved in
the relationship between the momentum p and the Lorentz

factor ga. Integration by parts requires taking derivatives of
the Lorentz factor ga, among others, and the speed of light
explicitly appears in the resulting expression.

1.3.2 General criterion for Weibel instability as soft mode
instability. The analysis of the Weibel, purely aperiodic,
instability for the distribution function of any general form
encounters serious mathematical difficulties, and the explicit
criterion for its existence remains to be found [110]. We shall
consider in general terms one case of practical importance, in
which the distribution function exhibits mirror symmetry
with respect to a certain plane, and vector k is parallel to
this plane. Since we are interested in a situation where an
unperturbed plasma carries no current, the assumption of a
mirrory symmetric distribution function looks very natural.
Instability of asymmetric distributions accompanied by the
generation of an electric field with the nonzero projection of
Ex onto the wave vector due to the nonzero magnitude of
component exz is considered in Refs [111, 112], as exemplified
by shifted Maxwellian distributions with anisotropic tem-
perature. These studies give evidence that the presence of the
longitudinal field component Ex decreases the increment for
the above distributions, in comparison with the increment of
Weibel instability that would develop for distributions that
are analogous, but symmetric with respect to plane pz � 0,
and allow only transverse field Ez.

Let a coordinate system be oriented so that the above
plane is perpendicular to the z-axis, i.e., kz � 0 and
f0a�px; py; pz� � f0a�px; py;ÿpz�. Then, it follows from expres-
sion (23) that only exy and eyx can be the nondiagonal
components of tensor ei j differing from zero, and system
(20) loses one equation describing so-called ordinary waves:�

k 2 ÿ o2

c 2
ezz�o; k�

�
Ez � 0 : �24�

Substituting the expression for ezz from Eqn (23) into
Eqn (24) yields the dispersion relation

ÿk 2 � o2

c 2
ÿ
X
a

4pNae
2
a

c 2

�
f0a

maga

�
1� v

2
az�k 2c 2 ÿ o2�
c 2�oÿ kva�2

�
d3p � 0 :

�25�
Under certain conditions, this equation describesWeibel type
instability with the well-known formation mechanism [109,
113, 114] [Weibel instability of an extraordinary wave is
equally possible, but its dispersion equation is much more
complicated and therefore has thus far been explored for the
most part numerically (see, for instance, paper [115])].

The instability is aperiodic in character: its increment
(growth rate) increases initially with wave number k but
thereafter vanishes; therefore, there is a point in the disper-
sion curve at which o � 0 and k > 0. Let us pass to the limit
o! 0 in equation (25):

k 2 � ÿ
X
a

4pNae
2
a

c 2

�
f0a

maga

�
1� p 2

z

p 2
k

�
d3p : �26�

Note, leaving aside regularization of this expression with
respect to Cherenkov's singularity of the integrand function
at pk � 0 (see below), that the right-hand side of this equation
depends on the direction of vector k but not its modulus,
because p 2

k is the modulus squared of the projection of
momentum p onto the direction of vector k. Accordingly,
the point witho � 0, k 6� 0 can exist in the dispersion curve at
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the chosen direction of the wave vector if the right-hand side
of Eqn (26) is positive. This equation defines the boundary of
the region of wave numbers in which instability is realized, and
the condition for its existence takes the formX

a

Nae
2
a

�
f0a

maga

�
1� p 2

z

p 2
k

�
d3p < 0 : �27�

The integrand in expression (27) has a singularity requiring a
detour in the complex plane. It accounts for the possible
negative value of the integral in which the integrand is
nowhere negative at real p values. However, this singularity
does not preclude the application of criterion (27), because
the value of the integral is independent of the way of its detour
if the distribution function turns to be smooth in the vicinity
of pk � 0.

Inequality (27) defines a sufficient condition for the
existence of instability if quantity k 2 has a finite value given
by formula (26) for which o2 � 0. Such an instability is
realized at least in the vicinity of this k value; generally
speaking, it may not be aperiodic and may be accompanied
by instability in other wave number ranges to which criterion
(27) bears no relation.

The informative value of the sufficient criterion of
instability becomes higher and is related to purely aperiodic
instability (such as a soft mode with Reo � 0) when the
particle distribution functions fa also exhibit central symme-
try fa�p� � fa�ÿp�, which, in particular, guarantees the
fulfillment of the aforementioned equality of current density
to zero. Indeed, multiplication of the numerator and denomi-
nator of the fraction in the dispersion relation (25) by
�o� kva�2 gives

ÿ k 2 � o2

c 2
ÿ
X
a

4pNae
2
a

c 2

�
�

f0a
maga

�
1� v

2
az�k 2c 2 ÿ o2��o� kva�2

c 2
ÿ
o2 ÿ �kva�2

�2 �
d3p � 0 : �28�

The central symmetry of the distribution functions fa implies
that the integral of the term containing kva in the first power
equals zero, and the dispersion relation takes the form

ÿ k 2 � o2

c 2
ÿ
X
a

4pNae
2
a

c 2

�
��

f0a
maga

�
1� v

2
az�k 2c 2 ÿ o2�ÿo2 � �kva�2

�
c 2
ÿ
o2 ÿ �kva�2

�2 �

ÿ v 2az f0ajpk�0ÿ
vak ÿ i

�� �������������
o2=k 2

p ���2 ���������������������������������������
m 2

a � �p 2 ÿ p 2
k �=c 2

q �
d3p � 0 :

�29�

The term added to integrand becomes zero upon integration
but regularizes the subintegral function, i.e., explicitly
neutralizes its singularity.

The frequency enters the latter equation only viao2 which
allows, after fixing the k values, formally considering the left-
hand side of relation (29) to be the function of o2 on the real
axis. Let us denote this function by Lk�o2�. It is finite at
o2 � �kva�2, despite the vanishing of its denominators. It
follows from the explicit inequality 04 �kva�2 < c 2k 2 that
function Lk�o2� is continuous on the rays o2 2 �ÿ1; 0� and
o2 2 �c 2k 2;1�. As o2 ! �1, the sign of function Lk�o2� is
determined by the sign of the term o2=c 2, i.e., Lk�ÿ1� < 0,

Lk��1� > 0. Substituting o2 � c 2k 2 gives

Lk�c 2k 2� � ÿ
X
a

4pNae
2
a

c 2

�
f0a

maga
d3p < 0 ; �30�

which means that there is a value of o2 > c 2k 2 for each k
value, such that the pair �o2; k� satisfies dispersion equation
(29), i.e., there is a stable branch of fast waves with the phase
velocity exceeding the speed of light for each PDF satisfying
the aforesaid symmetry conditions. Substitution of o2 � 0
yields

Lk�0� � ÿk 2 ÿ
X
a

4pNae
2
a

mac 2

�
��

f0a
ga
� p 2

z

p 2
k

�
f0a
ga
ÿ
�
f0a
ga

�
pk�0

��
d3p ; �31�

which suggests the existence of a finite value of the wave
number squared (26) for which the dispersion equation has a
zero solution.

It can be concluded that there is a value of o2 < 0
satisfying dispersion equation (29) at any k smaller than that
given by formula (26). If `self-sufficient' condition (27) is
satisfied, instability exists within the entire range of wave
numbers from zero to the maximum value (26), wherein it
must be aperiodic, i.e., a soft-mode type instability. To recall,
if PDFs possess axial symmetry with respect to the direction
of the current being generated, the instability increment will
be the same for any linear superposition of perturbations with
identical values of wave vectors directed across the distin-
guished current direction.

To have a rough idea of the physical sense of the above-
derived criterion for Weibel instability (27), let us consider one
sort of particles a responsible for instability. To this end,
assume that ky � 0, i.e., direct k along the x-axis and denote
F�px; py; pz� :� f0aNae

2
a =maga. Subtracting the zero-value

integral�
p 2
z

p 2
x

F�0; py; pz� d3p �32�

from the left-hand side of expression (27) and following the
aforementioned regularization procedure gives the condition�ÿ

Fÿ F�0; py; pz�
� p 2

z

p 2
x

d3p�
�
F d3p < 0 : �33�

Assuming that F as a function of px has amaximum at px � 0,
characteristic value F0, and characteristic width ~px, while
expression Fÿ F�0; py; pz�

ÿ �
=p 2

x has characteristic value
ÿF0=~p 2

x and the same characteristic width ~px allows the
instability condition to be approximately rewritten in the
form

~px

��
F0

p 2
z

~p 2
x

dpy dpz > ~px

��
F0 dpy dpz : �34�

This inequality can be conventionally interpreted as the
condition for the root-mean-square components of particle
momenta: hp 2

z i > hp 2
x i. In this case, the maximum wave

number, i.e., the boundary of the instability region, is
estimated as

c 2k 2
max �

o2
p

~g

�
~p 2
z

~p 2
x

ÿ 1

�
; �35�
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where the tilde denotes the characteristic values of the
respective quantities. It will be clear from a thorough
analysis of the example below that this rough estimate fairly
well describes the instability region boundary. It becomes
actually exact for a bi-Maxwellian distribution function with
weak anisotropy (see Refs [116, 117]).

Results of this general analysis agree with the known
numerical and analytical solutions (see, e.g., Refs [40, 41, 53,
118±144]), and indicate that the scales of perturbations with
the maximum increment of developing the Weibel type
instability and optimal for magnetic field generation in a
collisionless relativistic plasma are either consistent with the
plasma scale (in the case of strong threshold exceedance and
strong anisotropy of particle distribution) or much greater
scales (weak exceedance and/or weak anisotropy).

Then, the most favorable anisotropy corresponds to the
elongation of the distribution function across the perturba-
tion wave vector k � kx0 and its flattening along it. In
general, instability is not aperiodic �Reo 6� 0� and exists for
the entire cone of wave vectors, encompassing the distin-
guished direction x0 of plasma anisotropy.

It follows from general dispersion relation (25) that the
description of Weibel instability as an instability of the long-
wave soft mode for which jezzj4 1 makes the search for the
increment as a function of wave number easier; it was
implicitly used above. Such situations are well known from
solid state physics and account for the appearance of various
structures incommensurate with the crystal lattice period,
e.g., ferroelectric and magnetostatic ones (see Refs [145±
148]).

It is worthwhile to note that the difference betweenWeibel
instabilities in relativistic and nonrelativistic plasmas is
largely due to different effective particle masses, because
their dynamic properties in the relativistic case are deter-
mined by quantity gm dependent on the Lorentz factor g. It
results, among other things, in an overall decrease in the
increment and suppression of instability of short-wave
perturbations under the effect of the rising mean energy of
particles in the plasma with a given particle distribution
anisotropy. The same factor is responsible for different
contributions to instability from various plasma components
with a similar anisotropy but different particle masses. For a
strongly anisotropic electron±positron plasma in which
electrons and positrons play a similar role, the longest-wave
perturbations with a close-to-maximum increment corre-
spond to the wave number k � op=c

���
g
p

. The maximum
value of increment G when PDF anisotropy responsible for
developing instability is strong enough, on the order of their
relativistic plasma frequency (to be precise,opv=c

���
g
p

, where v
and g � �1ÿ v 2=c 2�ÿ1=2 are the characteristic velocity and
Lorentz factor of these particles). The maximum reduces with
decreasing the degree of anisotropy, while the range of the
wave numbers corresponding to instability narrows till it
disappears.

TheWeibel instability thresholdmay be due to limitations
on the PDF shape, particle collisions, and the presence of a
uniform magnetic field or plasma components with distribu-
tion functions suppressing instability [111, 120, 131]. All these
factors can disturb the aperiodicity of instability; in their
absence, isotropic PDFsmay be so deformed in a collisionless
nonmagnetized plasma that Weibel type instability starts to
develop at any arbitrarily small degree of anisotropy. This
inference follows from the general criterion for instability (27)
in the case of an ellipsoidal distribution function, as

exemplified by the bi-Maxwellian (two-temperature) distribu-
tion [116].

1.3.3 Analysis of Weibel instability for special particle
distributions. The above general assertions agree with the
available results of Weibel instability studies for certain
special particle distributions, including bi-Maxwellian [53,
116, 117, 125, 127, 128], power-law [40], and parallelepipedic
[149], as well as various variants of so-called waterbag
distributions [40, 50, 85, 114]. Specifically, for the relativistic
bi-Maxwellian distribution considered in Ref. [116] and the
ultra-relativistic power-law distribution [40], the maximum
increment behaves as Gmax � opgÿ1=2�T?=Tk ÿ 1�3=2 at a
small degree of anisotropy T?=Tk ÿ 1, and its ratio to the
quantity koptvT obeys the linear law Gmax=koptvT �
T?=Tk ÿ 1, where kopt is the wave number of the most
unstable perturbations, and vT is the characteristic thermal
velocity of particles in the case of transverse T? (normal to k)
and longitudinal Tk (along k) temperatures close to each
other.

A characteristic example ofWeibel instability is presented
by a plasma with the electron distribution function in the
form

f0e�p� � ~F�p?�H�px ÿmecb2ge�H�px �mecb2ge� ;

4pmecb2

�1
0

p? ~F�p?�
����������������������������
1� p 2

?=m 2
e c

2

1ÿ b 2
2

s
dp? � 1 ;

�36�

having the symmetry axis px kk and allowing a variation of
their energy distribution due to an arbitrary nonnegative
function ~F�p?� of a transverse momentum (with ions
assumed to be motionless and compensating electron charge
in equilibrium). Here, H�. . .� is the Heaviside function, i.e., a
step function equaling unity and zero at positive and negative
argument values, respectively.

The distribution function is homogeneous with regard to
longitudinal momentum and, generally speaking, has the
form of a radially inhomogeneous cylinder bounded by
hyperbolic surfaces px � �b2�m 2

e c
2 � p 2

x � p 2
?�1=2 corre-

sponding to the fixed longitudinal velocity v2 � cb2 � const.
In the nonrelativistic case, it can really be a cylinder defined
by conditions jpxj4mecb2, p?4 p0, if function ~F�p?�
vanishes for p? > p0. In the relativistic case, the bases of the
cylinder are no longer flat in the momentum space.

Dispersion equation (25) proves to be quadratic with
respect to o2:

o2 ÿ c 2k 2 ÿ 4pNe 2

mi
ÿ I1 ln

1� b2
1ÿ b2

� I2
b2�o2 ÿ c 2k 2�
o2 ÿ c 2k 2b 2

2

� 0 ;

�37�
I1 � 8p2Ne 2c

�1
0

~F�p?� p? dp?;
�38�

I2 � 8p2Ne 2c

�1
0

~F�p?� p 3
?

m 2
e c

2 � p 2
?

dp? :

Its solution

o2 � 1

2

ÿ
c 2k 2�1� b 2

2 � � O 2
�� � 1

4

ÿ
c 2k 2�1� b 2

2 � � O 2
�2

ÿ c 2k 2b 2
2O

2 ÿ c 4k 4b 2
2 � I2b2c

2k 2�1ÿ b 2
2 �
�1=2

; �39�
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O 2 � 4pNe 2

mi
� I1 ln

1� b2
1ÿ b2

ÿ I2b2 �40�

demonstrates instability �o2 < 0� for

c 2k 2 <
I2
b2
ÿ I1 ln

1� b2
1ÿ b2

ÿ 4pNe 2

mi
; �41�

in excellent agreement with the general expression for the
upper boundary (26) of the interval of wave numbers
responsible for instabilities. The maximum increment can be
found by solving the system of equations involving Eqn (37)
and the condition for the zero discriminant (37) as a quadratic
equation with respect to k 2. The result is the simple
expression

Gmax � b2��������������
1ÿ b 2

2

q  ������
I2
b2

s
ÿ

�������������������������������������������
I1 ln

1� b2
1ÿ b2

� 4pNe 2

mi

s !
: �42�

This maximum increment is achieved at

c 2k 2 � 1

2

"
I2
b2
ÿ I1 ln

1� b2
1ÿ b2

ÿ 4pNe 2

mi

ÿ 1� b 2
2

1ÿ b 2
2

 ������
I2
b2

s
ÿ

�������������������������������������������
I1 ln

1� b2
1ÿ b2

� 4pNe 2

mi

s !2#
: �43�

In the simplest case of uniform filling of the `cylinder', one
has

~F�p?� �
3
��������������
1ÿ b 2

2

q
4pb2m 3

e c
3
ÿ
g 3m�1ÿ b 2

2 �3=2 ÿ 1
� � const �44�

for p?4 p0 [and ~F�p?� � 0 for p? > p0], where gm �
� �1� p 2

0 =m
2
e c

2�1=2�1ÿ b 2
2 �ÿ1=2 is the maximum Lorentz

factor of particles:

I1 � 4pNe 2

me

3
ÿ
g 2m�1ÿ b 2

2 � ÿ 1
� ��������������

1ÿ b 2
2

q
4b2
ÿ
g 3m�1ÿ b 2

2 �3=2 ÿ 1
� ; �45�

I2 � 4pNe 2

me

3
�ÿ
g 2m�1ÿ b 2

2 � ÿ 1
�ÿ ln

ÿ
g 2m�1ÿ b 2

2 �
�� ��������������

1ÿ b 2
2

q
4b2
ÿ
g 3m�1ÿ b 2

2 �3=2 ÿ 1
� :

�46�

Let us denote the transverse velocity of the fastest particles
from the distribution normalized to the speed of light as

b? �
�������������������������
1ÿ b 2

2 ÿ
1

g 2m

s
; �47�

instability region (41) in variables b2, b? can be depicted
graphically (Fig. 1). In the nonrelativistic case, when
b2; b?5 1, the condition for the existence of instability
turns into the inequality b? > 2b2. It is easy to check that
the cylindrical distribution is more stable with respect to
Weibel instability than the hollow tubular distribution of the
same dimension in which all particles have identical trans-
verse momenta p? � p0 (cf. Ref. [114]).

The dispersion curves for gm � 10 and various ratios
b?=b2 between maximum transverse and longitudinal velo-
cities are plotted in Fig. 2. Specifically, the maximum (relative
to ope=

������
gm
p

) increment is achieved for b2 5 1, gm 4 1 and
tends toward ope=�

���
2
p

gm�1=2. It is easy to show that in the
relativistic case the range of the wave numbers subjected to
instability for the uniformly filled cylindrical distribution

1.000

0.762

0.647 1.000 b2

b?

0
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Stability

Figure 1. Regions of parameters b2, b? at which plasma with the electron

distribution function (36), (44) in the form of a uniformly filled cylinder is

subjected or not to Weibel instability with the wave vector parallel to the

symmetry axis of the distribution. The dashed curve corresponds to

equation b 2
2 � b 2

? � 1. The ion-to-electron mass ratio mi=me � 1837.

For comparison, the dashed-dotted curve shows the boundary of

instability for the tubular distribution.
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Figure 2.Dispersion curves (39) with substitution of expressions (45) and (46) at gm � 10,mi=me � 1837 and different b 2
?=b

2
2 values. Frequency Reo and

instability increment G are normalized to �4pNe 2=megm�1=2, and wave number k � kx is normalized to �1=c��4pNe 2=megm�1=2. The dashed line

corresponds to the straight line o � ck over which the dispersion curve of the electromagnetic (stable) wave of no interest to us is depicted.
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under consideration is wider and the growth rates higher than
the respective values for the tubular distribution, where the
maximum increment amounts to ope=

��������
2gm

p
.

1.3.4 Estimates of a saturating magnetic field. The nonlinear
dynamics of relativistic Weibel instability, unlike the linear
ones, elude such strict mathematical analysis. The available
occasional numerical studies [40, 51, 52, 56, 60, 87, 96, 144,
150±152] give evidence that instability is saturated as the
degree of PDF anisotropy decreases and spatially quasi-
chaotic current structures are formed, part of them having a
long-lived magnetic field due to adequate self-consistency
with the spatially inhomogeneous anisotropic PDF. This
section is confined to the simple qualitative estimation of
magnetic fields saturating instability. For certainty, we
consider a single sort of particles. Specific features of
instability saturation related to the multicomponent plasma
composition are discussed in Refs [50, 54, 153].

The linear stage of instability development definitely
terminates when the newly formed electromagnetic perturba-
tions markedly alter the momentum distribution of the
particles responsible for instability and radically mix their
trajectories on the field nonuniformity scale, if harmonics are
generated within a wide enough wave number range Dk.

Various estimates of a saturating magnetic field are
discussed in Refs [33, 40, 41, 50, 153]. The simplest estimates
of the saturation level are obtained on the assumption that the
rotation angle of a particle's velocity in the magnetic field Bsat

being generated becomes close to unity during the time on the
order of the reverse increment time. Then, the cyclotron
frequency in the quasi-uniform saturating magnetic field
becomes equal to the instability increment G:

eBsat

mcg
� G : �48�

Substituting the maximum increment in the form of G �
�v=c�op=

���
g
p

and taking into consideration that such a growth
rate is realized for the wave numbers k � op=c

���
g
p

yield

B 2
sat=8p

Nmc 2g
� 1

2

v 2

c 2
;

B 2
sat=8p

Nmv2=2
� g : �49�

This means that the energy of a magnetic field saturating
Weibel type instability can be of the same order of magnitude
as the particle kinetic energy in both relativistic and non-
relativistic plasmas at G � kv. If inequalities G4 kv or
G5 kv are satisfied for the wave numbers of harmonics
growing with an increment on the order of G, the saturating
(quasiuniform) magnetic field will be weaker and will not
reach the `equipartition' magnitude.

In the difficult-to-realize hypothetical case of G4 kv,
saturation takes place when the change in particle momen-
tum over inverse increment time under the effect of the
inductive electric field Esat � GBsat=kc accompanying the
appearance of a magnetic field becomes equal to the
characteristic particle momentum mvg, i.e., eEsat=G � mvg.
In this case, the saturating magnetic field is thus independent
of the growth rate: Bsat � mcgkv=e. This estimate of the onset
of the nonlinear stage corresponds to `magnetization' of
plasma particles when their gyroradius becomes equal to the
scale of growing large-scale perturbation.

In the case of a small exceedance of the Weibel instability
threshold (or in the case of weak anisotropy), when G5 kv, a
relatively large-scale magnetic field with the wave numbers

k5op=c
���
g
p

is generated and most particles have time to
undergo displacements over the distance equaling many
harmonic wavelengths of this field in the inverse increment
time, as they move in the magnetic field of alternating signs
and change their velocity direction much more slowly, on
average, than in the magnetic field of constant signs. As a
result, the deflection angle for a harmonic in space perturba-
tion is estimated as �eB=mcgG��G=kv�; in the case of
generation of a large number of independent random
harmonics in a wide wave number range Dk � k, the
particles' velocity deflection angle varies in accordance with
the diffusive transport and reaches a value on the order of
f � �eB=mcgG� �����������

G=kv
p

in the inverse increment time. In the
last most realistic case, the energy density of the magnetic
field at the time of saturation approaches a value around

B 2
sat

8p
� 1

2
Ngmv 2

�
k 2c 2

o2
p=g

��
G 3

k 3v 3

�
; �50�

if the saturation condition relies on the equality between the
characteristic magnetic field scale 1=k and the root-mean-
square of the additional particle displacement occurring in the
inverse increment time due to diffusive velocity fluctuations
on the order of fv.

Both coefficients in parentheses in relation (50) are
smaller than unity and define the difference between this
estimate and the maximally possible value (49). Naturally,
maximum energy density is achieved in magnetic fields with
scales around 2p=k corresponding to the maximum incre-
ment. These scales are small compared with the gyroradius of
free particles. For weak-anisotropy PDFs with G5 kv, the
known estimate of energy density in a saturating magnetic
field, corresponding to the approximate equality of increment
G to the bounce-oscillation frequency

�������������������������
kveBsat=gmc

p
of the

particles in the vicinity of zero magnetic field regions [5, 33,
50, 150], is likely to underestimate the true value by a factor of
kv=G, since, in general, only a small number of particles are
subject to bounce-oscillations. Certainly, these estimates of
the magnitude of a saturating magnetic field for Weibel
instability of this sort of particles and the role of particles
trapped by the magnetic field should change under special
conditions or geometric restrictions imposed by external
influences, the selection of some unstable spatial harmonics
or the contribution from other plasma fractions, etc.

In what follows, we consider various current structures
formed by the self-consistent motion of both transit particles
and those trapped by the magnetic field. The latter are always
present in some number, at least in association with certain
directions of motion corresponding to bounce-oscillations in
the vicinity of the magnetic field minimum. However, the self-
consistent current structures under consideration, generally
speaking, allow an arbitrary relationship between the particle
gyroradius and structure period, including the possibility of
situation with rH 5 1=k, when practically all particles become
trapped (`magnetized'). Because the saturation of Weibel
instability occurs earlier, for krH 0 1 (see above), the
formation of such current structures with strongly magne-
tized particles is possible only due to essentially nonlinear
plasma dynamics or under the influence of external factors.
To recall, of primary importance (see Section 1.2) is the
description of a self-consistent magnetic field and current
configurations on scales greater than or equal to plasma ones,
when charge separation can be disregarded, at least in the
absence of external factors.
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2. Analytical description
of magnetostatic neutral structures in a plasma
with arbitrary energy distribution of particles

2.1 Method of invariants of particle motion
The description of stationary configurations of the magnetic
field in a collisionless plasma is based on Vlasov's kinetic
equations (4) for the distribution functions fa�r; p� of particles
over momenta p � gamava of all sorts of particles a and
magneto- and electrostatics equations. Certainly, only solu-
tions bounded in the entire space are considered in the
absence of boundaries.

Equations divB � 0 and rotE � 0 are satisfied automat-
ically when moving to a description of fields B � rotA,
E � ÿHj by vector and scalar potentials, A and j, the
equations for which have the form

rot rotA � 4p
c

X
a

Naea

�
fava d

3p ;
�51�

Dj � ÿ4p
X
a

Naea

�
fa d

3p :

Because the phase space of a single particle is hexadimen-
sional, the trajectory of each particle in stationary fields is
chosen unambiguously based on a set of five coordinates,
bearing in mind that there is such a set of five independent
functions �I a1�r; p�, I a2�r; p�, Ia3�r; p�, Ia4�r; p�, I a5�r; p��,
the values of which are constant along particle trajectories. In
the stationary state, the distribution function has a constant
value at the phase trajectory of each particle [106, 154] and
thus it can be expressed via functions I1; . . . ; I5:
fa�r; p� � fa�I a1; I a2; I a3; Ia4; I a5�. In this case, kinetic equa-
tion (4) is satisfied automatically for any dependence of fa on
I a1; . . . ; Ia5. Such a substitution of variables is of highest
practical interest when several first functions Ia1�r; p�,
I a2�r; p�; . . . can be written out analytically, i.e., in the form
of explicit integrals of motion, while the remaining ones �I a�
are unrelated to the distribution function fa [155, 156].

One of the integrals of motion in stationary fields is the
particle energy I a1 � E � eaj�

��������������������������
m 2

a c
4 � c 2p2

p
(its existence

is due to the absence of explicit time dependence in all starting
equations).

In what follows, we confine ourselves to the analysis of
stationary configurations homogeneous along a certain z-axis
to preserve for each particle the projection of its generalized
momentum onto this axis: I a2 � Pz � pz � �ea=c�Az.

If, in addition, a system is uniform along the y-axis, as
everywhere below except Section 2.4, the projection of the
generalized momentum on this axis: I a3� Py � py��ea=c�Ay

is also an integral of motion (see Sections 2.2 and 2.3).
The integral of motion for a system cylindrically

symmetric with respect to the z-axis (pinch-like configura-
tion) is the projection of the generalized momentum onto
this axis: I a3 � Lz � xpy ÿ ypx � �ea=c��xAy ÿ yAx�. In
such a case, it is convenient to use a cylindrical coordinate
system. In the case of z-pinch, when the current is parallel to
the z-axis and does not depend on z (according to the law of
charge conservation), there is actually a single azimuthal
component Bj of the magnetic field, and the problem
reduces to an unidimensional magnetostatic equation hav-
ing very few known exact solutions. Therefore, we only
briefly mention the problem of cylindrically symmetric
filaments (see Section 2.4), even though it is of importance

for cosmic plasma physics, e.g., in the collisionless shockwave
theory. In the case of y-pinch with only the azimuthal current
component depending in the general case on z, the magnetic
field is essentially two-dimensional and the exact solution of
the respective two-dimensional magnetostatic equation is
even more difficult to find. There are examples of such a
solution for Maxwellian and k-distributions. It is a self-
similar structure defined by the unidimensional equations
for a magnetic flux; for the k-distribution with parameter
k � 7=2, it is described by a simple analytical formula [157].
Such solutions can be helpful for modeling global magneto-
spheric planetary and stellar structures.

When distribution functions depend only on the integrals
of motion, fixation of the shape of these dependences
immediately after integration on the right-hand sides of
equation (51) turns the integral system into an ordinary set of
partial differential equations, with one notable subtlety being
that different regions of space may contain particles having
identical values of all integrals of motion with mismatched
trajectories in the phase space [158±160] (e.g., two particles
with equal energies oscillate in the periodic electrostatic
potential near two different minima of this potential). The
fact that the values of the distribution function at these two
trajectories may be different is not in conflict with a stationary
kinetic equation. To construct distributions of this type, it is
necessary to solve the equations separately in different parts of
space and thereafter join the solutions together at the
boundary. An example of this procedure for an electrostatic
problem is presented in Ref. [161]. We confine ourselves to
the construction of solutions with universal dependences
fa�I a1; . . . ; Ia5�, identical for all points in space.

Note also that, for certain magnetic field configurations
with frequent particle oscillations on the field nonuniformity
scale, the particle motion can be described based on
additional approximate (quasiadiabatic) invariants. Exam-
ples of such quasiadiabatic invariants are well known for
trapping configurations, such as the first (magnetic moment-
related) and the second (longitudinal) adiabatic invariants
[162]. Other examples of importance for describing particle
motion in the tail of Earth's magnetosphere are invariants
Iz � �2p�ÿ1

�
pz dz and Iw � �2p�ÿ1

�
pw dw [34, 35, 163, 164].

However, unlike exact invariants, they lead in general only to
the integral relation of current and charge densities to vector
and scalar potentials, and allow only an approximate
description of the contribution from various particle frac-
tions to the self-consistent current sheet. For this reason, they
will not be used in the present review, which is confined to
exact solutions (an example of the approximate solution for
the Harris sheet with a weak external transverse magnetic
field is presented in Ref. [165]).

Options for an exact solution of stationary Vlasov±
Maxwell equations with nonzero charge density and scalar
potential are very limited and were discussed largely in
connection with a narrow class of cylindrically symmetric
rotating plasma configurations [36, 166] (analogous to the
known MHD configurations [79, 167]), in which particles
have `shifted' Maxwellian or k-distributions. (We are not
interested here in the well-known currentless stationary
charge density distributions in the plasma [161, 168, 169],
the search for which is also based on the method of invariants
of particle motion.) As a rule, electrostatic structures with
nonzero charge density inside the plasma prove to be
unstable, at least on scales much greater than the Debye
scale, as a consequence of Debye screening [166, 169, 170].
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The presence of quasi-stationary charge separation cannot be
ruled out in narrow layers with substantially changed plasma
properties, e.g., at the plasma border determined by the
external magnetic field or in the region of contact between
plasma structures with markedly different parameters, which
is stabilized by the magnetic field. Today, however, there are
no generally accepted concepts of such current structures and
the more so their stability [171]. The authors of Refs [36, 160,
165] took account of nonzero charge density in the presence of
an external magnetic field and external forces, e.g., gravity, or
other invariants of motion in PDFs, such as angular
momentum in cylindrically symmetric current structures.

In what follows, we confine ourselves to neutral current
configurations with j � 0 and r � 0. The frames of reference
in which this condition is fulfilled are sometimes called
De Hoffmann±Teller systems [34, 172, 173]. Certainly, such
a condition fulfilled in one frame of reference (being used) is
not necessarily satisfied in other inertial frames of reference
moving at an angle to the magnetic field. The stationarity of
the whole structure remains intact in such frames, as is well
known for the Harris sheet with shifted Maxwellian distribu-
tions of electrons and ions that contains a nonuniform electric
field and charge density correlated with it in frames of
reference moving along the current density [174]. The same
is true of relativistic self-consistent current structures [30,
175±178], e.g., with Juttner particle distribution, but is not
always taken into consideration when estimating the role of
electrostatic fields and violation of quasineutrality in analy-
tically sought self-consistent current structures; such an
incorrect statement of nonfulfillment of the condition of
plasma quasineutrality can be found in Ref. [26].

Because of the difficulty of the magnetostatic problem in
question, some of the solutions obtained explicitly or
implicitly apply only to part of the particle fractions present
in the plasma but allow the inclusion of other fractions or
background plasma to ensure fulfillment of some natural
conditions, e.g., nonnegativity of the concentrations of all
fractions or general electroneutrality of the plasma. For
example, the last condition can be satisfied by assuming that
currents are produced by electrons alone, solving problem
(51) for electrons, and adding the resting positive particles
(ions or positrons) with the same spatial density distribution
to the final solution. Another way to ensure plasma electro-
neutrality consists of using charge inversion of the particle
distribution function, i.e., by setting f��p� � fÿ�ÿp� � f �p�,
N� � Nÿ � N=2 at each point, with `�' and `ÿ' standing for
the quantities related to positively and negatively charged
particles, respectively.

Certainly, the application of the exact solutions thus
obtained describing neutral current configurations to the
interpretation of plasma structures in real experiments or
numerical calculations implies the possibility of neglecting
overall charge density or taking account of disturbed
electroneutrality in the solutions being used by any expan-
sion of PDFs modeling the structure of the magnetic fields
and currents using equations (51). As regards the nonsta-
tionary solutions of the Vlasov±Maxwell equations describ-
ing the transition of a nonequilibrium plasma to the
magnetostatic configurations of interest and, in particular,
the formation of nonlinearWeibel waves or solitons [33, 171],
there is no clear analytical picture of the situation due to a
number of complicating circumstances, e.g., it is impossible,
in general, to satisfy the kinetic equation with the use of PDFs
depending only on invariants of particle motion; the equa-

tions for the scalar and vector potentials prove to be related,
generally speaking, nonlinearly; obtaining physically mean-
ingful solutions requires consideration of external forces and/
or certain boundary conditions, etc. These matters are
beyond the scope of the discussion below.

2.2 Self-consistent distributions dependent
on three invariants of particle motion
and current sheets with magnetic field shear
Let all quantities depend only on a single spatial coordinate x,
and the magnetic field be perpendicular to the x-axis. Then, it
can be described with the use of the vector potential having
two components, Ay�x� and Az�x�:

By � ÿ dAz

dx
; Bz � dAy

dx
: �52�

The magnetic lines of force of such a field are by necessity
straight lines orthogonal to the x-axis, and integrals of
particle motion are the total momentum and two compo-
nents of the generalized momentum:

p �
���������������������������
p 2
x � p 2

y � p 2
z

q
; Py � py � eaAy

c
; Pz � pz � eaAz

c
;

�53�
while any distribution function of the form fa � fa p;Pz;Py

ÿ �
identically satisfies the kinetic equation [106, 179]. The second
equation in system (51) gives the condition of plasma
neutralityX

a

Naea

�
fa�r; p� d3p � 0 : �54�

In general, current sheets with the shear of the magnetic
field (52) are described by two coupled equations

d2Ay; z

dx 2
� ÿ4p dpxx

dAy; z
; �55�

in which current is expressed through the xx component of
the tension tensor depending on the components of the vector
potential (see, e.g., papers [24, 159]):

pxx �
X
a

Na

�
pxvx fa d

3p ; �56�

1

c
� j� B�x �

dpxx
dx

; �57�

with plasma pressure nonuniformity being totally determined
by the spatial dependence of the vector potential in accor-
dance with the known balance relation

B 2
y � B 2

z

8p
� pxx � const : �58�

In the specific case of Maxwellian distribution functions
for which the energy dependence is exponential, this compo-
nent of a tension tensor reduces to the sum of products of
concentrations by temperature for the particles of all
fractions [156, 173, 180]. Generally, the same profile of the
xx component can be provided by different anisotropic
distribution functions, and unambiguous restoration of their
dependence on generalized momenta Py and Pz through a
given profile pxx�x� is impossible, in contrast to the special
case of Maxwell distribution functions [3, 7, 13, 159, 181].

It is worthwhile to note that, according to Refs [7, 24, 155,
159, 160, 170, 173, 182], it is possible to take account of weak
disturbances of plasma quasineutrality for self-consistent
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magnetostatic structures described by equation (55) without
using the Poisson equation for the electrostatic potential j,
when its presence in the particles' distribution functions by
virtue of energy invariant c

����������������������
m 2

a c
2 � p 2

a

p � eaj alters the
dependence of the xx component of the tension tensor pxx
on the Ay; z components of the vector potential mediated
through the j � j�Ay; z� bond imposed by the condition
r � ÿqpxx=qj � 0. The first attempts to apply this condi-
tion in the analytical and numerical searches for self-
consistent structures with violated quasineutrality were
reported in Refs [155] and [159], respectively, but hopes to
obtain physically meaningful analytical solutions in such a
form remain unjustified.

The solution of the system of coupled equations (55) is
known only for very special cases that can hardly be regarded
as representative, including those related to PDFs, particu-
larly taking into account the functional freedom in distribu-
tions correlated with fixed configurations of the magnetic
field and current (see, e.g., Refs [7, 13]). The first example of
such a solution with a shear in the form of a combination of a
uniformmagnetic field and two sheets having identical Harris
current profiles tracing tanh x [2] and orthogonal magnetic
fields was found in Ref [3] for `shifted' Maxwellian distribu-
tions of electrons and ions having similar temperatures. In
this example, the profile of the current directed along the
uniform magnetic field is determined by the Harris current
sheet in which distributions of particles of all types contain
the same exponential dependence on the vector potential, and
the orthogonal current corresponds to the generalized Harris
sheet in which particle distributions contain a linear super-
position of two exponential dependences on the vector
potential differing by a factor of 2 (see Section 3.2.1).

A simpler example discussed in Refs [7, 13, 24] concerns
with an elliptical rotation of the magnetic field vector
according to the harmonic law with the displacement along
the inhomogeneity x-axis for a nonrelativistic plasma with
distribution functions whose anisotropic part is the product
of the Maxwellian distribution of particles over energy and
their generalizedmomentum squaredP 2

y � P 2
z . Reference [38]

demonstrates that this solution also holds for a relativistic
plasma with arbitrary (non-Maxwellian) particle distribu-
tions over energy, even different for various sorts of
particles. In addition, it is easy to show that the energy
density of plasma particles cannot be much lower than that
of the magnetic field, while the spatial scale of its changes is
not confined by the particles' gyroradii and can be arbitrarily
small, provided the concentration of particles is sufficiently
high.

The general approach to the construction of such
solutions with the shear of the magnetic field for the arbitrary
particle distribution over energies is described in Section 2.6.
It allows us to obtain current sheets with the magnetic field
shear by pairwise combination of any known shearless
current sheets, with the distribution functions in each sheet
being dependent not only on the energy but also on one of the
two orthogonal components of the generalized momentum
Py; z. The first report on such neutral configurations appears
to be implicitly presented by Kan [173], who used the
Maxwellian distribution over energy and superposed the
Harris and Nicholson [183] sheets in which particle distribu-
tions exponentially depend on the linear and quadratic
functions of the generalized momentum, respectively.
Strictly speaking, this solution is possible only in the presence
of an external magnetic field, along which the flow of particles

forming the Harris sheet is directed, and which ensures the
finite thickness of the Nicholson plasma sheet generating the
diamagnetic current along the magnetic field of the Harris
layer, i.e., orthogonal to the external magnetic field. Such
local current configurations also existing in the absence of an
external magnetic field have been examined, mostly numeri-
cally, starting from Refs [8, 173, 182, 184±186], and by later
authors for concrete dependences of particle distribution
functions on generalized momenta, such as exp and erf,
allowing anisotropic modifications of Maxwellian distribu-
tions.

There is a broad class of self-consistent current structures
for which equations (55) comprise a system of two coupled
nonlinear oscillators accounting for a rather complicated,
even chaotic, twisting of magnetic field lines during shift
along the x-axis (shear). Thus far, this problem has also been
explored only numerically; for example, the chaotic character
of a magnetic field shear was demonstrated in Ref. [22], as
exemplified by distribution functions in the form of quadratic
polynomials of two components of the generalized momen-
tum yielding equations of the following form:

d2Ay; z

dx 2
� k 2Ay; z � EAy; zA

2
z; y � 0 ; �59�

where k and E are constants.
The authors of Refs [20, 24, 25, 176, 181, 187±190]

considered flat sheets with a magnetic field shear under the
additional condition j� B � 0, i.e., for forceless configura-
tions in which the magnitudes of the xx component of the
tension tensor and the magnetic field are constant [see
Eqn (57), (58)]. The simplest example is illustrated by sheets
with a helical magnetic field [24, 187±189, 191] By �
B0 sin �kx�, Bz � B0 cos �kx�, in which distributions fa can
be arbitrary (nonnegative) functions of both relativistic
energy (as in the above case of not strictly helical shear) and
generalized momentum squared P 2

y � P 2
z , different for

particles of different kinds.
The only known periodic forceless sheet with an inhomo-

geneousmagnetic field shear is the so-called Jacobi sheet [190]
with the spatial dependence of the magnetic field in the form
of elliptic functions, consistent with the modifiedMaxwellian
particle distribution containing combinations of cosinusoidal
and two different exponential dependences on the generalized
particle momenta. It is easy to see again, following paper [38],
that this solution is naturally extended to the case of a
relativistic plasma with arbitrary particle distributions over
energies. In the limiting case of distribution functions
containing a single exponential dependence on the general-
ized particle momentum in addition to the cosinusoidal
dependence, the Jacobi sheet reduces to a localized current
sheet referred to as the forceless Harris sheet and describes the
rotation of the magnetic field through 180� (domain wall
type), as shown in Refs [23, 25, 176, 181]. This solution is
actually the known Harris sheet with a shearless magnetic
field supplemented by a plasma sheet creating the orthogonal
component of the magnetic field and maintaining constant
total kinetic pressure of the particles and, therefore, of the
magnetic field modulus [see relation (58)] (as in any one-
dimensional forceless configurations).

It follows from the equality of Lorentz force and pressure
force densities (57) that self-consistent sheared structures do
not allow the addition of any, even uniform, external
magnetic field leaving them nonmodified. When the shear is
absent, i.e., there is only a single Cartesian component of the
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magnetic field, e.g., By, only an external uniform magnetic
field directed along the current (along the z-axis) will not
introduce distortions into the structure in the case of
cylindrical symmetry of the distribution function with
respect to this axis, i.e., in the absence of dependence of
function fa on invariant Py (see Section 2.4). In the last case,
the addition of a uniformmagnetic field leads to a shear of the
force lines of the general magnetic field, as shown in Ref. [7]
for the Harris sheet. Such an application of the external
magnetic field in the case of distribution functions depending
only on invariants E and Pz does not change as well two-
dimensionally inhomogeneous structures with a self-consis-
tent magnetic field lying in the heterogeneity plane.

The nontrivial approach to the construction of self-
consistent current sheets with a wide class of distribution
functions ensuring transition between plasma regions with a
uniform differently oriented magnetic field was proposed by
Alpers [3] (see also Refs [14, 159, 173, 176]). The author
analyzed monotonic profiles of vector potential components
Ay; z�x� and monotonic dependences of electron and ion
concentrations on these components for thermal energy
distributions with temperature T, allowing for the one-to-
one association of these dependences with the distribution
functions of the generalized momentum based on the Gauss
transform actually appealing to the expansions of the electron
and ion distribution functions in terms of Hermitian poly-
nomials. In a specific case, when these expansions are reduced
to superpositions of two exponential functions, one of which
depends on one and the other on the other components of the
generalized momentum, Py and Pz, this association allowed
the discovery of a class of distributions correlated with
magnetic field rotation through a finite angle in accordance
with the laws

Bz�x� � B1 tanh �kx�; By�x� � B2

ÿ
1� tanh �kx�� ; �60�

where k, B1, and B2 are constants (an analogous but
symmetric current sheet with B1 � ÿB2 and an additional
uniform magnetic field B2 directed along the z-axis is
considered in Ref. [7]). At the periphery of one side of the
sheet �x! ÿ1�, the magnetic field is directed along the
z-axis with currents of electrons and ions in finite concentra-
tions flowing along it in the opposite directions. At the
periphery of the other side of the sheet �x! �1�, the
magnetic field is directed at an angle to the z-axis (and the y-
axis), while electrons and ions in finite concentrations do not
create currents. Current sheets with a shear, similar to the last
one and, in essence, not requiring the analysis of distributions
depending on three invariants of particle motion, are
considered in more detail in Section 2.6.

2.3 Grad±Shafranov equation
for current sheets with a shearless magnetic field
Let us consider flat sheets without a magnetic field shear,
limiting the discussion to the vector potential with a single
nonzero component Az�x� �Ay � 0, Bz � 0� but preserving
the dependence of the distribution function on three invar-
iants (53): p, py, Pz. It is convenient to choose the vector
potential having a single nonzero component Az. Compo-
nentsAx andAy in the chosen geometry of the problem can be
set equal to zero through a gauge transformation. In this case,
currents flow along the z-axis, and the magnetic field is
directed along the y-axis (a variant with the direction-
variable magnetic field is discussed in Section 2.6).

Then, the AmpeÁ re law is expressed as follows:

d2Az

dx 2
� ÿ 4p

c

X
a

Naea

�
fa

�
p; pz � ea

c
Az; py

�
pz

maga
d3p ; �61�

where the right-hand part does not involve explicitly spatial
coordinates and is some function ofAz (at a given dependence
of functions fa on integrals of motion). Equation (61) is
termed the Grad±Shafranov equation [158, 192]; such equa-
tions are well known and widely used in MHD (see, for
instance, book [167]).

For the neutral current sheets of interest, this equation
was analyzed in Refs [3, 7, 14]. It allows any particle
distributions over momenta py responsible for the absence
of current along the y-axis. These distributions do not
influence the structure of the current sheet and in the simplest
case can be chosen in the conventional form of a shifted
Maxwellian distribution [17] or even in the form of
d-functions [193±195], which simplifies the interpretation of
observational data, e.g., on the current sheet in the tails of
Earth's and Jupiter's magnetospheres. In this context, it is
worthwhile to mention the implicit solution of the Grad±
Shafranov equation [14, 17] that is actually a combination of
the known Harris [2] and Channell [7] solutions, i.e.,
described by a modified Maxwellian distribution containing
quadratic dependence on Pz.

Because the magnetic field is directed along the y-axis, the
projection of the particle momentum onto this axis is not
changed under the effect of the magnetic field, which, in turn,
remains unaltered against the particle motion along the
y-axis. It is formally reflected in that the projection py enters
equation (61) only via the relativistic factor ga. Indeed, the
distribution function can be regarded as a set of `sheets' with
different fixed py values that do not intermix. The current
density is determined by the total contribution from all such
sheets, which allows the Grad±Shafranov equation to be
rewritten more exactly taking into account that pt �
�p 2 ÿ p 2

y �1=2 � �p 2
x � p 2

z �1=2 is also invariant if p and py are
conserved, fa can be represented without loss of generality as
functions of pt, pz � eaAz=c and py, and then it is possible to
move to cylindrical coordinates py, pt,j, so that pz � pt cosj,
px � pt sinj:

d2Az

dx 2
� ÿ 4p

c

X
a

Naea

�1
0

� 2p

0

�1
ÿ1

fa

�
pt; pt cosj� ea

c
Az; py

�

� cp 2
t���������������������������������

m 2
a c

2 � p 2
t � p 2

y

q cosjdpy dj dpt : �62�

Denoting the result of internal integration over py by

Fa

�
pt; pt cosj� ea

c
Az

�
�
�1
ÿ1

fa

�
pt; pt cosj� ea

c
Az; py

�
� cp 2

t���������������������������������
m 2

a c
2 � p 2

t � p 2
y

q dpy �63�

yields the transformed Grad±Shafranov equation

d2Az

dx 2
� ÿ 4p

c

X
a

Naea

�
�1
0

� 2p

0

Fa

�
pt; pt cosj� ea

c
Az

�
cosj dj dpt : �64�
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The possibility of hitting on analytical solutions to this
equation is related in one way or another to a certain fixation
of the dependence of function Fa on its arguments and
remains poorly known for any general case. In this context,
it is worthwhile to mention several attempts at the numerical
solution of this problem, e.g., by using expansions of
distribution functions in terms of Hermitian polynomials
[14, 159, 182] and the possibility of moving to the solution of
a simplified problem by practical exclusion of the dependence
on one of the two components of the generalized momentum
[6, 7, 25, 176±178, 194, 196] (see below).

It should be noted that PDFs arising from self-consis-
tent solutions of equations of the Grad±Shafranov type can
be highly varied, e.g., non-Maxwellian in terms of energy
and asymmetric or double-humped in terms of coordinates;
their realization in nature and experiment is limited only by
the requirement of sufficient stability of current sheets,
which has thus far been investigated in fragmentary studies
(mostly numerically) for a narrow class of perturbations
and only for a few examples of current sheets both with and
without the magnetic field shear (see, e.g., Refs [8, 38, 175,
197±205]).

2.4 Two-dimensionally inhomogeneous magnetic
structures and current filaments
with cylindrically symmetric particle distributions
Abandoning the requirement for problem homogeneity along
the y-axis makes necessary only the first two of the three
invariants of motion (53). The choice of fa in the form of a
cylindrically symmetric function depending on these two
invariants, namely

fa � fa

�
p; pz � ea

c
Az

�
; �65�

gives the Grad±Shafranov equation in the form

DxyAz � q2Az

qx 2
� q2Az

qy 2

� ÿ 4p
c

X
a

Naea

�
fa

�
p; pz � ea

c
Az

�
pz

maga
d3p : �66�

This time, it is convenient to move to spherical coordinates
p; y;j �pz � p cos y, px � p sin y cosj, and py � p sin y sinj�
and perform trivial integration over the azimuthal angle j,
and to move from integration over the polar angle y to
integration over the momentum projection pz:

DxyAz� ÿ 8p2

c

X
a

Naea

�1
0

� p

ÿp
fa

�
p; pz� ea

c
Az

�
pz p

maga
dpz dp :

�67�

The right-hand side of expression (64) or (67) is a function
of Az, which is frequently convenient to represent for the
qualitative analysis of solutions of the equation in the form
ÿdU�Az�=dAz, expressing it through another function,
U�Az�, called the Grad±Shafranov potential. Then, one-
dimensional equation (64) takes the form of the nonlinear
oscillator equation well known from classical mechanics:

d2Az

dx 2
� ÿ dU�Az�

dAz
; �68�

while two-dimensional equation (67) is expressed in the form

DxyAz � ÿ dU�Az�
dAz

: �69�

Notice that the potential U�Az� has the dimension of energy
density; it is easy to show that it differs from the component
pxx (equal to pyy) of the tension tensor only in the coefficient,
as in the one-dimensional case (55), (56), when the cylindrical
symmetry of distribution functions was not mandatory and
they could depend on three invariants of particle motion.

For certain types of dependence of functions Fa and fa on
their arguments, integrals on the right-hand sides of expres-
sions (64) and (67) can be taken analytically, thereby reducing
the problem to an ordinary second-order differential equa-
tion in the one-dimensional case, and to a partial differential
equation in the two-dimensional case. Concrete examples will
be considered below.

To begin with, let us touch a cylindrically symmetric case
in which the current flows along the z-axis, and Az depends
only on the radial coordinate r �

����������������
x 2 � y 2

p
, but not on the

azimuthal angle. In this case, the Grad±Shafranov equation
(69) has the form

d2Az

dr2
� 1

r
dAz

dr
� ÿ dU�Az�

dAz
: �70�

The analog of this equation in classical mechanics is the
equation of motion of a particle in the potential U�Az� in the
presence of viscous, i.e., proportional to velocity, friction.
The role of time is played by radius r, and the role of velocity
by quantity dAz=dr. The coefficient of friction depends on
`time' r and is proportional to rÿ1. The boundary conditions
also change in comparison with the one-dimensional planar
layered case. Coordinate r varies within the semiaxis from
zero to infinity, and the magnetic field at point r � 0
vanishes, i.e., dAz=drjr�0 � 0 (otherwise, an infinitely high
current density would exist along the z-axis ar r � 0 in
accordance with the formula for the azimuthal magnetic
field Bj � 2I=cr, where I is the total current inside a cylinder
with radius r). In the `mechanical' analogy, this means that
the particle begins to move at r � 0 without an initial speed.
In fact, only three qualitatively different options are concei-
vable.

I. The region of values of the vector potential component
Az is restricted; as r grows, the value ofAz infinitely oscillates
near the bottom of the potential well. In the case of general
position, the shape of the well can be approximated by a
parabolic profile following the decrease in the amplitude of
these oscillations; then, the form of the solution becomes
reminiscent of the Bessel function. Amplitudes of oscillations
Az of a magnetic field, and those of the current density
decrease with increasing r as 1=r. If the expansion of the
Grad±Shafranov potential into a Taylor series near the
bottom of the potential well starts from a term other than
the quadratic one, the infinite oscillations also appear but
their period increases with r. The resulting current config-
uration comprises, formally speaking, an infinite set of
concentric current cylinders, of which the outer ones have,
as a rule, a higher overall current and lower current density
than the inner ones.

II. The region of values of the vector potential component
Az is restricted, and its derivative with respect to variable r
(the azimuthal component of a magnetic field) changes the
sign a finite number of times. In this case, the `motion' of Az
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begins at r � 0 from rolling down the slope of the potential
well and ends at the local maximum.1 A few reflections from
the walls of the potential well higher than the final peak may
occur between the beginning and end of motion. The total
current is zero, and the magnetic field decreases with growing
r faster than 1=r. In the case of general position, the peak at
the potential profile has the quadratic form, whichmeans that
the magnetic field and current density decrease exponentially
with growing r.

III. The value of the vector potential componentAz varies
infinitely, which necessarily means that Az changes mono-
tonically and the azimuthal component of the magnetic field
has the same sign at all r. The current density may be an
alternating-sign quantity; however, the current flowing
through any round plot perpendicular to the z-axis with the
center at this axis has only one sign. The total current can be
either finite or zero-valued. A case is possible in which the
plasma localized near the z-axis has a density exponentially
tending toward zero with distance from this axis.

The first example covers the analytical generalization of
the known Bennett pinch to the case of arbitrary energy
distributions, which corresponds to the exponential depen-
dence of PDFs on the generalized momentum: fa �
Fa0�p� exp �zaPz=mac�. In this case, the Grad±Shafranov
equation takes the form

d2Az

dr2
� 1

r
dAz

dr
� ÿW0

A0
exp

�
Az

A0

�
; �71�

whereA0 � mac
2=zaea (assuming this quantity to be the same

for all kinds of current-carrying particles a), while W0 is
positive and expressed as an integral including an arbitrary
function Fa0�p�. The family of solutions satisfying the
boundary condition dAz=drjr!0 � 0 is described by the
formula (cf. Refs [1, 179])

Az � ÿ2A0 ln

����������
2W0

p �1� k 2r2�
4kA0

�72�

and is parametrized by a positive quantity k, the inverse of the
filament radius. If, for definiteness, A0 > 0, k is positive, too.
The corresponding magnetic field

Bj � 4A0k 2r
1� k 2r2

; �73�

unrelated to the energy distribution of particles, Fa0, is
maximum at r � kÿ1, and amounts to 2kA0. The current
density is given by the expression (Fig. 3)

jz � 2cA0k 2

p�1� k 2r2�2 ; �74�

its simple integration gives a total current value of 2cA0

independent of k and, therefore, of the filament radius.

Owing to the exponential dependence of the PDF on the
projection of the generalizedmomentum, distributions of any
kind of particles over momentum at all points of space are
similar and differ only in the momentum-independent factor.
Therefore, the shape of the particle concentration profile
coincides with that of the current density profile: Na �
Na max=�1� k 2r2�2. The integral of Na over plane xy gives
the number of particles per unit pinch length and is equal to
pkÿ2Na max, which once again confirms the possibility of
conventionally regarding quantity kÿ1 as the radius of the
current filament being considered. This radius can be either
longer or shorter than the particles' characteristic gyroradius
depending on their energy distribution.

Another interesting example is given by the quadratic
dependence of the distribution functions on the generalized
momentum, fa � F̂a0�p� � F̂a2�p�P 2

z , leading to the linear
Grad±Shafranov equation

r2
d2Az

dr 2
� r

dAz

dr
� k 2r2Az � 0; �75�

i.e., the zero-order Bessel equation having under the given
boundary condition the following general solution:

Az � Az maxJ0�kr� ; k 2 �
X
a

32p2Nae
2
a

3m 3
a c

4

�1
0

F̂a2�p� p 4 dp

ga
:

�76�

Here, unlike the preceding example, the free parameter is
amplitude Az max, and the spatial scale kÿ1 is determined by
the energy distribution of particles. The shape of the current
density profile coincides with that of the vector potential
profile, because jz / dU=dAz andU / A 2

z , while themagnetic
field profile is described by an order-one Bessel function of the
first kind: Bj � ÿkz max J1�kr�. The profiles are plotted in
Fig. 4 where, as in Fig. 3 and other figures presenting Grad±
Shafranov potential plots, the bold line indicates the region of
varying Az values.

U

U0
0

jz
Bj

Az

Az
r

Figure 3. Typical profile of the potential of the Grad±Shafranov equation

(71) and the dependences of Az, Bj, and jz on the cylindrical coordinate r
for the solutions given by formulas (72)±(74) in the form of the Bennett

pinch. Hereinafter, the bold line in the Grad±Shafranov potential plots

indicates the region of varying Az values.

U

U0

Az

0

jz

Bj

Az

r

Figure 4. Quadratic profile of the Grad±Shafranov potential and the

dependences ofAz,Bj, and jz on the cylindrical coordinate r for the Bessel
type solution (76).

1 In the degenerate case, such a `motion' ends at the point with zero-valued

first and second derivatives of U�Az� with respect to Az (in analogy with

the one-dimensional planar layered variant in Section 2.5). The infinitely

slowmonotonic approach to the bottomof the potential well is impossible:

the general solution of Eqn (70) with a zero right-hand side has the form

Az � c1 � c2 ln r; therefore, the motion is not restricted even for the

absolutely flat bottom of the well, and `friction' proves insufficient to

stop the particle at a finite distance.
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This solution oscillates with the growth of the radial
coordinate r, while the amplitude of magnetic field oscilla-
tions decreases in proportion to rÿ1=2, and the amplitude of
current oscillations inside a cylinder of radius r increases
proportionally to r 1=2. The amplitudes of magnetic field and
current density oscillations decrease with distance from the
axis, when kr4 1, while solution (76) is increasingly less
different locally from the harmonic one. Therefore, upon
exceedance of a certain radius rf at which the characteristic
gyroradius rH of particles becomes on the order of the
inhomogeneity scale kÿ1, the energy density of the magnetic
field becomes by necessity lower than equipartition one, the
degree of distribution function anisotropy is close to a
constant of order 2, and Weibel type instability can be
expected to develop in this region. Of the greatest interest in
this context is the internal part of solution (76) �r9rf�,
where rHk9 1, and in the absence of a large fraction F̂a0�p� of
isotropic particles the energy density of the magnetic field can
be on the order of the equipartition one.

Other interesting classes of solutions emerge when using
distribution functions of particles with a higher order of
polynomial expansion in terms of the generalized momen-
tum Pz. Then, the Grad±Shafranov potential as a function of
the vector potential componentAz is a polynomial of the same
order, and the spatial structure of the fragment can be rather
complicated. For example, if the range of Az variations is
bounded and Az monotonically, without oscillations, tends
toward a certain constant, while r tends to infinity, the
filament it describes is the central current surrounded by an
equal and opposite current, such that the total current is zero
(with more than one change in the current density sign being
possible). Figure 5a presents an example of the solution of
such a form for the Grad±Shafranov equation with the
potential proportional to A3

z ÿ A0A
2
z at a certain constant A0

value. This solution corresponds to such a set of PDF
parameters at which the representative point of Az as a
variable of equation (70) tends to a local maximum in the
Grad±Shafranov potential as r!1. In this case, the only
nonzero magnetic field component Bj has one sign every-
where, and the current density changes the sign only once as
the coordinate r grows.

If the Grad±Shafranov potential takes the form of a
fourth-order polynomial, e.g., U�Az� / A4

z ÿ A2
0A

2
z with a

certain constant A0, the solutions become possible with
more than one change of current density direction and a few
changes of the component Bj sign. The solution with Bj

changing the sign only once and the current density being two
cylindrical countercurrents embedded within each other is
presented in Fig. 5b. The analysis of the asymptotic behavior
of filaments of this type at large r reveals their exponential
decrease.

One more important class of current filaments is repre-
sented by solutions of the Grad±Shafranov equation for
distribution functions in the form of the sum of two
components that exhibit exponential dependence on the
generalized momentum Pz with different exponents whose
ratio equals w and may have arbitrary dependences on
particle energy:

d2Az

dr2
� 1

r
dAz

dr
� ÿW1

A0
exp

�
Az

A0

�
ÿ W2

wA0
exp

�
Az

wA0

�
: �77�

Here, as in the case of the generalized Bennett pinch, A0 �
mac

2=zaea, and constantsW1 andW2 are given by integrals of

energy distributions. The most interesting case is that of
exponents having identical signs, which allows us to consider
A0 and w, for certainty, as being positive. Moreover, it can be
assumed, without a loss of generality, that w < 1, and one of
the two exponents (second) changes faster than the other.

If W1 > 0 and W2 > 0, while w5 1, a double-scale
solution is possible, as exemplified for w � 0:1 in Fig. 6a. If
W1 > 0,W2 < 0, the solutionwill take the shape of a `tubular'
current filament in which a current density maximum is
shifted from the cylindrical symmetry axis to a certain
cylinder around it (Fig. 6b).

The total current in these two solutions differs from 2cA0

obtained upon direct generalization of the Bennett pinch,
which accounts for the different asymptotic behavior of
solutions far from the axis, despite the fact that only one of
the two components on the right-hand side of Eqn (77) is
essential at large r, and the form of the equation coincides
with that of equation (71) having solutions in the form of
Bennett type pinches. The analysis of the asymptotic behavior
of such fragments at large r shows that the magnetic field
decreases in inverse proportion to the distance from the axis.

Let us consider in brief solutions to the two-dimensional
Grad±Shafranov equation, irreducible to planar layered or
cylindrically symmetric ones for the two simplest cases, viz.

U

U0

0

jz

BjAz

Az

a

r

U
U0

0
jz

Bj

Az

Az

b

r

Figure 5. Profile of the Grad±Shafranov potential U�Az� and the

dependences of Az, Bj, and jz on the cylindrical coordinate r for (a) a

filament with the countercurrent, U�Az� / A3
z ÿ A0A

2
z , and (b) a filament

with the change of direction of the azimuthal magnetic field, U�Az� /
A4

z ÿ A2
0A

2
z .

U

U0

Az

a

0
jz

Bj

Az r

Az

U

U0
0

Az

jz
Bj b

r

Figure 6. Profile of the Grad±Shafranov potential U�Az� and the

dependences of Az, Bj, and jz on the cylindrical coordinate r for (a) the

double-scale filament,U�Az� / exp �Az=A0� � exp �10Az=A0�, and (b) the

`tubular' filament, U�Az� / exp �Az� ÿ exp �2Az�.
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quadratic and exponential forms of the Grad±Shafranov
potential. See Refs [11, 31, 32, 49, 157, 206, 207] for other
possible solutions of the two-dimensional Grad±Shafranov
equation.

The evident solution for the quadratic Az-dependence of
the Grad±Shafranov potential, considered above in the
analysis of the filament with the Bessel profile, in the two-
dimensional case (69) is the arbitrary linear combination of
harmonics:

Az �
X
l

Al cos �kx cosjl � ky sinjl � fl� �78�

with arbitrary phases fl and angles jl. Despite the identical
wave number k of all harmonics [see Eqn (76)], the resultant
current and magnetic field structures can be complicated and
even quasichaotic in space.

It is easy to show that the magnetic field energy for any
set of harmonics (78) can be close to 2=3 of the particle

kinetic energy in a nonrelativistic plasma, and 1=3 of the
total particle energy in a relativistic plasma, because
interference terms from the items with different directions
of vector k vanish upon averaging over space. Moreover, in
the case of a magnetic field of equipartition order, the
gyroradius of typical, not highly energetic particles is
almost everywhere smaller than or nearly the same as the
characteristic spatial scale kÿ1 of a self-consistent current
structure [208].

The special choice of amplitudes, phases, and directions of
sinusoidal field components Al � A1 � const, fl � 0, jl �
pl=n yields the solution

Az � A1

Xn
l�1

cos

�
kx cos

pl
n
� ky sin

pl
n

�
; �79�

approximating the cylindrically symmetric solution (76)
(Fig. 7a) not far from the axis. At n � 2, the directions of
the currents in the regular grid of current filaments are
distributed in a chessboard pattern, and the current density
vanishes at the square borders, as shown on the left panel of
Fig. 7b. At n � 3, the unidirectional current filaments make
up a hexagonal grid with the countercurrent distributed
between them (right panel, Fig. 7b).

Given the single term in sum (78), there is a purely
harmonic one-dimensional nonlinear solution, i.e., periodi-
cally alternating oppositely directed current sheets. Sum-
mation of two terms with similar angles j and amplitudes
yields a grid of alternating current sheets of bounded
length, while summation of two terms with similar angles
j and markedly different amplitudes results in periodically
modulated current sheets. Figure 7c illustrates the case of
j2 ÿ j1 � 30�.

It is easy to check that in all the above cases the solution in
the form (78) for any distribution function F̂j2�p� is not
subject to Weibel instability for short-wave perturbations
with scales smaller than kÿ1 in the regions of strongest
anisotropy of particle distributions. Indeed, the quantity Az

in such regions is close to zero, the degree of anisotropy is of
order 2, and [according to criterion (27)] wave numbers of
unstable perturbations are limited in accuracy by k [cf.
formulas (26) and (76)].2

Finally, for the distribution function showing an expo-
nential dependence on the generalized momentum compo-
nent Pz and containing an arbitrary factor depending on
particle energy, two-dimensional solutions of the Grad±
Shafranov equation

q2Az

qx 2
� q2Az

qy 2
� ÿW0

A0
exp

�
Az

A0

�
�80�

can be obtained by analogy with the cylindrically symmetric
case of the Bennett pinch (71) in the form generalizing the
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Figure 7. Two-dimensionally inhomogeneous current configurations. The

shades of gray characterize the current density modulus (white color

denotes zero density), and arrows indicate magnetic field magnitude and

direction. The scale on each axis is counted in kÿ1 units. (a) Configura-

tions described by potential (78) with n � 6 sinusoidal components: left

panel corresponds to the special choice of directions, amplitudes, and

phases (79), and right panel to their arbitrary choice. (b) Configurations

described by potential (79) with n � 2 (left) and n � 3 (right) sinusoidal

components. (c) Configurations described by potential (78) with n � 2

sinusoidal components with angle j2 ÿ j1 � 30� between them: A1 � A2

(left), and A1 � 2A2 (right).

2 This criterion was obtained ignoring the magnetic field and does not

allow possible instabilities with scales greater than or of the same order as

the particle characteristic gyroradius to be judged. Therefore, instability of

perturbations with scales in the range from the characteristic gyroradius

rH to the characteristic inhomogeneity kÿ1 in fields of equipartition order

awaits clarification. The problem of stability of long-wave perturbations

with greater than kÿ1 scales just as well needs to be additionally considered
taking account of structural inhomogeneity. A numerical analysis seems to

be required to investigate, in general, the stability of both the simplest self-

consistent current structure (see above) and more complicated structures

(below).
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Fadeev solution [209]:

Az � ÿ2A0 ln
� �������������

1� m2
p

cosh �kx� � m cos �ky�
�

� 2A0 ln

 
k

���������
2A2

0

W0

s !
: �81�

Here, the free parameter m is responsible for the degree of
structural inhomogeneity along the y-coordinate. At m � 0,
we obtain generalization of the Harris sheet for the case of
arbitrary energy distribution of particles, which is discussed in
detail in Section 3.2.1. Another free parameter kÿ1 assigns the
scale of magnetic field changes on the x- and y-axes. The
equality of these parameters is essential.

The current density in solution (81) is given by the formula

jz � ÿ c

4p
DxyAz � cA0k 2

2p
ÿ �������������

1� m2
p

cosh�kx� � m cos �ky��2 ;
�82�

indicating that a self-consistent current structure at large
enough m actually consists of a chain of generalized Bennett
pinches arranged with a period of 2p=k and carrying 2cA0

current each. The magnetic field and current density entering
solution (81) at two different values of the imhomogeneity
parameter m are shown in Fig. 8.

From the fact that available two-dimensional analytical
solutions describing self-consistent current structures in
collionless plasma are very fragmentary, exhibit at odd times
singularities, and do not provide the overall picture of
possible self-consistent current structures we will not discuss
them anymore (see, e.g., Refs [5, 6, 10, 32, 49, 157]).
Therefore, we will focus below on a diversity of one-
dimensional configurations for which the modern concepts
seem to be much more complete.

2.5 Classification of planar layered magnetostatic
structures with a shearless magnetic field
In `one-dimensional' geometry and in the absence of a
dependence on y- and z-coordinates in the class of distribu-
tion functions depending on three integrals ofmotion, current
sheets are described by the Grad±Shafranov equation (68)
with potential U�Az� equaling the integral over Az on the
right-hand side of equation (61). For the qualitative analysis
of solutions, it is convenient to turn to an analogy with the

equations of motion of a material point in the coordinate-
dependent potential known from classical mechanics. The
role of the material point coordinate is played by the vector
potential component Az, the role of time by the spatial
variable x, and the role of velocity by the magnetic field
ÿBy � dAz=dx taken with the opposite sign. The first integral
of equation (68), viz.

U0 � U�Az� �
B 2
y

2
� U�Az� � 1

2

�
dAz

dx

�2

; �83�

is of special importance, since it allows us to write out the
implicit representation of the solution by the designated
constant U0 and the chosen position (point x0):

x�Az� ÿ x0 � �
� Az dA0z�������������������������������

2
ÿ
U0 ÿU�A0z�

�q : �84�

Let us consider which classes of current structures are
possible depending on the potential shape U�Az� and U0

value. From very general considerations, three qualitatively
different situations can be distinguished: namely, magnetic
field By with x varying from ÿ1 to �1 can change sign
several times, change it but once, or not change it at all. It
gives the following classification.

I. It is evident from the analogy with a mechanical
system that a self-consistent current structure is periodic if
the magnetic field changes sign more than once. In this
case, function U�Az� serves as a `potential well' and curve
Az�x� reflects oscillations (generally speaking nonlinear) in
this well between some two extreme values Amin and Amax,
such that U�Amin� � U�Amax� � U0. The magnetic field
vanishes at the turning points corresponding to Az � Amin

and Az � Amax (and only at these points), while the profiles
of the magnetic fields with opposite signs between these
points are mirror images of each other: if By�x0� � 0, then
By�x� � ÿBy�2x0 ÿ x�. Accordingly, current density propor-
tional to the derivative of magnetic fieldBy with respect to x is
symmetric relative to any plane of a zero magnetic field.

II. Let us turn to the magnetic field changing sign only
once. A plane in which the magnetic field vanishes can be
taken (without the loss of generality) as the origin of the
x-coordinate, By�x � 0� � 0. Then, the dynamics of function
Az�x� in the vicinity of x � 0 corresponds to reflection from
the potential barrier U�Az�. The magnetic field is anti-
symmetric, By�x� � ÿBy�ÿx�, and current density sym-
metric jz�x� � jz�ÿx�. Current density, unlike the magnetic
field, can be a fixed-sign quantity and change the sign any
even number of times, provided the potential profile U�Az� is
nonmonotonic but contains irregularities that do not,
however, ascend above U0 � U�Az�x � 0�� in the entire
region of Az variations. Because the derivative of function
Az�x� changes sign only once, there is a passage to the limit:
limx!ÿ1 Az�x� � limx!�1 Az�x� that can be either finite or
infinite.

If the limit is finite, limx!1 Az�x� � A0, U�A0� � U0 and
dU�Az�=dAzjAz�A0

� 0, whence it follows that the `motion' of
point Az actually consists of rolling down a hilltop3 at

ÿ5 5

5

0

0

ÿ5
ÿ5 5

5
m � 0.1 m � 1

0

0

ÿ5

Figure 8. Two-dimensionally inhomogeneous configurations described by

potential (81) at different values of the inhomogeneity parameter m. The
shades of gray show current density (white color denotes zero density), and

arrows indicate magnetic field strength and direction. The scale on each

axis is counted in kÿ1 units.

3 Strictly speaking, it can be regarded as a local maximum only when

d2U�Az�=dA2
z jAz�A0

6� 0. If the second derivative equals zero and the lower

nonzero derivative is an odd-order one, the hilltop becomes a `plateau',

i.e., a point on the slope at which the angle of inclination turns to zero and

close to which it is an infinitely small quantity, at least of the second order

in Az ÿ A0.
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Az � A0, reflection from the turning point at x � 0, and
climbing back uphill to point Az � A0. In the case of general
position, the potential in the vicinity of Az � A0 is approxi-
mated by a parabola, and functions Az�x� ÿ A0, By�x�, and
jz�x� as x! �1 exponentially tend toward zero.

If the limit is infinite, limx!1 Az�x� � �1, the value of
potential U�Az� over the entire ray from Az�x � 0� to Az�1�
corresponding to infinity does not amount to higher thanU0.
In this case, themagnetic field far from the point x � 0 cannot
be exponentially small. It can either decrease in the power-law
fashion no faster than 1=jxj or tend toward a certain nonzero
value. (It is assumed here that U�Az ! �1� � const,
because other variants appear to be nonphysical and suggest
either indefinitely high magnitudes of distribution functions
or the presence in them of essential dependences on infinitely
large generalized momenta.) In the case of a field decrease,
current density also tends toward zero no faster than 1=jxj2
with a possible change of sign, in contrast to the magnetic
field. If the magnetic field tends toward a nonzero constant,
the current density can be localized with any power index or
even exponentially, with the total current of the entire current
structure remaining nonzero.

III. Let the magnetic field not change sign, which means
thatU�Az� varies monotonically. In self-consistent structures
with a magnetic field created and maintained by the plasma
itself, it cannot have different magnitudes of one sign far from
the current structure. In other words, if the magnetic field
does not change sign, then B�x! ÿ1� � B�x! �1� � 0
and the current density changes sign at least once, while the
total current of the current structure is zero. If the range ofAz

changes is bounded, the `motion' of pointAz actually consists
of rolling down a hilltop of heightU0 and climbing up another
hill of the same height U0.

In the case of general position, the potential in the vicinity
of both tops is approximated by parabolas; therefore, the
magnetic field By�x� and current density jz�x� as x! �1
exponentially tend to vanish. If the range of Az change is not
bounded and Az tends toward the respective infinity, the
potentialU�Az� tends toU0 and thereby causes a reduction in
the magnetic field, while the current structure is asymmetric,
with current density exponentially decreasing to one side and
decreasing in a power-lawmanner not faster than 1=jxj2 to the
other side. One can imagine a profile of Az such that the
region of its changes will be unbounded on both sides [e.g., in
the U�Az� / ÿcoshÿ2 �Az=A0�� potential], but the shape of
the potential needed in this case cannot be obtained
analytically using the expansions [e.g., like (173)] with a
finite number of terms, considered in Section 3.

When the magnetic field does not change sign, the Grad±
Shafranov equation can be used to describe nonself-consis-
tent current structures located in the external magnetic field.
In this case, as x! �1, the magnetic field tends toward two,
generally speaking, different constants, with at least one of
them being nonzero, and at least one of the limits,
U�Az ! ÿ1� or U�Az ! �1�, finite and smaller than U0.
If U�Az� is everywhere smaller than U0, while limits
U�Az ! ÿ1� and U�Az ! �1� are equal, it suggests an
existence of a current structure localized in the external
uniform magnetic field, having zero total current. If U�Az� is
everywhere smaller than U0 and the above limits are not
equal, then the current structure has nonzero total current,
while the magnetic field is partly screened by this current [in
the case ofU�Az ! �1� � U0, the screening is complete but
localization weakÐcurrent density decreases no faster than

1=jxj2). AfterU�Az� reaches theU0 value at a finitemagnitude
of the vector potential component Az, the derivative of
potential U�Az� at this point equals zero by virtue of the
above assumption of the fixed-sign magnetic field, and we
concern with complete screening of the external magnetic
field, which enables us to describe the boundary between an
nonmagnetized (generally speaking anisotropic) plasma and
a plasma (or vacuum) with a uniform magnetic field (see
Sections 3.4 and 4.3). In the case of general position, the
second derivative of potentialU�Az� at the stop point is other
than zero, while the magnetic field and current density
exponentially decay as they go deep into the plasma.

2.6 Superposition of current sheets
with orthogonal magnetic fields
The above classification of current sheets can be extended to
the sheared magnetic field for PDFs representable as the sum
of two cylindrically symmetric functions with orthogonal
axes:

fa � f �1�a

�
p; pz � ea

c
Az

�
� f �2�a

�
p; py � ea

c
Ay

�
: �85�

In this simple but yet poorly explored situation, the equations
of magnetostatics break down into two Grad±Shafranov
equations

d2Az

dx 2
� ÿ 4p

c

X
a

Naea

�
f �1�a

�
p; pz � ea

c
Az

�
pz

maga
d3p ; �86�

d2Ay

dx 2
� ÿ 4p

c

X
a

Naea

�
f �2�a

�
p; py � ea

c
Ay

�
py

maga
d3p ; �87�

independent of each other but nonlinear in themselves.
Thus, provided two one-dimensional self-consistent solu-

tions to the magnetostatic problem in a collisionless plasma
with the cylindrically symmetric distribution functions
f
�1�
a �p;Pz� and f

�2�
a �p;Py� are known, their superposition

(85), taken so that the magnetic field of one solution is
directed along the cylindrical symmetry axis of the distribu-
tion function of the other solution, is also the solution of the
same system of equations and satisfies the general equation of
pressure balance (58). It allows us to construct solutions with
an arbitrary sheared magnetic field, i.e., with the dependence
of the rotation angle of the magnetic field in the yz plane on
the x-coordinate. The resultant solutions for B � B �1� � B �2�

are readily classified from the shape of the respective Grad±
Shafranov potentials U �1��Az� and U �2��Ay�, as described
above.

To recall, the periodic helical structures or localized
current sheets are made possible with the unchangeable
direction of magnetic field rotation, as well as sheets under-
going single changes in the shear direction. Each of the two
`combinable' solutions allows the presence of an external
magnetic field in agreement with what was said at the end of
Section 2.5. Also allowed is the trivial possibility of putting
f
�2�
a � 0, Ay � xBz, where Bz � const, which means the

imposition of an arbitrary constant magnetic field By

directed parallel to the z-axis, i.e., along the direction of
current density, on a flat sheet with a single magnetic field
component By. A specific solution of this kind, in which the
known Harris sheet is supplemented by one more magnetic
field component so that the modulus of the magnetic field is
constant in the entire space, was proposed in paper [23].
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There are a few less trivial examples of superpositional
current sheets with a sheared magnetic field, the number of
which can be substantially increased using the aforemen-
tioned analytical method for the construction of such
solutions. For example, solution (60) obtained in Ref. [3]
and a superposition of Harris and Nicholson sheets [173]
discussed in Section 2.2 can be easily generalized to the case of
particle distribution functions containing factors with an
arbitrary dependence on the particle energy. Reference [7]
reports a wave-like solution inwhich the distribution function
is represented as the sum of two terms, one quadratically
dependent on Py, and the other on Pz, with identical
coefficients and magnetic fields B �1� and B �2� harmonically
depending on the x-coordinate with a similar spatial period.
The authors of Ref [25] made use of the exponential
dependence of the distribution function on one component
of the generalized momentum, and the harmonic dependence
on the other, which corresponds for a nonperiodic solution to
B �1� / tanh �x=L�, and B �2� / coshÿ1 �x=L�, where L is the
characteristic sheet thickness. At a certain relation between
these two components, the magnitude of the total magnetic
field is constant over the entire space.

Let us turn to concrete examples of self-consistent current
sheets with the shearless magnetic field, qualitatively
described in Section 2.5 based on special PDF expansions.

3. Typical strictly solvable problems
for self-consistent current sheets

3.1 Power-law particle distributions
3.1.1 General power-like form of the Grad±Shafranov poten-
tial. Let cylindrically symmetric distribution functions fa in
Grad±Shafranov equation (61) be expanded at each momen-
tum p value into the Taylor series over the projection
pz � eaAz=c of the generalized momentum containing the
vector potential component Az:

fa

�
p; pz � ea

c
Az

�
�
X1
i�0

F̂ai�p�
�
pz � eaAz=c

mac

�i

: �88�

It is then easy to take the integral over pz in the expression for
the Grad±Shafranov potential [see equation (68)]:

U�Az� �
X
a

�1
0

X1
i�0

F̂ai�p�
(

8p2Nam
2
a c

3p

ga�i� 1��i� 2��i� 3�

�
��

eaAz=c� p

mac

�i�2 �i� 2� pÿ eaAz=c

mac

�
�
eaAz=cÿ p

mac

�i�2 �i� 2� p� eaAz=c

mac

�)
dp : �89�

If only a finite number of terms with powers up to d differ
from zero in expansion (88), i.e., F̂ai � 0 for i > d, the
potential U�Az� (89) is the dth degree polynomial, and the
removal of the parentheses reveals zero coefficients of
Ai�3

z ,Ai�2
z , Ai�1

z in formula (89). Only coefficients of this
universal polynomial depend on the form of the F̂ai�p�
function, i.e., the energy distribution of particles.

It should be noted that formula (89) holds not only at
nonnegative integer i, but also at all i 6� ÿ1;ÿ2;ÿ3, which
allows us to consider distribution functions with power-like
dependences on the projection of the generalized momentum

with negative or noninteger exponents. At i � ÿ1;ÿ2;ÿ3, the
expression for the Grad±Shafranov potential is equally well
defined and can be obtained from formula (89) by means of
the limit passage i! ÿ1;ÿ2;ÿ3, respectively.

It can be concluded that, for cylindrically symmetric
distribution functions expanded in powers of the generalized
momentum projection, in the case of a finite number of
nonnegative powers there is a universal polynomial form of
the Grad±Shafranov potential, while energy distributions of
particles determine only the finite set of polynomial coeffi-
cients. Modeling of the Grad±Shafranov potential profiles in
accordance with formula (89) makes possible the analysis of
various self-consistent current sheets.

3.1.2 Periodic current structures. To construct the simplest
periodic solution, suffice it to be confined to the quadratic
term in the polynomial expansion of the cylindrically
symmetric distribution function (88):

fa

�
p; pz � ea

c
Az

�
� F̂a0�p� � F̂a1�p�

�
pz � eaAz=c

mac

�

� F̂a2�p�
�
pz � eaAz=c

mac

�2

: �90�

In this case, the Grad±Shafranov potential (89) equals

U�Az� �
X
a

�1
0

F̂a0�p� 16p
2Na p

4

3maga
dp

�
X
a

�1
0

F̂a1�p� 16p
2Na p

4eaAz=c

3m 2
a cga

dp

�
X
a

�1
0

F̂a2�p� 16p
2Na p

4�5e 2aA2
z=c

2 � p 2�
15m 3

a c
2ga

dp ; �91�

and the particle concentration profile is dictated by the
dependence of the vector potential on the x-coordinate in
accordance with the formula

Na � 4p
�1
0

�
F̂a0�p� � F̂a1�p� eaAz

mac 2
� F̂a2�p� e

2
aA

2
z

m 2
a c

4

�
p 2 dp

� 4p
3

�1
0

F̂a2�p� p 4

m 2
a c

2
dp : �92�

The term linear in Az can be eliminated from expres-
sion (91) by gauge transformation Az ) Az � const, and
Az-independent items do not contribute to the Grad±
Shafranov equation, since it contains only the derivative
dU�Az�=dAz. Therefore, it can be assumed that F̂a1 � 0.4

Then, the initial nonlinear magnetostatic problem reduces to
the linear Grad±Shafranov equation in the form

DxyAz � k 2Az � 0 ; �93�

4 Gauge transformation permits us to eliminate only the integral

contribution from items with F̂a1 to the Grad±Shafranov potential. For

one kind of current-carrying particles with similar energies, the item linear

in Az is excluded from their distribution function (90), too. In general, the

item linear in Az in expression (90) affects the form of the distribution

function but leaves unaltered the parabolic profile of the Grad±Shafranov

potential. Because we do not aim to comprehensively describe all types of

particles' distribution functions, the discussion is confined here to the case

of F̂a1 � 0.
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where the wave number k has already been defined in
formula (76). Its solutions in the one-dimensional case are
sinusoids

Az � Amax cos �kx� j� �94�

with the arbitrary amplitude Amax and phase j.
For such solutions with weak enough magnetic fields

when variations of the vector potential (therefore, distribu-
tion function anisotropy) in a self-consistent current
structure are insignificant, there is every reason to expect
the emergence of long-wave Weibel instability with scales
greater than kÿ1, but smaller than the characteristic
gyroradius rH. The point at issue is perturbations for
which a static magnetic field does not play any special
role, i.e., dispersion relation (22) gives an increment much
bigger than the characteristic gyrofrequency of particles. It
follows from the above and the discussion in Section 2.4
that suppression of Weibel instability for solutions (90), (94)
should be evidenced only for a strong enough magnetic
field, say of an equipartition order, when rH 9 kÿ1.

For harmonic solution (94) with quadratic particle
distribution functions (90), it is easy to deduce the relation-
ship between the mean magnetic field energy density and
mean energy density of particles. For maximally excluded
isotropic constituents of the distribution functions, F̂a0 � 0,
we arrive at

EB � hWBirP
a
hWair

�
A2

max

P
a

�
e 2a �gamac

2�ÿ1F̂a2�p�p 4 dp

3A2
max

P
a

�
e 2a gamaF̂a2�p�p 2 dp� 2

P
a

�
gamac 2F̂a2�p�p 4 dp

:

�95�
For this expression, it is possible to obtain a simple upper
bound:

EB <
1

3

P
a

� �p 2=m 2
a c

2g 2a �e 2a gamaF̂a2�p� p 2 dpP
a

�
e 2a gamaF̂a2�p� p 2 dp

<
1

3
: �96�

In the relativistic case withAmax much greater than character-
istic pc=ea values, EB can be close to 1=3.

In the nonrelativistic case, of special interest is the
relationship between mean energy density of the magnetic
field and mean kinetic energy of particles:

ENR
B � hWBirP

a



Namav 2=2

�
r

�
A2

max

P
a

�
e 2a �mac

2�ÿ1F̂a2�p�p 4 dp

�3=2�A2
max

P
a

�
e 2a v

2cÿ2maF̂a2�p�p 2 dp�P
a

�
v 2maF̂a2�p�p 4 dp

:

�97�
The upper bound analogous to formula (96) for the non-
relativistic case takes the form ENR

B < 2=3, with the values of
ENR
B close to 2=3 being attainable at the amplitudesAmax much
higher than characteristic pc=ea values. The presence of the
nonzero isotropic plasma component described by the
distribution function component F̂a0 merely decreases the
fraction of the magnetic field energy.

Retention of higher terms in polynomial expansion (88)
leads to obtaining strongly anharmonic periodic current

sheets, as exemplified in Fig. 9 for the case when the U�Az�
potential well is symmetric and expansion (88) begins from a
high power. It can be seen that at high powers, the potential
well almost has a flat bottom and low current density in a
large area of space, while the magnetic field is close to
constant. In fact, there is a series of alternating current sheets
carrying oppositely directed currents separated by portions of
currentless plasma with a magnetic field.

Retention of terms up to the third order inclusive in the
polynomial expansion (88) (see details of an analysis of the
screened current sheet below) results in an asymmetric
potential well and magnetic field profile. Solutions for two
different values of the first integral U0 are shown in Fig. 10.
The higher theU0 value, themore the solution deviates from a
harmonic one. When U0 is close to the local maximum of the
Grad±Shafranov potential, the solution becomes a series of
screened current sheets (see Section 3.1.3 below for details)
arranged periodically in space.

Finally, retention of terms up to the fourth order inclusive
in polynomial expansion (88) (see the analysis of the double
current sheet below) yields even more intricately shaped
profiles, exemplified in Fig. 11. Examples of anharmonic
periodic solutions based on exponential expansions of the
distribution function, for which the magnetic field and
current profiles are described by analytical formulas, are
presented in Section 3.2.2.

3.1.3 The screened current sheet. Let us consider a localized
solution in which the magnetic field vanishes at infinity,

U

U0

Az

0
jz

By

Az

x

a

U

U0

Az

0
jz

By

Az
b

x

Figure 9. Profiles of the anharmonic Grad±Shafranov potential U and

coordinate dependences of Az, By, and jz: (a) U / A6
z , and (b) U / A10

z .

jz
By

Az

a

jz

By
Az

b

U

U0

U

U0

Az

Az

0

0

x

x

Figure 10. Typical profile of the anharmonic Grad±Shafranov potential

(89) in the form of a cubic parabola and coordinate dependences ofAz,By,

and jz for the periodic solution at two different values of the first integral

U0.
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retaining items up to the cubic one in expression (88):

fa � F̂a0�p� � F̂a1�p� pz � eaAz=c

mac
� F̂a2�p�

�
pz � eaAz=c

mac

�2

� F̂a3�p�
�
pz � eaAz=c

mac

�3

: �98�

After elimination of the Az-independent terms making no
contribution to the equation, the Grad±Shafranov potential
(89) has the form

U�Az� �
X
a

�1
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F̂a1�p� 16p
2Na p

4eaAz

3m 2
a c

2ga
dp

�
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16p 4e 2aA
2
z

3m 3
a c

4
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�1
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F̂a3�p�p2Na

ga
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16p 4e 3aA

3
z

3m 4
a c

6
� 16p6eaAz

5m 4
a c

4

�
dp : �99�

We are interested in the localized solution in which the value
of the vector potential component Az as x! �1 tends
toward constant, the same at both infinities. Taking account
of the gauge transformation, it can be assumed without the
loss of generality that this constant equals zero, i.e., the local
maximum of potential (99) is reached at the point Az � 0,
which suggests the absence of items linear in Az:

U�Az� �
X
a

�1
0

F̂a2�p�p2Na

ga

16p 4e 2aA
2
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3m 3
a c

4
dp

�
X
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F̂a3�p�p2Na
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16p4e 3aA
3
z

3m 4
a c

6
dp : �100�

Then, the solution of the Grad±Shafranov equation (68)
under the boundary conditions Az�x! �1� � 0 is found
analytically:

Az � ÿ
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a ga� dpP

a

� 1
0 F̂a3�p�p 4Nae 3a =�m 4

a ga� dp

� coshÿ2
 �����������������������������������������������������������������
ÿ
X
a

�1
0

F̂a2�p�p2Na

ga

8p 4e 2a
3m 3

a c
4
dp

s
x

!
: �101�

Hence follows the magnetic field
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current density
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and concentration
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The final expression for the particle concentration as a
function of the x-coordinate is obtained by substituting
solution (101) into formula (104), and has a rather cumber-
some form.

Both the magnetic field and current density reach the
following maximum magnitudes:

Bymax � ÿ 4
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To recall, it was assumed in the foregoing that the
conditionX

a

Nae
2
a

m 3
a

�1
0

F̂a2�p� p
4

ga
dp < 0 ; �105�

responsible for the presence of a local maximum (but not
minimum) of theGrad±Shafranov potential at pointAz � 0 is
fulfilled. Violation of this condition does not interfere with
the solution in the form of the screened current sheet by virtue
of the cubic potential profile; if it has a local minimum at
Az � 0, then the local maximum occurs in another place.
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Figure 11. Variants of the profile of the Grad±Shafranov potential (89) in

the form of a bi-quadratic parabola and coordinate dependences ofAz,By,

and jz for periodic solutions.
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However, this solution does not satisfy the condition Az ! 0
as x! �1, and is described by different formulas.

The characteristic thickness of the current sheet is found
from expressions (101)±(103) as

D �
�
ÿ
X
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�1
0

F̂a2�p�p2Na

ga

8p 4e 2a
3m 3

a c
4
dp

�ÿ1=2
; �106�

and can be comparedwith the gyroradius of particles having a
certain momentum p0 in the magnetic field maximum:
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4
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The ratio of the gyroradius to the characteristic sheet
thickness is given by
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3
a =�m 4
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0 F̂a2�p�p 4Nae 2a =�m 3

a ga� dp
: �108�

For particles forming the current sheet of interest, this ratio
can be either much smaller than unity (magnetized particles)
or much higher than unity (most particles pass through the
current sheet hardly deflecting in its magnetic field). The
shapes of the vector potential, current density, and magnetic
field profiles are similar in all cases, as shown in Fig. 12a. The
particle concentration profile can have either a single
maximum in the center or three maxima, one central and
two lateral, depending on ratio (108). The central current
sheet is completely screened by two lateral ones, so that the
magnetic field exponentially decreases to zero with a growth
of the x-coordinate.

3.1.4 Double current sheet.Let us retain terms up to the fourth
order in expansion (88), viz. assume that
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and find the solution in which a change in x from ÿ1 to1
causes a change in the vector potential Az from ÿAmax to
Amax, meaning that potential (89) passes through twomaxima
of equal height, symmetric with respect to zero, and that odd-
order terms disappear. Due to this and after exclusion of the
Az-independent terms, the Grad±Shafranov potential (89)
takes the bi-quadratic form:
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must be satisfied in order for the potential to have a central
minimum and twomaxima on both sides of it. As a result, the
following bounded aperiodic solution (Fig. 12b) is easily
found from the Grad±Shafranov equation:
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The maximum magnitudes of the magnetic field and current
density are Bymax � Amax=D, and jzmax � cAmax=�3

���
3
p

pD 2�.
The expression for the particle concentration profile is

more complicated:
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Figure 12. Profile of the Grad±Shafranov potential U�Az� and coordinate

dependences of Az, By, and jz characteristic of: (a) the screened current

sheet, with potentialU in the form of a cubic parabola (99), and (b) double

current sheet, with potential U defined by formula (110).
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Notice that the magnetic field and current density in
the resulting double layer tend as x! �1 toward zero,
but the PDF remains anisotropic. Substituting A � Amax

from Eqn (116) into Eqn (109) for the bi-quadratic Grad±
Shafranov potential under consideration gives evidence
that the distribution function at the periphery of the sheet
is centrally symmetric and symmetric with respect to
planes px � 0, py � 0, pz � 0, which allows the applica-
tion of the analysis of stability from Section 1.3 for the
wave vectors directed along the z-axis and perpendicular
to it.

It is found using criterion (27) for small perturbations
with k?z0, Ekz0 that Weibel type instability is absent if the
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is satisfied, which exactly coincides with one of the
conditions (111) for the existence of this solution. The
stability criterion for perturbations with kkz0 is satisfied
under the conditionX
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2
dp� 8

�
F̂a4�p� p 6

gam 4
a c

4
dp

�
< 0 :

�119�

There is no instability with respect to perturbations k? z0,
E? z0 due to cylindrical symmetry of the distribution
function formally manifested as the zero result of integra-
tion in the instability criterion expression (27). A compar-
ison of inequalities (118) and (119) taking into account the
first inequality from expression (111) allows the conclusion
that both these conditions can be satisfied simultaneously.
Once conditions (118) and (119) are violated, anisotropy of
the particle distribution proves too strong and can only be
accompanied by developing Weibel instability. Doubtless,
there are F̂ji�p� functions ensuring strong PDF anisotropy
and, therefore, Weibel instability at the sheet periphery for
other types of localized current sheets with different
maximum powers d [see expression (88)]. At the same time,
Weibel instability of these solutions may be absent in a
certain region of parameters corresponding to weak aniso-
tropy, but this inference needs to be confirmed in each
particular case.

3.2 Exponential particle distributions
3.2.1 Generalization of the Harris current sheet to the arbitrary
particle distribution over energies. Let us consider distribution
functions, the expansions of which contain exponential
constituents.

To begin with, we touch the simplest case with a single
exponential term of the easiest form and a pre-exponential
factor with an arbitrary particle energy distribution:

fa � �Fa0�p� exp
�
zaPz

mac

�
: �120�

Suppose, in addition, that parameters za entering in the
expressions for distribution functions are such that combina-
tions zaea=ma have the same value for all kinds of particles.
Let us denote this value by c 2=A0. Then, the Grad±Shafranov
potential U�Az� is proportional to exp �Az=A0� with the

proportionality coefficient

W0�
X
a

��1
0

�Fa0�p� 8p
2Nam

2
a c

3p

gaz
3
a

��
za p
mac
ÿ 1

�
exp

�
za p
mac

�

�
�
za p
mac
� 1

�
exp

�ÿza p
mac

��
dp

�
: �121�

All one-dimensional solutions ensuing from the Grad±
Shafranov equation

d2Az

dx 2
� ÿW0

A0
exp

�
Az

A0

�
�122�

are described by the analytical formula

Az � ÿ2A0 ln cosh
ÿ
k�xÿ x0�

�� 2A0 ln

 
k

���������
2A2

0

W0

s !
�123�

at different values of free parameters k and x0 determining the
scale of the current sheet and the position of its center,
respectively (in the two-dimensional case, the choice of the
known analytical solutions is much wider; see, e.g., Refs [37,
49, 206, 207, 209]). Choosing the origin of coordinates in the
center of the sheet, i.e., assuming x0 � 0, yields the magnetic
field and current density profiles in the form

By � 2kA0 tanh �kx� ; jz � ck 2A0

2p
coshÿ2 �kx� : �124�

Evidently, at a fixed A0 value determined by the parameters
and the distribution function profile the magnitude of the
maximum magnetic field is inversely proportional to the
spatial scale of the current sheet.

Integration of distribution function (120) over momenta
shows that the concentration profile has the same form,
coshÿ2 �kx�, as the current density profile:

na�x� � coshÿ2 �kx� k 2A2
0

��������
2

W0

s

� 4pNa

�1
0

�Fa0�p� mac

za p
sinh

�
za p
mac

�
p 2 dp : �125�

Both profiles are localized near the plane x � 0 and decrease
exponentially with distance from it, while the magnetic field
tends to 2kA0, and its directions are opposite on either side of
the current sheet. This situation is illustrated by the plots in
Fig. 13a.

The concentration will be finite only if function �Fa0�p�
decreases with increasing p faster than exp �ÿzap=mac�. Let us
choose by way of illustration this function in the form

�Fa0�p� � �mac�ÿ3 exp
�
ÿ p 2

2makBTa

�
; �126�

where kB and Ta are constants, the product of which has an
energy dimension. (If kB is the Boltzmann constant, such a
choice at za � 0 and nonrelativistic momenta transforms
distribution (120) into the Maxwell±Boltzmann thermodyna-
mically equilibrium distribution with temperature Ta.) Then,
the distribution function fa assumes the form

fa / �mac�ÿ3 exp
�
zaeaAz

mac 2
� kBTaz

2
a

2mac 2

�

� exp

�
ÿ
ÿ
pz ÿ �kBTaza=c�

�2 � p 2
?

2makBTa

�
; �127�
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where p 2
? � p 2

x � p 2
y . The distribution remains Maxwellian in

shape, but its center in the momentum space is shifted by
maVa � kBTaza=c toward pz maintaining the current with
density proportional to particle concentration. The equality
condition for all kinds of particles regarding the combina-
tions zaea=ma suggests the equality of eaVa=Ta combinations;
in other words, particles with different signs of the charge
travel in opposite directions, thus making a contribution of a
single sign to the current density.

It should be noted that the distribution of particles of each
kind in a reference frame moving along the z-axis with
velocity kBTaza=�mac� is the Maxwellian thermodynamically
equilibrium distribution with the inhomogeneous profile
maintained due to the fact that the plasma in this reference
frame resides in the confining electrostatic potential. Desig-
nation of the momentum in this reference frame by p 0a allows
obtaining from expression (127) the equilibrium distribution
in the electrostatic potential j 0,

fa / �mac�ÿ3 exp
�
kBTaz

2
a

2mac 2

�
exp

�ÿp 0a2=2ma � eaj 0

kBTa

�
;

�128�

where j 0 � AzVa=c, in excellent agreement with the Lorentz
transform for nonrelativistic relative velocities of reference
frames. Current sheet (124) with distribution function (127) is
universally known as the Harris sheet [2]. The method
proposed here using integrals of motion allowed performing
generalization of the Harris sheet to arbitrary (including
relativistic) values of momenta and arbitrary energy distribu-
tions defined by functions �Fa0�p� onto which no limitations
are imposed, except nonnegativity and a fast enough decrease
with increasing particle momentum.

A current sheet analogous to the Harris sheet can be
obtained for PDFs of the power-like form (88) at i � ÿ1
(hyperbolic profile). Let us consider, for variety, a specific
case of the planar layered distribution with py � 0, i.e., with
momenta lying in the xz plane, when the Grad±Shafranov
equation appears in the form

d2Az

dx 2
� ÿ q

qAz

�
8p2

c

X
a

�1
0

NaRa;ÿ1�p�
p

�
�
eaAz ÿ sign �eaAz ÿ pc�

��������������������������
e 2aA

2
z ÿ c 2p 2

q �
dp

�
: �129�

The introduced function Ra;ÿ1�p� admits a variety of particle
energy distributions influencing the parameters of a current
sheet.

Localized solution can be obtained even in the simplest
monotonic case of Ra;ÿ1�p� � Ca;ÿ1cp0d�pÿ p0�, when

d2Az

dx 2
� ÿ q

qAz

"
8p2

X
a

NaCa;ÿ1eaAz

 
1ÿ

�������������������
1ÿ c 2p 2

0

e 2aA
2
z

s !#
;

�130�

where Ca;ÿ1 is a certain dimensionless constant.
Let us assume, for simplicity, that particles from all

current-carrying plasma components have equal charge
moduli and momenta; then the functional dependences of all
terms in equation (130) are the same, and only multipliers are
different. The Grad±Shafranov potential decreases mono-
tonically and tends toward zero as Az increases from cp0=jeaj
to infinity. Any value of Az � Azmin satisfying the condition
Azmin > cp0=jeaj can be chosen as the `turning point', i.e., the
value of Az in the center of the current sheet where
By � ÿdAy=dx � 0. The solution of equation (130) can be
implicitly expressed in the form

x�Az� � �
� Az

Azmin

"
B 2
0 ÿ 16p2

X
a

NaCa;ÿ1eaAz

�
 
1ÿ

�������������������
1ÿ c 2p 2

0

e 2aA
2
z

s !#ÿ1=2
dAz ; �131�
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0

e 2aA
2
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s !#1=2
:

�132�
Here, the x-coordinate is counted from the middle of the
current sheet, and B0 is the magnetic field far from the sheet:

B0 � 4p

"X
a

NaCa;ÿ1eaAzmin

 
1ÿ

�������������������������
1ÿ c 2p 2

0

e 2aA
2
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s !#1=2
:

�133�

The form of the solution is demonstrated in Fig. 13b. It
follows from the last formula that themaximummagnitude of
the magnetic field is estimated as

B0 < 4p
����������������������������������X
a

NajCa;ÿ1jcp0
r

: �134�

For energy-dependent functions more complicated than the
d-function, the qualitative form of the solution remains
unaltered and can be easily constructed numerically; how-
ever, an analytical solution like those defined by expressions
(131), (132), even in the implicit form, contains more than one
integral.

The isolated current sheet thus obtained differs from the
known isolated Harris type sheets in that the particle
distribution at its periphery becomes actually isotropic,
while the current density decreases in the power-law fashion
rather than exponentially.

3.2.2 Double-scale current sheets. Further generalization of
the Harris current sheet is possible based on the PDFs with
two exponential components having different coefficients of

U

U0

jz
By

Az

a

0

U

U0

jz By

Az

b
Az

Az

0

x

x

Figure 13. Typical Grad±Shafranov potential U�Az� and coordinate

dependences of Az, By, and jz for: (a) the Harris sheet described by

Eqn (122), and (b) solution (131), (132), analogous to the Harris sheet and

described by Eqn (130).
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Az in the exponent. One can successfully obtain an analytical
solution when these coefficients differ by a factor of two, i.e.,
the distribution functions have the form

fa

�
p; pz � ea

c
Az

�
� �Fa0�p� exp

�
za

pz � eaAz=c

mac

�
� �F

�2�
a0 �p� exp

�
za

pz � eaAz=c

2mac

�
; �135�

where the functional factors �Fa0�p� and �F
�2�
a0 �p� are the

arbitrary functions responsible for nonnegativity of the
particle distribution function (for the nonrelativistic distribu-
tion in the form (126), this means the presence of two
Maxwellian components with momenta differently shifted in
the direction of pz). In this case, the Grad±Shafranov
equation acquires one more term, in comparison with
equation (122):

q2Az

qx 2
� ÿW0

A0
exp

�
Az

A0

�
ÿW2

A0
exp

�
Az

2A0

�
; �136�

and the Grad±Shafranov potential becomes equal to

U�Az� �W0 exp

�
Az

A0

�
� 2W2 exp

�
Az

2A0

�
: �137�

Coefficient W2 is expressed via the integral with a certain
weighting factor of a function �F

�2�
a0 �p� using an expression

analogous to formula (121); it is small if component �F
�2�
a0 �p� is

minor. Equation (136) has the following family of aperiodic
solutions:

Az � ÿ2A0 ln
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2 � 2k 2A2
0W0

q
2k 2A2

0

; �138�

where the spatial scale kÿ1 is a free parameter. The profiles of
a magnetic field and current density are expressed using the
following formulas:

By � 2kA0

sinh
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�139�
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0W0
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�140�

At W2 � 0, x0 � 0, formulas (138)±(140) turn into (123),
(124). ForW2 < 0,W0 > 0, the unbounded solution is either
a partially or completely screened current sheet, depending on
the value of the first integralU0 � U�Az� � B 2

y =2 � 2k 2A2
0. In

general, the current sheet is partly screened, while the
magnetic field far from it is finite (Fig. 14a) and equals
2kA0, as in solution (124), whereas vector potential (138)
has the asymptotic form Az � ÿ2A0jkxj at large x. In the
limiting case k! 0, the screening is complete (Fig. 14b):

Az � ÿ2A0 ln
2W0A

2
0 �W 2

2 �xÿ x0�2
ÿ4W2A

2
0

; �141�
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2
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2W0A
2
0 �W 2
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; �142�
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The magnetic field reaches the maximum value Bymax �
�2W 2

2 =W0�1=2 at jxÿ x0j � j
����������
2W0

p
A0=W2j (which is essen-

tially a half-width of the current sheet; let it be denoted byD).
Maximum current density is reached at x � x0 when it equals

jzmax � cW 2
2

2pW0A0
� cB 2

ymax

4pA0
� c

4p
Bymax

D
: �144�

It follows from the last relationship that the mean current
density is half as much as its maximum value in the region of
space with jz=A0 > 0, because �c=4p�Bymax � 2Dh jzir�.

Moreover, equation (136) forW2 < 0,W0 > 0, unlike the
case with a single exponent (122), has periodic anharmonic
solutions

Az � ÿ2A0 ln
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ÿ
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2 ÿ 2k 2A2
0W0

q
2k 2A2

0

; �145�

where the spatial scale kÿ1 is a free parameter. The limited
scope of this review does not permit us to consider them in
greater detail or to compare the results with the periodic
solutions from Section 3.1.2.

There are no periodic solutions if W0 < 0. The general
solution is described by the same formulas (138)±(140), but
there is an upper bound on parameter k (otherwise, the
radicand would be negative):

k 2 <
W 2

2

ÿ2W0A
2
0

: �146�

The solution at k close enough to this threshold, i.e., for
minimal spatial scales of the sheets, is presented in Fig. 15a. In
this case, the current sheet is split into two co-directional
sheets, with the distance between them increasing closer to the
k threshold (146), i.e., asU0 approaches the top of the Grad±
Shafranov potential.
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Figure 14. Profile of the Grad±Shafranov potential (137) for W0 > 0,

W2 < 0 and coordinate dependences of Az, By, and jz characteristic of:

(a) a partly screened current sheet, U0 > 0, and (b) a completely screened

current sheet, U0 � 0.
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In the limiting case k 2 !W 2
2 =�ÿ2W0A

2
0�, there is only

one current sheet (to realize this limit passage, the quantity x0
must properly be tended toward infinity). It makes up the
boundary between magnetized and nonmagnetized plasmas
(other solutions of this type are considered in Section 3.4.3).
Performing the limit passage, we get the solution presented in
Fig. 15b:

By �
��������������
W 2

2
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2
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2
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coshÿ2

 �������������������
W 2

2

ÿ8W0A
2
0

s
�xÿ x 00�

!
; �148�

where x 00 is the arbitrary constant responsible for the position
of the current sheet center.

An analogous case in which coefficients of Az in the
exponents of distribution function (135) differ by more than
twofold, e.g., w times, can be realized in the distribution of
both particles of one type and particles of a multicomponent
plasma where the distributions of particles of different kinds
are described by simple functions (120) with markedly
different values of combination zaea=ma and, generally
speaking, different �Fa0�p� functions. To be certain, let us
consider the case of amulticomponent plasma containing two
fractions of current-carrying ions with the distribution
functions fi1 and fi2, respectively:

fi1

�
p; pz � ei1

c
Az

�
� �Fi1�p� exp

�
zi1

pz � ei1Az=c

mi1c

�
;

�149�
fi2

�
p; pz � ei2

c
Az

�
� �Fi2�p� exp

�
zi2

pz � ei2Az=c

mi2c

�
:

Here, ei1 and ei2 are charges on ions of two kinds (let them be
positive), mi1 and mi2 are their masses, zi1 and zi2 are
dimensionless constants, and �Fi1�p� and �Fi2�p� are nonnega-
tive functions rather rapidly decreasing as p!1 [faster than
pÿ4 exp �ÿzi p=mic�, which ensures convergence of integrals
defining current density and particle concentration].

Electroneutrality of the plasma can be achieved by
negatively charged resting particles with the same spatial
distribution as that of ions. Of greater interest, however, is

the case in which neutrality is due to traveling electrons with
the spatial distribution of the same class:

fe1

�
p; pz � ee

c
Az

�
� �Fe1�p� exp

�
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pz � eeAz=c

mec

�
;

�150�
fe2

�
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c
Az

�
� �Fe2�p� exp

�
ze2

pz � eeAz=c

mec

�
:

Here, ze1 and ze2 are dimensionless constants, the values of
which are calculated below, and �Fe1�p� and �Fe2�p� are rather
rapidly decreasing nonnegative functions.

On the assumption that the remaining plasma compo-
nents (if any) do not create a space charge, the electroneu-
trality condition that must be satisfied at each point of space
assumes the form

ei1ni1�x� � ei2ni2�x� � eene�x� � 0 ; �151�

where ni1, ni2, and ne are the local concentrations of two ionic
components and the total electron component. They are
calculated on multiplying expressions (149), (150) by Ni1,
Ni2, Ne1, and Ne2, respectively, and simply integrating over
momenta that leads to the following relation:

na � exp

�
zaeaAz

mac 2

�
4pNa

�1
0

�Fa0�p� mac

za p
sinh

�
za p
mac

�
dp ;

�152�

where a � i1; i2; e1; e2. To recall, Ni1, Ni2, Ne1, Ne2 are
constants having the dimension of particle concentration,
and the necessity of their introduction is dictated by the
choice of dimensionless functions fi1, fi2, fe1, fe2. Factors N
and f always enter expressions for real physical quantities in
the form of a product; therefore, the values of N and
normalization of f functions are not stated here.

Thus, to satisfy the neutrality condition at all points (and
at all Az values), suffice it to fulfill the equalities

zi1ei1
mi1
� ze1ee

me
;

zi2ei2
mi2
� ze2ee

me
; �153�
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dp ; �155�

which uniquely define the parameters ze1, ze2 of electron
distribution function but preserve the freedom in choosing
�Fe1�p�, �Fe2�p� functions determining electron energy distribu-
tion. These can be any rapidly decreasing nonnegative
functions, each with a single integral limitation determining
normalization. If the charge density of the electron compo-
nent equals that of the respective ion component at a certain
point, this equality is automatically fulfilled at all the
remaining points. All this is equally true of relativistic and
nonrelativistic cases.

It is worthwhile to note that distribution functions (149),
(150) regarded as distributions over momenta at a given point
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Figure 15. Profile of the Grad±Shafranov potential (137) for W0 < 0,

W2 > 0 and the coordinate dependences ofAz, By, and jz characteristic of

(a) the split current sheet withU0 close toÿW 2
2 =W0, and (b) the symmetric

transition sheet (from a homogeneous plasma to a vacuumwith a uniform

magnetic field;N is the particle concentration) realized atU0 � ÿW 2
2 =W0.
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are the same over the entire space to within the common
multiplier. Here are a few examples of such distributions. To
recall [see formulas (126), (127)], if �Fe1�p� / exp �ÿap 2�, the
particle distribution in the nonrelativistic case matches the
Maxwellian distribution with the shifted center in the
momentum space, i.e., in the frame of reference where these
particles create no current, with their distribution being
isotropic and Maxwellian. For other types of �Fe1�p� func-
tions, the distribution in the nonrelativistic case will not
isotropic in any reference frame. Figure 16 illustrates particle
distributions for �Fe1�p� / exp �ÿZp 2�, �Fe1�p� / exp �ÿZ2p 4�,
and �Fe1�p� / p 2 exp �ÿZp 2�, where Z is a certain constant.
Such `crescent-shaped' distribution functions emerge in the
measurements of particle distributions in current sheets in the
tail of Earth's magnetosphere [210].

The Grad±Shafranov potential is calculated as usual by
taking a definite integral over momenta and an indefinite one
over Az; in the case of interest, it results in

U�Az� �W1 exp

�
Az

A0

�
�W2 exp

�
Az

wA0

�
; �156�

where

A0 � c 2mi1

zi1ei1
; w � mi2zi1ei1

mi1zi2ei2
; �157�

with W1 and W2 calculated using formulas analogous to
(121):
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:

Noice, without going into the details of the resultant
solutions, that if w4 1 or w5 1 and both quantities W1 and
W2 are positive, the current density profile can be a double-
scale one, i.e., have the shape of current sheets of markedly
different thicknesses embedded within each other, so that
various kinds of ions make up current sheets of different
scales. The example of such embedding is presented in Fig. 17.

3.2.3 Exact solutions with singularities and symmetric periodic
exact solutions. One of the variants of the Grad±Shafranov
potential (156) for which equation (68) can be integrated to
completion is the combination of parameters W1 �W2,
w � ÿ1 when U�Az� / cosh �Az=A0�. The solutions for
Az�x� and W1 �W2 > 0 are written out via elliptical
integrals, and some specific solutions via elementary func-
tions forW1 �W2 < 0.

One such solution for W1 �W2 < 0 corresponds to the
case in which the value of the first integral of equation (68)
equals the maximum of potential U�Az�:

1

2

�
dAz

dx

�2

�U � 2W1 : �159�

Then,

Az � ÿ2A0 ln tanh
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s
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!
; �160�

where the value of x0 determines only the shift of the solution
as a whole. The choice of x0 � 0 yields the following
expressions for the magnetic field magnitude and current
density:

By �
�������������ÿ8W1

p

sinh
� ���������������������
ÿ2W1=A2

0

q
x
� ; �161�

jz � ÿcW1

pA0 sinh
� ���������������������
ÿ2W1=A2

0

q
x
�
tanh

� ���������������������
ÿ2W1=A2

0

q
x
� : �162�

It follows from the equality of the above By values as
x! �1 that the total current over the entire space is zero,
but the current density has the same sign everywhere
according to formula (162). The causes of this discrepancy
will be discussed below.

The periodic solution can also be written out analytically
by changing the sign on the right-hand side of relation (159)

apz

px; y

bpz

px; y

cpz

px; y

Figure 16. Examples of distribution functions in the form (150): (a) �Fe1�p� / exp �ÿZp 2�; (b) �Fe1�p� / exp �ÿZ2p 4�, and (c) �Fe1�p� / p 2 exp �ÿZp 2�.

jz
By

Az

Az

x
0

U

U0

Figure 17. The profile of the Grad±Shafranov potential (137) forW0 > 0,

W2 > 0, w � 30 and coordinate dependences of Az, By, and jz character-

istic of a nested current sheet.
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and assumingW1 < 0 as before:

1

2

�
dAz

dx

�2

�U � ÿ2W1 : �163�

Relevant integration leads to the solution

Az � ÿ2A0 ln tan

 ��������������
ÿ2W1

A2
0

s
jxÿ x0j

!
: �164�

For brevity, assume x0 � 0 as before. Expressions for the
magnitude of the magnetic field and current density resemble
formulas (161), (162), the only difference being the substitu-
tion of trigonometric functions for hyperbolic ones:

By �
�������������ÿ8W1

p

sin
� ���������������������
ÿ2W1=A2

0

q
x
� ; �165�

jz � ÿcW1

pA0 sin
� ���������������������
ÿ2W1=A2

0

q
x
�
tan
� ���������������������
ÿ2W1=A2

0

q
x
� : �166�

Solutions (160)±(162) and (164)±(166) differ from all
those considered above in that they exhibit a singularity (in
the vicinity of zero in the former case, and in the vicinity of
points �ÿ2W1=A

2
0�1=2x � pn at all integer n in the latter);

namely, the magnetic field, current density, and particle
concentration are unbounded. The behavior of these two
solutions in the vicinity of zero is similar, despite some
differences: Az�x� along with By�x� in both solutions tend
toward each other as x! 0, while the difference between
jz�x� (as between particle concentrations) in the two solutions
tends toward a nonzero constant, as readily follows from the
expansion of quantities (160)±(162) and (164)±(166) into
series in the vicinity of point x � 0.

Because all the above equations hold only at finite values
of all constituent quantities, it seems also appropriate to write
out the boundary condition at the discontinuity point:

By��0� ÿ By�ÿ0� � 4p
c

� �0
ÿ0

jz dx : �167�

Function jz�x� being even, the formal value of integral�
jz�x� dx at any given limits of integration does not depend

on the mode of detour around the singularity at x � 0 in the
complex plane, and any detour of this singularity produces
the necessary jump on the left-hand side of the equality.
However, the infinite discontinuity of the magnetic field
makes necessary a flat countercurrent flow with infinite
linear density for the boundary condition to be fulfilled at
x � 0. It means that these solutions are nonphysical if
considered in the region of space encompassing the singular-
ity.

Furthermore, the exact analytical solution can be
obtained for the equation

q2Az

qx 2
� ÿW0

A0
sinh

�
Az

A0

�
�W2

A0
sinh

�
Az

2A0

�
�168�

that corresponds, in particular, to the case in which particles
forming structures described by equation (136) are supple-
mented by `reverse flow' particles with the same dependence
of their distribution function on the vector potential compo-
nent Az, but opposite values of momentum projection pz and

opposite charge sign. Here, we choose the sign of the item
with an arbitrary multiplier W2 differently than in formula
(136) to more conveniently write out solutions in which W0

andW2 will be assumed positive.
The respective Grad±Shafranov potential takes the form

U�A� �W0 cosh

�
Az

A0

�
ÿ 2W2 cosh

�
Az

2A0

�
�169�

and tends toward �1 as Az ! �1, suggesting the existence
of nonlinear periodic solutions. One of them can be written
down in elementary functions:

Az�x� � 4A0 artanh

�
cos
ÿ �����������������������������������W2 � 2W0�=A0

p
x
����������������������������

1� 2W0=W2

p �
; �170�

By�x� �
4
�������������
A0W2

p
sin
ÿ �����������������������������������W2 � 2W0�=A0

p
x
�

1ÿ ÿW2=�W2 � 2W0�
�
cos2

ÿ �����������������������������������W2 � 2W0�=A0

p
x
� :

�171�

When W2 5W0, solutions (170), (171) are close to a
harmonic one; for W2 4W0, the solution is strongly
anharmonic, because the argument of hyperbolic arctangent
can be close to �1, which is analogous to the appearance of
anharmonic sheets considered at the end of Section 3.1.2.

The Grad±Shafranov potential (169) has the shape of a
potential well with a single minimum in the center for
W2 < 2W0. ForW2 > 2W0, there is a maximum in the center
and two minima on both its sides at points

Az � �2A0 ln
W2 �

�����������������������
W 2

2 ÿ 4W 2
0

q
2W0

: �172�

The shapes of the profiles of the magnetic vector potential,
magnetic field, and current density for two different W2=W0

ratios are illustrated in Fig. 18.

3.3 Polynomially exponential particle distributions
Let us now consider a more general case of PDFs in the form
of the product of the exponent and polynomial:

fa

�
p; pz � ea

c
Az

�
� exp

�
za

pz � eaAz=c

mac

�
�
Xd
i�0

�Fai�p�
�
pz � eaAz=c

mac

�i

; �173�
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Figure 18. The profile of the Grad±Shafranov potential (169) and

coordinate dependences of Az, By, and jz for the anharmonic periodic

solutions (170), (171) atW2 � 2W0 (a), andW2 � 6W0 (b).
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for which the Grad±Shafranov potential in equation (68) has
the exponentially polynomial form, too:

U�Az� �
X
a

exp

�
zaeaAz

mac 2

�Xd
l�0

�
eaAz

mac 2

�l

Cal ; �174�

where the coefficients are determined by integrals:

Cal� 4p2Nam
2
a c

3
Xd
i�l

�
�Fai�p�

�
Yali

�ÿza p
mac

�
ÿYali

�
za p
mac

��
p
dp

ga
�175�

of arbitrary functions �Fai�p� with the weight given by
dimensionless expressions

Yali�b� � i! exp �ÿb��ÿza�lÿiÿ3
�iÿ l �! l !

n
exp �b�G�iÿ l� 1; b�

� ��iÿ l� 2��iÿ l� 1� ÿ b 2
�� b iÿl�2 � �iÿ l� 2�b iÿl�1

o
:

�176�

Here, G�. . . ; . . .� is the so-called incomplete gamma-function
defined by the formula

G�s; x� �
�1
x

t sÿ1 exp �ÿt� dt : �177�

It is connected with the ordinary gamma-function by
the relation G�s; 0� � G�s�. In the case of nonnegative
integer i and l �i5 l � under consideration, the factor
exp �b�G�iÿ l� 1; b� is an iÿ l degree polynomial in b. The
expressions for an incomplete gamma-function for the five
natural values of the first argument are written out in the
explicit form as

G�1; x� � exp �ÿx� ; G�2; x� � exp �ÿx��1� x� ;

G�3; x� � 2 exp �ÿx�
�
1� x� x 2

2

�
;

�178�
G�4; x� � 6 exp �ÿx�

�
1� x� x 2

2
� x 3

6

�
;

G�5; x� � 24 exp �ÿx�
�
1� x� x 2

2
� x 3

6
� x 4

24

�
:

In other words, in this case, too, we have the universal
functional form of the Grad±Shafranov potential, while
particle distribution functions determine only the set of its
coefficients, even though they influence parameters of the
resultant current sheets.

Another quite general case is represented by the
distribution functions in which the exponent is quadrati-
cally dependent on the projection of the generalized
momentum (a similar case was considered from somewhat
different standpoints in Ref. [7]). It is appropriate to
precede the general analysis by a description of the simplest
variant with

fa

�
p; pz � ea

c
Az

�
� ~Fa0�p� exp

�
ÿz 2a

�pz � eaAz=c�2
m 2

a c
2

�
;

�179�
where za are dimensionless constants, and ~Fa0�p� are certain
yet arbitrary functions. Then, the equation for the vector

potential (68) assumes the form
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dx 2
� ÿ 8p2
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ÿz 2a
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m 2
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pz dpz

�
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maga
: �180�

The integral over pz in the square brackets equals

m 2
a c

2

2z 2a

�
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�eaAz=cÿ p�2

m 2
a c

2
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za�eaAz=c� p�

mac

��
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�181�

where the error function was introduced:

erf �x� � 2���
p
p
� x

0

exp �ÿt 2� dt : �182�

Because the integrand contains special functions, further
integration over p on the right-hand side of Eqn (180) cannot
be performed analytically in the general case, although the
analysis is possible in certain specific cases, e.g., when the
weight factor ~Fa0�p� is the sum of d-functions.

An important special case in which integrals can be
removed from the Grad±Shafranov equation is the Maxwel-
lian dependence of distribution functions on the particle
energy, when ~Fa0�p� � Caga p

ÿ3
a exp �ÿp 2=p 2

a �, where Ca and
pa are constants. Integration yields the Grad±Shafranov
potential in the form of the sum of exponentials with the
exponents quadratically dependent on Az:

U�Az� �
X
a

2p5=2NaCacp
2
a���������������������������

m 2
a c

2 � p 2
a z

2
a

q exp

� ÿe 2aA2
z=c

2

m 2
a c

2zÿ2a � p 2
a

�
: �183�

An analogous result can be obtained for the particle
distribution function having a more general form:
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p 2
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�
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ÿz 2a

ÿ
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�2
m 2

a c
2

�
; �184�

with different Aa constants for different kinds of particles:

U�Az� �
X
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2p5=2NaCacp
2
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a c

2 � p 2
a z

2
a
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m 2
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a

�
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�185�

Let us turn back to the general case of the exponent
additionally having a polynomial multiplier, besides the
exponential multiplier with a quadratic form from the vector
potential:

fa
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p; pz � ea

c
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�pz � eaAz=c�2
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2
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: �186�
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Integration in elementary functions is again possible for the
case of ~Fai�p� � Caigap

ÿ3
ai exp �ÿp 2=p 2

ai�, whereCai and pai are
constants (Lorentz factor ga depends on p). It is also possible,
for generality, to write Az ÿ Aa instead of Az with different
constants Aa for different kinds of particles (we do not follow
it for brevity). Then, we arrive at

U�Az� �
X
a

Xd
j�0

Xd
i�j

�
eaAzma

z 2a p
2
ai �m 2

a c
2

�j

exp

� ÿe 2aA2
z=c

2

m 2
a c

2zÿ2a � p 2
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�

� ÿ1� �ÿ1�iÿj �G�i� 1�Gÿ�iÿ j� 1�=2�
G� j� 1�G�iÿ j� 1� �

� p2CaiNa pai

m iÿj�1
a c iÿj

�
z 2a

m 2
a c

2
� pÿ2ai

�ÿ�iÿj�1�=2
: �187�

It is easy to make certain that substitution of d � 0 into last
expression yields formula (183).

The use of the general expression found for the Grad±
Shafranov potential opens up ample opportunities for
analytical construction of various self-consistent current
sheets in the near future.

3.4 Nonsmooth particle distributions
3.4.1 Grad±Shafranov potential for localized current sheets in
an external magnetic field. Let us consider, with reference to
the description of current sheets in contact with the region
occupied by an external uniform magnetic field, some
nonsmooth PDFs that can ensure an appropriate shape of
the Grad±Shafranov potential specified at the end of
Section 2.5 in connection with the classification of possible
planar layered solutions.

The simplest suitable example of a PDF for which
integrals entering into the Grad±Shafranov equation (68)
can be calculated analytically is provided by the particle
distribution depending on the projection of the generalized
momentum through the sum of d-functions in the form
d��pz � eaAz=cÿ Pi�p��=mac� with certain weights. Let us
consider, as the dependence on the momentum projection
py, the two simplest variants: one without an explicit
dependence (cylindrically symmetric case with pz-axis), and
the other with an explicit dependence in the form of a
d-function d�py� (a case of planar layered particle motion).

The first variant is specified as

fa

�
p; pz � ea

c
Az

�
�
X
i

�Fai�p� d
�
pz � eaAz=cÿ Pi�p�

mac

�
;

�188�
where Pi�p� are certain functions that can actually be chosen
arbitrary, and �Fai are arbitrary functions assumed to be
nonnegative in order to assure PDF fa nonnegativity.
Current density created by particles of a kind a is calculated
by moving into the spherical system of coordinates in the
momentum space and gives the following Grad±Shafranov
potential:

Uad �
X
i

�1
0

4p2Nae
2
a p
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pÿ ��eaAz=cÿ Pi�p�

��
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�
�
c 2p 2

e 2a
ÿ
�
Az ÿ cPi�p�

ea

�2�
dp ; �189�

where H�. . .� is the Heaviside step function.

The following distribution function is considered for the
planar layered variant:

fa
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�
X
i

�Fai�p�d
�
pz � eaAz=cÿ Pi�p�

mac

�
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�
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mac

�
: �190�

Current density is easy to calculate by moving to the
cylindrical system of coordinates with the resulting Grad±
Shafranov potential

U �
X
a; i

8pNamac
2

�1
0

p �Fai�p�
ga

����������������������������������������������
p 2 ÿ

�
eaAz

c
ÿ Pi�p�

�2
s

�H

�
pÿ ��eaAz=cÿ Pi�p�

��
mac

�
dp : �191�

Current configurations corresponding to a potential of such a
form apparently have not yet been studied.

One more useful example of a PDF with the nonsmooth
dependence on the projection of the generalizedmomentum is
associated with the use of the modulus function

fa

�
p; pz � ea

c
Az

�
� �Fa1�p�

���� pz � eaAz=c

mac

���� : �192�

The density of current created by particles of a kind a is easy
to calculate as

ja � Naea

�
�Fa1�p�

���� pz � eaAz=c

mac

���� pz
maga

d3p

� pNaea
3m 2

a c
4

�
p �Fa1�p�

ga

��pc� eaAz�j pc� eaAzj�2pcÿ eaAz�

ÿ �pcÿ eaAz�j pcÿ eaAzj�2pc� eaAz�
�
dp : �193�

For example, the following expression is derived for the
monoenergetic distribution �Fa1�p� � pÿ20 d�pÿ p0�, where p0
is the modulus of the particle momentum equal for all
particles of a kind a:

ja �

ÿ 4pNaea
3m 2

a cga
; Az < ÿ p0c

ea
;

pNaea
3m 2

a cga

�
6
eaAz

p0c
ÿ 2
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eaAz

p0c

�3�
; ÿ p0c

ea
< Az <

p0c

ea
;

4pNaea
3m 2

a cga
; Az >

p0c

ea
:

8>>>>>>>><>>>>>>>>:
�194�

Evidently, the right-hand side of Eqn (194) is a smooth
function of Az. Therefore, the Az dependence of ja and the
respective profile of the Grad±Shafranov potentialU�Az� are
smooth, too, even in the case of the general form of the
functional cofactor �Fa1�p�, because the general form of
current density ja can be obtained by integrating (194) over
p0 with weight p 2

0
�Fa1�p0�.

It is also possible to consider the nonsmooth distribution
function of a more general form

fa
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p; pz � ea

c
Az

�
� �Fai�p�

���� pz � eaAz=c

mac
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mac

�iÿ1
;

�195�
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for which the Grad±Shafranov potential is calculated and
written out as

U�Az� �
X
a

�1
0

8p2Nam
2
a c

3p �Fai�p�
ga�i� 1��i� 2��i� 3�

��
eaAz=c� p

mac

�i�1

�
���� eaAz=c� p

mac
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mac

�i�1���� eaAz=cÿ p

mac

���� �i� 2� p� eaAz=c

mac

�
dp :

�196�

When eaAz > pc, the last expression is in excellent agreement
with formula (89). Naturally, it is possible to take the
distribution function in terms of several summands of form
(195) with different values of power i and substitute in each of
them eaAz=c by eaAz=cÿ Pi�p�, where Pi�p� is an arbitrary
function. By virtue of linearity, the corresponding formula for
the Grad±Shafranov potential generalizing expression (196)
is written out trivially.

Finally, let us consider the PDF, the dependence of which
on the generalized momentum is determined by the Heaviside
step function (its presence is quite natural in the description of
the boundary between the plasma and the plasma-free region
occupied by an external magnetic field):

fa
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c
Az

�
�
X
i

�Fai�p�H
�
pz � eaAz=cÿ Pi�p�

mac

�
:

�197�
Here, Pi�p� are certain functions that can be chosen, in
essence, arbitrarily, and function �Fai�p� is assumed to be
nonnegative as before to guarantee the nonnegativity of
PDF fa.

The corresponding Grad±Shafranov potential can be
reduced to
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The integrand in the last formula (as a function ofAz) equals a
constant for eaAz=c < Pi�p� ÿ p, and another constant for
eaAz=c > Pi�p� � p; it is equal to the cubic function of Az

between the two constants.
For a more general form of PDFs [functions Pi�p� are not

written here, for brevity], viz.
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mac
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the expression for the Grad±Shafranov potential can be
written out taking advantage of linearity and the obvious

relationship
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Then, it follows from formulas (89) and (196) that
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Evidently, potential (201) calculated at i � 0 differs from
expression (198) at Pi�p� � 0 only by a constant, so that
formula (201) can be applied not only for positive powers i,
but also for the zero power.

3.4.2 Current configurations with distribution functions in the
form of dd-functions in an external magnetic field. Let us
consider the expansion of cylindrically symmetric distribu-
tion functions into d-functions of the projection of the
generalized momentum (188) and the respective Grad±
Shafranov potential (189) in the monoenergetic case 5 when
�Fai�p� dependences also have the form of the d-functions,
�Fai�p� / d�pÿ p0�:

fa
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p; pz � ea

c
Az

�
/
X
i

d�pÿ p0�d
�
pz � eaAz=cÿ Pi�p�

mac

�
:

�202�

Then, the current density (to be precise, its component for
each concrete ith item) is linearly dependent on the vector
potential within the interval from c�Pi�p0� ÿ p0�=ea to
c�Pi�p0� � p0�=ea (with derivative d ja=dAz being negative)
and equals zero outside this interval. The Grad±Shafranov
potential (189) over the same interval has the shape of a
parabola convex upwards with the vertex at Az � Pi�p�. The
parabola being convex upwards, the solution with a localized
magnetic field in which the current is determined by a single
kind of monoenergetic particles with one term in sum (188) is
impossible to construct (a localized solution should be
possible if there were two such parabolas with a `potential
well' between their vertices), and all solutions have the form
either of a symmetric current sheet with an antisymmetric
magnetic field (in analogy with the Harris sheet when the
value of the first integral U0 is below the parabola vertex) or
of an antisymmetric current sheet in an external uniform
magnetic field (when the U0 value is above the parabola
vertex) or the current sheet at the border between the
homogeneous nonmagnetized plasma and the magnetic field
(when the U0 value coincides with the parabola vertex in
terms of height).

Let us analyze the latter case assuming, for brevity, that
Pi � 0. Then, as Az ! 0, i.e., in the depth of the plasma

5 The search for solutions for self-consistent current sheets with such usage

of d-functions dates to Refs [155, 158].
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volume, the magnetic field tends toward zero, too, and the
expansion of potential (189) in the vicinity ofAz � 0 takes the
form

Uad � constÿ A2
z

X
i

�1
0

4p2Nae
2
a p

�Fai�p�
cga

dp�O�A 4
z � ; �203�

with the result that in the linear approximation it leads to the
homogeneous equation

dAz

dx
� �Az

�������������������������������������������������������X
i

�1
0

8p2Nae 2a p
�Fai�p�

cga
dp

s
; �204�

solutions of which give the exponentially decaying profile of
the vector potential and, therefore, of the magnetic field
By�x�.

If all current-carrying particles have an identical Lorentz
factor ga, the integral in the last expression can be written out
via the local particle concentration na in the region where Az

and the magnetic field are close to zero:

dAz

dx
� �Az

����������������
4pnae 2a
mac 2ga

s
: �205�

This means that the scale of magnetic field attenuation with
penetration to the plasma interior is c=opa. Notice that the
plasma is strongly anisotropic in this solution even in the
uniform region.

Analogous symmetric, antisymmetric, and transition
current sheets can also be constructed in a monoenergetic
case for the flat distribution functions (190) on the
assumption of �Fai�p� / d�pÿ p0�. Then, the item for each
concrete i in the Grad±Shafranov potential (191) over the
interval from c�Pi�p0� ÿ p0�=ea to c�Pi�p0� � p0�=ea has the
shape of a semi-ellipse (concave upwards), and vanishes
outside this interval. For a given i at each point of the space,
particles have a fixed total momentum p � p0, momentum
projection py � 0, and projection pz � Pi�p0� ÿ eaAz=c. This
uniquely defines the remaining projection to within sign:
px � ��p 2ÿ �P 2

i �p0�ÿ eaAz=c�2�1=2, meaning that for a given i
two symmetric particle trajectories pass through each point of
space at which the Az value falls into the interval from
c�Pi�p0� ÿ p0�=ea to c�Pi�p0� � p0�=ea. There are `turning
points' at the interval boundaries in which px � 0 and the
current density becomes infinite (the simplest current sheets
with such a delta-shaped PDF for a boundary-value problem
appear to have been considered for the first time inRef. [155]).

The invariant method allows us to describe for such a
PDF the structure of the boundary between a homoge-
neous two-beam plasma (analogous to that considered in
Section 3.4.3) and a vacuum with a constant magnetic field.
To this end, we take

�Fai � 1

2m 2
a c

2
d�pÿ p0� �206�

for one of the items in sum (190), and �Fai � 0 for the
remaining ones, assuming for simplicity all Pi�p0� equal to
zero. In so doing, the distribution function fa assumes the
form

fa

�
p; pz � ea

c
Az; py

�
� 1

2m 3
a c

3
d
�
pÿ p0
mac

�
d
�
pz � eaAz=c

mac

�
d
�

py

mac

�
: �207�

The Grad±Shafranov potential (191), written as

U � 4pNa p0
maga

����������������������
p 2
0 ÿ

e 2aA
2
z

c 2

r
; �208�

is equal to zero for A2
z > p 2

0 c
2=e 2a , and the radicand in

expression (208) is negative. Because we wish to describe
here the case in which part of the space is occupied by a
homogeneous plasma without a magnetic field, we have to
choose such a solution of the Grad±Shafranov equation at
which derivative dAz=dx is zero at the potential maximum
point, i.e., at Az � 0. For this purpose, the value of the first
integral of the Grad±Shafranov equation should be chosen as
Umax � U�0�:

1

2

�
dAz

dx

�2

�U�Az� � U�0� � 4pNa p
2
0

maga
: �209�

The plots of a magnetic field, particle concentration, current
density, and electron trajectories for this solution are
presented in Fig. 19.

In the regions with a weak magnetic field, i.e., in the
vicinity ofAz � 0, the potential can be expanded into a series:

U � 4pNa p
2
0

maga

�
1ÿ e 2aA

2
z

2c 2p 2
0

�
; �210�

whence [using relation (209)] it follows that

dAz

dx
� �Az

�����������������
4pNae 2a
mac 2ga

s
; �211�

i.e., exponential decay of the magnetic field with penetration
to the plasma interior.

Notice that in the solution thus obtained magnetic field
magnitudes far from the current sheet as x! �1 and
x! ÿ1 differ not only in sign, which suggests the presence
of a fraction of the `external' field created by some currents
flowing `at infinity' that do not enter the system being
described.

Az

U

U0

e

z

B

0
x

jz

B
N

Figure 19. Grad±Shafranov potential (208), electron trajectories, and

profiles of the magnetic field, current density, and particle concentration

at the boundary of a uniform magnetic field and a two-beam plasma (at

U0 � Umax).
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Let us calculate the local relationship between magnetic
field energy density and particle energy density. It follows from
expressions (207)±(209) that

EB � B 2=8p
namac 2ga

� p 2
0

m 2
a c

2g 2a

 
U0maga
4pNa p

2
0

ÿ
�������������������
1ÿ e 2aA

2
z

c 2p 2
0

s ! �������������������
1ÿ e 2aA

2
z

c 2p 2
0

s
; �212�

where U0 is the value of the first integral of the Grad±
Shafranov equation, U0 � U�Az� � B 2

y =2. The inequality
U0 4 4pNa p

2
0 =maga is fulfilled except when the current

structure of interest is in an external uniform magnetic field.
With this inequality in mind, it follows from expression (212)
that EB < 1=4.

Let us make an analogous estimate in the general case
when the current structure being considered contains particles
with different energies and the Grad±Shafranov potential has
the general form (191). Then, the relationship between local
energy density of the magnetic field and that of the particles is
written out as

EB �
"
U0

4p
ÿ
X
a; i

2Namac
2

�
�1
0

p �Fai�p�
ga

����������������������������������������������
p 2 ÿ

�
eaAz

c
ÿ Pi�p�

�2
s

dp

#

�
 X

a;i

�1
0

2m 3
a c

4Na p �Fai�p�ga�����������������������������������������������
p 2 ÿ ÿeaAz=cÿ Pi�p�

�2q dp

!ÿ1
; �213�

where integration is purely real, and integrals are calculated
only over regions with a positive radicand. Taking advantage
of the fact that the weighted harmonic average of positive
quantities does not exceed their arithmetic average, it is
possible to write down the estimate

EB 4

 
U0

8pNamac 2

ÿ
X
a; i

�1
0

p �Fai�p�
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dp
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�
�X
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p2Sai

macp �Fai�p� dp
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; �214�

where Sai is the set of such p > 0 for which
�eaAz=cÿ Pi�p��2 4 p 2. Whence it follows that

EB 4
1

4

�
U0

8pNamac 2

�2�X
a; i

�
p2Sai

macp �Fai�p� dp
�ÿ2

: �215�

Next, if the current structure of interest is not in the external
uniform magnetic field, there is a point where the field (and
EB) vanishes. Bearing this in mind and taking advantage of
relationship (213) we find the upper bound for U0 leading to
the inequality

EB 4
1

4

�X
a; i

�1
0

p

macga
p �Fai�p� dp

�2�X
a; i

�
p2Sai

p �Fai�p� dp
�ÿ2

<
1

4
:

�216�

Notice that these estimates are exact in the sense that EB
values close to 1=4 are possible. The latter inequality from
formula (216) holds true if distribution functions Fai�p� differ
from zero only inside Sai set (otherwise, the magnetic field at
this point would be formed by particles whose trajectories do
not pass through the plane with the same x and it would be
senseless to compare local densities of the current and
magnetic field; in particular, in the situation depicted in
Fig. 19, the magnetic field also exists in the region where
there are no particles at all).

Figure 19 illustrates a case in which the value of U0 is
exactly equal to the height of the Grad±Shafranov potential
maximum: U0 � Umax � 4pNa p

2
0 =maga. Let us consider in

brief what happens if U0 is greater or smaller than this value.
When U0 < Umax, the representative point reflects from the
slope of the Grad±Shafranov potential profile, giving rise to a
spatially localized current structure and an antisymmetric
self-consistent magnetic field it creates, as shown in Fig. 20.
The current density profile is symmetric, while the magnetic
field density profile is antisymmetric. The width of the current
structure can be either much greater than the gyroradius of
particles in the magnetic field they create at infinity (at U0

close toUmax) or of the same order as the gyroradius, and even
much smaller than that for U0 5Umax. In the last case, the
particles travel largely along the z-axis and deflects from it
only through small angles.

If U0 > Umax, the representative point passes through the
maximum of the Grad±Shafranov potential without stop-
ping; such a situation corresponds to a localized current
structure placed in an external uniform magnetic field, as
shown in Fig. 21. The current density profile is antisymmetric,
that of the magnetic field symmetric, and particles move
along closed trajectories. The current structure has a width
on the order of the particle gyroradius in an external field ifU0

greatly exceeds Umax, and its width can be much greater than
the particle gyroradius in an external field if U0 is close to
Umax. In the latter case, the magnetic field in the structure
center becomes much smaller than the external one.

Superposing the two solutions presented in Fig. 19 yields
the solution describing a two-flow plasma divided into two

jz

BN

e
BB

U

U0

Az
z

0
x

Figure 20. Grad±Shafranov potential (208), electron trajectories, and

profiles of the magnetic field, current density, and particle concentration

for a sheet with an antisymmetric magnetic field (for U0 < Umax).
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parts by the region with a magnetic field, as illustrated in
Fig. 22.

3.4.3 Boundary between an isotropic plasma and an uniform
magnetic field. In the above examples of solutions describing
the boundary between a homogeneous nonmagnetized
plasma and the uniform region with a magnetic field, the
plasma was essentially anisotropic at all points in space. Let
us construct a solution in which the plasma is isotropic at the
periphery of the sheet, taking the plasma PDF in the form of
expression (197) with a single value of index i:

fa

�
p; pz � ea

c
Az

�
� �Fa0�p�H

�
pz � eaAz=c

mac

�
: �217�

When a change in eaAz=c from negative to positive values
is much greater than the mean value hpi of momentum, the
Grad±Shafranov potential U�Az� (198) decreases byX

a

16p2Na

3ma

�1
0

�Fa0�p� p 4 dp

ga
; �218�

so that magnetic field energy densities in a vacuum and a
plasma differ byX

a

4pNa

3ma

�1
0

�Fa0�p� p 4 dp

ga

�
X
a

�1
0

2

3
Na

p 2

2ma

1

ga
�Fa0�p�4pp 2 dp ; �219�

i.e., by the magnitude of the gas-kinetic pressure of isotropic
plasma, as expected. Let us assume in addition that the
plasma in the homogeneous region is not only anisotropic
but also Maxwellian, which simplifies analytical calculations
and corresponds to the case of equilibrium distribution of
practical significance:

�Fa0�p� �
�������������������������������

1

2pmakBTa

�3
s

exp

�
ÿ p 2

2makBTa

�
: �220�

Here, kB and Ta are the constants used above, the product of
which has the dimension of energy, and the normalization
factor in front of the exponential is chosen such that particle
concentration na in the region with a homogeneous plasma
gives Na when formula na �

�
Na �Fa0�p� d3p is used for the

calculation.
The Grad±Shafranov potential (198) in this case is

expressed via the error function (182):

U�Az� �
X
a

2pNakBT erf

�
eaAz=c�����������������
2makBT
p

�
: �221�

Accordingly, the magnetic field profile is described parame-
trically by the formulas

x�Az� �
� Az

0

�
2U0 ÿ

X
a

4pNakBT erf

�
eaA

0=c�����������������
2makBT
p

��ÿ1=2
dA0;

�222�

B�Az� �
�
2U0 ÿ

X
a

4pNakBT erf

�
eaAz=c�����������������
2makBT
p

��1=2
; �223�

and the particle concentration profile can be found directly by
integrating relationship (217) with the substitution of Max-
wellian distribution (220):

na�Az� � Na

2
�Na

2
erf

�
eaAz=c�����������������
2makBT
p

�
: �224�

It follows from formulas (223) and (224) that expression

B 2

8p
�
X
a

nakBT � const �225�

is fulfilled and formally coincides with the equation of
constancy of the sum of magnetic and gas-kinetic pressures
in the magnetohydrostatics of isotropic plasma. The origin of
result (225) obtained for a particular choice of the distribution
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Figure 22.Grad±Shafranov potential, electron trajectories, and profiles of

the magnetic field, current density, and particle concentration for two

spatially separated fractions of particles (at U0 � Umax).
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Figure 21. Grad±Shafranov potential (208), electron trajectories, and

profiles of the magnetic field, current density, and particle concentration

for a sheet with a symmetric magnetic field (for U0 > Umax).
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function in the form (220) and for the particular way of
`cutting off' this function in accordance with expression (217)
can be explained as follows. In the general case of a planar
sheet, one has

d2Az

dx 2
� ÿ 4p

c
jz � ÿ dU

dAz
: �226�

Multiplication by By=4p � ÿ�dAz=dx�=4p and integration
over x give

ÿB 2
y

8p

����x�x2
x�x1
�
� x2

x1

1

c
�ÿjzBy� dx � U

4p

����x�x2
x�x1

: �227�

Integrand �ÿjzBy�=c defines the density of the x-component
of the force acting on the plasma from the magnetic field and
equaling the difference of U=4p values at the edges of the
plasma layer enclosed between planes x � x1 and x � x2 (this
density is by definition the force acting on unit plasma area in
the layer). In the static case of interest, this force must be
equal to the difference between flux densities of the particle
momentum x-component through unit area sites on planes
x � x2 and x � x1. In the isotropic case, the flux density of the
momentum component through a unit area site perpendicular
to its direction can be identified with pressure. Distribution
(220) is such that particle distributions over px and py at any
pz � const are similar to within a pz-dependent common
multiplier. Therefore, in `cutting off' the distribution by
plane pz � const according to expression (217), the relation-
ship between the concentration and flux density of the
x-component of the particle momentum remains the same as
in the isotropic case: formula (225) contains nakBT just as for
an isotropic plasma.

To recall, although the function erf entering expressions
(223) and (224) is antisymmetric with respect to Az, the
magnetic field and particle concentration change at a
different rate on either side of the plasma/vacuum interface.
The reason is that the magnetic field in the plasma is weaker
than in the vacuum (or even totally disappears), i.e., the value
of dAz=dx is lower in the plasma. This means that the scale of
a change, e.g., of current density (and therefore other
parameters), is bigger with increasing distance from its
maximum toward the plasma than toward the vacuum. The
profiles of particle concentration, magnetic field, and current
density for a nonmagnetized plasma/vacuum interface are
exemplified in Fig. 23.

The form of transition between an isotropic Maxwellian
plasma and a vacuumwith a uniformmagnetic field described
by formulas (222) and (223) and shown in Fig. 23 is not the
sole possible one. This inference follows from the fact that
Pi�p� in the argument of a step PDF (197) can be taken

differently than in formula (217). Specifically, the particle
distribution assumes the form

fa

�
p; pz � ea

c
Az

�
� �Fa0�p�H

�
pz � eaAz=c� mp

mac

�
�228�

in the case of the linear addition ÿmp, where m is a constant
with the modulus smaller than unity, while the plasma
remains isotropic as eaAz !1 and the number of particles
at high negative values of eaAz is exponentially small. In this
case, the integral in expression (198) is taken as well for
Maxwellian distribution �Fa0�p� (220); in other words, the
form of the Grad±Shafranov potential U�Az� can be
expressed analytically, but it is too cumbersome to be
presented here.

A simpler way to describe the transition between a
Maxwellian plasma and a vacuum differently from that
given by formulas (222), (223) is to use in distribution
function (197) two similar items instead of one with
identical Maxwellian distributions �Fa1�p� � �Fa2�p� but
different p-independent `cutoff' P1 and P2 values. In this
case, the Grad±Shafranov potential U�Az� will be the sum of
two erf functions shifted along the Az axis, the magnetic field
and particle concentration profiles remain monotonic even if
of a more intricate shape than that described by formulas
(222)±(224), and the current density profile has, at a large
enough difference between P1 and P2, two maxima of distinct
widths, as shown qualitatively in Fig. 24a.

Assuming P1 � P2 and using Maxwellian functions with
notably different temperatures as �Fa1�p� and �Fa2�p� give the
Grad±Shafranov potential in the form of the sum of two erf
functions of different widths and current density profiles
comprising a central narrow component and two wide tails
on both its sides (see the example in Fig. 24b). Naturally, the
`wide' and `narrow' components can be formed by plasma
particles of one or two different kinds.

Although we considered above boundary between the
isotropic nonmagnetized plasma and the vacuum, the same
solutions hold for the interface between two regions of
isotropic plasma with different magnitudes of the magnetic
field, provided an isotropic plasma component with Maxwel-
lian or non-Maxwellian energy distribution is added.

It is quite natural to use nonsmooth distribution functions
for the description of such phase boundaries, taking into

jz
N

By

Az

0

U

U0

Az

x

Figure 23. Profile of the Grad±Shafranov potential (221) and coordinate

dependences of Az, By, jz, and N for solutions (222)±(224) corresponding

to an asymmetric current sheet at the plasma/vacuum interface with a

uniform magnetic field.
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Figure 24.Typical profile of theGrad±Shafranov potential and coordinate

dependences of Az, By, jz, and N: (a) for an asymmetrically split current

sheet corresponding to distribution function (197) with two Maxwellian
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account the self-consistent field of transition current sheets,
as is confirmed by their profiles presented in the figures. To
recall, the simplest solutions of this type provided a basis for
the elaboration of the kinetic theory of self-consistent current
sheets [155, 158, 211]. Analytical solutions for transitional
layers at the boundary between plasma and smooth distribu-
tion functions are possible, too, but remain to be more
thoroughly explored.

4. Possible applications of exact solutions
to the interpretation of observed current structures
and results of their numerical simulation

The current level of the analytical understanding of self-
consistent current structures facilitates further progress in
the interpretation of their detection and observation, e.g., in
the near-Earth and solar plasma, experiments with laser
plasma, and adequate treatment of the results of numerical
simulations of plasma processes associated with self-consis-
tent magnetic fields, such as reconnection of magnetic field
lines, current sheet structure in the presence of a few fractions
of transit and trapped particles, and plasma confinement at
the border with a strong magnetic field region.

Recently, special interest has been shown in modeling the
formation of collisionless shock waves in which the genera-
tion of self-consistent magnetic fields plays the primary role
[54, 56, 60, 85, 96, 212]. Results of some relevant numerical
simulations give evidence of long-lived current filaments that
slowly merge together and gradually grow in volume at and
behind the shock wave front [44, 104, 212±214].

It was recently shown based on the results of numerical
simulations [55, 67, 98, 215] that modern experiments with
laser plasma provide conditions for the formation of
collisionless shock waves. The very first such experiments
have already given promising data suggesting the possibility
of studying processes ofmagnetic field generation and current

filament dynamics under these conditions [215]. In what
follows, we do not touch on the shock wave problems,
bearing in mind the complex behavior of filament ensem-
bles, but focus on the problems of current structures and
realization of their individual manifestations.

4.1 Specific features of current configurations
leading to reconnection of magnetic field lines
Let us start with a description of current sheets and filaments
giving rise to the reconnection of magnetic field lines. This
phenomenon appears to have a collisionless character, which
makes difficult its reproduction and observation under
experimental conditions.

Experimental studies of this phenomenon in laser plasma
have become possible quite recently [46, 68, 216±218]. An
example of the magnetic field structure evolution conditioned
by the formation of current filaments in a laser plasma flow is
presented in Fig. 25. As far as a laboratory (nonlaser) low-
pressure plasma created in large traps (e.g., MRX, RSX,
TC-3D, KI-I) is concerned, the resolution of the spatial±
temporal dynamics of the magnetic field on collisionless
scales in such plasma is still insufficient for the in-depth
investigation into details of the formation and evolution of
self-consistent current structures (see, e.g., Refs [61, 64, 65,
70, 219, 220]). Nevertheless, experimental studies along these
lines continue (one of the results is presented in Fig. 26).
Anyway, the plasma thus obtained can be highly none-
quilibrium and the initial current sheets have a far from
Maxwellian PDFs.

Recent observations of current sheets in the magneto-
spheric plasma also show that they may have a non-
Maxwellian PDF and differ for different kinds of particles,
while the spatial structure of the current density is asym-
metric, indented, and multiscale and, in particular, contains
split and nested current sheets (see Section 4.2). Such
observations are exemplified by satellite data concerning
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with current sheets in the tails of Earth's and Jupiter's
magnetospheres [17, 34, 193±195, 221±225]. The diversity of
PDFs and spatial magnetic field configurations associated
with self-consistent current structures also appears to be
natural in the astrophysical plasma, including active areas of
the chromospheres and magnetic star coronas, current sheets
formed by the stellar wind, or during contacts between
magnetized plasma regions with different directions of the
magnetic field in double systems with accretion (accretion
disks and jets corresponding to neutron stars and black holes)
(see, e.g., Refs [47, 57, 226±230]).

In all the above systems, reconnection of magnetic field
lines is themost interesting and extensively discussed phenom-
enon (see, e.g., Refs [61, 231±234]). The process of reconnec-
tion, interpretation of the relevant data, and comprehension
of the results of numerical simulations strongly depend on
the initial configurations of current sheets or filaments and
PDFs correlated with them. However, the initial current
structures have thus far been taken in the form of Harris
sheets and Bennett pinches (or their generalizations), while
PDFs in the form of one- or two-temperature Maxwellian
distributions, including those shifted by the hydrodynamic
velocity of the flow of the corresponding particle fraction. At
the same time, in accordance with Sections 2 and 3, the
analytical representation of the self-consistent initial condi-
tions is possible for a much wider class of configurations of
the magnetic field, current, and PDF. The self-consistent
particle energy distribution can be chosen to be essentially
arbitrary and non-Maxwellian, even for Harris or Bennett
type structures, which may help to more adequately take into
account the physical conditions preceding reconnection.

This makes it possible to estimate if and how the process
of reconnection depends on the initial current sheet and
filament profiles and the initial PDF correlated with them.
Of special interest are the reconnection rate, efficiency of
generation of accelerated particles and waves in the plasma,
current configuration parameters, and PDFs after comple-
tion of the process. Taken together, these characteristics
could promote understanding the physical nature and effects
(either observed or expected) of the reconnection of magnetic
field lines in current sheets or filaments under laboratory and
extraterrestrial conditions.

4.2 Double-scale and split current sheets
in a magnetospheric plasma
Another class of topical problems requiring variability of
PDFs and related current profiles pertains to the elucidation
and interpretation of the intricate structure of current sheets
in certain regions of the magnetospheres of Earth (Fig. 27),
the Sun, and Jupiter.

As far as the Sun is concerned, these are in the first place
the sites of plasma energy accumulation in the regions with
strongly nonuniformdirections of themagnetic field, inwhich
coronal flares occur from time to time [47, 72, 76, 238, 239], as
well as the regions of the warped heliospheric (equatorial),
current sheet that, according to data from Voyager-1 and
Voyager-2 missions, also exhibit activity, most probably due
to the same phenomenon of reconnection of magnetic lines of
force [240±242]. In both cases, there are grounds to suppose
the existence of long-lived two- andmany-humped (indented)
current sheets with changing signs of the current and the
magnetic field, although the structure and character of their
PDFs remain unclear.

Somewhat better known are the so-called double-scale
and split current sheets observed in the tail of the terrestrial
atmosphere by near-Earth spacecraft, such as Geotail,
Cluster, Interball, THEMIS, and MMS [17, 34, 45, 73, 74,
77, 222, 225]. It was shown that PDFs in these current sheets
are anisotropic and, generally speaking, non-Maxwellian,
e.g., two-temperature, functions significantly different for
various ion and electron fractions. These sheets are very
stable despite (or owing to?) external perturbations in the
form of slowly changingmagnetic fields and external fluxes of
particles eventually attributed to a solar wind. The structure
of the current sheets strongly depends on the fraction of
trapped particles and the character and ratio of various ion
fractions of transit particles. Trajectories of different particles
can be altogether different, while accumulation or depletion
of selected ion fractions may promote additional evolution of
current sheets.

The reader is referred to numerous reviews for more
detailed information about this issue (see, e.g., reviews [34,
35, 77] and references cited therein). Notice also that the data
obtained during the Voyager-2 and Galileo space missions
give evidence that a split current sheet can just as well emerge
in the Jovian magnetosphere; curiously, the thickness of the
double sheet can be smaller than that of a monolayer [194,
195].

The origin of split current sheets remains a mystery, and
their analytical description is based either on a few modifica-
tions of theMaxwellian distribution, different for various ion
fractions and responsible for the anisotropy of their pressure
in the plane orthogonal to the magnetic field or on various
numerical (MHD and PIC) models appealing to the simplest
generalizations of the Harris sheet and Maxwellian PDFs.
The extension of the class of analytical models of intricately
structured current sheets, demonstrated in Sections 3.1±3.3,
may significantly facilitate solving the problems under
discussion.

4.3 Current structures with an external magnetic field
at the boundary of two plasma regions
with different parameters
One more long-standing important issue is the description
of the boundary between the collisionless plasma and the
region occupied by an external (given) magnetic field
practically free of plasma [8, 155, 158, 186, 211]. In a more

Figure 26. Typical plasma distribution (as a background) and magnetic

field lines (cross section) in the vicinity of the current sheet formed in the

force lines reconnection region (MRX facility, Princeton, www.pppl.gov)

[46, 236, 237].
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general setting, the problem reduces to the structure of the
border between two half-spaces occupied by a homogeneous
plasma with different parameters and containing an external

magnetic field assumed to be uniform for simplicity. In the
planar layered geometry, the transition current sheet creates
own uniform magnetic field in the exterior to its volume and
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Figure 27. (Color online.) Current sheet profiles [dependences of current density j (blue curves) and its transverse component j? (red curves) on the

effective height] observed by the Cluster system of satellites [221]. The dashed line corresponds to the model Harris sheet.
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thereby weakens the magnetic field in one half-space, while
strengthening it in the other. Generally speaking, a given
particle flow can pass through the sheet but an analytical
description of self-consistent current sheets has not yet been
undertaken under such an aggravated condition; therefore,
it is not discussed here. As shown in Section 3.4 based on a
model PDF, transition sheet profiles in the external
magnetic field can vary considerably but always obey the
balance equation (58) and account for the plasma gas-
kinetic pressure drop equaling the difference between
magnetic pressures on either side of the sheet. It follows
from Sections 2.2 and 2.6 that even more natural config-
urations of the transition sheet with the shear of magnetic
field lines are possible.

The data suggesting the emergence of such structures in
Earth's magnetosphere are presented in a number of
reviews, e.g., Refs [45, 75]. Laser plasma experiments thus
far permit the study of current sheets at the plasma±
magnetic field interface only at the initial nonstationary
stage of their formation. It was mentioned in the two
preceding sections that theoretical analyses of such pro-
blems are usually based on highly limited kinetic models of
transition layers either in the MHD approximation or by
PIC simulations [8, 68, 186, 243±245]; hence, the necessity to
further extend the class of analytical kinetic models of
transition current sheets.

Unfortunately, we are aware only of nonsmooth PDFs
allowing arbitrary energy distribution of particles in the
analytical description of transitional current sheets.
Although it is still very difficult to form a clear view of
possible profiles and typical PDFs for transition sheets, the
solutions obtained in Section 3.4 give reason to believe that
such sheets can be highly diverse, viz. asymmetric, multiscale,
with variable current density directions, etc. Anyway, a rather
abrupt transition with the scale on the order of the gyroradius
of typical particles in the sheet is possible from the strong
magnetic field layer with a rarified plasma into the lower field
region with a practically isotropic PDF. Such sheets, some-
times referred to as `thin', are creating a great deal of interest
[34, 35] stirred up by hopes for further progress on the
analytical theory in this area.

4.4 Spectral and angular properties
of synchrotron radiation of current sheets
with power-law energy distributions of particles
Analytical expressions for an anisotropic PDF with an
arbitrary enough energy dependence allow us to find out
regular qualitative patterns in the properties of self-consis-
tent current configurations related to peculiarities of the
angular distribution of various energetic fractions of
particles. This concluding section of the review deals with
one such important property of relativistic self-consistent
current sheets as their synchrotron radiation in the intrinsic
magnetic field created by emitting particles (electrons)
themselves. In this case, as opposed to an external uniform
magnetic field common for the theory of synchrotron
radiation, the particle distribution must inevitably be
anisotropic for creating the current that maintains a self-
magnetic field. As a result, certain (additional) anisotropy is
imparted onto current sheet radiation. This feature is
paramount when information about anisotropy of the
observed synchrotron radiation spectrum is needed to
characterize the anisotropic distribution of emitting parti-
cles, e.g., for diagnostics of the relativistic plasma and

magnetic fields of various astrophysical objects, such as
relativistic jets, collisionless shock waves, and equatorial
current sheets formed by the pulsar wind in the neutron
star magnetosphere [57, 58, 68, 95, 97, 98, 218, 235, 244, 246±
253].

For certainty, we confine ourselves to the multipower-
law particle energy distribution characteristic of a variety of
situations in a nonequilibrium relativistic plasma and
regarded as uniquely corresponding to the multipower-law
synchrotron radiation spectrum [254, 255]. Our primary
objective is to demonstrate differences in the emission
pattern of an ensemble of particles forming the self-
consistent magnetic field and an analogous isotopic ensem-
ble of particles with the same energy distribution, placed in
an external magnetic field with the strength of the same
order of magnitude as the maximum strength of the field of
the magnetostatic structure being considered. To this end,
we shall lean upon the analysis of current sheets with the
polynomial Grad±Shafranov potential made in Section 3.1
and compare the emission of particle ensembles with two
distribution functions in the form of superposition of three
consistent components exhibiting the power-law dependence
on the generalized momentum with indices 0, 2, and 4 in the
self-magnetic field and of superposition of the correspond-
ing angle-averaged power-law components depending only
on the energy in the external magnetic field [256]. Let us
show that the spectrally angular differences in emission of
these two ensembles are significant for a wide range of the
ratios of coefficients of the above power series expansions,
e.g., the number of spectral breaks can be different.
Generalization of this example leads to the conclusion that
the spectrum of intrinsic radiation coming from self-
consistent current sheets in the relativistic plasma observed
at different angles may contain a varying number of
dominant power-law components, part of which are absent
among dominant power-law components of self-radiation
emitted by an isotropic ensemble of particles with the same
energy distribution.

Let us consider as a model an antisymmetric neutral
current sheet inhomogeneous along the x-axis, in which the
magnetic field is directed along the y-axis, while vector
potential and current along the z-axis. Let electron distribu-
tion be a polynomial function of the projection of the
generalized momentum onto the z-axis and Lorentz factor g
in the interval �gmin; gmax�:

F � gÿaÿ2
Xd
i�0

Xdÿi
j�0

Hi j g j

�
pz � eAz=c

mc

�i

: �229�

Here, the exponent a and coefficients Hi j of expansion are
constants.

Let us confine ourselves for simplicity to the case of
d � 4, assuming Hi j � 0 for the odd indices i or j. This
means that the current structure of interest is characterized
by six coefficients, H00, H02, H04, H20, H22, H40, and one
power-law symbol, a (the condition a > 13=3 needs to be
fulfilled for some further calculations). Some of the Hi j

coefficients can be negative, but their choice is limited by
the condition of nonnegativity of distribution function (229)
for all Lorentz factors within the �gmin; gmax� interval and all
electron velocity directions. Explicitly introducing the polar
angle y between the electron velocity direction and the
z-axis (current direction) allows this distribution to be
written as the sum of items with different powers of the
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Lorentz factor:

F � gÿaÿ2
�
H00 �H02g 2 �H04g 4

� �H20�H22g 2�
�
g cos y� eAz

mc 2

�2

�H40

�
g cos y� eAz

mc 2

�4�
:

�230�
Let us assume that the optical thickness of the current

sheet is much smaller than unity, and the refractive index of
the rarefied plasma forming this sheet is close to unity. Then,
its emission in the frequency interval �omin;omax� with
boundaries omin;max � �1=2�oB g 2min;max is determined by the
sum of synchrotron emissivities corresponding to individual
power-law distribution components with the spectral index n:
F
�i�
n � f

�i�
n �Az�gÿnÿ2 cosi y, where i � 0; 2; 4. To recall, a

relativistic particle (with g4 1) largely emits into the narrow
cone of angles around the intrinsic velocity: for the frequency
interval within which the radiation power is concentrated,
and the spectral intensity of emission into the unit solid angle
exponentially decreases as a function of the angle between the
velocity and the direction of observation if this angle exceeds
gÿ1 [162]. As is well known (see, e.g., [257, 258]) this means
that the anisotropy of synchrotron radiation is inherited from
the anisotropy of particle distribution over momenta, and the
emissivity of the plasma current sheet per unit volume at a
frequency o takes the form [254, 255]

a �n�o � cm 2jej3M�n� f �i�n �Az� cosi yjB sin wj
�

o
3oB

�ÿ�nÿ1�=2
:

�231�
Here, w is the angle between the magnetic field and the
direction of observation, oB � jeB sin w=mcj is the effective
gyrofrequency, andM is the n-dependent multiplier:

M�n� �
���
3
p

2p�n� 1� G
�
3nÿ 1

12

�
G
�
3n� 19

12

�
; �232�

where G denotes the gamma-function and it is assumed
everywhere that inequality n > 1=3, to which the aforemen-
tioned restriction on a relates, is fulfilled.

Thus, the emissivity characterizing the current sheet to
within the frequency-independent factor has the form

ao /
ÿ
a2o2 � a13oBo� a0�3oB�2

�� o
3oB

��1ÿa�=2
; �233�

i.e., it breaks down into three power-law components with
amplitudes:

a0 �
�
H00 �H20

e 2A2
z

m 2c 4
�H40

e 4A4
z

m 4c 8

�
M�a� ;

a1 �
�
H02�H20 cos

2 y� �H22� 6H40 cos
2 y� e

2A2
z

m 2c 4

�
M�aÿ 2� ;

a2 �
ÿ
H04 �H22 cos

2 y�H40 cos
4 y
�
M�aÿ 4� : �234�

The anticipated antisymmetric spatial dependence of the
current density and the related vector potential component
Az are derived from the Grad±Shafranov equation (see
Section 3.1) with the bi-quadratic potential, with Hi j � 0 for
odd i due to asymmetry, and convenient calibration of the
vector potential at which its zero value corresponds to the

maximummagnitude of the magnetic field.With this in mind,
all the items with odd exponents of Az were omitted above,
since their contribution to radiation all the same disappears
after integration over the sheet. Moreover, we do not
consider, for brevity, emission from regions in which the
magnetic field is much weaker than the maximum one, and
which make only a negligible contribution to the total
radiation that does not qualitatively alter its spectrally
angular properties.

Each of the three items in the emissivity (233), (234) has an
inherent angular dependence, while the direction of observa-
tion determines the characteristic frequencies,

o1 � 3oB

���� a0a1
���� ; o2 � 3oB

���� a1a2
���� ; �235�

at which contributions from the first and second or the second
and third items become equal, i.e., spectral breaks occur. At
certain directions of observation, some power-law compo-
nents of the emissivity do not appear at all. For example, the
amplitude of the intermediate item in a1 is low when the
vector potential component Az is small and the condition
cos2 y ' ÿH02=H20 4 1 is fulfilled. However, the role of such
a component in the formation of radiation in other directions
may be fairly well apparent.

The presence of `hidden' components in radiation corre-
sponds to the situation in which one of the items ai in the
synchrotron emissivity ao is small enough after averaging over
the solid angle: haiiy � �1=2�

� p
0 ai�y� sin y dy ' 0. The particle

distribution over energies (or over values of Lorentz factor g,
which is the same thing) obtained from distribution (230)
averaged over the solid angle does not contain a component
proportional to gÿa�2i and matching the aforementioned ai.
At the same time, such a latent component unrecoverable by
analysis of particle energy distribution can predominate at
certain observation angles in a logarithmically wide fre-
quency range.

This assertion can be exemplified by a spatially periodic or
localized current sheet for the particles of which the middle
component in the energy distribution is small (hidden), as in
the case of fulfillment of the conditions H20 ' ÿ3H02 and
H22 ' ÿ2H40. The intermediate component of emissivity

a1 �
�
H02 � 6H40

e 2A2
z

m 2c 4

��
cos2 yÿ 1

3

�
M�aÿ 2� �236�

disappears upon averaging over the solid angle, but may be
noticeable at observation directions given by angle y for which
cos2 y is sufficiently far from 1=3. The range of such angles is
determined by the inequality a 2

1 �y�=a2�y�a0 5w0 10, where
w � o2=o1 is the ratio of frequencies o2 and o1 introduced
above in formula (235) to serve as the upper and lower bounds
of the spectral region where the intermediate component
makes a dominant contribution to the emission.

For a planar spatially periodic current sheet with positive
coefficients H00, H20, H40, and H04, this condition of
dominance of the item a2 takes the form

w
1� �H40=H04��cos4 yÿ 2 cos2 y�

�cos2 yÿ 1=3�2 <
m
k0
: �237�

(Because the main contribution to emission comes from the
regions with a close-to-zero vector potential, this inequality is
unrelated to the concrete shape of the periodic current sheet
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profile.) Here, m �M 2�aÿ 2�=M�a�M�aÿ 4�, and k0 �
H00H04=H

2
20.

The nonnegativity of the PDF for all values and directions
of particle momenta is assured by satisfying inequalities
k0 5 1=36 and H04=H40 5 1. If the values of these relations
for distribution parameters are roughly twofold different
from the bounds indicated and the typical values of index
a � 5ÿ10 (corresponding to m ' 0:25ÿ0:75), the intermedi-
ate component disguised by angular averaging predominates
in the angle intervals y9 30� and 180� ÿ y9 30� for a
logarithmically wide frequency range (for w0 10). For
observations at nearly cross angles y (to be precise, for
cos2 y9 1=3), the frequency dependence of the emissivity in
the �omin;omax� range contains only one break.

For small angles y, i.e., for directions of observation close
to the current direction, this dependence exhibits two breaks
spaced far apart: o1 and o2, with the item a1 dominating
between them and the power-law emission spectrum char-
acterized by index �3ÿ a�=2 corresponding to the component
with index 2ÿ a absent in the particle energy distribution.
Frequency regions dominated by individual power-law
components of synchrotron emissivity depending on observa-
tion angles are plotted in Fig. 28.

Conditions for the dominance of the `latent' item a1 for a
localized current sheet are considered in much detail in
Ref. [256]. Such a sheet is possible for particle distribution
(230) if two coefficients H20 and H40 are negative, and the
remaining ones positive; then, the profile of the self-consistent
vector potential is monotonic: Az � Amax tanh �x=x0�, where
the maximum value is given by the equality �eAmax=mc�2 �
2�aÿ 2�g 2min=5�aÿ 4� ÿH20=2H40 > 0. The intermediate
item a1 can make a weighty contribution to the emissivity
(231) for a logarithmically wide frequency range �o1;o2� in
observation directions close to the perpendicular one with
respect to the flowing current, i.e., y � 90�. In these direc-
tions, the spectrum has two breaks again (rather than one, as
in the remaining directions), though the particle energy

distribution has only two power-law components with
indices ÿa and 4ÿ a.

A situation is also conceivable in which the power-law
component with index 4ÿ a is missing in the energy
distribution of particles and the corresponding major
power-law component of emissivity a2 proves to be `hidden':
ha2iy ' 0. This scenario is realized if the condition
H22 ' ÿ3�H04 �H40=5� is fulfilled. It is easy to show [256]
by analogy with the above cases that the `hidden' radiation
component a2 may prevail by virtue of particle distribution
anisotropy, a2�y�> j�3oB=o�a1�y���3oB=o�2a0j, in a wide
frequency range for a sufficiently wide cone of angles along
the current with the opening up to 30�, depending on the
parameters of the sheet.

To conclude, the frequency-angular spectrum of synchro-
tron radiation coming from self-consistent current structures
(without an external magnetic field) in a relativistic collision-
less plasma with the multipower-law particle energy distribu-
tion may contain breaks, extrema, and other features absent
in radiation emitted by an ensemble of the same particles with
the angle-averaged momentum distribution placed in an
external uniform magnetic field. Depending on the angle of
observation, emission of a self-consistent structure may have
a different number of power-law frequency components
prevailing in certain spectral intervals. This number can be
higher than the number of power-law components in the
particle energy distribution (averaged over angles), which
suggests the generation of synchrotron radiation by the
particles forming a self-consistent current structure rather
than those arriving from an external region and characterized
by mismatched energy distribution.

5. Conclusions

Construction of the theory of self-consistent configurations
of the magnetic field and currents in a collisionless plasma is
one of the most important problem in basic plasma physics,
affecting, among other things, realization of far-reaching
experiments with the so-called high-energy density laser
plasma based on modern superpower lasers and elucidation
of intriguing astrophysical phenomena (quasars, microqua-
sars, stellar and pulsar wind, cosmic gamma-ray bursts, etc.)
and events in near-space (shock waves and current sheets in
the Sun's and planets' magnetospheres) that are becoming
increasingly more observable using unique space vehicles and
telescopes.

This review demonstrates that the use of invariants of
particle motion in a collisionless multicomponent plasma
(both relativistic and nonrelativistic) makes it possible to
construct and analytically consider an extensive class of
nonlinear neutral current structures (localized and not
localized), including planar layered, cylindrically symmetric,
and two-dimensional ones as exemplified by axially sym-
metric anisotropic PDFs in the momentum space, with the
found static solutions allowing practically arbitrary particle
distributions over energies. This implies the possibility of
describing self-consistent sheets and filaments irreducible to
usually employed models of the neutral Harris sheet and
Bennett pinch or their known generalizations that actually
exploit the Maxwellian distribution not always inherent in
nonequilibrium collisionless plasma.

We proposed special expansions of particle distributions
as the functions of projections of their generalized momenta
onto the current direction in self-consistent magnetostatic
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Figure 28. Frequency regions dominated by individual power-law compo-

nents of synchrotron emissivity ao (233) depending on the direction of

observation characterized by the polar angle y with respect to current

direction. The plots are constructed for the case of a spatially periodic

current structure with a PDF in the form (229) at which angular averaging

conceals the intermediate emission component a1. More than half of the

total contribution to ao comes from the dominance criterion. Transition

regions where it is impossible to distinguish a single dominant component

are colored. Frequencies are plotted on the vertical axis in the logarithmic

scale. Values of the parameters are as follows: a � 7:5, k0 � 1=25, and
H04=H40 � 2.
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configurations, including exponentially polynomial, delta-
shaped, step, and other functions of particle motion
invariants that make possible an in-depth investigation into
solutions of the resultant nonlinear Grad±Shafranov equa-
tion. It enabled us to present the classification and analytical
description of a variety of spatial profiles of stationary
currents and magnetic fields to show that they are to a
large extent arbitrary, too. This approach permits us to
obtain analytical solutions for such current structures as
double-scale and split ones possessing zero and finite total
current, placed in an external magnetic field and bounded
only by the intrinsic magnetic field. Some of the known
solutions obtained for a narrow set of the simplest PDFs,
including the Harris sheet, were generalized for the arbitrary
relativistic particle energy distribution and configurations
with the magnetic field shear.

Broadly speaking, studies on various classes of solutions
of the Grad±Shafranov equation are still in the very early
stages but look highly promising, first of all for the
interpretation of various self-consistent current structures in
laboratory and cosmic plasmas. Themethod for the construc-
tion of self-consistent current structures with an arbitrary
energy distribution of particles, described in the review,
considerably extends the understanding of magnetostatic
structures in a collisionless plasma and provides a basis for
the analysis of their dynamic properties, including large-scale
instabilities and quasistationary interactions, as well as
magnetostatic turbulence (by analogy with Langmuir wave
turbulence and the turbulence of self-focusing channels of
electromagnetic waves [259±266]).

To sum up, there is a representative but not exhaustive list
of problems awaiting further research:

(1) How representative are distribution functions depend-
ing only on particle motion invariants compared with a
variety of distribution functions describing all stationary
self-consistent current structures? How adequately do the
first distributions represent qualitatively (physically) similar
current structures described bymore general particle distribu-
tions?

(2) What self-consistent current structures are most (or
least) stable and what is the hierarchy of their instabilities?
For which particle distribution is the structure with a given
current density profile most stable?

(3) To what degree do the classes of stationary current
structures extend (or contract) under the effect of a magnetic
field imposed, for example, across the current sheet and/or
boundary conditions, e.g., in prescribing the input and output
particle flows at the borders of the current structure?

(4) Is there a possibility of quasi-adiabatic (slow) defor-
mation of current structures without their appreciable
destruction and, if yes, under which conditions does it
occur? Is it possible to macroscopically describe any current
structure deformation or their interaction with each other
without a detailed analysis of PDF evolution?

(5) How do interparticle collisions, quasi-stationary
electric fields, and higher-frequency electromagnetic fields
influence self-consistent current structures? When does this
influence result in their destruction or evolution of their
macroscopic parameters without destruction, even if with a
loss of energy content?

This list illustrates the complexity of the problem of self-
consistent current structures and emphasizes the necessity of
the development of new approaches to the investigation of its
different aspects.
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