
Abstract. The sensitivity of contemporary gravitational-wave
detectors is so high that to a large extent it is limited by quantum
fluctuations of light in them.Methods to suppress or evade these
fluctuations are actively being developed, and the simplest of
them, the injection of squeezed light, has already found applica-
tion in the GEO600 detector. The aim of this review is first to
acquaint the reader with the quantummechanical limitations on
the sensitivity of optomechanical devices in general and laser
gravitational-wave detectors in particular and, second, to out-
line the methods for overcoming these limitations that are
considered the most promising for implementation in current
and planned detectors.

Keywords: gravitational-wave detectors, quantum noise, squeezed
light, standard quantum limit, quantum nondemolition measure-
ments, filter cavities, quantum speed meter, optical rigidity

1. Introduction

The 12th of January 2016 was the last day of the first
observing run (O1) at two advanced LIGO (Laser Inter-
ferometer Gravitational-Wave Observatory) gravitational
detectors, which started formally on 18 September 2015 but

actually approximately two weeks earlier. During this run,
gravitational-wave signals from black hole mergers were
detected for the first time. Two signals were recorded, on
14 September 2015 [1] and 26 December 2015 [2].

This result was a great success for the General Relativity
(GR) theory, which predicted the existence of gravitational
waves already 100 years ago [3]. We note that in all previous
known tests (Mercury perihelion shift, light beam deflection
near the Sun, gravitational time dilation), GR was proved
only for a nearly flat space±time, with gravitational
potential values j5 c 2. There are a number of alternative
gravity theories, which for relatively weak gravitational
fields give the same results as GR does, and therefore
correctly predict the mentioned effects. The change in the
period of revolution of compact two-body systems (1993
Nobel Prize [4, 5]) was indirect proof of the existence of
gravitational waves, but it did not change the situation
because the orbital motion of such systems can be described
well in the framework of the first post-Newtonian approx-
imation (detailed discussions of this problem and many
references can be found in reviews [6, 7]).

The first direct observation of gravitational waves also led
to new discussions among astrophysicists [8, 9]. Subsequent
observations of gravitational waves will obviously signifi-
cantly change our interpretation of theUniverse, as happened
after the development of radio astronomy.

Finally, gravitational-wave detection was a colossal
triumph for experimental physics. The measured value of
dimensionless variation of the space±time metric h, which in
the case of almost free masses in gravitational-wave detectors
is a variation of the relative position between them, was of the
order of 10ÿ21. With the length of LIGO interferometer arms
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L � 4 km, the corresponding absolute value of the offset is

x � hL

2
� 10ÿ18 m �1:1�

(which is three orders of magnitude smaller than the size of
the proton). The noise level in the frequency range 100±300Hz
with the highest sensitivity was lower than 10ÿ23 Hzÿ1=2 in
relative displacement units.

The road towards such incredibly high sensitivity took
almost half a century of hard work by experimentalists
around the world (see, e.g., reviews [10±13]). This journey
started with J Weber's experiments; he was apparently the
first to realize that the observation of gravitational waves
from astrophysical sources is not an absolutely hopeless task
[14]. As detectors, Weber used aluminum cylinders 1.5 m in
length with a fundamental mode eigenfrequency of 1.7 kHz.
In 1969, he reported the registration of gravitational waves,
which was later proved to be an error. The signal level was
h � 10ÿ16 [15], five orders larger than the signals detected at
Advanced LIGO (ALIGO).

In the early 1970s, Weber's experiments were repeated by
V B Braginsky's group at Moscow State University (MSU).
Two solid-state detectors used by this group had parameters
close to those of theWeber detectors, and their sensitivity was
approximately the same. However, they did not succeed in
detecting gravitational waves [16].

After that, a number of solid-state detectors were built
around the world. In the 1980s, with the use of cryogenic
temperatures and more sophisticated readout systems for
mechanical oscillations, the sensitivity reached approxi-
mately h � 10ÿ18 [17]. After 2000, when the laser detector
era had already begun, the sensitivity of solid-state detectors
reached 10ÿ21 Hzÿ1=2, but only in the narrow frequency band
near mechanical resonance [18, 19]. However, none of these
devices recorded gravitational waves.

These sensitivity values were already not too far from the
level of quantum fluctuations in solid-state detectors,
particularly, from the standard quantum limit (SQL), the
characteristic limitation of measurement accuracy, which
corresponds to the balance between the measurement error
and a randomback-action of the observer on the object due to
the Heisenberg uncertainty principle.

This fact, together with the understanding that real
gravitational-wave detection will require a sensitivity several
orders of magnitude higher, stimulated the first work on the
theory and methods of quantum measurements with macro-
scopic mechanical objects. Notably, at the end of the 1960s,
Braginsky formulated the concept of the SQL [20, 21], and the
first work describing measurement schemes that would allow
overcoming this limit appeared in the 1970s [22±26]. Unfortu-
nately, these studies did not receive direct experimental
continuation, party due to the limited technologies of that
time and mostly because the evolution of gravitational-wave
detectors followed a radically different path, which involved
laser interferometer detectors, which were suggested already
in 1962 by Gertsenshtein and Pustovoit [27] (see also early
review [10], where the authors emphasized the prospects of
using optical measurement methods in gravitational-wave
experiments).

It is interesting to note that almost 40 years later, these
early studies appear to be in high demand in other fields of
physics. Currently, a significant increase in interest is
observed in the field of quantum optomechanical systems
[28, 29]. The parameters of mechanical oscillators used in

these experiments differ greatly from the vibrational modes of
solid-state gravitational-wave detectors, but quantum mea-
surement methods developed previously for the latter can be
successfully applied to optomechanical systems. Such possi-
bilities are being intensively discussed in the literature, and the
first achievements have already been made in this field [30].

The first operating interferometer detector was built at the
Hughes Research Laboratories in the late 1960s almost
simultaneously with Weber's experiments [31]. Both the size
and sensitivity of this detector were quite modest and could
not compete with even the Weber detector. Later, in the
1980s, a number of so-called prototype interferometers were
built around the world with arms several dozen meters long
[32±34]. Their main purpose was not to detect gravitational
waves but to work out the technologies that would be used in
much larger devices in the future. However, their sensitivity
could already be compared to those of the best solid-state
detectors of that time, and exactly these interferometers were
the first ones to reach a sensitivity level limited by quantum
fluctuations of light.

Finally, in the 1990s, the construction of large laser
interferometers began: LIGO [35, 36], Virgo [37], GEO 600
[38], and TAMA 300 [39]. The long arm lengths in these
interferometers, from several hundred meters to several
kilometers, from the very beginning gave them a radical
advantage over solid-state detectors in terms of the sensitiv-
ity to a gravitational signal, even if the sensitivity to absolute
displacement was the same [see Eqn (1.1)]. After several years
of adjustments, in themid-2000s, the LIGOdetectors reached
their planned sensitivity (record high at that time), which at
the best point (around 150 Hz) exceeded � 3� 10ÿ23 Hzÿ1=2

[40]. This sensitivity was later slightly improved, in particular
by using squeezed quantum states of light [41, 42].

A detailed history of laser gravitational-wave detectors
can be found in review [19].

In 2011, the LIGO detectors were turned off for a radical
upgrade. Actually, the only part left from the old interferom-
eters was the shell±vacuum system: all other key elements
were replaced with new ones. The planned sensitivity of the
newALIGO interferometers is one order of magnitude higher
than that of the first-generation LIGO interferometers [43].
As a result, the first series of measurements using the new
detectors, albeit with a slightly lower sensitivity than planned,
was finally successful: gravitational waves were detected.

Large laser gravitational-wave detectors could be
regarded as quantum devices already when they first
appeared. Even in first-generation detectors, a significant
part of the operating frequency range, approximately 200 Hz
and higher, was limited by quantum fluctuations of the light
phase (shot noise). At lower frequencies, various technologi-
cal noises were dominant, including seismic noise and thermal
noise of mirror suspensions (a detailed characterization of
noises at the LIGO detectors is given in Fig. 7 in [40]). These
noises will be significantly decreased in second-generation
detectors, and the dominant noise at lower frequencies will be
the radiation pressure noise, which corresponds to the
displacement of the detector test mirrors caused by fluctua-
tions of the radiation pressure force acting on them, which, in
turn, are created by quantum fluctuations of light power in
the interferometer arms. At the best sensitivity point (around
100 Hz for ALIGO), the levels of shot noise and radiation
pressure noise will be approximately the same, and their sum
will be equal to the SQL. For the ALIGO parameters [see
Eqns (3.42a)±(3.42d)], this corresponds to a sensitivity of
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approximately 2� 10ÿ24 Hzÿ1=2 [see Eqn (2.28)], almost on
the level of the planned sensitivity of these detectors and not
so far from the result already demonstrated by them.

According to reasonably optimistic astrophysical predic-
tions, detectors with such sensitivity should be able to record
several gravitational-wave signals every year [44]. However,
in order to transform gravitational-wave detectors into a
regular source of astrophysical data, their sensitivity must be
increased by one order of magnitude at least. This means that
the situation that took place in the 1970s is repeated at
another stage: currently planned third-generation detectors
wouldmost probably require quantummeasurement schemes
that would overcome the SQL.

In this review, we analyze the quantum limitations of
sensitivity in laser gravitational-wave detectors, together with
methods that can help to overcome these limitations and are
currently considered to be the most promising.

In Section 2, we describe the main principles of the theory
of linear quantum probe systems, which is the basis of
methods for analyzing quantum noises in gravitational-wave
detectors. Section 3 is devoted to quantum noises in laser
interferometers, and in Section 4 we discuss somemethods for
suppressing these noises, both already applied and planned to
be used in future detectors.

The notation used in this review is summarized in Table 1.
We try to avoid cumbersome mathematical calculations

by using simplifiedmodels and qualitative physical considera-
tions whenever possible. Those readers who would like to
study the applications of quantum measurement theory to
laser gravitational-wave detectors in more detail are referred
to the significantly larger and thorough review [45].

2. Basic principles

2.1 Linear quantum probe system
When analyzing the quantum limitations in gravitational-
wave detectors, two facts play a key role. First, the energy flux
in gravitational waves from astrophysical sources is not small

and corresponds to a huge number of gravitons [46]. For
example, in a signal registered on 14 September 2015, it was
approximately 0.3 mJ mÿ2; there is no problem registering an
electromagnetic pulse with the same energy. All problems
arise due to an extremely weak interaction of gravitational
waves with matter. On the other hand, this fact allows fully
neglecting back-action of the detector on the gravitational
wave and describe the action of the latter with a classical
(deterministic) force.

Second, the weakness of both this force and the principal
noise sources in gravitational-wave detectors allows lineariz-
ing equations of motion with high accuracy in the vicinity of a
chosen operation point.

This means that gravitational-wave detectors can be
considered a linear quantum probe system [47±49] with the
equivalent schematic shown in Fig. 1. A classical force
Fsign�t�, which has to be detected, acts on a quantum test
object, for example, on a vibrational mode of a solid-state bar
detector or on some joint motion mode of interferometer
mirrors. The test object coordinate x̂ is measured by a linear
quantum meter, which returns the sum

~x�t� � x̂�t� � x̂fl�t� ; �2:1�

where x̂fl is themeasurement noise (here and hereafter, we use
the Heisenberg representation, which is standard when
considering such systems). Due to the Heisenberg uncer-
tainty principle, a coordinate measurement is always fol-
lowed by a perturbation of the corresponding canonically

Table 1. Main notations used in this review.

c

h

�h

I0
Ic
K�O�
KSM�O�
L

m

M

Qm

e r

g
d
E 2

z
Z
Y
y
O
Om

o
o0

Speed of light

Dimensionless gravitational-wave signal (metric variation)

Planck constant

Pump laser power

Total optical power in two interferometer arms

Optomechanical coupling coefécient for the Michelson/FabryëPerot interferometer [see Eqn (3.37)]

Optomechanical coupling coefécient for the Sagnac/FabryëPerot interferometer [see Eqn (4.61)]

Length of interferometer arms

Test object mass; reduced mass of interferometer mirrors

Physical mass of interferometer mirrors

Quality factor of a mechanical oscillator

Amplitude squeezing factor; r is a dimensionless parameter that characterizes the squeezing rate on a logarithmic scale

FWHM of the optical cavity transmission band

Optical pump frequency detuning from the optical cavity eigenfrequency

Normalized optical losses in the interferometer [see Eqn (4.7)]

Homodyne phase

Uniéed quantum eféciency of the interferometer

Normalized optical power [see Eqn (3.38)]

Squeezing phase

Any low (mechanical) frequency

Mechanical oscillator eigenfrequency

Any high (optical) frequency

Optical cavity eigenfrequency

~x � x̂� x̂fl

F̂fl

Fsign

x̂

Meter Test object

FT

D

Figure 1. Equivalent schematic of a linear quantum probe system.
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conjugate momentum. The physical source of such a
perturbation is a random force, so-called back-action noise
F̂fl, with which the meter acts on the test object.

Moreover, the test object can be influenced by various
other noise forces of a `technological' nature, denoted inFig. 1
by FT. In Section 2, we consider the most fundamental of
them, the thermal noise corresponding to friction in the test
object.

The existence of noises x̂fl and F̂fl follows from basic
principles of quantum theory. This is connected with the fact
that values of the test object coordinate operator at different
time instants do not commute in general because they cannot
be measured simultaneously:�

x̂�t�; x̂�t 0�� 6� 0 : �2:2�

But the output signal of the meter is a classical observable, for
which continuous precise measurement is possible, and
therefore�

~x�t�; ~x�t 0�� � 0 : �2:3�

As was shown in [49], this contradiction can be resolved by
modifying the test object evolution with the back-action noise
and adding measurement noise to the output signal.

The general relations that must be satisfied by these noises
are quite complicated [47, 48]. Here, we consider them in a
particular case of stationary noises (those invariant under
time shifts) because this is the case of modern gravitational-
wave detectors, whose parameters can be considered constant
(up to an undesirable slow drift due to various external
factors).

Stationary noises can be characterized by their spectral
densities, which depend on the observation frequency O in
general. Spectral densities of measurement noise Sx, fluctua-
tion back-action noise SF, and their cross-spectral density
(cross-correlation) SxF satisfy the following inequality, which
has the form (and physical meaning) of the standard
SchroÈ dinger±Robertson uncertainty relation:

Sx�O�SF�O� ÿ
��SxF�O�

��2 5 �h 2

4
�2:4�

[here and hereafter, unless stipulated otherwise, we use the so-
called double-sided definition of the spectral density (see
Appendix A)].

The physical sources of noises xfl and Ffl in laser
interferometers are the fluctuations of phase and amplitude
of light in them. Because the energies of optical quanta
correspond to temperatures of several dozen thousand
degrees, we can disregard thermal noises and still maintain
high accuracy (thermal noises must not be confused with
mechanical thermal noises of test masses!). Excess technolo-
gical noises of the pump laser in gravitational-wave detectors
are suppressed due to the interferometer geometry and the use
of feedback systems (see more details in Section 3.1). There-
fore, optical noises in laser gravitational-wave detectors can
be considered purely quantum, which results in the strict
equality in relation (2.4). Explicit expressions for these noises
are given in Sections 3 and 4 for different types of inter-
ferometers.

2.2 Total quantum noise
2.2.1 General case. We return to the schematic in Fig. 1. Its
general evolution is defined by the input/output relation for

quantummeter (2.1) and by the equation of motion of the test
object

D
�
x̂�t�� � Fsign�t� � F̂fl�t� � FT�t� ; �2:5�

where D is the differential operator that describes the test
object dynamics: D � ÿm d2=dt 2 for a free mass and D �
m�ÿd2=dt 2 � O 2

0 � for a harmonic oscillator.
Substituting the solution of Eqn (2.5) in expression (2.1),

we obtain

~x�t� � x̂0�t� �Dÿ1
�
Fsign�t� � F̂fl�t� � FT�t�

�� x̂fl�t� ; �2:6�

where x0�t� is the eigenmotion of the test object andDÿ1 is the
integral operator that is the inverse of D. In particular, for a
free mass m,

x̂0�t� � x̂� p̂t

m
; �2:7�

Dÿ1
�
F�t�� � 1

m

�1
0

�tÿ t 0�F�t 0� dt 0 ; �2:8�

where x̂ and p̂ are coordinate andmomentum operators in the
SchroÈ dinger representation (`initial conditions').

Equation (2.6) can be written in the equivalent form

~x�t� � x̂0�t� �Dÿ1
�
Fsign�t� � F̂tot�t� � FT�t�

�
; �2:9�

where

F̂tot�t� � D
�
x̂fl�t�

�� F̂fl�t� �2:10�
is the total quantum noise of the meter.

2.2.2 Test object quantization. Based on the obtained rela-
tions, we can conclude that there are the following contribu-
tions to the quantum uncertainties of the meter output signal:
the initial quantum state of the test object (the term x̂0) and
the noises x̂fl and F̂fl of the meter. It may seem that both these
factors limit the sensitivity of the linear quantum probe
system. This conclusion is false, however; the contribution
of the probe object initial state is eliminated by a trivial linear
transformation of the meter output signal [49]. Indeed, for
any linear system,

D
�
x̂0�t�

� � 0 : �2:11�
Therefore, the action of the operator D on ~x is expressed as

~Fsign�t� � D
�
~x�t�� � Fsign�t� � F̂tot�t� � FT�t� ; �2:12�

where ~Fsign is the signal force estimate.
Thus, we have come to an important conclusion: in linear

quantum probe systems, the initial quantum state of the test
object itself does not matter. The only source of quantum
limitations of the sensitivity is the meter, which in the case of
laser gravitational-wave detectors is quantum fluctuations of
light in it.

2.2.3 Spectral density of the total quantum noise. We consider
the special case of a stationary quantum probe system inmore
detail. In such a system, (a) quantumnoises are stationary and
(b) the dynamics are also stationary (i.e., the parameters of
the test object do not depend on time); the importance of this
case was already mentioned before. It is therefore reasonable
to use the spectral representation, in which the total quantum

October 2016 Quantum measurements in gravitational-wave detectors 971



noise in (2.10) has the form

F̂tot�O� � wÿ1�O�x̂fl�O� � F̂fl�O� ; �2:13�

where w�O� is the generalized test-object susceptibility
function, that is, the Fourier transform of the operator Dÿ1

(also see our notational conventions in Appendix A). The
spectral density of this noise then has the form

Stot�O� �
��wÿ1�O���2Sx�O� � 2Re

�
wÿ1�O�SxF�O�

�� SF�O� :
�2:14�

Usually, when analyzing the gravitational-wave detec-
tor sensitivity, the spectral densities are normalized not to
the signal force, as in Eqn (2.14) (F-normalization), but to
the dimensionless gravitational-wave signal h (h-normal-
ization). We use the superscript h to denote such spectral
densities. The relation between Fsign and h is described by
the known relation (3.25) (see Section 3.1.4). In addition,
the so-called one-sided definition of the spectral density is
traditionally used for Sh, which gives values twice as large
(see Appendix A). As a result, the expression for the total
quantum noise spectral density in the h-normalization takes
the form [see Eqn (A.4)]

Sh
tot�O� �

8

m 2L2O 4

n��wÿ1�O���2Sx�O�

� 2Re
�
wÿ1�O�SxF�O�

�� SF�O�
o
: �2:15�

2.3 Standard quantum limit
2.3.1 General case. The structure of expression (2.10) for the
total quantum noise, which includes two terms that are
connected through uncertainty relation (2.4), allows assum-
ing that there is some optimal situation where the contribu-
tions of the measurement and back-action noises are equal
and the probe system reaches its fundamental sensitivity
limitÐ the standard quantum limit mentioned above. As we
see below, this conclusion is false in the general case.
However, there is an important subclass of quantum probe
systems in which the SQL is indeed attained; this subclass is
already important because all currently operating gravita-
tional-wave detectors belong to it.

We assume that (a) the probe system is stationary and (b)
its measurement noise and back-action noise do not correlate:

SxF � 0 : �2:16�
The second assumption corresponds to the so-called classical
optimization of the measurement noise xfl. In laser inter-
ferometers, classical optimization provides a minimal value
ofmeasurement noise for a given optical power, which has the
best result when the measurement accuracy is not too high
and measurement noise dominates the back-action noise (see
more details in Section 3.3).

In this case, the spectral density of the total quantumnoise
takes the form

Stot�O� �
��wÿ1�O���2Sx�O� � SF�O� ; �2:17�

and the spectral densities Sx and SF in (2.17) turn out to be
connected through the `simplified' uncertainty relation

Sx�O�SF�O�5 �h 2

4
: �2:18�

It is easy to see that if quantum noises are small enough to
satisfy the exact equality in (2.18) and the condition

SF�O�
Sx�O� �

��wÿ1�O���2 �2:19�

is satisfied, then the spectral density reaches its minimum:

SSQL�O� � �h
��wÿ1�O��� : �2:20�

The last expression is the general case of the SQL spectral
form.

We also write relations (2.17) and (2.20) in the h-normal-
ization:

Sh
tot�O� �

8�h

m 2L2O 4

���wÿ1�O���2Sx�O� � SF�O�
�
; �2:21�

Sh
SQL�O� �

8�h

m 2L2O 4

��wÿ1�O��� : �2:22�

Importantly, for sensitivity (2.20) to be attained in some
frequency band, relation (2.19) must be satisfied over the
whole band. However, the frequency dependences of the
spectral densities Sx�O� and SF�O� in `conventional' inter-
ferometers [see Eqns (3.39a±c)] do not correspond to the
frequency dependence of the generalized susceptibility w�O�
for real test objects (free mass and oscillator). In such cases,
relation (2.20) is satisfied only at one or several frequencies; at
other frequencies, the spectral density SSQL is strictly greater
than the SQL.

We consider practically important cases of a free test mass
and a test oscillator in more detail. For simplicity, we assume
that the spectral densities Sx and SF are frequency-indepen-
dent. This assumption is quite realistic and corresponds to the
case where the considered frequency band belongs to the
transmission band of the interferometer.

2.3.2 Free mass. The generalized susceptibility of a free mass
has the form1

w�O� � ÿ 1

mO 2
: �2:23�

Hence,

Stot�O� � m 2O 4Sx � SF � �hmO 2

2

�
O 2

O 2
q

� O 2
q

O 2

�
; �2:24�

where

Oq �
�

SF

m 2Sx

�1=4

�2:25�

is the meter parameter characterizing the strength of its
interaction with the test object. In laser interferometers, O 2

q

is proportional to the optical power [see Eqn (3.41)]. In the
case of a free test mass, Oq also defines the threshold
frequency at which the contributions of measurement noise
and back-action noise become equal and Stot reaches the

1 We ignore the effect of friction on the free mass dynamics, because it

becomes visible only at very low frequencies, for which various nonquan-

tum noises become dominant.
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SQL:

SSQL�O� � �hmO 2 : �2:26�

The back-action noise dominates at lower frequencies, and
the measurement noise, at higher frequencies; in both cases,
Stot > SSQL. Figure 2 shows the dependences of Stot and SSQL

that illustrate these relations.
In the h-normalization, Eqns (2.24) and (2.26) take the

form

Sh
tot�O� �

Sh
SQL�O�
2

�
O 2

O 2
q

� O 2
q

O 2

�
; �2:27�

Sh
SQL�O� �

8�h

mL2O 2
: �2:28�

These spectral densities are plotted in Fig. 3.

2.3.3 Harmonic oscillator. The generalized susceptibility of
the harmonic oscillator has the form

w�O� � 1

m�ÿO 2 ÿ iOOm=Qm � O 2
m�

; �2:29�

which gives the following expressions for the total quantum
noise and the SQL

Stot�O� � m 2

�
�O 2

m ÿ O2�2 � O 2O 2
m

Q 2
m

�
Sx � SF ; �2:30�

SSQL�O� � �hm

�
�O 2

m ÿ O 2�2 � O 2O 2
m

Q 2
m

�1=2
: �2:31�

We can clearly see from these expressions that the existence of
a resonant maximum in the generalized susceptibility of a
harmonic oscillator leads to the suppression of the measure-
ment noise contribution and hence to a decrease in the SQL in
the vicinity of the resonance frequency Om.

Taking this into account, we consider the frequency band
near Om, assuming that

jOÿ Omj5Om : �2:32�

Assumption (2.32) allows simplifying relations (2.30) and
(2.31):

Stot�O� � �hm

2

�
4O 2

m�n 2 � G 2
m�

O 2
q

� O 2
q

�
; �2:33�

SSQL�O� � 2�hmOm

�����������������
n 2 � G 2

m

q
; �2:34�

where n � Oÿ Om is the detuning from the resonance
frequency and Gm � Om=�2Qm� is the oscillator damping
rate.

It follows from Eqn (2.33) that the smaller Oq (the less
accurate the measurement), the better is the sensitivity of the
harmonic oscillator in the vicinity of its resonance frequency.
This paradox can be explained easily: near the resonance
frequency, back-action noise becomes dominant in the total
quantum noise (2.33) and decreases as the measurement
accuracy decreases. However, this advantage can be used
only by narrowing the frequency band DO where it takes
place. In the limit case where

Oq �
����������������
2OmGm

p
� Om�������

Qm

p ; �2:35�

the total quantum noise spectral density of a harmonic
oscillator

Stot�O� � �hmOm

�
n 2

Gm
� 2Gm

�
�2:36�

is approximately Qm times smaller that for a free mass, but
only in a very narrow frequency range � Gm.

This case is highly hypothetical, however. It is known that
due to inherent Brownian fluctuations of the test object, the
level of quantum noise can be reached under real experi-
mental conditions only if the measurement time is small
compared with its damping time [50], in other words, if the
frequency band DO4Gm (see also Section 2.4). In this case,
expressions (2.33) and (2.34) are simplified to

Stot�O�� �hm

2

�
4O 2

mn
2

O 2
q

� O 2
q

�
� �hmOm

2

�
4n 2

DO
� DO

�
; �2:37�

SSQL�O� � 2�hmOmjnj ; �2:38�
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�hmO 2

q
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Figure 2.Total quantumnoise (solid curve) and the SQL (dashed line) for a

free mass, normalized to the signal force Fsign.

S
h
�O
�

8
�h

m
L
2
O

2 q

 
! ÿ1

O=Oq

101

100

10ÿ1

10110010ÿ1

Figure 3.Total quantumnoise (solid curve) and the SQL (dashed line) for a

free mass, normalized to the gravitational-wave signal h.
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where

DO � �������������
OmOq

p �2:39�
is the transmission band defined in a conventional way `by the���
2
p

level', such that

Stot

�
Om � DO

2

�
� 2Stot�Om� : �2:40�

Spectral densities (2.37) and (2.38) are plotted in Fig. 4.
By comparing (2.26) and (2.38), we can see that the test

oscillator improves the quantum noise spectral density by a
factor of Om=DO compared to the case of a free mass.

In concluding this section, we recall that all sensitivity
limitations obtained here hold only for certain quantum
meters that satisfy the assumptions made above. As shown
in Section 2.5, for a `correct' quantum noise optimization, the
sensitivity can be significantly higher, but to date this
possibility has remained hypothetical and the obtained
relations are still important.

2.4 Condition of the test object quantumness
Obviously, in order to reach the quantum level of sensitivity,
all nonquantum noise sources must to be suppressed to a level
lower than the quantum noise level. In real experiments,
many different noise sources must be taken into account (a
review of main noise sources in ALIGO detectors can be
found in [43]). In many cases, particularly in solid-state
gravitational-wave detectors and modern `table-top' quan-
tum optomechanical experiments, the leading contribution is
made by thermal (Brownian) fluctuations of the test object
center of mass. After many years of work, experimentalists
succeeded in significantly suppressing this noise in laser
gravitational-wave detectors, but it still has great influence
at very low frequencies. In any case, the requirements applied
to this noise are an important necessary condition for the
quantum sensitivity to be reachable.

We return to expression (2.12) for the output signal of the
quantum probe system. In view of the foregoing, we assume
that the `technological' noise FT, which is one of the terms, is
thermal noise with the spectral density

ST � 2kBTH ; �2:41�

where kB is the Boltzmann constant, H is the coefficient of
friction in the test object, and T is its temperature.2

Obviously, the necessary condition for the SQL to be
reachable is the validity of the inequality

ST < SSQL ; �2:42�

and the use of any methods to overcome the SQL (to be
discussed in Section 4) must be accompanied by a propor-
tional suppression of thermal noise. From this standpoint,
condition (2.42), which was first mentioned in [50], is a
`gateway' to the quantum world.

Substituting expressions (2.26) and (2.38) in inequality
(2.42) and taking (2.41) into account, we can transform (2.42)
into the following requirement for the test body temperature:

T < Tq ; �2:43�
where

Tq � �hmO 2

2kBH
�2:44�

is the `quantum temperature' for a free mass and

Tq � �hmOmDO
2kBH

�2:45�

for a harmonic oscillator, where DO is the signal frequency
band centered at Om.

Generally speaking, the friction coefficient H depends on
the observation frequency O. This dependence barely matters
in test oscillators, because the operating frequencies in them
are usually close to the resonance frequency Om and the
friction coefficient can be approximated as

H�O� � H�Om� � mOm

Qm
: �2:46�

At the same time, the so-called free masses that are used in
laser gravitational-wave detectors are actually low-frequency
pendulums with eigenfrequencies of the order of 1 Hz, while
the operating band of such detectors starts approximately at
10 Hz and higher. Losses in high-quality silica suspensions of
these pendulums can be approximated using the so-called
structure friction model [52], according to which the friction
coefficient is inversely proportional to the frequency:

H�O� � Om

O
H�Om� � mO 2

m

OQm
: �2:47�

Hence, Eqns (2.44) and (2.45) can be written as

Tq � �hQmO 3

2kBO 2
m

; �2:48�

for `almost free test masses', where O is the observation
frequency, and as

Tq � �hQmDO
2kB

�2:49�

for test oscillators.
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Figure 4.Total quantum noise (solid line) and the SQL (dashed line) for an

oscillator, normalized to the signal force Fsign. (Logarithmic scale on the

y axis.)

2 We assume that kBT4 �hO. This assumption is valid with high precision

for almost all mechanical objects used in modern experiments, including

test masses of gravitational-wave detectors, except only exotic cryogenic

mechanical oscillators in the gigahertz band [51], for which T should be

replaced by �hO=�2kB� coth ��hO=�2kBT ��.
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Interestingly, the quantumness condition (2.49) for an
oscillator was obtained in [53, 54] based on completely
different considerations, that is, the requirement for the
quantum state decoherence time to be not less than some
specified value tdecoh � 1=DO.

We estimate the validity of condition (2.43) for gravita-
tional-wave detectors. As an example, we consider the
ultracryogenic resonant-bar gravitational-wave detector
AURIGA (in Italian Antenna Ultracriogenica Risonante
per l'Indagine Gravitazionale Astronomica) [19] with the
best Qm=T ratio. Its resonance frequency is close to the
value typical for such detectors, 1 kHz, and Qm � 3� 106,
which gives the value

Tq � 0:07
DO
Om
�K� ; �2:50�

which is significantly (but not hopelessly) smaller than the
real operating temperature T � 0:25 K.

To estimate the amount of this type of noise in laser
detectors, we use the results in [55], where a record-high
quality factor Qm � 1:7� 108 s (at room temperature) was
obtained for a low-frequency oscillator with the eigenfre-
quency fm � 0:3 Hz (a prototype of laser gravitational-wave
detector test masses). Using expression (2.48), we obtain the
quantum temperature for such a test object:

Tq � 5� 104
�

O
2p� 100 Hz

�3

�K� : �2:51�

This means that for characteristic times of the order of the
gravitational wave period, the translational degrees of free-
dom of the laser gravitational-wave detector mirror center of
mass can be regarded as quantum objects even at room
temperature.

Unfortunately, in interferometers, light interacts not with
the center of mass of the mirrors, but with their surfaces. In
comparison with the motion of the center of mass, the motion
of the surface includes a large number of noises [56]. In
modern gravitational-wave detectors, the most serious pro-
blem is the Brownian fluctuations of the thickness of the
reflective dielectric coating of the mirrors [43]. Decreasing the
level of these noises is one of the main tasks for future
detectors [57, 58].

2.5 Sensitivity limit for coordinate measurements
Methods for overcoming the SQL that are now regarded as
candidates for realization in future laser gravitational-wave
detectors are based on using (a) the cross-correlation of
measurement noise and back-action noise and (b) specially
tailored frequency dependences of the spectral densities of
these noises, without giving up the stationarity assumption.
This approach was first suggested in [59] and the sensitivity
limit of this method was calculated in papers [60, 61] (for the
general case of a linear quantumprobe system) and in [62] (for
the special case of an optical interferometer).

Here, we present a simplified version of the analysis in [60]
assuming that

ImSxF � 0 : �2:52�
Assumption (2.52) significantly simplifies the calculations
and at the same time gives the correct final result. It holds
for laser interferometers if the pump frequency equals the
interferometer resonance frequency o0. It is known that the

detuning regime provides some interesting opportunities,
which we discuss in Section 4.4, but their application is not
planned in detectors currently being developed.

With assumption (2.52), the total quantum noise spectral
density (2.13) takes the form

Stot�O� �
��wÿ1�O���2Sx�O� � 2Re wÿ1�O�SxF�O� � SF�O� :

�2:53�

Just as we did in deriving the SQL, we assume that the exact
equality holds in (2.4). Combining (2.4) and (2.53), we then
obtain

Stot�O� �
��wÿ1�O���2 �h 2=4� S 2

xF�O�
SF�O�

� 2Re wÿ1�O�SxF�O� � SF�O� : �2:54�
With

SxF�O� � ÿRe wÿ1�O���wÿ1�O���2 SF�O� ; �2:55�

spectral density (2.54) reaches its minimum with respect to
SxF�O�:

Stot�O� �
�h 2
��wÿ1�O���2
4SF�O� �

�
Im wÿ1�O��2��wÿ1�O���2 SF�O� : �2:56�

In turn, the last expression reaches its minimum with
respect to SF�O� when

SF�O� � �h

2

��wÿ1�O���2��Im wÿ1�O��� ; �2:57a�

which gives the following expressions for Sx, SxF, and the
optimized spectral density of the total quantum noise:

Sx�O� � �h

2jIm wÿ1�O��� ; �2:57b�

SxF�O� � ÿ �h

2

Re wÿ1�O���Im wÿ1�O��� ; �2:57c�

Stot�O� � �h
��Im wÿ1�O��� : �2:58�

The limit obtained in (2.58) is interesting because, just like
the SQL, it depends only on the test object parameters and,
moreover, exactly matches the expression for the thermal
noise of the test object at zero temperature, even though the
physical source of noises in (2.58) is another object, the meter.
We also note that for a harmonic oscillator at the resonance
frequency O � Om, Eqn (2.58) coincides with the SQL in
(2.31), which is obviously connected with the fact that
Re wÿ1 � 0 for an oscillator at the resonance frequency.

Limit (2.58) is fundamentally unreachable because the
thermal noise of the test object makes the same contribution
even at zero temperature. To merely approach it, the
temperature of the test object must be decreased to
T9 �hO=kB. For characteristic frequencies of the gravita-
tional-wave signal (around 1 kHz or less), this corresponds
to fractions of a microkelvin. Therefore, for a modern
technological level, limit (2.58), unlike the SQL, can be
considered a hypothetical one.

Based on Eqn (2.56), we can obtain another, more
realistic and quite relevant sensitivity limit for laser gravita-
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tional-wave detectors. In high-precision measurement sys-
tems, friction in the test object (that is, the quantity Im wÿ1)
is minimized in order to decrease the thermal noise (see
Section 2.4). Therefore, in all practical cases, the first term in
(2.56) is many orders of magnitude higher than the second
one, which allows disregarding the latter:

Stot�O� �
�h 2
��wÿ1�O���2
4SF�O� : �2:59�

Formula (2.59) relates the quantum probe system sensitivity
to the energy stored in it that is needed for the creation of the
back-action on the test object. Hence, this limit was named
the energetic quantum limit [63±66].

Notably, in laser interferometers,SF is proportional to the
optical power circulating in them, and due to limit (2.59) and
the need for tremendous measurement precision, this power
reaches very high values. In first-generation detectors, this
power reached several dozen kilowatts [40], and in second-
generation detectors, it should reach 1MW [43]. As a result, a
large number of undesired effects can appear in the inter-
ferometer, in particular, the distortion ofmirror shapes due to
their heating (thermal lensing) and the effect of optomecha-
nical parametric instability predicted by Braginsky and
coauthors [67, 68] in 2001 (recently, this effect was experi-
mentally observed at LIGO [69]).

3. Quantum noises in laser interferometers

3.1 Michelson interferometer
3.1.1 Operation principle of laser gravitational-wave detectors.
We consider the operation principle of laser gravitational-
wave detectors using the simple example of the Michelson
interferometer shown in Fig. 5.

The structure of the lines of the tidal acceleration field
created by the gravitational wave is shown in Fig. 6. In such a
field, with the optimal detector arm orientation, the following
forces are applied to the test masses [3]:

Fsign 1; 2�t� � �ML�h�t�
2

: �3:1�

These forces are directed along the axes that connect the
corresponding mass with the origin, which in this case is a
beam splitter. Hence, in order to detect the action of the
gravitational wave, we need tomeasure small variations of the
test-mass coordinate difference

x � x1 ÿ x2
2

: �3:2�

For this reason, laser radiation enters the interferometer
through the `bright' port (on the left-hand side of Fig. 5) and
is evenly split by the beam splitter and is directed towards two
test mirrors. After reflection, these waves acquire phase shifts
proportional to the mirror coordinates. After recombination
on the beam splitter in the case x1 � x2 (hypothetical), all
light is reflected back to the laser. At the second port, known
as the `dark' port (lower part of Fig. 5), destructive
interference occurs. If x1 6� x2, then part of the light is
directed into the dark port and is registered by the photo-
detector.

Here, we consider quantum fluctuations of light in such
interferometers. We also show that they fully correspond
to the general model of a linear probe system discussed in

Section 2, and obtain explicit expressions for quantum
noises x̂fl and F̂fl.

To simplify the calculations, we first discuss the simplest
Michelson interferometer in detail (see Fig. 5). Then, based on
a qualitative approach, we generalize the obtained results to
the case of amore complicated scheme of a power- and signal-
recycled Fabry±Perot±Michelson interferometer (Fig. 7),
which is actually used in modern gravitational-wave detec-
tors.

3.1.2 Interferometer optical fields. The approach that is
typically used for the analysis of quantum noises in laser
gravitational-wave detectors, the so-called two-photon form-
alism,3 was suggested in [70, 71]. Its simplified version, which
is nevertheless appropriate for our calculations, is given in
Appendix B.

M

M

p̂

q̂

â b̂

Laser Beam splitter

Detector

x1

x2

ê 1 f̂ 1

ê2

f̂2

Figure 5. Simplified schematic of a laser gravitational-wave detector.

M are the masses of movable mirrors.

Figure 6. Structure of the tidal acceleration field lines of a gravitational

wave propagating in the direction normal to the figure plane (figure

orientation corresponds to the so-called � polarization; the structure

corresponding to another polarization, known as the � polarization, can

be obtained by simply rotating the figure through 45�).

3 The etymology is connected with the term `two-photon devices' used at

that time in nonlinear optics.
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According to this formalism, the laser radiation that
enters the interferometer through the bright port is described
by the expression

p̂�t� � ÿP� p̂ c�t�� cos �o0t� � p̂ s�t� sin �o0t� ; �3:3�

where p̂ c; s�t� are quadrature amplitude operators and the
classical amplitude P is defined by the pump laser power I0,
which in this case coincides with the power Ic circulating
inside the interferometer:

I0 � Ic � �ho0P
2

2
: �3:4�

An accurate analysis of quantum noises must take the
radiation entering through the dark port into account:

â�t� � â c�t� cos �o0t� � â s�t� sin �o0t� : �3:5�

It can be produced just by zero fluctuations caused by the
Planck radiation of the photodetector 4 or by specially
prepared `squeezed' light (this case is discussed in detail in
Section 4.1).

The incoming fields combine on the central beam splitter,
resulting in the following expressions for waves incident on
the test massesM:

ê1; 2�t� � p̂�tÿ LLM=c� � â�tÿ LDM=c����
2
p ; �3:6�

where LLM is the optical distance between the laser and the
mirrors and LDM is the distance from the detectors to the
mirrors. We assume that both these distances are propor-
tional to an integer number of pump wavelengths; this
assumption does not influence the generality of the considera-
tions in any way, but simplifies the calculations. In addition,
we also take into account that in real ground-based laser
gravitational-wave detectors, the time intervals LLM=c and
LDM=c are significantly smaller than the characteristic time of
the gravitational-wave signal variation. Then expression (3.6)
can be rewritten as

ê1; 2�t� � ê c1; 2�t� cos �o0t� � ê s1; 2�t� sin �o0t� ; �3:7�

where

ê c
1; 2�t�
ê s
1; 2�t�

 !
� 1���

2
p
�

P� p̂ c�t�
p̂ s�t�

� �
� â c�t�

â s�t�
� ��

: �3:8�

For small values of the mirror displacements x̂1; 2 from the
initial positions, the waves reflected from them can be
expressed as

f̂1; 2�t� � ê c
1; 2�t� cos

�
o0

�
tÿ 2x̂1; 2�t�

c

��
� ê s

1; 2�t� sin
�
o0

�
tÿ 2x̂1; 2�t�

c

��
� f̂ c

1; 2�t� cos �o0t� � f̂ s
1; 2�t� sin �o0t� : �3:9�

If second-order terms proportional to p̂ c; sx̂1; 2 and â
c; sx̂1; 2 are

ignored, it is easy to show that

f̂ c
1; 2�t�
f̂ s
1; 2�t�

 !
� 1���

2
p
�

P� p̂ c�t�
p̂ s�t�

� �
� â c�t�

â s�t�
� �

� 2o0Px̂1; 2�t�
c

0
1

� ��
: �3:10�

Finally, the waves formed after the recombination f̂1; 2 at
the beam splitter and directed back towards the laser and the
black port have the following form (under the assumptions
made above):

q̂�t� � f̂1�t� � f̂2�t����
2
p � q̂ c�t� cos �o0t�� q̂ s�t� sin �o0t� ; �3:11�

b̂�t� � f̂1�t� ÿ f̂2�t����
2
p � b̂ c�t� cos �o0t�� b̂ s�t� sin �o0t� ; �3:12�

where

q̂ c�t�
q̂ s�t�

� �
� P� p̂ c�t�

p̂ s�t�
� �

� 2o0Pŷ�t�
c

0
1

� �
; �3:13�

b̂ c�t�
b̂ s�t�

 !
� â c�t�

â s�t�
� �

� 2o0Px̂�t�
c

0
1

� �
; �3:14�

ŷ�t� � x̂1�t� � x̂2�t�
2

: �3:15�

It follows from Eqns (3.7)±(3.15) that after entering the
interferometer, almost all the optical power is directed back
to the bright port towards the laser; a small part of the input
power that carries the information about x̂ is directed to the
dark port.

3.1.3 Measurement noise. In modern laser detectors, the
radiation that escapes through the dark port is registered by
a so-called homodyne detector, which allows measuring any
linear combination of quadrature amplitudes b̂ c and b̂ s. The
output signal of a homodyne detector (see details, e.g., in [45])
is proportional to

iÿ�t� / b̂ c cos z� b̂ s sin z ; �3:16�

where z is the so-called homodyne phase (we note that the
detector output signal is already a classical observable, and
therefore the exact form of the scaling factor in (3.16) is
insignificant).

Substituting relations (3.14) in (3.16), we obtain

iÿ�t� / â c cos z�
�
â s�t� � 2o0Px̂�t�

c

�
sin z : �3:17�

Equation (3.17) can be written in a form similar to (2.1) by
renormalizing it to the value of the input signal x̂:

iÿ�t� / x̂�t� � x̂fl�t� ; �3:18�

where

x̂fl�t� � c

2o0P

ÿ
â c�t� cot z� â s�t�� �3:19�

4 We recall that the energy of one optical quantum corresponds to the

temperature of several dozen thousand kelvins and therefore room

temperature is almost zero for light.
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is shot noise, which plays the role of the measurement
quantum noise in laser interferometers.

3.1.4 Test-mass equations of motion. We now consider the
evolution of the interferometer test mass coordinates x̂1; 2.
Besides forces (3.1) created by a gravitational wave, they are
also influenced by the radiation pressure forces created by the
optical field in the interferometer (because we are interested
here only in quantum noises, thermal and other `technologi-
cal' noises FT are ignored):

F̂rad 1; 2�t� � 2Î1; 2�t�
c

; �3:20�

where Î1; 2 are the values of the optical power circulating in
each interferometer arm. Using Eqns (3.8), (B.8), and (B.9)
(see Appendix B), it is easy to show that these forces include
the same constant components Ic=c and fluctuating terms

F̂fl 1; 2�t� � �ho0P

c

ÿ
p̂ c�t� � â c�t�� : �3:21�

Constant forces do not interest us here (in real gravitational-
wave detectors, they result only in some offset of the
suspended mirrors from the equilibrium position), and we
do not consider them.

As a result, the equations of motion of the test mass take
the form

M
d2x̂1�t�
dt 2

� Fsign 1�t� � F̂fl 1�t� ; �3:22a�

M
d2x̂2�t�
dt 2

� Fsign 2�t� � F̂fl 2�t� : �3:22b�

Accordingly, for coordinate difference (3.2), we obtain the
equations

m
d2x̂�t�
dt 2

� Fsign�t� � F̂fl�t� �3:23�

[cf. the general equation (2.5)], where

m � 2M �3:24�

is the reduced mass of interferometer mirrors,

Fsign�t� � Fsign 1�t� ÿ Fsign 2�t� � mL�h�t�
2

�3:25�

is the differential signal force, and

F̂fl�t� � F̂fl 1�t� ÿ F̂fl 2�t� � 2�ho0Pâ
c�t�

c
�3:26�

is the radiation pressure noise, which plays the role of back-
action noise in laser interferometers.

We note that fluctuations of both the amplitude and the
phase of pump laser radiation influence neither the output
signal nor the fluctuations of the light pressure force. Of
course, this conclusion is valid only for an ideally symmetric
interferometer, which we consider here. In real gravitational-
wave detectors, there are very high requirements on the
`purity' of the pump laser radiation, which are realized, in
particular, by using many feedback loops in the interferom-

eter scheme [72]. However, without using the symmetric
topology of the Michelson interferometer, any technical
tricks would hardly provide such a quantum level of optical
noises as in laser gravitational-wave detectors.

3.2 Power- and signal-recycling
Fabry±Perot±Michelson interferometer
3.2.1 Fabry±Perot±Michelson interferometer.Akey disadvan-
tage of the considered scheme of a gravitational-wave
detector based on the Michelson interferometer is the very
low optomechanical interaction provided only by a single
reflection from the movable mirror. Simple estimates show
that in order to achieve the sensitivity needed for gravita-
tional-wave detection in this case, an unrealistically high
optical power of the order of several hundred megawatts is
needed.

The Fabry±Perot±Michelson interferometer scheme
practically used in modern detectors is shown in Fig. 7. In
addition to the already considered Michelson interferometer
end test-masses (ETMs), it can include up to four additional
mirrors: two input test masses (ITMs) in the interferometer
arms, a power-recycling mirror (PRM), and a signal-
recycling mirror (SRM).

ITM mirrors that already appeared in early prototype
interferometers are used in almost all laser gravitational-wave
detectors [19]. Together with the end test masses, they
transform the Michelson interferometer arms into Fabry±
Perot cavities, where light circulates and acquires a propor-
tionally increased phase shift. Due to multiple reflections of
light from the mirrors, the influence of the back-action force
on them increases by the same factor (in most early
prototypes, instead of Fabry±Perot resonators, delay lines
were used, having the same effect but being less workable for
large arm lengths).

Calculations of quantum noises in Fabry±Perot±Michel-
son interferometers are given, e.g., in [45]. In this and other
similar articles, the spectral representation is used as the
more convenient one for analyzing stationary frequency
selective devices; in what follows, we use this representation
as well.

ETM

ITM

PRM

Laser

Detector

SRM

ITM ETM

L� x1

L� x2

Figure 7. Schematic of a power- and signal-recycled Fabry±Perot±

Michelson interferometer used in modern gravitational-wave detectors.

ETMÐend test masses, ITMÐinput test assess, PRMÐpower recy-

cling mirror, SRMÐsignal recycling mirror.
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The presence of Fabry±Perot cavities modifies Eqns (3.19)
and (3.26) as follows:5

x̂fl�O� � c

2o0EL��O�
�
â c�O� cot z� â s�O�� ; �3:27�

F̂fl�O� � 2�ho0EL�O�
c

â c�O� : �3:28�

Here,

L�O� �
����������
cg=L

p
gÿ iO

�3:29�

is a dimensionless factor that describes the resonance light
amplification in Fabry±Perot cavities,

g � c

L

1ÿ �����������
RITM

p

1� �����������
RITM

p � cTITM

4L
�3:30�

is the FWHM of the Fabry±Perot transmission band, RITM

and TITM are reflection and transmission coefficients of ITM
mirrors, and E is the effective classical amplitude of light in
the cavity, defined by the relation

Ic � �ho0E
2

2
� I0

��L�0���2 ; �3:31�

where Ic is the total optical power circulating in two
interferometer arms.

The presence of two additional mirrors also modifies
mechanical equations of motion (3.22a), (3.22b), and (3.23)
(see [45]). In the first two equations, the massM is replaced by
the reduced mass of the mirrors ITM+ETM, i.e., if they have
the samemasses,M is replaced byM=2. Correspondingly, the
reduced mass for the whole interferometer in Eqn (2.23) is

m � 2�M

2
�M : �3:32�

3.2.2 Power recycling. It follows from Eqn (3.31) that the
smaller g is, the larger the circulating power Ic for a fixed
pump laser power I0. On the other hand, as can be seen from
Eqn (3.27), the lifetime of light in Fabry±Perot cavities 1=g
cannot be increased arbitrarily, because the cavities smooth
the spectral components of a gravitational signal with
frequencies O higher than g, which leads to an increase
(normalized to the input) in the measurement noise at these
frequencies. High-frequency spectral components of light
power fluctuations are smoothed as well, which leads to a
decrease in the back-action noise for O > g [see Eqn (3.28)].

The idea of using a power-recycling mirror was intro-
duced by Drever as a solution to the mentioned contradiction
[73]. According to its name, this mirror returns the larger part
of the power that escapes through the bright port back into
the interferometer. In other words, this mirror, together with
two input test masses, forms an effective composite mirror
with a very low transmission coefficient:

TPRMTITM

�1� �����������������������
RPRMRITM

p �2 �
TPRMTITM

4
; �3:33�

where RPRM and TPRM are the reflection and transmission
coefficients of the PRM. This leads to a manifold increase in
the power circulating in the interferometer. This does not
influence the transmission band for the signal light, because it
is not transmitted through the bright port.

We also note that this composite mirror and the end
mirrors form a very narrow-band effective Fabry±Perot
cavity for pump radiation (with a bandwidth of several
Hertz). In laser gravitational-wave detectors, the pump laser
frequency is related via the feedback loop to the frequency of
this cavity, providing a record-high stability of the pump
laser.

A configuration with Fabry±Perot cavities in the arms
and an additional power-recycling mirror was used in most
first-generation laser gravitational-wave detectors, including
TAMA 300, Virgo, and LIGO.

3.2.3 Signal recycling. Similarly to the power-recycling
mirror, the signal-recycling mirror and the ITM form an
effective composite mirror, which, in turn, together with the
ETM mirrors, forms an effective Fabry±Perot cavity, but in
this case for the radiation passing through the dark port. This
idea was first introduced by Meers [74] as a tool for easy
optimization of the transfer function spectral form in laser
gravitational-wave detectors for different types of gravita-
tional-wave signals. Indeed, depending on the optical dis-
tance between the recycling mirror and the ITM mirrors, the
transmission coefficient of a composite mirror can be varied
from the minimal value, similar to (3.33), to the maximal
value

TSRMTITM

�1ÿ �����������������������
RSRMRITM

p �2 �
4TSRMTITM

�TSRM � TITM�2
: �3:34�

In the intermediate cases, the reflected wave also experiences
some phase shift, which makes the behavior of this system
even more complicated (the same is in principle valid for the
PRM, but this mirror, obviously, is always adjusted in such a
way that the transmission is minimal).

The signal-recycling mirror is used in ALIGO detectors
and, presumably, will be used in other second-generation
detectors, but most probably only for one type of adjustment,
which provides maximal transmission of an ITM+SRM
composite mirror and, accordingly, the maximal width of
the interferometer transmission band. The choice of this
regime is justified by the combination of two technological
reasons connected with features inherent in second-genera-
tion detectors.

On the one hand, optimization of quantum noise in
second-generation detectors requires a maximally `flat'
shape of its spectral density, which is realized for a wide
interferometer transmission band, g0 2p� 500 Hz [75], and
hence (if the SRM is not used) for very large values
TITM 0 0:15 [see Eqn (3.30)]. This is because the spectral
density of Brownian fluctuations of reflective dielectric
coating widths of the mirrors, being the main technological
noise in these detectors, has a quite weak dependence on the
frequency (see Fig. 2 in [43]), which dictates a similar `flat'
shape of the quantum noise spectral density.

On the other hand, the planned optical power values in the
arms of second-generation detectors are near several hundred
kilowatts, which for such large values of TITM corresponds to
several tens of kilowatts transmitted through the input
mirrors and the beam splitter. Problems with heat release
and various undesirable nonlinear effects, which are inevita-

5 Equations (3.27) and (3.28) are obtained using the so-called single-mode

approximation: O5 c=L and g5 c=L; for the limit transition to the case

without Fabry±Perot cavities, we should set O5 g � c=L.
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ble at such powers, make such a system nonapplicable. Thus,
in ALIGO interferometers, input mirrors are used with a
transmission one order of magnitude smaller �TITM � 0:014�,
which corresponds to a moderate power of approximately
5 kWon the beam splitter (for the power� 800 kWplanned in
the arms). This leads to a very narrow transmission band of
Fabry±Perot cavities:

garm �
cTITM

4L
� 2p� 40 Hz : �3:35�

Using the signal-recycling mirror (or, more precisely, follow-
ing the terminology in [76], the signal-extraction mirror) with
the transmission coefficientTSRM � 0:2ÿ0:3 allows resolving
this contradiction. According to Eqn (3.34), the interferom-
eter transmission band in this case broadens bymore than one
order of magnitude.

In conclusion, we note for completeness that a configura-
tion without input mirrors in the arms is possible, with the
power- and signal-recyclingmirrors providing all the required
interferometer parameter values. This setup is used in the
GEO 600 gravitational-wave detector [38]. One disadvantage
of this setup is that all power circulating in the interferometer
arms passes through the beam splitter. This is applicable for
relatively small first-generation GEO 600 detector, in which
this power is only several kilowatts, but not for second-
generation detectors.

3.3 Spectral density of quantum noises
Using relations (3.27) and (3.28) and taking into account that
g is the FWHM of the interferometer as a whole and depends
on both TITM and TSRC, it is easy to obtain explicit
expressions for quantum noise spectral densities in laser
interferometers. In the simplest particular case where only
vacuum fluctuations enter the dark port (i.e., the light
squeezing technology considered in Section 4.1 is not used)
[see Eqn (B.14)], they have the form

Sx�O� � �h

2mO 2K�O� sin2 z ; �3:36a�

SF�O� � �hmO 2K�O�
2

; �3:36b�

SxF�O� � �h

2
cot z ; �3:36c�

where

K�O� � 2Yg

mO 2�g 2 � O 2� �3:37�

is a convenient dimensionless factor introduced in [77] to
describe the strength of optomechanical coupling in inter-
ferometers (Kimble's factor), and

Y � 4o0Ic
cL

�3:38�

is the normalized optical power circulating in the interferom-
eter. It is easy to show using simple calculations that these
spectral densities satisfy uncertainty relation (2.4), realizing
the exact equality.

In first-generation laser detectors, where the circulating
optical power was relatively small and did not exceed

several tens of kilowatts, the value of K�O� was small in
the entire operating frequency range. Therefore, the
radiation pressure noise influence on sensitivity was not
noticeable in these detectors and the notion of `quantum
noise suppression' was equivalent to that of `shot noise
suppression'.

In this situation, an obvious strategy is to measure the
phase quadrature of the light escaping through the dark port
(because precisely this quadrature carries the information on
the gravitational signal [see Eqn (3.14)]), which corresponds
to the choice of the homodyne phase z � p=2. As a result of
this classical optimization, the measurement and back-action
noises become uncorrelated and the detector sensitivity
becomes limited by the SQL.

In first-generation detectors, this factor did not play any
significant role, but in second-generation detectors, after they
reach the planned sensitivity, the radiation pressure noise and
hence the SQL will become noticeable factors that limit the
sensitivity. However, in the nearest future, these detectors will
still be operating in the classical optimization regime.

Equations (3.36) are in this case simplified as follows:

Sx�O� � �h

2mO 2K�O� ; �3:39a�

SF�O� � �hmO 2K�O�
2

; �3:39b�

SxF�O� � 0 : �3:39c�

Substituting these spectral densities in expression (2.21) and
taking into account that the test mirrors in laser gravitational-
wave detectors can be regarded as free masses, it is easy to
obtain the following expression for the total quantum noise
spectral density in the h-normalization:

Sh
tot�O� �

Sh
SQL�O�
2

�
1

K�O� � K�O�
�
: �3:40�

Expression (3.40) is different from the expression obtained in
(2.27) for an abstract linear probe system by a more
complicated dependence on the frequency, which appears
due to the finiteness of the interferometer transmission band.
For the frequencies within this band, Eqns (2.27) and (3.40)
coincide up to the substitution

O 2
q �

2Y
mg

: �3:41�

Spectral density (3.40) for the ALIGO parameters6

L � 4 km ; �3:42a�
m � 40 kg ; �3:42b�

o0 � 2pc
1064 nm

� 1:77� 1015 sÿ1 ; �3:42c�

Y
m
� �2p� 100�3 sÿ3 ) Ic � 2� 840 kW �3:42d�

and several typical values of g is shown in Fig. 8.

6We specify the planned value of the optical power. During the first run of

scientific observations, it was � 2� 100 kW.
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4. Methods for quantum noise suppression
in laser interferometers

4.1 Squeezed light
4.1.1 Idea of using squeezed light in interferometers. An
obvious method for decreasing the measurement noise of
spectral density (3.39a) is to increase the parameterY, that is,
the optical power Ic circulating in the interferometer arms.
However, as mentioned in Section 2.5, there are finite limits
for the application of this `brute force' method.

An alternative approach was suggested by Caves [41]. The
idea was to decrease the phase quadrature quantum uncer-
tainty for the radiation that enters the interferometer through
the dark port, which (for z � p=2) gives a proportional
decrease in the shot noise [see Eqns (3.19) and (3.27)]. Due
to the commutation relation [see Eqn (B.2b) in Appendix B],
this leads to a proportional increase in the second (amplitude)
quadrature uncertainty â c and, correspondingly, an increase
in radiation pressure noise (3.28), such that uncertainty
relation (2.18) remains valid.

4.1.2 Technology of light squeezing in interferometers. The
preparation method for such squeezed quantum states is
based on the process of degenerate parametric amplifica-
tion: in an oscillator with a characteristic resistance modu-
lated at its doubled eigenfrequency, one of the quadrature
amplitudes is amplified, while the other is suppressed [78].
This process is illustrated in Fig. 9, where regions of
quadrature amplitude uncertainties (that is, the cross section
of theWigner function at 1=

���
e
p

of the maximal value [79]) are
shown for a zero (initial) state, some arbitrary squeezed state,
and a squeezed state with reduced uncertainty of the
quadrature â s.

The first experiments on squeezed light generation were
performed in the mid-1980s [80]. However, the technology of
preparing squeezed light states in which the spectral density of
fluctuations of one of the quadratures would be reduced to a
level lower than the zero-point fluctuation level at the
operating frequencies of gravitational-wave detectors [which
are very low compared with `conventional' quantum optics

(down to several Hertz)] was developed only in the 21st
century [81±83].

The first practical application of squeezed light in
gravitational-wave detectors happened in 2011, when the
squeezing scheme was added to the GEO 600 detector [84,
85]. The injection of squeezed light allowed decreasing shot
noise and hence increasing the sensitivity of this detector at
high frequencies by approximately 3 dB (at the same optical
power). Since that time, the GEO 600 detector has continued
to routinely operate in the squeezing regime.

At the end of 2011, at the very end of the life cycle of the
Initial LIGO detectors, the application of squeezed light was
also tested in one of them [42]. Squeezed light is not yet used in
the ALIGO detectors, but there is no doubt that this is a
temporary situation.

A simplified scheme of squeezed light generation and
injection into the interferometer is shown in Fig. 10 (see also
Fig. 1 in [84], where it is shown in greater detail). Light with a
frequency o0 either comes from the main pump laser or is
generated by a separate laser synchronized with it (we note
that this laser determines the squeezing phase y, which should
be very accurately linked to the pump laser phase) and is then
sent into the second harmonic generator. Output radiation of
that generator with the frequency 2o0 pumps the degenerate
optical parametric oscillator, which uses the principle
described above and generates a `squeezed vacuum' (Fig. 9c),
again at the frequency o0.

Further, this light is sent into the interferometer dark port
instead of zero-point fluctuations coming from the photode-
tector. This is achieved by using an optical circulator consisting
of a polarization beam splitter and a Faraday polarization
rotator. The circulator directs the squeezed light into the
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Figure 8. The total quantum noise spectral densities for the ALIGO

parameters (3.42) and g � 2p� 100 sÿ1 (curve 1), g � 2p� 300 sÿ1 (curve
2), and g � 2p� 1000 sÿ1 (curve 3). Dashed line shows the SQL.
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²ËÔ. 9. Uncertainty regions for the quadrature amplitudes: (a) the initial

state; (b) a squeezed state with an arbitrary y; and (c) a squeezed state with

y � 0.
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ferometer dark port
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PBSOPOSHG
2o0 o0o0

Figure 10. Schematic for squeezed light generation and injection into the

interferometer. SHGÐsecond harmonic generator, OPOÐoptical para-

metric oscillator, PBSÐpolarization beam splitter, FRÐFaraday rota-

tor. The last two elements form an optical circulator that separates the

interferometer input and output beams.
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interferometer and sends the interferometer output signal to the
detector, while the photodetector zero-point fluctuations (not
shown in Fig. 10) are reflected from the polarization beam
splitter and do not enter the interferometer.

4.1.3 Quantum noise spectral densities. In the case where
squeezed light is used, the relations for quantum noise
spectral densities can be obtained by combining Eqns (3.27),
(3.28), and (B.17):

Sx�O� � �h

2mO 2K�O�
cosh �2r� � sinh �2r� cos �2�yÿ z��

sin2 z
;

�4:1a�

SF�O� � �hmO 2K�O�
2

�
cosh �2r� � sinh �2r� cos �2y�� ; �4:1b�

SxF�O� � �h

2

cosh �2r� cos z� sinh �2r� cos �2yÿ z�
sin z

: �4:1c�

We concentrate on the case where there is no cross-
correlation between the shot noise and radiation pressure
noise. As we have mentioned, this case applies to first- and
second-generation gravitational-wave detectors and is rea-
lized for z � p=2 and y � 0. Equations (4.1) and the total
quantum noise relation take the form

Sx�O� � �h

2mO 2K�O� exp �ÿ2r� ; �4:2a�

SF�O� � �hmO 2K�O�
2

exp �2r� ; �4:2b�

SxF�O� � 0 ; �4:2c�

Sh
tot�O� �

Sh
SQL�O�
2

�
exp �ÿ2r�
K�O� � K�O� exp �2r�

�
: �4:3�

It is easy to see that Eqns (4.2) and (4.3) differ from the
corresponding equations in the case of no squeezing, (3.39)
and (3.40), only by the factor exp �2r�. This means that the
squeezed light injection has the same effect on the quantum
noise as the proportional change in the optical power.

Figure 11 shows the total quantum noise spectral densities
without squeezing and with a 10 dB squeezing for ALIGO
parameters (3.42) and g � 2p� 300 sÿ1. These plots clearly
demonstrate the sensitivity improvement at high and inter-
mediate frequencies, where shot noise is dominant, and the
sensitivity degradation at low frequencies, where radiation
pressure noise dominates.

There are a number of methods that provide the
sensitivity improvement for all frequencies, and they are
discussed in Section 4.2. All these methods require more
significant changes to the interferometer topology than just
simply adding the squeezing. But there is a simple technique
that does not require such topology changes and allows
increasing the sensitivity at high and intermediate frequen-
cies without decreasing the low-frequency sensitivity.

4.1.4 Quantum noise optimization using squeezed light. We
discuss the structure of expression (4.3) inmore detail.We can
see that if

Oq �
������������������������
2Y exp �2r�

mg

s
< g �4:4�

(which holds in all real laser gravitational-wave detectors),
then Eqn (4.3) can be approximated as follows:

Sh
tot�O��

4�h

mL2

2Y exp �2r�
mO 4g

/ exp �2r�
g

; O < Oq ;

mg exp �ÿ2r�
2Y

/ g exp �ÿ2r� ; Oq< O < g ;

mO 2 exp �ÿ2r�
2Yg

/ exp �ÿ2r�
g

; O > g :

8>>>>>>><>>>>>>>:
�4:5�

Hence, if we simultaneously introduce squeezing and broaden
the interferometer transmission band proportionally to the
squeezing factor exp �2r�, then, compared with the initial
conditions with no squeezing, the quantum noise does not
change for low and middle frequencies, but at high frequen-
cies the spectral density of this noise decreases by the factor
exp �4r� (see the corresponding curve in Fig. 11). Compared
with the case with squeezing but with the unchanged
transmission band, the quantum noise spectral density
decreases by the factor exp �2r� at low and high frequencies,
but proportionally increases at intermediate frequencies.
However, due to the above-mentioned character of technolo-
gical noises in second-generation gravitational-wave detec-
tors, there is no need for a significant reduction in quantum
noise in the intermediate frequency range.

To summarize, the above discussion shows that in order to
achieve sensitivity improvement (at least in second-genera-
tion detectors), it is necessary to simultaneously introduce
squeezing and proportionally broaden the interferometer
transmission band.

4.1.5 Influence of optical losses. The actual sensitivity
improvement at high frequencies demonstrated by the GEO
600 and LIGO detectors [42, 84] was approximately 3 dB,
while the squeezing factor at the interferometer input was
approximately 10 dB in both cases. The reason for this
difference is optical losses in the interferometers, which
significantly lower the effective squeezing factor.
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Figure 11. Squeezing influence on the total quantum noise spectral density.

Solid curve: g � 2p� 300 sÿ1, no squeezing. Dashed-dotted line: g �
2p� 300 sÿ1 and exp �2r� � 10. Dotted line: g � 2p� 3000 sÿ1 and

exp �2r� � 10. Dashed line: the SQL. All parameters that are not specified

explicitly correspond to ALIGO [see (3.42)].
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In first- and second-generation detectors, the main
contribution to these losses was made by the elements of the
interferometer optical output channel (including the non-unit
quantum efficiency of the photodetector). To calculate the
influence of these losses, it is convenient to use the equivalent
optical setup shown in Fig. 12. Here, the losses are modeled
by a semi-transparent mirror, which transmits only a fraction
Z < 1 of the light escaping from the dark port to the detector
(which in this case is ideal). The factor Z, which characterizes
all optical losses in the output channel, is known as the
`unified quantum efficiency' of the interferometer. The same
mirror also adds effective vacuum noise n̂ to the output signal
(we recall that according to the fluctuation±dissipation
theorem, any losses are accompanied by the introduction of
the corresponding noise).

As a result, the following relation is valid for light incident
on the photodetector:

d̂ � ���
Z
p

b̂�
�����������
1ÿ Z

p
n̂ � ���

Z
p �b̂� En̂� ; �4:6�

where E are the normalized optical losses,

E 2 � 1ÿ Z
Z

: �4:7�

This means that the shot noise spectral density in an
interferometer with losses can be obtained using the rule

Sx � Swithout loss
x � E 2Swithout loss and squeezing

x ; �4:8�

where the second term is created by the additional noise n̂. In
particular, in the case without squeezing, Eqn (3.39a) is
modified to

Sx�O� � �h

2mO 2K�O�Z ; �4:9�

and the addition of squeezing (4.2a) results in the expression

Sx�O� � �h

2mO 2K�O�
�
exp �ÿ2r� � E 2

�
: �4:10�

We can conclude that if the unified quantum efficiency is
relatively close to unity, Z0 0:5, as in modern laser gravita-
tional-wave detectors, then in the case without squeezing the
sensitivity decrease caused by the optical losses is relatively

small. At the same time, these losses easily compensate the
possible squeezing-assisted sensitivity improvement.

We consider the estimates for the GEO 600 detector
presented in [84] as an example: the initial squeezing 10 dB
�exp �ÿ2r� � 0:1� and the unified quantum efficiency
Z � 0:62. The effective squeezing is then given by

exp �ÿ2r� � E 2 � 0:71 ; �4:11�

which is approximately only 1.5 dB. The sensitivity improve-
ment compared with the case without squeezing and with the
same losses is

Z exp �ÿ2r� � 1ÿ Z � 0:44 ; �4:12�

which corresponds to the same 3.5 dB reported in [84].

4.2 Frequency-dependent squeezing
and variation measurement
4.2.1 Frequency-dependent squeezing. A natural development
of the idea to use squeezed light states is the introduction of
frequency dependence into the squeezing phase y, suggested
by Unruh in [59]. Unruh showed that for any fixed
observation frequency O, there is some optimal squeezing
phase that provides the minimal total quantum noise at this
frequency (the case y � 0 considered in Section 4.1 corre-
sponds to the optimal squeezing phase value for O!1).
Therefore, the optimal frequency dependence of y can result
in quantum noise suppression at all frequencies.

The expression for the total quantum noise spectral
density in the case of an arbitrary phase squeezing can be
obtained by substituting Eqns (4.1) in (2.15). To simplify the
calculations, we once again limit our consideration to the
special case z � p=2. Then

Sh
tot�O� �

Sh
SQL�O�
2

�
cosh �2r� ÿ sinh �2r� cos �2y�

K�O�
ÿ 2 sinh �2r� sin �2y�� K�O��cosh �2r�� sinh �2r� cos �2y��� :

�4:13�

It is easy to show that for any fixed frequency O, if

tan y�O� � K�O� ; �4:14�

then the spectral density reaches its minimum:

Sh
tot�O� �

Sh
SQL�O�
2

�
1

K�O� � K�O�
�
exp �ÿ2r� : �4:15�

Comparing (4.15) and (3.40) shows that if squeezed light with
the squeezing phase optimized in accordance with (4.14) is
sent to the interferometer input, the quantum noise spectral
density can be decreased by a factor of exp �2r� at all
frequencies. Notably, this leads to the quantum noise
spectral density being lower than the SQL in a broad
frequency band, which is caused by a nonzero cross-
correlation of the shot noise and the radiation pressure noise
for y 6� 0 and y 6� p=2 [see the second term in braces in (4.13)].

Figure 13 shows spectral density (4.13) for several fixed
values y and optimized spectral density (4.15).

4.2.2 Variationmeasurement.Amore radical approach, which
in principle allows fully eliminating the influence of radiation

From the inter-
ferometer dark port

Detector

Vacuum noise

Z

n̂

b̂
d̂

Figure 12. Model for optical losses in the interferometer output channel:

Z < 1 is the unified quantum efficiency, n̂ is additional vacuum noise

introduced by the optical losses.
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pressure noise on the output signal of the interferometer, is
the optimization of the cross-correlation spectral density SxF

considered in Section 2.5 [see Eqn (2.55)]. This optimization
can be achieved in laser interferometers by introducing an
(efficient) frequency dependence into the homodyne phase z
[86, 87]. This approach is known as the variation measure-
ment [77, 88].

It follows from (2.59) that the total quantum noise
spectral density after such optimization is inversely propor-
tional to SF. Consequently, when using squeezed light, it is
beneficial to choose the squeezing phase such that it provides
the maximal value of SF, which corresponds to y � 0.
Combining Eqns (2.15) and (4.1) in this case, we obtain

Sh
tot�O� �

Sh
SQL�O�
2

�
exp �ÿ2r� � exp �2r� cot2 z

K�O�
ÿ 2 exp �2r� cot z�K�O� exp �2r�

�
: �4:16�

Spectral density (4.16) reaches its maximum for any fixed
frequency O when

cot z�O� � K�O� �4:17�

[the same result can be obtained using the general expression
(2.55)]. The corresponding optimized spectral density of the
total quantum noise has the form

Sh
tot�O� �

Sh
SQL�O�
2

exp �ÿ2r�
K�O� : �4:18�

It is easy to see that expression (4.18) corresponds to shot
noise (4.2a) up to the recalculation between the coordinate
spectral density and Sh. This means that the radiation
pressure noise can indeed be fully suppressed by using the
frequency-dependent homodyne phase.

Figure 14 shows spectral density (4.16) for several values
of z and optimized spectral density (4.18).

4.2.3 Filter cavity. An obvious problem that arises when
realizing frequency dependences (4.14) and (4.17) is that the
characteristic frequenciesO=�2p� in gravitational-wave detec-
tors lie in the range from several Hertz to several kilohertz,
and are therefore negligibly small in comparison with the
optical frequencies, which requires certain devices with a very
strong dispersion. It was suggested in [77] to use high-quality
Fabry±Perot optical cavities as such devices.

It was also shown in [77] that after the reflection of
squeezed light from such a filter cavity (Fig. 15), the
squeezing phase is shifted by

yf�O� � arctan
2gfdf

g 2f ÿ d 2
f � O 2

; �4:19�

where gf and df are respectively the FWHMof the filter cavity
transmission band and its detuning from the frequencyo0. To
realize the fourth-order dependence onO, which follows from
(3.37) and (4.14), it was suggested to use two cavities
connected in series. `Conventional' squeezed light (with a
frequency-independent phase y) is sent to the input of the first
cavity and the output of the second cavity is directed into the
interferometer dark port. The authors of [77] named the setup
with such a topology pre-filtering.
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Figure 13. Influence of the squeezing phase y on the total quantum noise

spectral densities. Dotted curve: no squeezing. Thin solid curves:

exp �2r� � 10, y is varied (in ascending order for positions of the minima)

from p=2 to 0. Bold solid curve: exp �2r� � 10 and optimized frequency-

dependent squeezing phase (4.14). In all cases, g � 2p� 300 sÿ1. Dashed

line: SQL. All parameters not specified explicitly correspond to ALIGO

[see (3.42)].
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Figure 14. Homodyne phase z influence on the total quantum noise

spectral densities. Dotted curve: no squeezing, z � p=2. Thin solid

curves: exp �2r� � 10, y � 0, z is varied (in ascending order for positions

of the minima) from 0:02p to p=2. Bold solid curve: exp �2r� � 10, y � 0,

and optimal frequency-dependent homodyne phase (4.17). In all cases,

g � 2p� 300 sÿ1. Dashed line: SQL. All parameters not specified

explicitly correspond to ALIGO [see (3.42)].

Output

Input

Tf 5 1

Figure 15. Filter cavity schematic [77]. Mirror on the left has a small

transmission coefficient Tf, while the other two are totally reflective. The

triangular cavity is shown for clarity, because in this case the output beam

is topologically separated from the input beam. It is possible to also use a

linear cavity, but with an optical circulator similar to the one shown in

Fig. 10.
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It was shown in the same paper that such a cavity
combination can also be used to achieve an effective
frequency-dependent homodyne phase (4.17). For this
purpose, the light escaping from the interferometer dark
port should be sent to its input and the output signal should
be registered with a homodyne detector. The authors called
this the post-filtering setup.

Strictly speaking, the filter cavities in such a setup do not
change the homodyne phase, but instead compensate the
frequency dependence of the ponderomotive light squeezing
introduced by the frequency-dependent optomechanical
interaction in the interferometer [86]. This allows making
optimal measurements of the output light with a `conven-
tional' homodyne detector (with a frequency-independent
homodyne phase). However, the result fully corresponds to
the one with a frequency-dependent homodyne phase.

4.2.4 Influence of optical losses in the interferometer.Compar-
ing the obtained results, we conclude that the post-filtering
scheme, which allows fully eliminating the radiation pressure
noise, is better than the pre-filtering scheme, which can
decrease it `only' by a factor of exp �2r�. However, this
conclusion is valid only for an ideal interferometer with no
optical losses; the picture changes when these are taken into
account.

As in the case of frequency-independent squeezing, we
limit ourselves to the analysis of output losses. Using rule
(4.8), it is easy to obtain expressions for the total quantum
noise spectral density for the pre-filtering setup:

Sh
tot�O� �

Sh
SQL�O�
2

�
cosh �2r� ÿ sinh �2r� cos �2y� � E 2

K�O�

ÿ 2 sinh �2r� sin �2y�� K�O��cosh �2r�� sinh �2r� cos �2y���:
�4:20�

This spectral density reaches its minimum over y at the same
value (4.14) as in the case with no losses:

Sh
tot�O� �

Sh
SQL�O�
2

�
exp �ÿ2r� � E 2

K�O� � K�O� exp �ÿ2r�
�
�4:21�

[cf. Eqn (4.15)].
For the post-filtering setup,

Sh
tot�O� �

Sh
SQL�O�
2

�
�

1

K�O�
�
exp �ÿ2r� � exp �2r� cot2 z� E 2

sin2 z

�
ÿ 2 exp �2r� cot z�K�O� exp �2r�

�
: �4:22�

Here, the presence of losses influences the optimal value of z,

cot z�O� � K�O�
1� E 2 exp �ÿ2r� ; �4:23�

giving the optimized spectral density

Sh
tot�O� �

Sh
SQL�O�
2

�
exp �ÿ2r� � E 2

K�O� � E 2K�O�
1� E 2 exp �ÿ2r�

�
:

�4:24�

Hence, in the post-filtering setup with the presence of losses,
the radiation pressure noise is not fully compensated.

It follows from a comparison of expressions (4.21) and
(4.24) that the pre-filtering option becomes preferable when
the squeezing is strong or, more precisely, when

2E 2 sinh �2r� > 1 : �4:25�

We note that the squeezing of 10 dB �2 sinh �2r� > 10� was
already demonstrated quite a long time ago [82], while it is
problematic, at least in second-generation detectors, to
decrease the losses to the level of E 2 < 0:1. Therefore, the
pre-filtering setup is probably preferable.

4.2.5 Practical considerations. Another quite serious problem
when putting setups with filter cavities together is the optical
losses in the cavities themselves. The contribution of these
losses to the filter cavity bandwidth should be significantly
smaller than the bandwidth itself, i.e.,

cAf

4Lf
5 gf ; �4:26�

where Lf is the filter cavity length and Af is the absorption
coefficient per light circulation. Consequently, for typical
values gf � 103 sÿ1 [see expression (4.29)] and Af � 10ÿ4, the
filter cavity length should be at least several tens, or better
several hundreds of meters, so as to be comparable to the arm
lengths of the gravitational-wave detector itself, which
significantly increases its cost.

On the other hand, it was shown in [89, 90] that in
considering the real parameters of modern detectors, the
combination of two filter cavities is excessive: one is
sufficient. Indeed, expression (4.14) (in the pre-filtering case;
the same considerations are valid for post-filtering) can be
written in the form

tan y�O� � O 2
q g

2

O 2�g 2 � O 2� : �4:27�

The term O 2 in the parentheses in the denominator of (4.27)
becomes significant only for O > g. On the other hand, in
modern detectors g 2 4O 2

q , and therefore, for O > g, condi-
tion (4.27) provides values of y close to zero. The physical
reason for this lies in the fact that for O > g, the radiation
pressure contribution to the total quantum noise can be
disregarded and the squeezing phase y! 0 becomes optimal
and minimizes the shot noise (see the corresponding plot in
Fig. 13).

Therefore, Eqn (4.27) can be approximated as

tan y�O� � O 2
q

O 2
: �4:28�

Using this and (4.19), we can easily obtain the parameters of a
single filter cavity that provide such a dependence:

gf � df � Oq : �4:29�

Currently, the addition of one short filter cavity (in the
pre-filtering case) is very likely to be considered for the
upgrade of ALIGO detectors [91, 92]. The length of this
cavity, 16 m, is chosen so as to make it possible to install it in
the existing ALIGO infrastructure.
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4.3 Quantum speed meter
4.3.1 Quantum nondemolition measurements. The principle of
quantum nondemolition (QND) measurement was suggested
in the 1970s [22, 26] (see also later reviews [93, 94]). This
method can be described by the following requirements for a
measuring device [95]:

(1) the measuring device should measure an observableQ
of the test object such that its operator values at different time
moments Q̂�t� (in the Heisenberg representation) commute:
�Q̂�t�; Q̂�t 0�� � 0. These are called QND observables;

(2) the measuring device should fundamentally not give
any information on observables whose operators do not
commute with Q̂.

If these conditions are satisfied, the values of observables
that do not commute with Q̂ are, naturally, perturbed, but
this does not affect Q itself. Therefore, such systems are free
from the SQL.

The mentioned requirements are satisfied by the measure-
ment of an integral of motion of the test object under the
condition that the Hamiltonian of its interaction with the
measuring device commutes with this observable.7

The first `practical' setups for QND measurements were
also proposed in the late 1970s [22±25]. Mainly, they were
intended for oscillators, i.e., vibrational modes of the solid-
state detectors of that time, with the QNDobservables chosen
as either energy or (in more realistic schemes [23, 24]) the
oscillator quadrature amplitude.

A scheme for QND measurements of a free mass was
suggested in [25] using its obvious integral of motion, the
momentum. Unfortunately, the interaction in this scheme is
realized through the magnetic field; a quantum level of
sensitivity is hardly attainable in such a scheme due to
technological reasons.

4.3.2 Idea of a quantum speed meter. It was proposed in [96] to
measure not the momentum but the velocity of the test object
by performing two consecutive measurements of its coordi-
nate, such that the quantum state of the speed meter would
remain coherent between these measurements and the sign of
the interaction would be reversed for the second measure-
ment. Unlike the canonical momentum p, the velocity v and
the kinetic momentum mv are not integrals of motion (we
recall that if the Hamiltonian of the test object interaction
with the measuring device depends on p, the canonical
momentum is different from the kinetic one). However, as
we see later, if some additional conditions are satisfied, such a
scenario allows overcoming the SQL.

The simplest setup of a quantum speed meter is shown in
Fig. 16. A light pulse from the laser is first reflected from one
side of the test mass and then, after a time delay t, from the
other, and is finally registered with a homodyne detector. It is
easy to see that the resulting phase of this pulse can be
expressed as

ffin � f� 2o0t
c

�v ; �4:30�

where f is the initial phase,

�v � xt ÿ x

t
�4:31�

is the mean velocity of the test mass over the time interval
between the reflections, and x and xt are respective oscillator
coordinates at the instants of first and second reflections. The
light pulse during the reflection transfers the momentum 2E=c
to the test mass, where E is the energy of the pulse. Therefore,
the mean velocity between the reflections is different from the
initial velocity v:

�v � v� 2

mc
E ; �4:32�

hence,

ffin � f� 2o0t
c

v� 4o0t
mc 2

E : �4:33�

Therefore, whenmeasuring the phaseffin, the accuracy of the
initial speed measurement is limited by the value

Dv �
�������������������������������������������
cDf
2o0t

�2

�
�
2DE
mc

�2
s

; �4:34�

where Df and DE are initial uncertainties of the light pulse
phase and energy. With the uncertainty relation

DEDf5
�ho0

2
; �4:35�

measurement error (4.34) is limited by the velocity SQL [96]:

Dv5DvSQL �
�������
�h

mt

r
: �4:36�

It is obvious, however, that the term proportional to E in
(4.33) can be compensated by measuring not the phase of the
light pulse but the linear combination

ffin ÿ
4o0t
mc 2

E ; �4:37�

i.e., some optimal quadrature amplitude of the output light.
In this case, the measurement error for the initial velocity is

Dv � c

2o0t
Df ; �4:38�

where Df is the initial phase uncertainty. It can theoretically
be arbitrarily small, which corresponds to a precise measure-
ment of v.

Although the test-object velocity is perturbed during the
measurement, this perturbation is compensated after the
second reflection of the light pulse:

vfin � �vÿ 2

mc
E � v : �4:39�

7 Clearly, the measured observable must respond to the external influence,

which needs to be observed, and should therefore be an integral of motion

only in the absence of the external influence.

Laser
Detector

Delay t

m

x

Figure 16. Scheme of a quantum speed meter.
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At the same time, the existence of a velocity uncertainty
during the measurement leads to a random displacement of the
object, that is, to the perturbation of its coordinate

Dx � 2t
mc

DE : �4:40�

It is easy to see that measurement error (4.38) and perturba-
tion (4.40) satisfy the uncertainty relation

DvDx � DfDE
o0

5
�h

2
: �4:41�

This simple example clearly demonstrates the main
features of the quantum speed meter: (a) this measurement
is indeed a nondemolition one; (b) in order to achieve an
accuracy overcoming the SQL, the measurement (just as the
coordinate measurements considered in Section 4.2) requires
the introduction of a cross-correlation between the measure-
ment noise and back-action noise.

4.3.3 Sagnac interferometer. The authors of a series of articles
[97±103], which followed the original paper [96], suggested
several practical schemes for laser gravitational-wave detec-
tors based on the idea of a quantum speed meter with the
sensitivity not bounded by the SQL. Here, we consider the
version suggested in [101, 102] using the Sagnac interferom-
eter topology. This setup, on the one hand, most accurately
follows the initial idea of double coordinate measurement
and, on the other hand, is considered one of the most
probable candidates for realization in third-generation
gravitational-wave detectors.

A simplified schematic of a quantum speed meter based
on the Sagnac interferometer is shown in Fig. 17. The light
in the arms after reflection from the movable mirror does
not return straight to the beam splitter, as in the case of the
Michelson interferometer (see Fig. 5), but is first redirected
to the other arm and only then recombines on the beam
splitter.

We analyze the operation of this setup following a
strategy similar to that in Section 3.1. The quadrature
amplitudes of light entering either of the two arms have the
same form as in the case of the Michelson interferometer,
Eqn (3.8). The light transmitted to the `northern' arm is first
reflected from the `northern' mirror and then, after a time
delay t, is reflected from the `eastern' mirror; the light
transmitted to the `eastern' arm follows the same path in the
opposite direction. As a result, the quadrature amplitudes of
the waves returning to the beam splitter have the form [cf.
Eqn (3.10)]

f̂ c
1 �t�
f̂ s
1 �t�

 !
� 1���

2
p
�

P� p̂ c�tÿ t�
p̂ s�tÿ t�

� �
ÿ â c�tÿ t�

â s�tÿ t�
� �

� 2o0P

c

ÿ
x̂1�t� � x̂2�tÿ t�� 0

1

� ��
; �4:42a�

f̂ c
2 �t�
f̂ s
2 �t�

 !
� 1���

2
p
�

P� p̂ c�tÿ t�
p̂ s�tÿ t�

� �
� â c�tÿ t�

â s�tÿ t�
� �

� 2o0P

c

ÿ
x̂2�t� � x̂1�tÿ t�� 0

1

� ��
: �4:42b�

For a wave that is directed to the dark port after recombina-
tion on the beam splitter, and for the output signal of the
homodyne detector, we obtain the respective expressions [see
Eqns (3.12) and (3.16)]

b̂ c
1 �t�
b̂ s
1�t�

 !
� ÿ â c�tÿ t�

â s�tÿ t�
� �

� 2o0P

c

ÿ
x̂�t� ÿ x̂�tÿ t�� 0

1

� �
;

�4:43�
iÿ�t� / ÿâ c�tÿ t� cos z

�
�
ÿâ s�tÿ t� � 2o0P

c

ÿ
x̂�t� ÿ x̂�tÿ t��� sin z �4:44�

[cf. expression (3.17)]. This means that the Sagnac inter-
ferometer, similarly to the theoretical scheme discussed
above, implements the measurement of the difference
between values of x̂ at two time instants separated by a time
delay t, i.e., themeasurement of the velocity of the differential
mechanical mode (3.2) of interferometer test mirrors aver-
aged over the time t.

We now discuss the back-action noise in this scheme.
Here, unlike in the Michelson interferometer, light conse-
quently hits both mirrors while traveling along its circular
path in the interferometer:

F̂fl 1�t� �
���
2
p

�ho0P
ÿ
ê c1 �t� � ê c2 �tÿ t�� ; �4:45a�

F̂fl 2�t� �
���
2
p

�ho0P
ÿ
ê c2 �t� � ê c1 �tÿ t�� : �4:45b�

Using Eqns (3.8) and (4.42), we can express the differential
force acting on the coordinate x̂ as

F̂fl�t� � F̂fl 1�t� ÿ F̂fl 2�t� � 2�ho0P

c

ÿ
â c�t� ÿ â c�tÿ t�� �4:46�

[cf. Eqn (3.26)].
We now rewrite Eqns (4.44) and (4.46) in the spectral

representation:

iÿ�O� / x̂�O� � x̂fl�O� ; �4:47�
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ê2
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Figure 17. Simplified schematic of a laser gravitational-wave detector

based on a quantum speed meter (Sagnac interferometer).M are movable

mirror masses.
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where

x̂fl�O� � c

2o0P

â c�O� cot z� â s�O�
1ÿ exp �ÿiOt� ; �4:48a�

F̂fl�O� � 2�ho0P

c

�
1ÿ exp �iOt��â c�O� : �4:48b�

Let the time delay be small compared with the characteristic
signal variation time Oÿ1. Then expressions (4.48) can be
simplified:

x̂fl�O� � v̂fl�O�ÿiO ;
�4:49a�

F̂fl�O� � ÿiOp̂fl�O� ; �4:49b�

where v̂fl�O� and p̂fl�O� are respectively shot noise and
radiation pressure noise normalized as the equivalent fluctua-
tion velocity and momentum:

v̂fl�O� � ÿ c

2o0Pt

�
â c�O� cot z� â s�O�� ; �4:50a�

p̂fl�O� � 2�ho0Pt
c

â c�O� : �4:50b�

Weassume for simplicity that the dark port transmits only
zero-point fluctuations (the case with squeezed light injection
is considered below). In this case, noise spectral densities
(4.49) are expressed as

Sx�O� � Sv

O 2
; �4:51a�

SF�O� � O 2Sp ; �4:51b�

SxF�O� � ÿSvp �4:51c�

where

Sv � �hc 2

16o0Ict 2 sin
2 z

; �4:52a�

Sp � 4�ho0Ict 2

c 2
; �4:52b�

Svp � ÿ �h

2
cot z : �4:52c�

are frequency-independent spectral densities of the v̂fl and p̂fl
noises.

We note that spectral densities (4.51a)±(4.51c) satisfy
uncertainty condition (2.4) with the exact equality:

Sx�O�SF�O� ÿ S 2
xF�O� � SvSp ÿ S 2

vp �
�h 2

4
: �4:53�

The total quantum noise spectral density (2.15) for the
interferometer under discussion is

Sh
tot�O� �

8

m 2L2O 2
�m 2Sv � 2mSvp � Sp� : �4:54�

In the simplest special case with no cross-correlation of the
shot noise or the radiation pressure noise (z � p=2 and

SxF � 0), expression (4.54) can be simplified:

Sh
tot�O� �

8

mL2O 2
�m 2Sv � Sp� : �4:55�

The obvious optimization of (4.55) with respect to the pump
power,������

Sp

Sv

r
� 8o0Ict 2

c 2
� m ; �4:56�

gives

Sh
tot�O� � Sh

SQL�O� ; �4:57�

and hence the sensitivity is in this case limited by the SQL.
However, even here the quantum speed meter demonstrates
an advantage over the `conventional' coordinate meter: the
total quantum noise spectral density of the latter only touches
the SQL at one point, O � Oq, being higher than the SQL at
all other frequencies [see expression (2.27) and Fig. 3]. But for
a quantum speed meter, due to a specific frequency depen-
dence of its quantum noises (4.51), the equality Sh

tot � Sh
SQL

holds at all frequencies (taking all the mentioned approxima-
tions into account).

The same frequency dependence allows performing full
quantum noise optimization (see Section 2.5) for all frequen-
cies without using filter cavities. Indeed, with relation (4.53)
taken into account, spectral density (4.54) reaches its
minimum with respect to Svp at

Svp � ÿSp

m
�4:58�

[cf. Eqn (2.55)], with

Sh
tot�O� �

2�h 2

L2O 2Sp

� Sh
SQL�O�
2

mc 2

8o0Ict 2
: �4:59�

Hence, in principle, the Sagnac interferometer sensitivity is
limited only by the available pump power and can be
arbitrarily higher than the SQL.

4.3.4 Practical setup of a quantum speedmeter.The considered
`simple' Sagnac interferometer has the same main disadvan-
tage as the `simple' Michelson interferometer: for any reason-
able values of the optical power, the resulting optomechanical
interaction is too weak. It was suggested in [101, 102] to add
Fabry±Perot cavities to the Sagnac interferometer arms,
similarly to what was done with the Michelson interferom-
eter. But this results in the technological problem of arranging
the `circular motion' during which the light first enters the
cavity in one arm, then in the other arm, and only then returns
to the beam splitter. In [101], it was proposed to use
orthogonal polarizations of light for these purposes and in
[102], to use two opposite propagation directions of light in
Fabry±Perot ring cavities. As regards quantum noises, these
schemes are equivalent. A simpler version with ring cavities is
shown in Fig. 18.

Quantum noises from the Sagnac interferometer with
Fabry±Perot cavities in the arms were calculated in [104].
The authors also considered the possibility of injecting
`simple' squeezed light �y � 0� into the interferometer dark
port in order to decrease the required power circulating in the
arms. In the notation accepted here, the obtained spectral
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densities have the form

Sv�O� � �h

2mKSM�O�
�
exp �ÿ2r� � exp �2r� cot2 z� ; �4:60a�

Sp�O� � �hmKSM�O�
2

exp �2r� ; �4:60b�

Svp � ÿ �h

2
exp �2r� cot z ; �4:60c�

where

KSM�O� � 4Yg

m�g 2 � O 2�2 �4:61�

is the optomechanical coupling factor for the Fabry±Perot±
Sagnac interferometer. Substituting these relations in the
expression for the total quantum noise spectral density
(4.54), we obtain

Sh�O� � Sh
SQL�O�
2

�
exp �ÿ2r� � exp �2r� cot2 z

KSM�O�
ÿ 2 exp �2r� cot z�KSM�O� exp �2r�

�
: �4:62�

We note that the factorKSM�O� is radically different from
its analogue in the Fabry±Perot±Michelson interferometer,
Eqn (3.37), by the fact that O < g inside the Fabry±Perot
cavity transmission bands; in other words, in the frequency
range where the radiation pressure noise influence is
significant, it can be considered approximately independent
of the frequency:

KSM�O < g� � KSM�0� : �4:63�

At z � p=2 (classical optimization), expression (4.62)
takes the form

Sh�O� � Sh
SQL�O�
2

�
exp �ÿ2r�
KSM�O� � KSM�O� exp �2r�

�
: �4:64�

With (4.63) taken into account, this can be optimized over the
whole band O < g by setting

Y � mg 3 exp �ÿ2r�
4

; �4:65�

which corresponds to the optimization for a `simple' Sagnac
interferometer in (4.56). Therefore,

Sh�O� � Sh
SQL�O�
2

�
g 4

�g 2 � O 2�2 �
�g 2 � O 2�2

g 4

�
: �4:66�

It is easy to see that for O < g, this spectral density equals the
SQL.

We now consider optimizing spectral density (4.62) with
respect to the homodyne phase z. The existence of Fabry±
Perot cavities adds a frequency dependence to spectral
densities (4.60), which does not allow performing a fre-
quency-independent optimization similar to (4.58) for all
frequencies. However, due to condition (4.63), the following
low-frequency optimization becomes possible here:

Svp � ÿSp�0�
m

) cot z � KSM�0� � 4Y
mg 3

: �4:67�

Substituting this value of the homodyne phase in expression
(4.62), we obtain

Sh�O� � Sh
SQL�O�
2

�
�
exp �ÿ2r�
KSM�O� �

O 4�2g 2 � O 2�2
g 8

KSM�O� exp �2r�
�
: �4:68�

It can be seen that for O < g, the term proportional to KSM is
suppressed compared with the corresponding term in the case
z � p=2, which allows overcoming the SQL in this frequency
range:

Sh�O5 g� � Sh
SQL�O�
2

mg 3

4Y
exp �ÿ2r� : �4:69�

But if the homodyne phase is not p=2, it increases the shot-
noise contribution, which leads to an increases in Sh at high
frequencies.

As was suggested in [105], this problem can be solved by
adding a filter cavity (in the post-filtering scheme) to
compensate the frequency dependence caused by the finite-
ness of g. As was shown in [105], the length and therefore the
cost of a filter cavity in such a configuration can be
significantly reduced compared with the case of a Fabry±
Perot±Michelson interferometer.

Examples of the obtained spectral densities are shown in
Fig. 19. We can clearly see that even at z � p=2 the quantum
speed meter scheme may not overcome the SQL, but its
sensitivity at low frequencies is significantly higher than in
the case of a usual Fabry±Perot±Michelson interferometer
(the value of g for the latter is chosen such that the high-
frequency noise has the same level). It is also evident from the
figure that there is a slight, but noticeable improvement (an
almost two-fold change in the spectral density) in the low-
frequency noise level, which can be achieved by using the
optimized homodyne phase in (4.67) for the interferometer
parameters close to the ALIGO parameters.

4.3.5 Influence of optical losses and a comparison with filter
cavity schemes. If optical losses are present in the interferom-
eter output channel, the expression for shot noise in a Fabry±

Laser

Detector

x1

x2

Figure 18. Practical schematic of a laser gravitational-wave detector based

on a quantum speedometer (Sagnac interferometer with Fabry±Perot

cavities in the arms). The case of triangular cavities in the arms [102]. A

setup with conventional linear cavities can be used with additional

polarization optics [101].
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Perot±Sagnac interferometer, Eqn (4.60a), becomes [104]

Sv�O� � �h

2m

1

KSM�O�
�
exp �ÿ2r� � exp �2r� cot2 z� E 2

sin2 z

�
;

�4:70�

and spectral densities (4.60b) and (4.60c) stay unchanged.
At z � p=2 (classical optimization), the total quantum

noise spectral density reaches its minimum at

Y � mg 3

4

������������������������������������������������������
exp �ÿ2r��exp �ÿ2r� � E 2

�q
; �4:71�

with

Sh�O� � Sh
SQL�O�

������������������������������
1� E 2 exp �2r�p
2

�
�

g 4

�g 2 � O 2�2 �
�g 2 � O 2�2

g 4

�
�4:72�

[cf. Eqns (4.65) and (4.66)].
Low-frequency optimization with respect to the homo-

dyne phase in the case with losses gives the optimization
condition

cot z � KSM�0�
1� E 2 exp �ÿ2r� �

4Y
mg 3

�
1� E 2 exp �ÿ2r�� �4:73�

and the corresponding optimized value of the spectral density

Sh�O� � Sh
SQL�O�
2

�
exp �ÿ2r� � E 2

KSM�O�

�
�
O 4�2g 2� O 2�2

g 8
exp �2r� � E 2

� KSM�O�
1� E 2 exp �ÿ2r�

�
�4:74�

[cf. Eqns (4.67) and (4.68)].

Spectral densities (4.72) and (4.74) are plotted in Fig. 20
together with the corresponding plot for the Fabry±Perot±
Michelson interferometer with pre-filtering [see Eqn (4.21)].
In order not to complicate the figure, we do not show the
plot for the post-filtering setup because its performance is
certainly worse than in the pre-filtering case. As can be seen
from Fig. 20, even for quite optimistic values of the unified
quantum efficiency Z � 0:9, the losses lead to a noticeable
increase in the quantum noise, and the Fabry±Perot±
Michelson interferometer scheme with pre-filtering demon-
strates the lowest sensitivity to optical losses. On the other
hand, due to the specific frequency dependence of the
optomechanical coupling factor in the Fabry±Perot±Sagnac
interferometer, its sensitivity remains the highest at the
lowest frequencies (for the parameter values used in the
estimations).

When comparing the prospects of Fabry±Perot±Sagnac
interferometers and Fabry±Perot±Michelson interferometers
with filter cavities, it is currently difficult to select one best
option. Setups with pre- or post-filtering require an addi-
tional (expensive) element, a filter cavity. On the other hand,
this element is truly additional and does not require a major
upgrade of the main interferometer. It can be used for
upgrading the existing detectors and detectors under con-
struction.

Regarding future detectors of the so-called third genera-
tion, the choice of the best topology will most probably be
determined by technological limitations, mainly by the
accessible optical power, squeezing, and optical losses. But
in any case, the quantum speed meter setup, with its
fundamentally different frequency dependence of the quan-
tum noise spectral density at low frequencies (Oÿ2 instead of
Oÿ4), is a very promising candidate for realization in such
detectors.

Currently, a `prototype' quantum speed meter based on a
Fabry±Perot±Sagnac interferometer is being developed at the
University of Glasgow [106, 107].

10ÿ23

����� S
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Figure 19. The total quantum noise spectral densities of the Fabry±Perot±

Sagnac interferometer at z � p=2 (solid curve) and for the value of z given
by (4.67) and providing aminimum ofSh forO < g (dashed-dotted curve).
In both cases, g is determined from (4.65) as g � 2p� 340 sÿ1. Dotted line:

the total quantum noise spectral density of the Fabry±Perot±Michelson

interferometer with z � p=2 and g � 2p� 680 sÿ1. For all plots,

exp �2r� � 10. Dashed line, the SQL. All parameters not indicated

explicitly correspond to ALIGO [see (3.42)].
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Figure 20. Influence of the optical losses on quantum noise. Solid curve:

Fabry±Perot±Michelson interferometer with optimal frequency-depen-

dent squeezing phase (4.14); dotted curve: Fabry±Perot±Sagnac inter-

ferometer with z � p=2; dashed-dotted line: Fabry±Perot±Sagnac

interferometer with the optimal z, Eqn (4.67). In all plots, Z � 0:9,
exp �2r� � 10, and the value of g is defined by expression (4.71) and is

� 2p� 300 sÿ1. Dashed line: the SQL. All parameters not indicated

explicitly correspond to ALIGO [see (3.42)].
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4.4 Modification of test mass dynamics
4.4.1 Influence of the test mass dynamics on the SQL. In all the
setups considered in Sections 4.1±4.3, the sensitivity improve-
ment requires either increasing the optical power circulating
in the interferometer or using squeezed light states. We
already mentioned the technological problems caused by the
high power of the circulating light. The possibility of using
squeezed states faces another technological problem, namely,
the existence of optical losses in the interferometer, which give
rise to vacuum noise and limit the effective squeezing. As a
result, we can hope that the considered quantum noise
suppression methods can result in improving the sensitivity
several-fold or maybe even by an order of magnitude
(compared with the ALIGO sensitivity), but its further
increase will have to involve some other methods.

One of the proposed alternatives is the enhancement of the
signal response of a gravitational-wave detector bymodifying
the dynamics of its test masses. As can be seen from
expressions (2.17) and (2.20), the quantum noises normalized
to the test object input decrease as the test object susceptibility
increases and, as follows from (2.59), the spectral density
corresponding to the energetic quantum limit also decreases.
Because this does not require any precise mechanisms for
mutual compensation of measurement noise and back-action
noise (in particular, the SQL does not have to be overcome),
the considered method is much more stable with respect to
optical losses.

A trivial case of the considered method is just decreasing
the test object mass m [see Eqns (2.24) and (2.26)]. Such an
approach can be applied, for example, in atomic force
microscopes. On the contrary, when detecting forces of a
gravitational nature, particularly in gravitational-wave detec-
tors, the signal force is also proportional to the test-object
mass; therefore, the overall sensitivity decreases together with
the mass, which we can see, for example, from the expressions
for the total quantum noise and the SQL in the h-normal-
ization [Eqns (2.27) and (2.28)].

Another possibility is to use a harmonic oscillator instead
of a free test mass. The susceptibility of a harmonic oscillator
rapidly increases near its resonance frequency Om, which
improves the SQL by a factor of � O0=DO in the frequency
band DO centered at Om [see (2.26) and (2.31)]. This method
was demonstrated in several recent `table-top' experiments
with mechanical nano-oscillators [108±110].

In laser gravitational-wave detectors, the characteristic
eigenfrequencies of the test mirror vibrational (pendulum)
modes are close to 1 Hz, and in the operating frequency range
these mirrors can be regarded as almost free masses.
Obviously, it is impossible to turn the differential mechanical
mode of laser detector test mirrors into an oscillator with a
frequency in the operating frequency range by using an
`ordinary' spring. The reason is simply the distance of several
hundred meters or several kilometers between these mirrors,
not tomention the unacceptable dissipation level and thermal
noises introduced by such a spring. However, instead, for the
same purposes, one can use the effect of the so-called optical
(in a more general context, electromagnetic) rigidity.

4.4.2 Electromagnetic rigidity. This effect was presumably
first observed in [111], where the authors investigated a
low-frequency torsion pendulum with its coordinate being
measured with a radio frequency capacitive sensor. It was
observed that the mechanical oscillator eigenfrequency
changes with the variation of the pump voltage in the

capacitive sensor, and the sign of this change is determined
by the sign of the pump frequency detuning from the
electromagnetic resonance. This effect was correctly
explained in [111] by the dependence of the detuning and
hence the energy stored in the capacitive sensor on the
mechanical coordinate x.

Indeed, if the eigenfrequency of an electromagnetic
resonator depends on x (for small x, this dependence can be
approximated linearly),

o�x� � o0 ÿ gx ; �4:75�

then its detuning is expressed as

d�x� � op ÿ o�x� � d� gx ; �4:76�

whereop is the pump frequency and d is the detuning value at
x � 0. At the same time, the electromagnetic energy stored in
the resonator also depends on x:

E�x� � g 2 � d 2

g 2 � d 2�x� E ; �4:77�

where E is the energy at x � 0. This, in turn, leads to the
x-dependence of the ponderomotive force that acts on the
mechanical degree of freedom (for example, the electrostatic
attraction of capacitor plates in the case of a capacitive sensor
or radiation pressure in an optical cavity):

F�x� � g

o0
E�x� : �4:78�

The linear component of this dependence gives the electro-
magnetic rigidity:

K � ÿ qF�x�
qx

����
x�0
� 2g 2Ed

g 2 � d 2
: �4:79�

Obviously, when changing x, the energy E and hence force
(4.78) do not change instantly, but with a delay td � 1=g.
Thus, the component of (4.78) proportional to x takes the
form

ÿKx�tÿ td� � ÿKx�t� ÿH
dx�t�
dt

; �4:80�

where

H � ÿKtd �4:81�

is the electromagnetic friction associated with the electro-
magnetic rigidity.

The existence of this friction allows us to assume that
according to the fluctuation±dissipation theorem, the electro-
magnetic rigidity can be a source of a new fluctuating force
that would act on the mechanical object. Indeed, this is the
case, but the effective noise temperature of such a force is very
low and under certain conditions it can correspond to zero-
point fluctuations [112].

Optical rigidity was experimentally demonstrated in small
`table-top' interferometers [113, 114] and in a 40-meter
`prototype' interferometer at the California Institute of
Technology [115].

The very low noise temperature of electromagnetic (in
particular, optical) rigidity also made it very popular in
quantum optomechanical experiments, for example, in the
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electromagnetic cooling of mechanical oscillators [116, 117]
(see also reviews [28, 29]).

4.4.3 Optical rigidity in laser gravitational-wave detectors.The
possibility of using optical rigidity in laser gravitational-wave
detectors was first discussed in [118] regarding the topology
with the so-called intracavity readout.

The prospects of optical rigidity applications in `conven-
tional' laser gravitational-wave detectors were considered in
[119±122]. The expressions for quantum noises for a detuning
d needed to create optical rigidity are very cumbersome.
Therefore, we do not present them here (they can be found,
e.g., in [45]) and limit ourselves to an analysis of the test mass
dynamics and the SQL value in the presence of optical
rigidity.

One of the optical rigidity features is that it is frequency-
dependent [120±122]:

K�O� � Yd

�gÿ iO�2 � d 2
�4:82�

[cf. expression (4.79)], and this frequency dependence allows
partly compensating the main disadvantage of `conventional'
test oscillators, that is, the narrow band of sensitivity
improvement. In the presence of optical rigidity, depending
on the interferometer parameters, the SQL

Sh
SQL�O� � �h

��w�O���ÿ1 � �h
��ÿmO 2 � K�O��� ; �4:83�

can have either two resonance minima or one broader
minimum (the so-called second-order pole regime [120]). If
the interferometer bandwidth is sufficiently small, g5 d, the
frequencies of these minima can be expressed as

O 2
1; 2 �

 
d 2

2
�

������������������
d 4

4
ÿYd

m

s !1=2

; �4:84�

and the second-order pole regime is realized for

d �
�
4Y
m

�1=3

: �4:85�

The SQL for these two regimes, Eqn (4.83), is shown in
Fig. 21. To highlight the effect, we use very small values
g � 2p� 2 sÿ1. However, such values can be actually applied
in configurations with two or more optical pumps, one of
which has the `standard' g � 103 sÿ1 and is used for the
measurement, while the other, with the small g � 10 sÿ1,
creates the optical rigidity. The same is valid for the scheme
with optical inertia considered in Section 4.4.4, in which up to
two additional pumps can be used.

4.4.4 Negative optical inertia. A method for a more thorough
modification of the test-mass dynamics was suggested in [123,
124] based on the frequency dependence of optical rigidity in
Eqn (4.82).

To demonstrate the principle of this method without
complicated calculations, we assume that g! 0 and O5 d
in (4.82). In this case,

K�O� � K�0� ÿmoptO 2 �O�O 4� ; �4:86�
where

K�0� � Y
d

�4:87�

is the static rigidity and

mopt � ÿ Y

d 3
�4:88�

is the effective optical inertia. We note that depending on the
sign of the detuning d, both these values can be either positive
or negative.

We now assume that the interferometer is pumped with
two pump lasers having different frequencies. Each pump
creates its own optical rigidity. If the detuning of these pump
lasers d1 and d2 have different signs, then the parameters can
be combined in such a way that the static rigidities created by
the lasers would compensate each other and the introduced
total optical inertia would compensate the usual mechanical
inertia of the test mass:

K1�0� � K2�0� � 0 ; �4:89a�
m�mopt 1 �mopt 2 � 0 : �4:89b�

Obviously, the exact compensation takes place only at zero
frequency, but at other sufficiently small frequencies, the
susceptibility of such a test object would be significantly
larger than that of the initial test mass.

More rigorous calculations taking the finiteness of g into
account show that in order to satisfy equalities (4.89), the
pump parameters should be such that

Y1 � m�g 21 � d 2
1 �2�g 22 � d 2

2 �
d1�d 2

2 � g 22 ÿ d 2
1 ÿ g 21 �

; �4:90a�

Y2 � m�g 21 � d 2
1 ��g 22 � d 2

2 �2
d2�d 2

1 � g 21 ÿ d 2
2 ÿ g 22 �

: �4:90b�

From the plot of the SQL for the negative optical inertia
regime in Fig. 21, it is clear (and can also be shown
rigorously) that the upper boundary of the range with a
decreased SQL corresponds to the lower (in absolute
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Figure 21. The SQL for a test mass with dynamics modified by optical

rigidity. Solid curve: g � 2p� 2 sÿ1 and d � 2p� 300 sÿ1; dotted curve:

g � 2p� 2 sÿ1 with d � 2p� 160 sÿ1 defined by expression (4.85). Dash-

dotted curve: the regime of negative optical inertia: g1; 2 � 2p� 2 sÿ1,
d1 � 2p� 80 sÿ1, d2 � ÿ2d1, Ic1=Ic2 � 0:5, and Ic1 � Ic2 � 4� 840 kW

[see Eqns (4.90)]. Dashed line: the free-mass SQL. All parameters not

indicated explicitly correspond to ALIGO [see (3.42)].
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value) of the two detunings. That detuning, as follows
from Eqns (4.90), is defined by the available pump power,
d1 � ��Y1 �Y2�=m�1=3. The `residual' value wÿ1�O! 0� 6� 0
in this example is created by optical friction: as shown in [123,
124], it can in principle also be compensated by choosing the
values of g for the two pumps.

4.4.5 Setups with intracavity readout.Due to the limited size of
this review, we do not consider in detail another class of
optical-rigidity-based setups for gravitational-wave detec-
tors, those with the topology of so-called intracavity readout
[118, 125±128]. The idea behind these schemes is to couple the
motion of test mirrors to the motion of a local mirror (or
mirrors) via optical rigidity and measure the position of the
local mirror with a small interferometer, instead of directly
measuring the positions of the test mirrors separated by a
distance of several kilometers.

The described method allows solving one of the main
problems of large laser interferometers, namely, the stringent
requirements on the circulating optical power. On the other
hand, this method requires a radical change in the detector
topology, and is currently considered exotic.

5. Conclusions

It is absolutely obvious that the first direct observation of
gravitational waves is neither the culmination nor the end of
half a century of development of gravitational-wave detec-
tors. The situation is currently as follows: two most advances
detectors embodying the best modern technologies could
barely `hear' the signal from a tremendous cosmic cata-
strophe (during this event, three solar masses were radiated
as gravitational waves over fractions of a second) that took
place relatively close to us on cosmological scales (at a
distance of approximately 0.5 Gpc).

Because gravitational waves from cosmic sources carry a
huge amount of astrophysical and physical information,
unobtainable with any other method (details can be found in
reviews [46, 129, 130]), there is no doubt that the development
of more sensitive gravitational-wave detectors will be actively
continued.

In the first place, the number of second-generation
detectors (ALIGO class) will grow, which would increase
the observation reliability for gravitational-wave signals and,
importantly, would radically increase the localization accu-
racy on the celestial sphere. During the next year, the French±
Italian detector Advanced Virgo will begin operation [131,
132]. The Kamioka Gravitational Wave Detector (KAGRA)
is under construction in Japan [133, 134], which has advanced
features such as sapphire test mirrors cooled to 20 K and an
underground location, which significantly lowers seismic
noises. It has been decided to build a gravitational-wave
detector in India using the already developed `filling', which
was initially planned for the third ALIGO detector. There are
also plans to build a ground-based gravitational-wave
detector in China.

There is little doubt that second-generation detectors will
use squeezed light. Most likely, at some later stage of their life
cycle, relatively short (several dozen meters) filter cavities will
be added to interferometers, probably in the pre-filtering
scheme. There are also discussions on the prospects of a more
thorough upgrade, comparable to that of the Initial LIGO to
ALIGO, which would result in using new mirrors (including
cryogenic ones) and suspensions. As a result, the sensitivity of

such devices, known as 2.5-generation detectors, should
become 2±5 times larger (in the units of the metric h) than
the ALIGO sensitivity [58]. We note that the number of
registered events will increase as the cube of this factor, i.e.,
by one to two orders of magnitude.

There are also preliminary projects of third-generation
gravitational-wave detectors with a sensitivity one order of
magnitude higher than that of ALIGO [44, 135, 136]. They
will be able to register gravitational-wave signals from a
larger part of the observable Universe for the redshifts up to
z � 10. It is hard to predict which quantum technologies will
be used in them. Currently, the most probable candidates are
two schemes: either the `usual' Fabry±Perot±Michelson
interferometer with additional long (kilometers) filter cav-
ities or a Fabry±Perot±Sagnac interferometer, possibly with a
short filter cavity. However, the experience in using second-
and 2.5-generation detectors can change this situation.

In any case, we expect quite interesting results in the next
decade both in astrophysics and in the field of quantum
measurement technologies.
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6. Appendices

A. Spectra and spectral densities
In this review, we let functions of time and their spectra be
denoted by the same letter and distinguish them by the
explicitly specified argument (time or frequency).

When calculating the spectra, we use the `quantum-
optical' sign rule:

f �O� �
�1
ÿ1

f �t� exp �iOt� dt : �A:1�

For all spectral densities, except the noise spectral density
Sh in the h normalization, we use the `two-sided' definition:

B�t� �
�1
ÿ1

S�O� exp �ÿiOt� dO
2p

; �A:2�

where B�t� is the corresponding correlation function.
For Sh, following the conventional practice, we use the

`one-sided' definition

Bh�t� �
�1
0

Sh�O� cos �Ot� dO
2p

; �A:3�

which gives the following rule for the recalculation from the
quantum noise spectral density SF in the F-normalization
to Sh:

Sh�O� � 8

m 2L2O 4
SF�O� : �A:4�

B. Two-photon formalism
Quadrature amplitudes. In the framework of the two-photon
formalism [70, 71], the optical field in a traveling wave can be
represented as a superposition of cosine �â c� and sine �â s�
quadrature amplitudes:

â�t� � â c�t� cos �o0t� � â s�t� sin �o0t� ; �B:1�
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which are operator-valued functions of time that vary slowly
on the scale of the frequency o0 and satisfy the commutation
relations�

â c�t�; â c�t 0�� � �â s�t�; â s�t 0�� � 0 ; �B:2a��
â c�t�; â s�t 0�� � id�tÿ t 0� : �B:2b�

It follows from commutator (B.2b) that the operator â is
normalized as a square root of the flux of quanta in an optical
wave,

â 2�t� �
�
â c�t��2 � �â s�t��2

2
� Î�t�

�ho0
; �B:3�

where I is the optical power and the bar stands for averaging
over a period of time much longer than the optical oscillation
period.

If the field has a classical component (mean value), it can
be explicitly separated:

â�t� � ÿA c � â c�t�� cos �o0t� �
ÿ
A s � â s�t�� sin �o0t� :

�B:4�

Obviously, the initial phase can always be chosen in such way
that one of these mean values, for example, the sine
quadrature, vanishes, which gives

â�t� � ÿA� â c�t�� cos �o0t� � â s�t� sin �o0t� : �B:5�

In this paper, the quadrature amplitude operators are
denotedwith lowercase letters and the corresponding classical
amplitudes with capital letters.

Power and phase fluctuations. In real optomechanical
setups, including laser gravitational-wave detectors, in order
to ensure significant interaction with the mechanical test
object, a large number of optical pump quanta are needed.
Therefore, we can assume that

â c; s

A
5 1 : �B:6�

Hence, ignoring second-order terms, we can represent the
optical power as

Î�t� � I� dÎ�t� ; �B:7�

where

I � �ho0A
2

2
�B:8�

is the mean power and

dÎ�t� � �ho0Aâ
c�t� �B:9�

is its fluctuations. In the same approximation, expression
(B.5) can be written in the form

â�t� � ÿA� â c�t�� cos ÿo0t� f̂�t�� ; �B:10�

where

f̂�t� � ÿ â s�t�
A

�B:11�

is the optical wave phase.

Squeezing transformation. In the framework of the two-
photon formalism, the transformation of the zero quantum
state of light, which is realized by a light-squeezing device, can
in general be expressed as

â c � ẑ c
�
cosh r� sinh r cos �2y��� ẑ s sinh r sin �2y� ; �B:12a�

â s � ẑ s
�
cosh rÿ sinh r cos �2y��� ẑ c sinh r sin �2y� ; �B:12b�

where ẑ c; s are quadrature amplitudes corresponding to light
in the zero state at the input of the squeezing device. If y � 0,
these expressions can be simplified:

â c � ẑ c exp r ; �B:13a�
â s � ẑ s exp �ÿr� : �B:13b�

Spectral densities. The statistical properties of the quad-
rature amplitudes are defined by their commutators (B.2).
Notably, in the zero quantum state, â c and â s are two
noncorrelated noises with the spectral densities

S�â c� � S�â s� � 1

2
: �B:14�

We note that the quantum state of radiation created by an
ideal laser, that is, a laser with fully suppressed technological
fluctuations, is coherent. It differs from the zero state only by
the existence of a mean value A 6� 0; therefore, the spectral
densities of the quadrature amplitudes are equal to (B.14). By
combining (B.14) with (B.9) and (B.11), it is easy to also
express the spectral densities of shot fluctuations of the power
and phase:

SI � �ho0I ; �B:15�
Sf � �ho0

4I
: �B:16�

In the case of a squeezed state, combining expressions
(B.12) and (B.14) yields

S�â c� � cosh �2r� � sinh �2r� cos �2y�
2

; �B:17a�

S�â s� � cosh �2r� ÿ sinh �2r� cos �2y�
2

; �B:17b�

S�â câ s� � sinh �2r� sin �2y�
2

; �B:17c�

where the last expression defines the quadrature amplitude
cross-correlation.
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